Intern
ati
o
n
a
l
Jo
urn
a
l
o
f
P
u
b
lic Hea
l
th Science (IJ
P
HS)
V
o
l.5
,
No
.2
,
Jun
e
2
016
, pp
. 20
1
~ 2
12
I
S
SN
: 225
2-8
8
0
6
2
01
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJPHS
A Short Review on the Deve
lopment of Salt Tolerant
Cultivars in Rice
Sami
ul
l
a
h K
h
an,
M
u
h
a
mm
ad
Arsh
ad
J
a
v
ed
, Nu
s
r
at
Ja
ha
n
,
Fa
zila
h
A
b
d Ma
na
n
Faculty
of Biosciences and
Medi
cal Engin
eer
ing,
Univ
ersiti Tekno
logi Mala
y
s
ia, S
kudai, 81310,
Johor Bahru, Johor, Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 10, 2016
Rev
i
sed
Ap
r
25
, 20
16
Accepted
May 15, 2016
Rice
is staple f
ood for half of
the world. With
a population of
almost 9.6
billion b
y
the
year 2050, there
is a dire need o
f
developing t
e
chniques to
improve the cr
op plants, not
only
in
terms of better
y
i
eld but also to
withstand hars
h environmental c
onditions and stresses lik
e drought,
temperatur
e, flo
od and salinity
.
Salinit
y
is secon
d
to drought stress and hence
it is ver
y
im
port
a
nt to deve
lop c
r
ops tolerant to
salinit
y stress. T
h
is review
dis
c
us
s
e
s
the m
echan
is
m
s
of s
a
lt tol
e
ran
ce and
the rec
e
nt dev
e
lopm
ents
in
understanding the complex tolerance ph
enomena. One way
to
address th
e
salinity
issue is
to develop tolerant
rice var
i
eties using conventional
and
m
odern breedin
g techn
i
ques
for
which s
c
reen
in
g the ri
ce germ
p
l
as
m
for the
varieties with d
e
sired tr
aits is
criti
cal. Conven
tional methods
to develo
p
toler
a
nt r
i
ce v
a
rieties
are d
i
scu
ssed along
with modern b
i
otechnolo
g
y
techn
i
ques
ar
e
als
o
dis
c
us
s
e
d.
Quantit
ativ
e Tr
a
it Lo
ci (QT
L
)
and M
a
rker
As
s
i
s
t
ed S
e
lecti
on (M
AS
) are prom
is
i
ng techn
i
ques. In addition to these
m
odern techn
i
q
u
es
, s
o
m
e
re
cen
t dev
e
lopm
ents
in the
fi
elds
of
trans
g
en
ic
plants
,
haplo
i
d b
r
eeding
and
S
o
maclon
al v
a
ri
ation
s
have
als
o
b
een
dis
c
us
s
e
d
.
The limited kno
wledge
about m
o
lecu
lar
and gen
e
tic mechan
is
ms to to
lerate
abioti
c stresses however is a barrier to effi
cien
tl
y deve
lop tole
ra
nt cultiv
ars.
A combination
of conven
tional
and m
odern biotechnolog
y
techn
i
ques could
possibly
op
en up
the new way
s
.
Keyword:
Phy
s
i
o
l
ogy
QTLs
Rice
Salin
ity
Stress
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
uham
m
ad Ar
sha
d
Ja
ved
,
Faculty of Biosciences a
n
d Medical
Engineering,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia (UTM),
Skudai, 81310
, J
ohor Bahru, Joh
o
r, Malay
s
ia
.
Em
a
il: maj
a
v
e
d
@
fbb
.
u
t
m
.
my
1.
INTRODUCTION
Rice is critical
for foo
d
security in
so
m
a
n
y
o
f
th
e coun
tries. More th
an
50
p
e
rcen
t
of th
e
world
'
s
p
opu
latio
n
is dep
e
nd
en
t u
pon
rice for 80
p
e
rcen
t of
its d
i
et
[1
]. World
’
s p
opu
latio
n
h
a
s
ex
ceed
e
d
7
b
i
llio
n
an
d
rice co
nsumers will b
e
d
o
u
b
l
ed
b
y
th
e year 2
020
[2
].
As th
e pop
u
l
atio
n
is in
creasing
,
rice pro
d
u
c
tio
n
al
so
needs to c
onti
nue t
o
inc
r
eas
e in com
i
ng
decade
s
to
meet the food
dem
a
nds [3
],[4]. One
of t
h
e
m
a
in
ch
allen
g
es to raise th
e
food
produ
ctio
n is to
o
v
e
rco
m
e
the envi
ronm
ental stress s
u
c
h
as
te
m
p
erature,
drought
,
floo
d
an
d
salinity [5
]. Rice is
co
n
s
i
d
ered
as
salt-sen
s
itiv
e crop
and
so
il salin
ity is o
n
e
o
f
th
e
m
o
st i
m
p
o
rtan
t
abi
o
t
i
c
st
res
s
es
dam
a
gi
ng
t
h
e
ri
ce y
i
el
d [
1
]
,
[
6
]
.
Sal
i
n
i
t
y
i
s
one
of t
h
e m
o
s
t
im
port
a
nt
en
vi
r
onm
ent
a
l
st
resses
affect
i
n
g t
h
e pr
o
duct
i
v
i
t
y
o
f
m
o
st
fi
el
d cro
p
s [
7
]
.
A be
t
t
e
r unde
rst
a
n
d
i
n
g of m
echani
s
m
s
underl
y
i
ng t
h
e
salin
ity to
lerance in
p
l
an
ts
will sig
n
i
fican
tly h
e
lp
i
n
d
e
v
e
l
o
p
i
ng
v
a
rieties with
en
h
a
n
c
ed
salin
ity
to
lerance.
Earth
is a salt
y p
l
an
et,
with
m
o
st o
f
its water con
t
ain
i
ng
ab
ou
t 30g
of so
d
i
u
m
ch
lo
ride p
e
r litre.
M
o
re t
h
a
n
80
0
m
i
l
l
i
on hect
ares of l
a
nd t
h
r
o
ug
h
out
t
h
e
world are salt affected [8],
[9
] wh
ich
in
clud
e the lan
d
on
whi
c
h cro
p
s
are, or m
i
ght
be, gr
o
w
n
.
In
t
h
e
m
i
d-19
8
0
s
an est
i
m
a
t
e
d 1.3 m
i
l
l
i
on ha o
f
ri
ce-gr
o
w
i
n
g areas
w
e
r
e
af
f
ected
b
y
salin
ity o
r
alk
a
lin
ity. I
t
is esti
m
a
ted
th
at so
m
e
9
-
12
m
i
llio
n
h
a
ar
e affected
all ar
ound
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-88
06
IJP
H
S V
o
l
.
5, No
. 2,
J
u
ne 2
0
1
6
:
20
1 – 2
1
2
20
2
world
[1
],[10
]
. Salin
ity is wi
d
e
sp
read
in
coastal areas,
and
salin
ity, alk
a
lin
ity, o
r
sod
i
city is
wid
e
spread
in
i
n
l
a
nd ar
eas of
ari
d
regi
o
n
s [
11]
,
[
1
2
]
.
The
r
e are di
ffe
rent
fact
or
s of sal
i
n
i
t
y
for di
ffe
ren
t
ki
nd o
f
l
a
nds
. F
o
r
in
lan
d
salin
ity, it is du
e to salt d
e
po
sits
p
r
esen
t in
t
h
e so
i
l
or
be
dr
oc
k
or
f
r
om
t
h
e use
o
f
sal
t
y
i
rri
gat
i
o
n
wat
e
r
.
In th
is so
il, rice cann
o
t
b
e
grown
withou
t goo
d-q
u
a
lity irrigatio
n
water.
Fo
r co
astal salin
ity, it is d
u
e
to
tid
al in
t
r
u
s
i
o
n
wh
ere th
e h
i
g
h
l
y salin
e
sea water is m
i
x
e
d
u
p
with th
e
fres
h
wat
e
r m
a
ki
n
g
i
t
sal
i
n
e t
o
t
oxi
c l
e
vel
s
[1
3]
-[
1
5
]
.
T
h
e ot
her ca
use
of acc
um
ul
at
ion
of
sal
t
s
esp
eci
al
l
y
sodi
um
chlori
de to irri
gated soils is the
deposition
of oceanic salts c
a
rried in
wind and rai
n
.Rainwater
cont
ai
n
s
6
–
5
0
m
g
/
kg o
f
s
o
di
um
chl
o
ri
de;
t
h
e co
nce
n
t
r
a
tion decrease
s
with distan
ce
from
the coa
s
t [8].
Clim
a
t
e change is also expe
cted to affect
th
e so
il salin
ity.Glob
a
l warmin
g
cau
ses i
n
creased
CO
2
lev
e
ls,
causing a
b
rupt
changes i
n
clim
ate
resul
t
i
ngi
n st
orm
s
, dr
ou
g
h
t
s
an
d h
e
avy
rai
n
fal
l
s
.
These
hars
h
w
eat
her
co
nd
itio
ns m
a
y cau
se fl
o
o
d
i
n
g
and
relev
a
nt ex
trem
e w
eath
e
r con
d
ition
s
. Slo
w
ly an
d
stead
ily in
creasi
n
g
sea
levels are a
n
other
possible ca
use
of flood
risk a
n
d ar
eas
a
m
bient to estuaries recei
ve
high am
ounts of salts
causing st
ress
es for the c
r
ops es
pecially rice [16]-[19].
Salinity a
ffect
s alm
o
st all proces
ses
of the plant
[11],[20],[21] and
rice
plants
react differe
n
t
l
y at differe
nt life st
ages t
o
sa
linity [22] s
u
ggesting that
differe
n
t
mech
an
ism
s
are in
vo
lv
ed
fo
r
salin
ity to
le
rance in
rice at di
ffere
n
t life sta
g
es.
High
salt stress d
i
srup
ts ho
m
e
o
s
tasis in
p
l
an
t
s
and
ion
d
i
stri
b
u
tion
at
bo
th
t
h
e cellu
lar and
th
e who
l
e-
p
l
an
t lev
e
ls. Th
is is
b
ecau
s
e of th
e osm
o
ti
c effects
b
y
h
i
g
h
ion
i
c co
n
c
en
tration
s
, co
m
p
etitiv
e in
terferen
ce
with
nu
trien
t
up
tak
e
and
of tox
i
c effects wit
h
in
th
e p
l
an
t ti
ssu
e.
Drastic ch
ang
e
s in
ion
an
d
water ho
m
e
o
s
tasis
lead to m
o
lecular dam
a
ge, growt
h
ar
rest
an
d eve
n
deat
h
[
23]
-
[
25]
. Si
nce
ag
ricu
ltu
ral lan
d
is a lim
i
t
ed
so
urce,
therefore, i
n
cre
a
sing the salini
t
y resi
stance
of rice is a
neces
sary alternativ
e to inc
r
ease
the food
producti
on t
o
m
eet
t
h
e foo
d
dem
a
nd [
26]
.
M
a
ny
excel
l
e
n
t
revi
ews
ha
ve
foc
u
se
d o
n
st
re
ss t
o
l
e
ran
ce, m
echani
s
m
s
t
o
d
e
vel
o
p
st
ress t
o
l
e
ra
nt
cro
p
pl
ant
s
, a
n
d pa
rt
i
c
ul
ar m
ode
r
n
t
ech
nol
o
g
i
e
s t
o
e
nha
nc
e st
ress t
o
l
e
ra
nce i
n
ec
on
om
i
cal
l
y
i
m
p
o
r
tan
t
cro
p
p
l
an
ts [2
7
]-[31
]
.
Thi
s
re
vi
ew
pr
ovi
des an i
n
si
ght
i
n
t
o
t
h
e m
echani
s
m
s
of s
a
l
t
t
o
l
e
rance, s
c
reeni
ng st
rat
e
gi
es f
o
r sal
t
to
leran
ce an
d
d
e
v
e
l
o
p
i
n
g
salt
to
leran
t
cu
ltivars with
sp
ecial e
m
p
h
a
sis o
n
rice. It fo
cu
ses o
n
recen
t
stu
d
ies o
n
con
v
e
n
t
i
onal
a
nd m
ode
rn
bre
e
di
n
g
t
ech
ni
q
u
e
s, t
r
an
sge
n
i
c
app
r
oaches a
n
d d
o
ubl
e
hapl
oi
ds a
n
d som
acl
onal
vari
at
i
o
ns. Ti
s
s
ue cul
t
u
re t
echni
que
s l
i
k
e ant
h
e
r
cul
t
u
re,
pr
ot
o
p
l
a
st
fus
i
on an
d cul
t
ur
e, l
eaf cul
t
u
re
,
ro
ot
culture
, imm
a
ture em
bryo culture and
m
a
tu
re seed c
u
lture
are also im
port
ant
t
echni
q
u
e
s
i
n
or
der t
o
i
n
d
u
ce
vari
at
i
o
ns i
n
pl
ant
s
[
3
2]
-[
3
4
]
.
Thi
s
re
vi
e
w
al
so
pr
ovi
d
e
s com
p
rehe
n
s
i
v
e i
n
f
o
rm
at
ion t
o
t
h
e sci
e
nt
i
f
i
c
com
m
uni
t
y
for fu
rt
her e
f
f
o
rt
s i
n
com
b
i
n
i
ng
con
v
e
n
t
i
onal
a
nd m
oder
n
a
p
p
r
oac
h
es t
o
de
v
e
l
op sal
t
t
o
l
e
ra
nt
ri
c
e
p
l
an
ts/cu
ltiv
ars.
2.
MECHANISMS OF SALT
TOLERANCE
Salin
ity to
leran
ce is a co
mp
lex
trait and it is o
f
ten
acco
m
p
an
ied
by o
t
h
e
r stresses lik
e h
i
gh
te
m
p
eratures
a
n
d fl
ooding. Over the
y
ear
s, pl
ant
s
ha
ve de
vel
o
ped
cert
a
i
n
m
echani
s
m
s
t
o
co
pe hi
g
h
s
a
l
i
n
i
t
y
l
e
vel
s
. A
vari
e
t
y
of cel
l
si
gn
al
l
i
ng cascades
and m
e
t
a
bo
lic p
a
thways in
vo
lv
ing
sev
e
ral
tran
scrip
tion
facto
r
s
are invo
lv
ed
[3
5
]
. So
il salin
ity stresses
p
l
an
ts in two
wa
ys.
High
co
n
c
en
tration
s
o
f
sal
t
s in
th
e so
il mak
e
it
harder for roots
to
extract water,
a
n
d hi
g
h
co
nce
n
t
r
at
i
o
ns
of sal
t
s
wi
t
h
i
n
t
h
e
pl
a
n
t
can be t
o
xi
c [
8
]
,
[
9
]
.
Fi
gu
re
1 s
h
ows
di
f
f
ere
n
t
t
y
pes
o
f
sal
t
st
ress
m
echani
s
m
s
fo
un
d i
n
pl
ant
s
a
n
d
som
e
of
t
h
e
i
r ef
fect
s.
Figure
1. Salt s
t
ress m
echanism
s
and effects
of salt stress
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PH
S I
S
SN
:
225
2-8
8
0
6
A Short Revie
w
on the
Devel
opme
nt of
Salt
Tolerant C
u
ltivars i
n
Rice (Samiullah K
h
an)
20
3
Earlier stud
ies
co
ndu
cted
un
der con
t
ro
lled
co
nd
itio
ns repo
rted
th
at salt inju
ry in rice
p
l
an
tis cau
sed
by both
osm
o
tic im
balance and acc
um
ulation
of chl
o
ri
de
(CI) i
o
ns [36]. Recent st
udie
s
, howe
ve
r, indicate
d
th
at it is Na+ wh
ich
p
l
ays it
s d
a
m
a
g
i
n
g
ro
l
e
[37
]
. Plan
ts
respon
d
t
o
sali
n
ity in
two
phases. First
ph
ase is a
rapi
d osm
o
t
i
c
pha
se t
h
at
i
n
h
i
bi
t
s
gro
w
t
h
o
f
y
o
u
ng l
eave
s
, and sec
o
nd
pha
se i
s
a sl
ower i
o
ni
c ph
a
s
e t
h
at
accelerates senescence
of m
a
ture
leaves
[38]-[40]. Pla
n
t ada
p
tations
to sali
nity can
be cat
egor
ized into thre
e
typ
e
s, wh
ich
are: o
s
m
o
tic str
e
ss to
leran
c
e,
Na
+
or
Cl
−
ex
clu
s
ion
,
and
th
e to
leran
ce
of tissue to acc
umulated
Na
+
or
C
l
−
[8
].
Salt in
j
u
ry sco
r
e (SIS) is a co
m
p
lex
p
h
y
sio
l
o
g
i
cal trait related
to
io
n
con
c
en
tration
o
r
q
u
an
tity an
d
to
osm
o
si
s. Acc
o
rdi
ng t
o
[4
1]
,
un
de
r sal
t
st
re
ss, S
I
S
was c
o
rrel
a
t
e
d
wi
t
h
s
odi
um
cont
ent
s
i
n
s
h
oot
,
n
o
t
i
n
t
h
e
ro
ot
. It
i
s
su
gg
est
e
d t
h
at
so
di
um
cont
ent
s
ar
e bu
ild-up
in
sh
oo
t, du
e to
increased
tran
spo
r
t of Na
+
io
ns
from
th
e roo
t
to
the sh
oo
t in
ex
tern
al h
i
gh
concen
tration
,
wh
i
c
h su
bse
que
nt
l
y
l
e
d t
o
l
eaves dam
a
ges. Thi
s
i
s
because of the
re-tra
nslocati
o
n from
s
hoot to root is insignificant than tha
t
from
root to shoot [42]. Howeve
r,
t
h
e p
o
t
a
ssi
um
cont
e
n
t
s
i
n
bot
h s
h
o
o
t
an
d
ro
ot
we
re n
o
t
correlated
with
SIS. Th
ese
resu
lts su
gg
ested
that th
e
hi
g
h
pot
assi
um
co
nt
ent
s
di
d
n
o
t
di
rect
l
y
dam
a
ge l
eav
es [
4
3]
,[
44]
.
2.
1.
Tolerance
at
different life
s
t
ages in rice
It
has bee
n
o
b
s
erve
d t
h
at
o
u
t
of t
w
o m
a
i
n
subs
peci
es o
f
ri
ce,
i
ndi
c
a
is
mo
re to
leran
t
than
ja
pon
ica
[45
]
. Nat
u
rally th
ese
ind
i
ca
ri
ce vari
et
i
e
s h
a
ve e
vol
ved ce
r
t
ai
n m
echani
s
m
s
t
o
wi
t
h
st
an
d l
e
vel
s
t
h
at
p
r
ove
d t
o
b
e
leth
al fo
r
j
a
po
ni
ca
va
ri
et
i
e
s. As
sal
i
n
i
t
y
i
s
a com
p
l
e
x t
r
ai
t
i
nvol
vi
n
g
a
num
ber
of
ge
n
e
s, i
t
i
s
a chal
l
e
ngi
ng
task
to
fi
rst id
en
tify all o
f
th
em an
d
th
en
m
a
n
i
pu
late and
ex
p
l
o
it th
em
. T
h
is situ
atio
n b
e
co
m
e
s co
m
p
lex
wh
en
th
e sa
m
e
sp
ecies b
e
h
a
v
e
s d
i
fferen
tly to
sa
me salin
e co
n
d
itio
n
s
in
d
i
fferent life s
t
ag
es. Ev
alu
a
ting
to
leran
ce is
co
m
p
lex
b
ecau
s
e
o
f
v
a
riation
in sensitiv
ity to
salt du
ri
ng
th
e life cycle [46
]
.
Salt toleran
ce co
m
p
arison
bet
w
ee
n ge
rm
inat
i
on a
n
d g
r
owt
h
st
ages i
s
di
ffi
c
u
l
t
beca
use di
ffe
rent
cri
t
e
ri
a are us
ed t
o
eval
uat
e
pl
ant
responses [47]
.
I
ndi
c
a
a
nd
j
a
po
ni
ca
rice
v
a
rieties h
a
v
e
b
e
en
stud
ied at seed
lin
g stag
e
fo
r salin
ity to
leran
ce
[4
8]
and i
t
wa
s fo
un
d t
h
at
ind
i
ca
v
a
rieties were to
leran
t
th
an
j
a
pon
ica an
d
th
ey were b
e
tter Na ex
cl
u
d
e
rs,
main
tain
a low Na/K ratio and
ab
so
rb
ed h
i
gh
K
wh
ile
japon
ica
v
a
rieties were sensitiv
e.
Sev
e
ral stud
ies in
d
i
cated th
at rice is to
leran
t
du
ri
n
g
g
e
rmin
atio
n
,
b
ecomes v
e
ry sen
s
itiv
e d
u
ring
early seed
ling
stag
e (2
-3
leaf
stag
e), g
a
i
n
s toleran
ce
du
ring
v
e
g
e
tativ
e growth
stag
e, b
e
co
m
e
s
sen
s
itiv
e
d
u
ri
ng
p
o
llin
ation
and
fertilizatio
n
,
an
d
t
h
en
b
e
co
m
e
s in
creasin
g
l
y
m
o
re to
leran
t
at
m
a
tu
rity [4
9
]
-[5
2
]
. R
i
p
e
n
i
ng
appea
r
s t
o
be l
e
ss af
fect
ed
by
sal
i
n
i
t
y
[3
6]
,[
47]
,
[
1]
,
[
2
4
]
.
3.
SCREENING FOR SALI
NITY TOLERANCE
There
are
thousa
nds
of
rice va
rieties available
with
t
h
eir unique properties.
A dive
rse rice
germ
pl
asm
wi
t
h
si
gni
fi
ca
nt
vari
et
al
di
ffe
re
nces i
s
avai
l
a
bl
e as po
ol
f
o
r de
vel
o
pi
n
g
s
c
reeni
ng t
ech
n
i
ques
.
These tec
hni
ques are im
port
a
nt to select varieties fo
r
br
eed
i
ng
pur
po
ses. Th
ese techn
i
q
u
e
s shou
ld
be easy,
efficien
t,
rep
r
od
u
c
i
b
le and
eco
no
m
i
call
y
feasib
le. Rice
is
grown und
er d
i
fferen
t fi
eld con
d
ition
s
wh
ere it is
su
bj
ected
to
differen
t
typ
e
s o
f
stress co
nditio
n
s
, righ
t fro
m
g
e
r
m
in
atio
n
to
m
a
tu
rity. Salin
ity b
e
in
g
on
e
harm
ful
an
d m
o
st
st
u
d
i
e
d t
y
p
e
of
st
ress
dam
a
ges t
h
e
ri
ce
p
l
ant
s
i
n
s
o
m
a
ny
di
f
f
ere
n
t
w
a
y
s
. Lo
n
g
er e
x
pos
u
r
e
to
salin
ity resu
lts in
accu
m
u
l
atio
n
o
f
NaCl in
o
l
d
e
r
leav
es
[53
]
wh
ich
affects th
e p
h
o
t
o
s
yn
th
esis rate
si
gni
fi
ca
nt
l
y
. I
t
al
so
di
st
ur
bs
t
h
e
ove
ral
l
m
e
t
a
bol
i
s
m
of t
h
e
pl
ant
a
n
d
dam
a
ges i
t
[5
4]
-[
5
6
]
.
Sal
i
n
i
t
y
al
so
affects th
e ch
l
o
rop
l
ast activ
iti
es [57
]
. Screenin
g
und
er field co
nd
itio
n
s
is difficu
lt d
u
e
to
v
a
riab
ility o
f
salin
ity
wi
t
h
i
n
fi
el
ds,
st
ress het
e
ro
ge
nei
t
y
, pres
enc
e
of
ot
he
r s
o
i
l
-rel
a
t
e
d st
resse
s, an
d i
n
fl
ue
n
ce of e
n
vi
r
o
n
m
ent
a
l
facto
r
s su
ch
as te
m
p
eratu
r
e, relativ
e hu
m
i
d
ity, and
so
lar rad
i
ation
.
These co
m
p
lex
ities, tog
e
th
er with
th
e
d
e
gree of contro
l o
f
salin
it
y an
d
rep
r
o
d
u
c
ib
ility, cau
se d
i
fficu
lties in
d
e
v
e
l
o
p
i
ng reliab
l
e
m
e
th
o
d
s
of
scr
een
i
n
g [46
]
,[
58
].
Ho
we
ver
,
t
h
er
e has bee
n
co
nsi
d
e
r
abl
e
ef
f
o
rt
di
re
cted at selection for sa
lin
ity resista
n
ce in
rice
[4
6]
,[
5
9
]
,
[
1
]
,
[
2
4]
. Th
o
u
san
d
s
of ri
ce
vari
et
i
e
s have
be
e
n
devel
ope
d re
c
e
nt
l
y
usi
ng m
ode
r
n
t
echni
qu
es l
i
k
e
marker as
sisted selection. T
h
ese va
rieties are resistant
to
sev
e
ral stresses
lik
e d
r
ou
gh
t, co
ld
, lig
h
t
an
d stresses
com
i
ng fr
om
poo
r s
o
i
l
s
es
pec
i
al
l
y
sal
i
n
i
t
y
and
t
o
xi
c m
e
t
a
l
s
. Tabl
e
1
sh
o
w
s som
e
of t
h
e r
i
ce vari
et
i
e
s sc
reene
d
for salt to
lerance. Kno
w
led
g
e
of th
e ph
ysio
l
o
g
i
cal effect
s
o
f
salin
ity on
p
l
an
ts, bo
th cro
p
sp
ecies an
d th
ose
species which
are native to sa
line environm
e
n
ts, ha
s show
n that there are
no sim
p
le
answers t
o
the questions
o
f
ho
w p
l
an
ts
are
d
a
m
a
g
e
d
by salt an
d of
ho
w th
ey su
rv
ive it [53
]
.
3.
1.
Phenotypic sc
reening
Salt to
lerance
is co
m
p
lex
g
e
n
e
tically an
d
p
h
y
si
o
l
og
ically [46
]
. Th
e detectio
n
o
f
salin
ity in
du
ced
in
ju
ries, are v
e
ry co
m
p
lex
ev
en
un
d
e
r con
t
ro
lled
cond
itio
ns in
term
s
o
f
hu
m
i
d
i
t
y
, te
m
p
e
r
atu
r
e and
lig
ht etc.
M
o
re
ove
r,
i
t
r
e
qui
res e
xpe
ns
i
v
e an
d t
i
m
e-cons
um
i
ng t
i
s
s
u
e a
n
al
y
s
i
s
. P
h
y
s
i
o
l
o
gi
cal
st
udi
es
o
f
ri
ce s
u
g
g
est
that a range
of c
h
aracterist
i
cs would inc
r
ease the
ab
il
ity o
f
th
e p
l
an
t to
co
p
e
with
salin
ity. T
h
o
s
e
ch
aracteristics in
clu
d
e
su
ch
as lo
w
shoo
t sod
i
u
m
co
n
c
en
tratio
n
,
co
m
p
artmen
talizatio
n
o
f
salt in
o
l
d
e
r rath
er
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-88
06
IJP
H
S V
o
l
.
5, No
. 2,
J
u
ne 2
0
1
6
:
20
1 – 2
1
2
20
4
th
an
y
o
ung
er leav
es, to
leran
c
e to
salt
with
in
leav
es an
d
p
l
an
t
v
i
go
ur
[6
0
]
. Besi
d
e
s,
an
y p
a
ram
e
ter wh
ich
affects th
e tran
sp
i
r
atio
n
rate, su
ch
as ligh
t
in
ten
s
ity, te
m
p
eratu
r
e and
humid
ity, can
d
r
a
m
atical
ly ch
a
n
g
e
a
p
l
an
t's su
scep
ti
b
ility
to
salin
it
y [6
1
]
. Salin
ity d
a
m
a
g
e
is n
o
t
a d
e
term
in
a
t
e q
u
a
n
tity, b
u
t can
b
e
ex
p
e
cted
t
o
sho
w
e
x
t
r
em
ely
hi
gh
ge
n
o
t
y
pe/
en
vi
r
onm
ent
i
n
t
e
ract
i
o
n.
[6
2] also state
d
that the
r
e are visual sym
p
tom
s
of
salt to
x
i
city in
to
m
a
to
p
l
an
t
wh
en
salin
ity
stress is co
m
b
ined with heat
stress. T
h
e
r
e a
r
e di
ffe
rent sc
reening
m
e
t
hods f
o
r d
i
ffere
nt
st
ages
of g
r
o
w
t
h
. E
a
rl
y
seedl
i
ng
st
age m
a
ni
fest on t
h
e fi
rst
l
eaf, f
o
l
l
o
we
d
by
t
h
e
seco
nd
, an
d fi
nal
l
y
on t
h
e g
r
o
w
i
n
g l
eaf. S
a
l
i
n
i
t
y
suppre
s
ses l
eaf el
on
g
a
t
i
on an
d f
o
r
m
at
i
on of ne
w
l
eaves
[6
3]
,[
6
4
]
.
Ph
ot
osy
n
t
h
et
i
c
fu
n
c
t
i
on a
nd c
h
l
o
r
o
p
h
y
l
l
co
nt
en
t
were i
n
v
e
rsely p
r
op
ortio
nal to
salin
ity lev
e
l. Th
e
screen
i
n
g techn
i
qu
e
d
e
v
e
l
o
p
e
d
is
b
a
sed
o
n
th
e ab
ility o
f
seed
lin
gs to grow in salin
ized
n
u
t
rien
t so
lu
tion
[65
]
.
Ev
alu
a
tion
of
v
e
g
e
tativ
e an
d
reprodu
ctiv
e stag
es salin
ity to
leran
ce is
m
o
re d
i
fficu
lt. Rice p
l
an
t g
a
ins
to
leran
c
e to salin
ity at rep
r
od
u
c
tiv
e stag
e.
Plan
t
h
e
ig
ht,
root
length a
nd bi
om
ass decreases as
a res
u
lt of
salin
ity. At rep
r
od
u
c
tiv
e
stag
e, salin
ity cau
s
es an
in
crea
se in
sterile fl
o
r
ets
b
y
affectin
g
p
a
n
i
cle in
i
tiatio
n
,
sp
ik
elet form
at
io
n
,
fertilizatio
n
,
and
g
e
rm
in
atio
n
o
f
p
o
llen. Salin
ity also
redu
ces p
a
n
i
cle len
g
t
h
,
nu
m
b
er of
p
r
im
ary b
r
an
ch
es an
d
sp
i
k
elets p
e
r
p
a
n
i
cle, fertility a
n
d
pan
i
cle
weigh
t
, th
u
s
red
u
c
i
n
g
g
r
ai
n
yield
[6
6]. When
t
e
st
ed at
veget
a
t
i
v
e and
rep
r
od
uct
i
v
e st
age
s
, grai
n y
i
el
d per
pl
ant
o
r
p
o
t
i
s
t
h
e best
score
fo
r t
o
l
e
ra
n
ce, b
u
t
th
ey m
a
y p
r
odu
ce m
i
slead
in
g resu
lts.
It is im
p
o
ssib
l
e to
get a g
ood
estimate o
f
th
e to
t
a
l n
u
m
b
e
r
o
f
sp
ik
elets.
Eve
n
i
n
som
e
tol
e
ra
nt
vari
et
i
e
s, som
e
spi
k
el
et
s are
m
a
l
f
orm
e
d or a
b
o
r
t
e
d a
nd s
o
m
e
t
i
m
e
s
they
dr
o
p
of
f b
e
fo
re
go
o
d
s
p
i
k
el
et
s
m
a
t
u
re [
6
7]
. T
h
ere
are
al
so
d
i
ffere
nces
i
n
t
e
rm
of i
o
n c
o
nc
ent
r
at
i
o
ns.
S
o
m
e
fi
ndi
ng
s s
h
owe
d
th
at a to
leran
t
rice
m
a
in
tain
s a lo
wer co
n
c
en
tration
of Na
+
and C
I
-
,
a hi
g
h
er
c
once
n
t
r
at
i
on of K+
an
d
Zn+,
an
d lower
Na-K and
Zn-P
ratio
s in
t
h
e sh
oot, co
m
p
ared
wi
th
a salt-sen
s
itiv
e
v
a
riety. Most o
f
t
h
e crop
plan
ts
i
n
cl
udi
ng ri
ce
are con
s
i
d
er
ed
as gl
y
c
ophy
t
e
s and t
h
ey
ha
ve t
h
ei
r speci
f
i
c t
h
rsh
o
l
d
s f
o
r t
h
e sal
t
t
o
l
e
rance
conce
n
t
r
at
i
o
ns
.
The sal
t
conc
ent
r
at
i
o
n t
h
ey
no
rm
al
ly
wi
t
h
st
and i
s
1
-
40
m
M
of sodi
u
m
chl
o
ri
de.
T
h
e Na
-K
ratio
, wh
ich
is th
e b
a
lan
ce between
Na
+
and
K
+
i
n
t
h
e sh
oot
, c
oul
d t
h
e
n
be a val
i
d
cr
i
t
e
ri
on i
n
m
e
asuri
n
g
salinity tolerance in
rice. T
hus
the
pare
nt
s ha
ve be
e
n
c
l
assified according to t
h
e Na-K a
b
s
o
rption ratio
because
of t
h
ei
r m
e
tabolic interaction [47].
Am
ong t
h
e di
sad
v
ant
a
ges o
f
phe
n
o
t
y
pi
c screeni
ng
fo
r desi
ra
bl
e t
r
ai
t
sel
ect
i
on i
s
, sal
t
-
t
o
l
e
rant
phe
n
o
t
y
pe sel
ect
ed at
an earl
y
generat
i
o
n m
a
y
not
m
a
i
n
t
a
i
n
i
t
s
t
o
l
e
rance
i
n
su
bseq
ue
nt
gene
rat
i
o
ns an
d t
h
a
t
t
h
i
s
phe
nom
en
on i
s
g
r
eat
l
y
affect
ed
by
envi
ro
nm
ent
a
l
factors [
6
2]
. B
e
si
d
e
s, ove
ral
l
per
f
o
rm
ance or su
r
v
i
v
al
can
be u
s
ed
t
o
e
v
al
uat
e
t
h
e
sal
t
resi
st
anc
e
of
a g
e
n
o
t
y
pe, i
t
i
s
not
t
h
e basi
s
on
w
h
i
c
h pa
rent
s
sh
oul
d
b
e
selected
to
constru
c
t a co
m
p
lex
c
h
aracte
r
through
bree
di
n
g
[6]
.
3.
2.
Genotypic scr
eening
W
i
t
h
th
e
adv
a
n
cem
en
t o
f
m
o
d
e
rn
b
i
o
t
echnolo
g
y
an
d
g
e
n
e
tic stu
d
y
, it has sig
n
i
f
i
can
tly help
ed
i
n
th
e
selectio
n
and
ev
alu
a
tion
of salin
ity to
leran
ce traits. Up
on e
x
p
o
s
u
re t
o
t
h
e
st
resses, m
a
ny
genes are i
n
duce
d
an
d
t
h
eir produ
cts are tho
ugh
t to
fu
n
c
tion
as cellu
lar p
r
o
t
ectants (e.g. proline and tre
h
a
l
ose) of
st
res
s
-
i
nd
uced
dam
a
ge [2
8]
,[
5
9
]
.
O
n
e
o
f
t
h
e
usef
ul
t
o
ol
s i
n
m
o
l
ecul
a
r
research
t
o
st
u
d
y
t
h
e
g
e
no
typ
i
c
of salin
ity to
leran
ce is
b
y
id
en
tifyin
g
qu
an
titativ
e t
r
aits lo
ci.
On
e ob
v
i
o
u
s
u
s
e
o
f
QTL in p
l
an
t breed
i
ng
for salt to
leran
c
e is i
n
m
a
rker
-aide
d
selection or
m
a
rker
-a
ssisted selection,
MAS [46]. T
h
ere
are
QTL
s
that has clearly bee
n
est
a
bl
i
s
hed ass
o
ci
at
i
ng wi
t
h
aspect
s of
ger
m
i
n
at
i
on,
io
n
tran
sp
ort an
d
yield
o
f
th
e p
l
an
t.Salt to
leran
ce is
claim
e
d as a m
u
ltigenic trait and
QT
Ls
has bee
n
fo
u
nd, co
m
p
lyin
g
with
th
e m
u
lti
g
e
n
i
c
n
a
ture
of salt
t
o
l
e
rance
.
Se
v
e
ral
gene
s wi
t
h
p
o
l
y
ge
ni
c na
t
u
re (
qS
T1
and
qS
T3
have
be
en re
po
rt
ed t
o
be i
n
vol
ved i
n
abi
o
t
i
c
stress to
leran
c
e in
clu
d
i
n
g
salin
ity [6
8
]-[70
].Howev
e
r, du
e
to
th
e co
m
p
lexity o
f
salt to
leran
ce m
ech
an
ism
s
, so
few QTL are id
en
tified
[10
]
with
in
an
y
g
i
ven
g
e
no
m
e
[46].
QTLs
for trait
s
correlated
were often m
a
pped i
n
t
h
e
sa
m
e
chrom
o
so
m
a
l
regi
on
s [
24]
,
[
4
3
]
.
Fe
w
QTLs asso
ciat
ed
with
salin
it
y to
leran
ce
h
a
v
e
b
e
en
id
en
tified in previ
o
us
studies.
Am
ong them
are located on
chrom
o
som
e
1, 3,
4, 12,
10 [13], 8 a
nd
9
[24]. A m
a
jor QTL, designat
ed
Saltol,
wa
s
recently
m
a
pped. It
accounted for
m
o
re than 70% of t
h
e
variat
ion in salt up
take in t
h
is population.
Marker-assisted bac
k
c
r
ossing
is cu
rren
tly u
s
ed
to
i
n
corporate th
is QTL i
n
to
p
opu
lar
hi
gh
-y
i
e
l
d
i
n
g va
ri
et
i
e
s [1]
.
QT
Ls are al
s
o
f
o
u
nd t
o
be
as treat
m
e
n
t
-sen
sitiv
e. So
m
e
QTL asso
ciated
with
asp
ect
s
o
f
fru
it yield
were foun
d
reg
a
rd
less of wh
eth
e
r the
pl
ant
s
we
re
gr
ow
n
wi
t
h
o
r
w
i
t
hout
sal
t
[
46]
. H
o
weve
r,
t
h
e
d
r
aw
bac
k
s i
n
usi
n
g m
a
rker
-a
ssi
st
ed
bree
di
n
g
a
r
e
“l
i
nkage
d
r
a
g
”
of
u
n
d
esi
r
a
b
l
e
traits d
u
e
to
t
h
e larg
e size
of reg
i
on
s
o
f
chro
m
o
so
m
e
s id
en
tified
b
y
QTL [7
1
]
and t
h
e fact t
h
at environm
ent and ge
netic backgrou
nd
have a signific
ant infl
uence
on t
h
e QTL that are
id
en
tified [46
]
.
4.
DEVELOPMENT OF SALT
TOLERANCE CULTIVARS
In
[
72]
, a
u
t
h
or
(s) s
u
gg
est
e
d
f
i
ve p
o
ssi
bl
e ap
pr
o
p
ri
at
e way
s
t
o
de
vel
o
p sal
t
-t
ol
era
n
t
cr
o
p
s,
suc
h
as:
(i
)
d
e
v
e
l
o
p
h
a
loph
ytes as altern
ativ
e crop
s; (ii) u
s
e in
ters
pec
i
fi
c hy
bri
d
i
zat
i
on t
o
rai
s
e the tolerance of c
u
rrent
crop
s; (iii)
u
s
e
th
e v
a
riatio
n
al
read
y
p
r
esen
t i
n
ex
istin
g
cro
p
s; (iv
)
g
e
n
e
rate v
a
riation
within
ex
isting
crop
s
b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PH
S I
S
SN
:
225
2-8
8
0
6
A Short Revie
w
on the
Devel
opme
nt of
Salt
Tolerant C
u
ltivars i
n
Rice (Samiullah K
h
an)
20
5
u
s
ing
recu
rrent selectio
n
,
m
u
tag
e
n
e
sis or tissu
e cu
lture
;
and (
v
) bree
d f
o
r y
i
el
d rat
h
er
t
h
an t
o
l
e
rance
[46]
.
Co
nv
en
tio
n
a
l
b
r
eed
i
ng
m
e
th
o
d
s
were ado
p
ted
first in
order to
d
e
v
e
lop
salt to
leran
t
varieties lik
e Sh
ah
een
b
a
sm
ati, Da
m
o
d
a
r CSR
1
,
Dasal CSR 2
,
Get
u
CSR
3 a
nd
Ham
i
l
t
on w
h
i
l
e
C
S
R
10, C
S
R
13 C
S
R
2
3
,
C
S
R
2
7
,
C
S
R
3
0
,
C
S
R
3
6,
PSB
R
c
4
8
,
PSB
R
c
8
4
,
PS
B
R
c
86,
PSB
R
c
88
an
d
NS
I
C
R
c
10
6
we
r
e
de
vel
o
ped
t
h
r
o
ug
h
reco
m
b
in
atio
n b
r
ee
din
g
(IRRI
).
Tab
l
e
1
.
Ori
g
in b
a
sed
im
p
o
r
tan
t
sen
s
itiv
e ri
ce v
a
rieties and
salt to
leran
t
v
a
rieties
Sensitive Ri
ce
Salt Tolerant
Varieties
Origin
Subsp.
Literature
Varieties
Origin
Subsp.
Literature
T
i
qing
Austr
a
lia
[73]
T
a
r
o
m
e
-M
olaei
[73]
Koshihikari Australia
japonica
[43]
Nona
Bokr
a
I
ndia
I
ndica
[43]
I
R
26
I
ndica
[74]
Jiucaiqing
japonica
[74]
MI 4
8
I
ndica
[75],[7
6
]
CSR27
I
ndica
[75]
,
[
7
6
]
77-
170
[55]
M
-
20
[55]
I
R
29
I
ndica
[36]
Pokkali
I
ndica
[36]
,
[
7
7
]
,
[78]
Azucena Philippines
Japonica
[
79]
Shaheen
Bas
m
ati
Pakistan
[80]
I
R
36 Philippines
I
ndica
[77]
Jingxi
l7
Japonica
[81]
Nipponbar
e
[77]
I
R
64 Philippines
I
ndica
[79]
,
[
8
2
]
,
[83]
Z
h
aiy
e
qing 8
I
ndica
[81]
I
R
5962
[10]
I
R
29 Philippines
I
ndica
[78]
T
e
sanai
2
I
ndica
[84]
CB
I
ndica
[84]
Nipponbar
e
[85]
Kasalath
[85]
AS996
[86]
T
a
r
o
m
M
o
laii
[82]
T
a
r
o
m
m
ahali
[87]
,
[
8
8
]
M
ily
ang 23
T
a
iwan
I
ndica
[45]
M
o
r
ober
e
kan
W
e
st
Afr
i
can
Japonica
[89]
Gihoby
eo
Japonica
[45]
Bin
a
m Iran
Japonica
[83]
I
R
64 Philippines
I
ndica
[86]
Khazar
Iran
Japonica
[87]
,
[
8
8
]
Ilp
u
m
b
yeo
Japonica
[89]
Prev
iou
s
attemp
ts to
im
p
r
ov
e
th
e salt to
lerance o
f
crop
s thro
ugh
co
nv
en
tio
n
a
l
b
r
eed
i
n
g
p
r
og
ramm
es
h
a
v
e
m
e
t wit
h
v
e
ry lim
i
t
e
d
su
ccess, due to
th
e co
m
p
lex
ity of th
e trait.
To
ler
a
nce of
ten
show
s the
ch
aracteristics o
f
a m
u
ltig
en
ic trait,
with
th
e QTLs asso
ciated
with
to
le
ran
ce id
en
tified with
io
n
transp
ort
u
n
d
e
r salin
e co
nd
itio
ns [4
6
]
. Th
e m
ech
an
ism o
f
salin
ity t
o
leran
ce h
a
s t
o
b
e
u
n
d
e
rstood
first b
e
fo
re
a p
l
an
t
can
be m
odi
fi
ed
or
bre
d
fo
r
t
h
i
s
t
r
ai
t
[4
7]
. Des
p
i
t
e
t
h
e
vari
at
i
o
n i
n
t
o
l
e
rance,
ne
w s
c
reeni
ng t
e
c
h
n
i
ques
,
m
u
ta
tion, a
nd
anthe
r
culture
techniqu
es
, sal
i
nity tolerance
was s
u
ccess
f
u
lly introduce
d
into
hi
gh-yielding
pl
ant
t
y
pes
[
1
3]
. S
o
m
e
rel
eased
vari
et
i
e
s
h
a
ve
dem
onst
r
a
t
ed m
o
re t
h
a
n
5
0
% y
i
el
d a
d
vant
a
g
e
o
v
er c
u
r
r
ent
salt-sen
s
itiv
e v
a
rieties. Th
e
o
ppo
rt
u
n
ity to
i
m
p
r
o
v
e
salinity
to
leran
ce th
rou
g
h
th
e in
co
rpo
r
ation
o
f
u
s
efu
l
gene
s
a
ppea
r
s very
pr
om
i
s
i
ng
[
1
]
.
R
i
ce hy
bri
d
s a
r
e
kn
o
w
n
t
o
h
a
ve
hi
g
h
ve
get
a
t
i
v
e vi
go
r a
n
d a
st
ro
n
g
er
r
oot
sy
st
em
. These
feat
u
r
e
s
enable
d them to s
h
ow bet
t
er s
eed
ling to
leran
ce for l
o
w tem
p
eratu
r
e [22
]
, salt
to
leran
c
e [5
]. Th
ese
o
b
s
erv
a
tio
ns su
ppo
rt the v
i
ew th
at t
h
e salinity resistan
ce
of rice c
o
uld
be
increase
d
a
b
ove the
prese
n
t le
vel of
obs
er
ved
p
h
e
n
ot
y
p
i
c
ex
p
r
essi
on
t
h
ro
u
g
h
t
h
e
crossi
n
g
of e
x
i
s
t
i
ng
ge
not
y
p
e
s
[
6
]
,
[
42]
.
4.
1.
Conve
n
ti
onal
breeding
C
o
n
v
e
n
t
i
onal
pl
ant
bree
di
n
g
i
n
v
o
l
v
es
cha
n
g
i
ng
o
r
c
o
m
b
i
n
i
n
g
t
h
e
ge
nes
o
f
a
pa
rent
al
pl
a
n
t
s
o
t
h
at
a
new a
nd
bet
t
e
r pr
o
g
eny
v
a
ri
et
y
can be de
vel
o
ped
.
M
o
st
con
v
ent
i
onal
bree
di
n
g
can
be re
duce
d
t
o
t
w
o
fund
am
en
tal st
ep
s. Th
e
first
step
is to
g
e
n
e
rate a b
r
eed
i
ng
pop
u
l
ation
th
at is h
i
gh
ly variab
le fo
r
d
e
sirab
l
e
t
r
ai
t
s
by
i
d
ent
i
f
y
i
ng
pare
nt
s h
a
vi
n
g
t
r
ai
t
s
of
i
n
t
e
rest
. The s
econ
d
f
u
ndam
e
nt
al
st
ep i
n
v
o
l
ves sel
ect
i
on
am
ong
t
h
e seg
r
e
g
at
i
n
g
pr
oge
ny
f
o
r
i
ndi
vi
dual
s
t
h
a
t
com
b
i
n
e t
h
e
m
o
st
useful
t
r
a
i
t
s
of t
h
e
pa
re
nt
s wi
t
h
t
h
e
fe
west
o
f
th
eir failin
g
s
[9
0
]
. So
m
e
i
m
p
o
rtan
t salt to
le
ran
t
v
a
rieties dev
e
lop
e
d
i
n
recen
t years th
e world
o
v
e
r, throug
h
con
v
e
n
t
i
onal
b
r
eedi
n
g
t
ech
ni
que
s are
s
h
o
w
n i
n
Ta
bl
e 2
.
There
we
re m
a
ny
at
t
e
m
p
t
s
t
o
en
ha
nce t
o
l
e
rance
ha
ve i
n
v
o
l
v
e
d
c
o
n
v
e
n
t
i
onal
bree
di
n
g
pr
o
g
ram
m
es
suc
h
as the
use
of
in
vitro
sel
e
ct
i
on,
po
ol
i
n
g
phy
si
ol
o
g
i
cal
t
r
ai
t
s
, i
n
t
e
rs
peci
fi
c hy
b
r
i
d
i
zat
i
o
n
,
usi
ng
hal
o
phy
t
e
s
as altern
ativ
e crop
s [46
]
. Th
e
ch
allen
g
e is to
co
m
b
in
e th
e to
leran
ce traits th
rou
g
h
breed
i
n
g
to
d
e
v
e
lop
st
ress-
tolerant c
u
ltivars. There
ha
ve been
successes in de
veloping the
salt tole
rant cultiva
r
s in India
where si
x
v
a
rieties were d
e
v
e
lop
e
d
and
released
as
salt to
leran
t
fo
r cu
ltiv
ation
[91
]
. So
m
e
o
f
th
ese
v
a
rieties lik
e
C
S
R
1
0
,
C
S
R
1
3,
C
S
R
2
7,
Na
r
e
nd
ra usa
r
2
a
n
d
Na
re
nd
ra u
s
ar 3 ha
ve bee
n
use
d
t
o
recl
a
i
m
sal
i
n
e
soi
l
s
i
n
I
n
di
a
[9
2]
. The
r
e we
re 30
vari
et
i
e
s devel
ope
d co
n
v
ent
i
o
nal
l
y
fo
r co
astal salin
e
an
d
alk
a
lin
e soils in
clu
d
i
ng
CSR 2,
CSR 3
,
CSR 13
, CSR 22
, CSR 2
3
,
CSR 26
,
CSR 2
7
,
CSR
3
0
, Panv
el 1, Pan
v
e
l 2, Pan
v
e
l 3
,
Pokk
ali Vytilla 1
an
d
Vytilla 2
[70
]
. Howev
e
r, sev
e
ral atte
mp
ts u
s
i
n
g tr
ad
itio
n
a
l salt-to
leran
t
p
a
ren
t
s su
ch
as Non
a
Bo
kra,
Pok
k
a
li an
d Kalarata do
n
o
t
p
o
s
sess t
h
e level o
f
to
leran
ce
foun
d [1
3
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-88
06
IJP
H
S V
o
l
.
5, No
. 2,
J
u
ne 2
0
1
6
:
20
1 – 2
1
2
20
6
Tab
l
e
2
.
Rice cu
ltiv
ars
with
i
m
p
r
o
v
e
d
salin
i
t
y to
leran
ce
u
s
i
n
g conv
en
tion
a
l b
r
eed
i
ng
techn
i
qu
es
[70
]
Genotype/lin
e/cul
t
i
v
arreleased
Releasingsource
G
oodperf
orm
a
nce
CSR10
Central Va
riet
y
Re
lease Co
m
m
i
ttee
(CVRC) of India
High salt levels
CSR 13,
CSR 27,
Nar
e
ndr
a
Usar
2
and
Narendra Usar
3
Central Va
riet
y
Re
lease Co
m
m
i
ttee
(CVRC)
of I
ndia
M
oder
a
te to high salt levels
Bas
m
ati CSR
30
Central Va
riet
y
Re
lease Co
m
m
i
tte
e (CVRC)
of I
ndia
M
oder
a
te salt str
e
s
s
SR 26 B, CSR 1,
CSR
2,
CSR 3,
Panvel 1,
Panvel 2,
Panvel 3
The Central
Soil S
a
linity Re
sea
r
ch In
stitute (CSSRI),
Karnal, India
The coastal saline
soil
Pokkali (in Kerala only
)
, Vy
ti
lla 1 and Vy
tilla
2
The Central Soil Salinity Re
search In
stitute (CSSRI),
Karnal, India
Sodic soil
CSR 22, CSR 23,
CSR 26, CSR 27 a
nd
CSR
30
The Central Soil Salinity
Research In
stitute (CSSRI),
Karnal, India
Sodic soil
Pokkali, Vy
tilla
1, Vy
till
a 2,
Vy
till
a
3, V
y
tilla
4 and Vytilla 5
Kerala
Agricultura
l Univers
ity,
I
ndia
Coastal r
e
gions
SR 26 B,
Kalar
a
ta, Bhur
ar
ata,
Panvel 1,
Panvel
2,
and Panvel 3 and BT
S 24
International Rice
Research Ins
titute,
Philippines
Coastal regions
Savitr
i,
Ponni, Swar
nadhan,
M
a
nsar
ovar
,
Salivahan and Pavizha
m
International Rice
Research Ins
titute,
Philippines
Shallow water
salinity conditions
BR 10,
Patnai 23,
SR 26 B,
PVR 1,
PY 1,
CSR
1,
CSR 4,
Co 43,
AD 85002,
I
E
T
8113,
T
R
Y 1
and T
R
Y 2
International Rice
Research Institute
,
Philippines
Saline are
a
of Ta
mal
Nadu
Am
ong
pr
obl
em
s associ
at
ed wi
t
h
usi
n
g
phy
si
ol
ogi
cal
t
r
ai
t
s
i
n
pl
ant
bree
di
ng i
s
t
h
at
m
a
ny
i
ndi
vi
dual
s
a
r
e
neede
d
t
o
obt
ai
n a si
ngl
e as
sessm
ent
and t
h
e d
o
n
o
r
s ha
d
t
oo m
a
ny
un
desi
ra
bl
e t
r
ai
t
s
t
h
at
lin
k
e
d
t
o
salin
i
t
y to
leran
ce [6
],[1
3
]
. Th
e po
ssib
ility o
f
p
o
o
lin
g
ph
ysio
log
i
cal traits h
a
s b
e
en
advo
cated
fo
r
rice
[6], scree
n
ing m
e
thods
eval
uated
[62]
and t
h
e a
p
proach prove
d
s
u
ccess
f
ul
in ge
nerati
ng salt-resistant
lines
[7
8]
. T
h
e m
e
t
hod
ol
o
g
y
does
not
re
qui
re
a
d
eep
kn
o
w
l
e
d
g
e
of
t
h
e
ge
net
i
c
s o
f
t
r
ai
t
s
m
e
rel
y
t
h
at
t
h
ey
d
i
spl
a
y
su
fficien
t
h
e
ritab
ility an
d
th
at su
itab
l
e screen
ing
pro
c
edu
r
es can
b
e
d
e
v
e
lo
p
e
d
[4
6
]
. C
o
n
v
e
n
tion
a
l breed
i
ng
m
e
thods s
h
oul
d
not be re
duc
ed but be supple
m
ented with
studies in bi
ote
c
hnology as well as with studies on
soi
l
and
wat
e
r
m
a
nagem
e
nt
.
Thr
o
ug
h rece
n
t
devel
o
pm
en
t
i
n
bi
ot
ech
n
o
l
ogy
, i
t
seem
s
m
a
ke t
h
e bree
ders
or
scien
tists easier to select and
p
r
od
u
c
e th
eir
desirab
l
e traits t
o
b
e
in
corpo
r
at
ed
thro
ugh
reco
m
b
in
an
t gen
e
[7
8
]
.
4.
2.
Modern biote
c
hnol
o
gy
Mo
d
e
rn b
i
o
t
ech
n
o
l
og
y tech
n
i
q
u
e
s re
fer to u
t
ilizin
g
th
e
kn
owledg
e abo
u
t
fu
nd
am
en
tal p
hysio
lo
g
y
of
p
l
an
ts su
ch
as
g
e
n
e
s, cells and
tissu
es and
man
i
p
u
l
a
ting
th
em
b
y
u
tilizi
n
g d
i
fferen
t tech
n
i
q
u
e
s fo
r in
stan
ce
t
i
ssue cul
t
u
re,
genet
i
c
en
gi
ne
eri
n
g, rec
o
m
b
i
n
ant
DN
A,
hy
bri
d
i
zat
i
on, cl
oni
ng a
n
d ot
h
e
rs. S
o
m
e
of t
h
e sal
t
t
o
l
e
rant
ri
ce v
a
ri
et
i
e
s devel
o
ped t
h
r
o
ug
h m
ode
r
n
bi
ot
ech
n
o
l
o
gy
t
ech
ni
q
u
e
s are m
e
nt
i
o
n
e
d i
n
Ta
bl
e
3.
It
i
s
reco
mm
en
d
e
d
to
b
r
i
n
g
all i
m
p
o
rtan
t g
e
n
e
s
to
g
e
th
er in
sing
le p
l
an
t so
as to
en
h
a
n
ce the salin
ity
to
leran
c
e
l
e
vel
s
[
72]
.
Tab
l
e
3
.
Rice cu
ltiv
ars
with
i
m
p
r
o
v
e
d
salin
i
t
y to
leran
ce
u
s
i
n
g m
o
d
e
rn
b
i
o
t
ech
no
log
y
techn
i
qu
es
[70
]
Gene
engineere
d
Source organis
m
Trait
im
proved
G
row
t
h im
proved
Vacuolar Na
+
/H
+
antiporter
Ag
NHX1
A
t
riplex gmelini
Activity of these
antiporters was 8-f
o
ld
high
Seedling survival increased
fr
o
m
51% or
81–1
00%.
Vacuolar Na
+
/H
+
antipor
ter
gene
Pg
NHX1
P
e
nnisetum
glaucum
(L.)
R. Br.
W
e
ll-
d
eveloped r
oot
Syste
m
About 81% hig
h
er
shoot and
r
oot lengths.
Vacuolar Na
+
/H
+
antipor
ter
gene
OsNHX1
Wild ri
ce (
Oryza
sativa
L.)
High accu
m
u
lation of
Na
+
and low K
+
Tolerate s
a
linity l
e
vel up to 0.2
M wher
e wild plan
ts Died
Δ
1-
py
r
r
o
line-
5-
car
boxy
late
sy
nthetase
(
P5
CS
)
Mo
th
b
ean
(
V
i
gna
aconitifolia
)
Transgenic plants
accu
m
u
lated m
o
re
pr
oline under
both
saline and non-
saline
conditions
Shoot fr
esh weight
was
incr
eased fr
o
m
30
–93% and
r
oot fr
esh weight 37–74%
under
200
m
M
NaCl as
co
m
p
a
r
ed to those
in wild type
Na
+
/H
+
antiporter
SOD2
Yeast
Transgenic
plants
accu
m
u
lated higher K
+
, Ca
2+
, Mg
2+
and lower Na
+
in th
eir
shoots as co
m
p
ared to r
e
spective non-
tr
ansform
e
d controls
T
r
ansgenic plants showed goo
d
per
f
orm
a
nce under
saline conditions
OPB
P
1
gene
Tobacco
Transgenic plants showed
high resistance against
salt and disease
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PH
S I
S
SN
:
225
2-8
8
0
6
A Short Revie
w
on the
Devel
opme
nt of
Salt
Tolerant C
u
ltivars i
n
Rice (Samiullah K
h
an)
20
7
4.
2.
1.
QTL identific
a
ti
ons
Genetic dissec
tion of salinity tolerance tra
its
is done e
x
ploiting
Quant
itative Trait Loci (QTLs
)
mapping technique. T
h
is is accom
p
lished by crossing two pare
ntal lines distinct in traits of intere
st. A stress
sen
s
itiv
e an
d
stress to
leran
t
p
a
ren
t
is cro
s
sed
to
g
e
t
p
opu
latio
n
s
with
en
h
a
n
c
ed
to
leran
ce
an
d
sen
s
i
tiv
ity.
Salin
ity to
leran
ce of rice is k
n
o
wn
b
e
ing
con
t
ro
lled
b
y
certain
g
e
n
e
s in
co
m
p
lex
g
e
n
e
ti
c in
teractio
n
s
an
d
it is
clai
m
e
d
as m
u
ltig
en
ic traits.
Th
e m
u
ltig
en
ic n
a
t
u
re of
sal
t
to
leran
c
e
h
a
s clearly b
e
en
estab
lish
e
d an
d
QTL
associated with
aspects of germ
ina
tio
n
,
io
n
tran
spo
r
t
and
yield
.
W
ith
id
en
tificatio
n
o
f
v
a
riou
s QTL
wh
ich
b
e
liev
e
d
attri
b
u
t
ed
to
t
h
e salt to
leran
ce, it can
h
e
l
p
th
e effo
rts to
p
r
od
uce n
e
w
rice cultiv
ars with
d
e
sirab
l
e
traits [24
]
,[78
].
Hund
red
s
of QTLs h
a
v
e
b
e
en id
en
tified
for salin
ity
to
leran
ce in
eco
no
m
i
c
a
lly i
m
p
o
r
tan
t
crop
p
l
an
ts
but
q
u
i
t
e
a few
have bee
n
co
n
f
i
r
m
e
d for en
h
a
nci
n
g sal
i
n
i
t
y
to
leran
ce in
the field
.
Am
ong all
these crops
,
rice
has recei
ved at
tention for im
proving salinity tolerance
us
ing m
odern
bree
ding techni
que
s
. For exam
ple, [93]
fi
ne m
a
pped t
h
e
Sa
lto
l
QTL in
rice g
e
no
m
e
an
d
id
entified
QTLs asso
ciated
with salt to
leran
c
e u
s
ing
R
ecom
b
i
n
ant
I
n
b
r
e
d
Li
nes
(
R
ILs)
deri
ved
fr
om
IR
29 an
d
Po
kkal
i
.
It
s c
ont
ri
b
u
t
i
on t
o
phe
n
o
t
y
pi
c va
r
i
at
i
o
n
was
4
3
% for seed
lin
g sh
oo
t
Na-K ratio
[7
8
]
.
The [94]
detected 3
m
a
jor QT
Ls
ass
o
ciated with
sa
lin
ity toleran
ce
on
ch
ro
m
o
so
m
e
s 1
,
8 and
1
0
wit
h
phe
n
o
t
y
pi
c va
r
i
ance o
f
1
2
.
5
,
29
and 20.2% respectively. F
2
b
r
eed
i
ng
po
pu
latio
n
was u
s
ed
in th
is case. It was
d
e
ri
v
e
d
fro
m
a h
i
gh
ly salt t
o
leran
t
IR6920
-3
B-22
-2
-1
(N
SIC Rc1
06) an
d
m
o
d
e
rately salt to
leran
t
BRRI
d
h
a
n4
0.
Thr
ee Q
TLs
fo
r
su
rv
iv
al d
a
ys o
f
seed
lin
gs (
S
DSs) u
n
d
e
r
str
e
ss wer
e
d
e
tected
on
3
chr
o
m
o
so
m
e
s
1, 6
and
7
ex
pl
ai
ni
ng
a
phe
n
o
t
y
pi
c va
ri
at
i
on
ra
n
g
i
n
g
fr
om
13.
9
-
1
8
%
[
43]
.
Pl
ant
s
un
de
rg
o
i
ng sal
i
n
i
t
y
st
ress expe
ri
ence
cel
l
u
l
a
r osm
o
t
i
c adj
u
st
m
e
nt
s
and i
o
n excl
usi
o
n
.
Na
+
/K
+
hom
eostasis plays critical r
o
le in am
el
i
o
rat
i
ng
t
h
e dam
a
gi
n
g
ef
fect
s of Na
+
. Se
ve
r
a
l
QTLs
have
been
id
en
tified
con
t
ro
lling
Na
+
/K
+
hom
eost
asi
s
. [
76]
have m
a
pp
ed 2
5
m
a
jor
Q
TLs o
n
c
h
r
o
m
o
som
e
s 1,
2,
3
and
8
i
n
cl
udi
ng
o
n
e
QTL
fo
r see
d
l
i
ng
sal
t
i
n
j
u
ry
s
c
ore
,
9
f
o
r
Na
+
conce
n
t
r
at
i
o
n,
3 f
o
r
K
+
c
o
nce
n
t
r
at
i
o
n an
d
4
fo
r C
l
-
co
n
c
en
tration
in
leaf an
d
stem. High
q
u
a
lity rice g
e
no
m
e
se
q
u
e
n
ce (IRGSP) h
a
s m
a
d
e
it
p
o
s
sib
l
e to
clon
e th
e
gene
s u
n
d
erl
y
i
n
g
QT
Ls f
o
r s
a
l
t
t
o
l
e
rance
[
95]
.
The
[
96]
have
cl
o
n
ed
a
ge
ne
SK
C
1
t
h
at re
gulates
Na
+
/K
+
hom
eost
asi
s
i
n
sal
t
t
o
l
e
rant
ri
ce ge
not
y
p
e
.
T
h
e [
9
7]
ha
v
e
i
d
en
tified
QTLs for p
h
y
sio
l
o
g
i
cal
traits
d
e
termin
in
g
sal
t
t
o
l
e
rance i
n
ri
ce.
They
h
a
ve i
d
e
n
t
i
f
i
e
d
QTLs
di
rect
l
y
go
ve
rni
ng s
o
di
um
upt
ake,
p
o
t
assi
um
upt
ake
and
sodi
um
:
pot
assi
um
sel
ect
i
v
i
t
y
. In
[7
5]
, aut
h
o
r(s
) ha
ve com
b
i
n
ed Q
TL m
a
ppi
n
g
an
d t
r
a
n
sc
ri
pt
om
e pro
f
i
l
i
ng i
n
or
der t
o
i
d
e
n
t
i
f
y
sal
t
t
o
l
e
ranc
e genes usi
n
g R
I
Ls deri
ve
d f
r
om
C
S
R
27a sal
t
t
o
l
e
rant
var
i
et
y
and M
I
48
a salt
sen
s
itiv
e
v
a
riet
y an
d repo
rted
8
QTLs fo
r salt io
n con
c
en
trat
io
n
s
on
rice chro
m
o
so
m
e
s 1
,
8
an
d 12
.
In
an
atte
m
p
t to
min
i
m
i
se
th
e en
v
i
ron
m
en
tal effects in
salt to
leran
ce [74
]
u
s
ing
RILs
at seed
lin
g
stag
e in
rice
hav
e
id
en
tified
QTLs
for salt to
leran
ce i
n
clud
ing
Na
+
/K
+
ratio
s. [7
3
]
id
en
t
i
fied
14
QTLs u
s
ing
SSR
on
ch
ro
m
o
so
m
e
s 1,
3,
4,
5
,
6 a
n
d
8
f
o
r
sal
t
t
o
l
e
ra
nce t
r
ai
t
s
i
n
ri
ce. [
9
8]
re
po
rt
ed a
QT
L R
G
13
o
n
chr
o
m
o
som
e
11 asso
ci
at
ed si
gni
fi
cant
l
y
wi
t
h
sal
t
t
o
l
e
ranc
e usi
n
g R
I
Ls
. One
QTL St
d
on c
h
r
o
m
o
som
e
1.
Sim
i
l
a
rl
y
[99]
rep
o
rt
e
d
12
Q
TLs f
o
r sal
t
i
o
n c
once
n
t
r
at
i
o
n
on
ch
r
o
m
o
som
e
s 1,
2,
3
,
4,
7 a
n
d
1
1
res
p
e
c
t
i
v
el
y
.
All th
ese id
entified
,
fi
n
e
map
p
e
d
and
clon
ed
QTLs can
b
e
u
tilised
in
m
o
d
e
rn b
i
o
t
echn
o
l
o
g
y
tech
n
i
qu
es to i
m
p
r
o
v
e
th
e salin
ity
to
leran
ce in
cro
p
p
l
an
ts. Mark
er assisted
selectio
n
is a p
r
omisin
g
t
echni
q
u
es
b
r
i
ngi
ng
ge
nes
of
i
n
t
e
rest
i
n
t
o
p
l
ant
s
. H
o
weve
r
,
t
h
e
dra
w
bac
k
s i
n
usi
n
g
m
a
r
k
er
-assi
st
ed
br
eedi
n
g
are `l
i
n
ka
ge d
r
ag'
of
un
desi
r
a
bl
e t
r
aits due t
o
the la
rge
size of
re
gion
s
o
f
ch
ro
m
o
so
m
e
s
id
en
tified b
y
QTL
[7
1]
and t
h
e fa
ct
t
h
at
envi
ro
n
m
ent
and ge
ne
t
i
c
back
gr
oun
d h
a
v
e
a sig
n
i
f
i
can
t in
f
l
ue
nce
on the
QTL that are
id
en
tified [46
]
.
4.
2.
2.
Tra
n
sg
ene
Recent researc
h
has s
h
own
that rice, transform
e
d to overexpre
ss ge
nes
that brought about the
sy
nt
hesi
s o
f
t
r
ehal
ose
,
co
nt
a
i
ned a
red
u
ce
d co
nce
n
t
r
at
i
o
n o
f
Na i
n
t
h
e sho
o
t
a
nd
g
r
ew
bet
t
e
r t
h
a
n
n
o
n
-
trans
f
orm
e
d (cont
rol) pla
n
ts
whe
n
i
n
the
presence
of
1
0
0
m
M
NaCl. Howev
e
r, th
ere is a risk of th
is.
Al
t
h
o
u
gh t
r
eha
l
ose i
s
com
m
onl
y
prese
n
t
i
n
bacteria,
fungi and i
n
sects, its
c
o
n
c
en
tration
in
p
l
an
ts is v
e
ry lo
w
an
d
it m
a
y ev
en
b
e
tox
i
c: recen
t
ev
id
en
ce su
gg
ests th
at this to
x
i
city
may
ste
m
fro
m its
ro
le in
th
e regu
latio
n
of ca
rb
o
n
m
e
tabol
i
s
m
[46]
,[
10
0]
. I
n
s
p
i
t
e
of t
h
e com
p
l
e
x
ity o
f
salt to
leran
c
e, th
ere are also
claim
s
th
at th
e
trans
f
er
of a si
ngle
or a
few
genes ca
n increa
se the tole
ran
c
e o
f
p
l
an
ts to salin
e con
d
itions. Ev
alu
a
tion
of su
ch
clai
m
s
rev
eals th
at, o
f
th
e
68
p
a
p
e
rs
p
r
odu
ced
b
e
tween
1
993
and
earl
y
2
0
0
3
,
on
ly 1
9
repo
rt
q
u
a
ntitativ
e
esti
m
a
tes o
f
p
l
an
t g
r
owth
[46]. Tran
sg
en
ic tech
no
log
y
will u
ndo
ub
ted
l
y
co
n
tinu
e
to
ai
d
th
e search
fo
r th
e
tolerance m
e
c
h
anism
s
, but the com
p
lex
ity
of the trait is
will
be the challenge for th
is technique to succee
d
[4
6]
.
4.
2.
3.
Hapl
oid bree
d
i
ng
Hapl
oi
d
bree
di
ng i
s
an
ot
h
e
r u
s
eful
t
o
ol
f
o
r b
r
eedi
n
g
.
D
o
u
b
l
e
hapl
oi
d (
D
H
)
l
i
n
es are ge
ner
a
t
e
d ei
t
h
e
r
t
h
r
o
u
g
h
ant
h
e
r
cul
t
u
re (
A
C
)
or c
h
r
o
m
o
som
e
el
im
i
n
at
i
on m
e
t
hods
. D
H
l
i
n
es are excel
l
e
nt
m
a
t
e
ri
al
s f
o
r ri
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-88
06
IJP
H
S V
o
l
.
5, No
. 2,
J
u
ne 2
0
1
6
:
20
1 – 2
1
2
20
8
bree
di
n
g
an
d
genet
i
c
resea
r
ch beca
use
of
t
h
ei
r h
o
m
o
zygosi
t
y
an
d u
n
i
f
o
r
m
i
t
y
. [79]
det
ect
ed 7
QT
Ls fo
r
seedl
i
n
g t
r
ai
t
s
un
de
r sal
t
st
ress usi
n
g a do
u
b
l
e
hapl
oi
d p
o
pul
at
i
o
n de
ri
v
e
d fr
om
a cross bet
w
ee
n IR
6
4
an
d
Azuce
n
a,
an
d
a QTL
f
o
r
r
o
o
t
l
e
ngt
h
h
a
d
1
8
.
9
% c
o
nt
ri
b
u
t
i
on t
o
phe
n
o
t
y
pi
c va
ri
at
i
o
n
.
[
81]
i
d
ent
i
f
i
e
d
gene
s
un
de
rl
y
i
ng a t
o
t
a
l
of
8
QTLs
f
o
r
sal
t
t
o
l
e
ra
nc
e usi
n
g
d
o
u
b
l
e
hapl
oi
d
p
o
p
u
l
a
t
i
on
deri
ved
f
r
o
m
a cross
bet
w
een
i
ndi
ca
va
riety ZYQ8 and
j
a
p
oni
c
a
v
a
r
i
ety JX
17
. DH
br
eed
i
ng
sav
e
s times
to
obtain the hom
o
zygous
state as
well as fo
r evalu
a
tin
g
th
e yield
and
o
t
h
e
r
q
u
a
n
titativ
e traits co
m
p
ared
to
n
o
rm
al self
-po
llin
atin
g
m
e
th
od
s
[7
1]
.
Devel
o
p
m
ent
by
u
s
i
n
g
co
nve
nt
i
o
nal
bree
di
n
g
ca
n t
a
ke
8
–
10
y
ear t
o
o
b
t
a
i
n
a
pr
om
i
s
i
ng sal
i
ni
t
y
-
to
leran
t
lin
e.
Howev
e
r, b
y
u
s
ing
DH cu
lt
u
r
e, th
e
p
e
riod cou
l
d
b
e
sho
r
ten
e
d
t
o
j
u
st
3 years. Th
e cultiv
ar,
whi
c
h i
s
t
h
e fi
r
s
t
DH
de
ri
ve
d l
i
ne f
r
om
i
ndi
c
a
-
i
ndi
c
a
cr
oss
has
bee
n
rel
eas
ed i
n
P
h
i
l
i
ppi
n
e
s an
d
In
di
a
[7
8]
.
4.
2.
4.
So
ma
clona
l
va
riat
io
n
Som
acl
onal
va
ri
at
i
on i
s
an
ot
her
pr
om
i
s
i
ng fi
el
d al
on
g w
i
t
h
t
i
ssue cul
t
u
re t
ech
ni
q
u
es
t
o
enha
nc
e
sal
i
n
i
t
y
t
o
l
e
ran
ce i
n
cr
o
p
pl
an
t
s
. The
va
ri
abi
l
i
t
y
i
s
i
nduce
d
by
in
vitro
m
u
tagene
si
s an
d s
o
m
acl
onal
vari
at
i
o
n
to
im
p
r
o
v
e
the salt to
leran
c
e in
p
l
an
ts. C
e
ll an
d tissu
e
culture
approa
ches a
r
e
quite
feasi
b
le in ac
hieving
sig
n
i
fican
t
salin
ity to
leran
ce
lev
e
ls in
p
l
an
ts. Th
is is accom
p
l
ish
e
d
b
y
in vitro
selectio
n o
f
th
e m
u
tan
t
lin
es
and
by
car
ry
i
n
g i
t
on
wi
t
h
r
e
gene
rat
i
o
nS
om
acl
-o
nal
vari
at
i
on m
e
t
hod al
s
o
has
bee
n
car
ri
ed
out
t
o
pr
o
duce a
b
e
tter p
l
an
t. A
So
m
aclo
n
a
l
varian
t o
f
Pokkali,
a
cu
ltiv
ar
w
h
ich
is
h
i
gh
l
y
salt-to
leran
t
b
u
t
produ
ce low
yield
,
h
a
s shown
th
at th
e v
a
rian
ts co
n
t
ain
d
e
sirab
l
e lev
e
ls o
f
all tes
t
ed
ch
aracteristics. Th
ey retain
th
eir salin
ity
t
o
l
e
rance
e
qua
l
t
o
P
o
kkal
i
,
has vi
g
o
r
o
u
s gr
owt
h
u
n
l
i
k
e
Pokk
ali and is sem
i
-d
warf
–
an
essen
tial trait i
n
in
creasing yield
p
o
t
en
tial wi
th
ou
t lodg
ing
[78
]
.
Geno
t
y
p
e
di
f
f
ere
n
ce
i
n
C
a
l
l
u
s
i
n
du
ct
i
on a
n
d s
u
bs
eque
nt
rege
nerat
i
on
o
f
pl
ant
has
n
o
t
b
een
un
de
rst
o
od
wel
l
[
1
01]
.
5.
CO
NCL
USI
O
N
B
a
sed o
n
t
h
e p
r
o
g
re
ss an
d
o
u
r
k
n
o
wl
e
dge i
n
devel
o
pi
n
g
sal
i
ni
t
y
t
o
l
e
rant
c
r
o
p
s
di
scus
sed
abo
v
e, i
t
i
s
q
u
ite
o
b
v
i
ou
s t
h
at go
al is yet to
b
e
ach
iev
e
d.
A lo
t m
o
re
still
n
eeds to
b
e
d
o
n
e
. C
o
m
b
in
in
g d
i
fferen
t
strateg
i
es
wo
ul
d
be very
prom
i
s
i
ng. C
o
m
b
i
n
i
ng cl
as
si
cal
breedi
n
g
t
echni
q
u
es a
n
d
m
odern
bi
ot
e
c
hn
ol
o
g
y
t
ech
ni
q
u
es
wou
l
d h
e
l
p
fillin
g
th
e g
a
p
s
.
As it is m
e
n
t
i
o
n
e
d
abo
v
e
that salt stress i
s
no
t th
e on
ly stress t
h
at p
l
an
ts are
facing at one ti
me. The
dr
ou
g
h
t
an
d t
e
m
p
erat
ure st
re
ss c
oul
d al
so
be t
h
e r
easo
n
s b
e
hi
nd
sal
t
st
ress. T
h
e
cros
s
talk
s and
no
ise go
ing
on
co
u
l
d
m
i
slead
th
e resu
lts so
th
ere
is a n
e
ed to
m
i
n
i
mise th
e effects o
f
o
t
h
e
r stresses.
This
has also lead to t
h
e littl
e succes
s in e
xpl
oiting t
h
e
maj
o
r
QTLs di
scovere
d
so fa
r. More
ove
r the m
a
j
o
r
Q
TLs
d
i
sco
v
e
r
e
d and
i
d
en
ti
f
i
ed
so
f
a
r,
hav
e
b
een testes in
g
r
eenh
ouses in
sm
all p
o
t
s
pr
ov
id
i
n
g go
od
co
nd
itio
ns.
This is wh
y so
man
y
MAS
p
r
o
g
ram
s
d
i
d
n
o
t g
o
well and
th
e m
a
j
o
r
QTLs stud
ied cou
l
d
not
p
r
ov
id
e th
e sal
i
n
ity to
leran
ce as p
r
ed
icted
.
Su
ch
QTLs shou
ld
also
b
e
tested
in
th
e fields b
e
fo
re
u
s
ing
th
em
f
o
r
an
y br
eed
i
ng
p
r
og
r
a
m
s
.
REFERE
NC
ES
[1]
Q. Jing,
et al.
, “Exploring optio
ns to combine h
i
gh
y
i
elds with hi
gh nitrogen use efficien
cies in
irrigated rice
in
China,
”
Europea
n
Journal o
f
Agronomy,
vol/issue: 26(2), pp. 166-
77, 2007
.
[2]
Khush,
et al.
, “R
ice biotechno
log
y
,”
Int
.
Ri
c
e
Re
s. Inst
. 1991.
[3]
L. H. Z
i
ska,
et al.
, “Chapter
Three-Weed
y
(
R
ed) Rice: An Emer
ging Constraint to Glob
al
Rice Production
,”
Advances in
agronomy,
vol. 129
, pp. 181-228, 20
15.
[4]
J. Bennett,
et
a
l
.
, “Capital & counties repo
rt:
Ja
panese constr
uction industr
y
,
”
Ce
ntr
e
for
Str
a
teg
i
c Studies in
Construction
,
U
n
iversity
of R
e
ading, 1987
.
[5]
J.
A.
Sc
ha
ar,
et al.
, “Terminolog
y
for h
i
gh-risk and vulne
rab
l
e
co
ronar
y
arter
y
plaques,”
European
heart journal,
vol/issue:
25(12)
, pp
. 1077-82
, 2
004.
[6]
A.
R.
Yeo,
et al.
, “Screening of rice (Or
y
za sativ
a
L.) geno
ty
pes fo
r
ph
y
s
iolog
i
c
a
l c
h
arac
ters con
t
rib
u
ting to sal
i
n
i
t
y
resistance,
and their relati
onship
to overall p
e
rfo
rmance,”
Theoretical and A
pplied Genetics,
vol/issue: 79(3), pp.
377-84, 1990
.
[7]
M. C. Shannon,
“Adaptation
o
f
p
l
ants
to salinity
,”
Advan
ces in
agr
onomy,
vol. 60
,
pp. 75-120
, 199
7.
[8]
R. Munns & M.
Tester
, “Mech
an
isms of salinity
toleran
c
e,”
Annu Rev
Plan
t Biol.
,
vol. 59
, pp
. 651-
81, 2008
.
[9]
N. Tute
ja
, “
C
hapter Twen
t
y
-fou
r-m
echanis
m
s
of high salini
t
y
to
leran
ce in p
l
an
ts,”
Methods in enzymology,
vol.
428, pp
. 419-38
, 2007.
[10]
T.
J.
Flowe
r
s,
et al.
, “
Q
TL: the
i
r plac
e in engine
e
r
ing toler
a
nce of
rice to salini
t
y
,
”
Journal of Experimental Botany,
vol/issue:
51(34
2), pp
. 99-106
, 2
000.
[11]
P.
S.
Ra
o,
et al.
,
“Reproductive stage toleran
ce to
salinity
and alk
a
linity
str
e
sses in rice geno
ty
pes,”
Plant Breeding
,
vol/issue:
127(3)
, pp
. 256-61
, 20
08.
[12]
Pessarakli & I.
M. Szabolcs,
“Soil
salinity
and sodicity
as particular p
l
an
t-crop
stress factors. Handbook of plan
t
and crop
stress. r
e
vised
and
expanded,
” Marcel Dekker, Inc., New
York, 1999
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
PH
S I
S
SN
:
225
2-8
8
0
6
A Short Revie
w
on the
Devel
opme
nt of
Salt
Tolerant C
u
ltivars i
n
Rice (Samiullah K
h
an)
20
9
[13]
G. B. Gregorio
, “Progress in br
eeding
for trace minerals
in sta
p
le crops,
”
The Journal of nutrition,
vol/issue:
132(3), pp
. 500S
-2S, 2002.
[14]
J. L
.
L
a
rgi
e
r,
“
T
i
d
al
intrusion f
r
o
n
ts,”
Estuaries,
vol/issue: 15(1), pp.
26-39
,
1992
.
[15]
R.
D.
Graham,
et al.
, “Addressing m
i
cronutrient
m
a
lnutrition thr
ough
enhancing
the nutrit
i
onal
qualit
y
of stap
l
e
foods: principles
, persp
ect
ives
an
d knowledge gaps,”
Ad
vances in
Agronomy,
vol.
70, pp
. 77-142
,
2001.
[16]
R. Wassmann,
et al.
, “Sea level
rise affecting th
e Vietnamese
M
e
kong Delta: water eleva
tion in the flood season
and implications fo
r rice production,”
C
limatic Ch
ange,
vo
l/issue:
66(1-2), pp
. 89-
107, 2004
.
[17]
A.
Smajgl,
et al.
, “Responding to rising sea levels in the Mekong Delta,”
Nature Climate Change,
vol/issue: 5(2)
,
pp. 167-74
, 201
5.
[18]
Le Dang,
et al.
,
“
F
arm
e
rs
’ perceptions
of clim
a
t
e vari
abil
it
y an
d barriers to ad
aptation: lessons learned from an
explorator
y
stud
y
in Vietnam,”
Mitigation and
adaptation stra
tegies for
global change,
vol/issue: 19(5)
, pp
. 53
1-
48, 2014
.
[19]
D. Conway
& J. Mustelin
, “Strategies for
impr
oving ad
aptation p
r
actice in
d
e
velo
ping countries,”
Nature Climat
e
Change,
vo
l/issu
e: 4(5)
, pp
. 339-
42, 2014
.
[20]
L.
Zeng
,
& M. C
.
Shannon
, “Salinity
effects on
se
edling
growth an
d y
i
eld co
mponents of rice,” 200
0.
[21]
H. W
a
lia
,
et a
l
.
, “Genome-wide transcrip
tional
analy
s
is of sali
n
i
ty
stressed japo
nica
and indica rice g
e
noty
p
es
during pan
i
cl
e
in
itia
tion
stage
,
”
Plant molecular b
i
ology,
vol/issue: 63(5), pp. 609-
23, 2007
.
[22]
M. Akbar,
et al.
, “Breeding
for salinity
to
lerance in
rice,”
IRRI
Saturda
y Seminar, Los
Banos, Lagun
a
(
P
hilippines)
, M
a
y 1985
, 1985.
[23]
J. K.
Zhu,
“
P
lant
salt
tol
e
ran
c
e
,
”
Trends in plant scien
c
e,
vol/isue:
6(2), pp
. 66-71
,
2001.
[24]
M. A. Javed,
et al.
, “Identification of QTLs for
morph-phy
sio
l
o
g
ical
trai
ts relat
e
d to salinit
y tol
e
rance a
t
seedlin
g
s
t
age
in ind
i
c
a
r
i
ce,
”
Pr
ocedia
E
n
vir
onmental
Sci
e
nces
,
vol. 8
,
pp
. 389-95, 2011.
[25]
M.
Z. Ya
o,
et
al.
, “Inher
itance and QTL mappin
g
of
sal
t
to
ler
a
n
ce
in ri
ce
,”
Ri
ce
Sci
.
,
vol/issue:
12(1), pp
. 25-32
,
2005.
[26]
R. Laik
,
et al.
,
“Integration of
conservation ag
ricultu
re with
b
e
st management practi
ces for improving sy
stem
performance of the rice–wheat r
o
tation in th
e Eastern Indo-Gan
g
etic Plains of I
ndia,”
Agr
i
cul
t
u
r
e, Ecos
ys
tems
&
Envir
onment
,
vo
l. 195
, pp
. 68-82
, 2014
.
[27]
H. J. Bohnert
& R. G. Jensen,
“Strategies for engineering
wate
r-stress toleran
ce in p
l
ants,”
Trends in
Biotechnolog
y,
v
o
l/issue: 1
4
(3), p
p
. 89-97
, 1996
.
[28]
E. A
.
Bray
, “Plant res
ponses to
water d
e
ficit,”
Trends in plan
t science,
vol/issue:
2(2), pp
. 48-54
,
1997.
[29]
W.
Wa
ng,
et al.
, “Plant responses to drought, s
a
linity
and ex
trem
e temperatures
: towards genetic engin
eering fo
r
stre
ss tole
ra
nce
,
”
Planta,
vol/issue: 218(1)
, pp
. 1
-
14, 2003
.
[30]
A.
K.
Parida & A.
B.
Das,
“
S
alt toleranc
e and salinit
y
effec
t
s on plants: a review,
”
Ecoto
x
ico
l
ogy a
nd
envir
onmenta
l s
a
fet
y
,
vol/issue:
60(3), pp
. 324-4
9
, 2005
.
[31]
V. Chinnusam
y
,
et a
l
.
, “Understanding
and impr
oving sa
lt
tol
e
ra
nce
in pl
ants,
”
C
r
op Scien
c
e,
vol/issue: 45(2)
, pp
.
437-48, 2005
.
[32]
R. Kumari,
et al.
, “Seed cultur
e
of rice cultiv
ars under salt stress,”
Int J Pure App
Biosci
., vol/issue: 3(1), pp. 191-
202, 2015
.
[33]
K. M. A. Zinnah,
et al.
, “In vitro regeneration and screening for
salt toleran
ce in
rice (Or
y
za sati
va L.),
”
Int Res J
Biol Sci
., vol. 2
,
pp. 29-36
, 2013
.
[34]
N. A. Ch
achar
,
et al.
, “
S
cre
e
ning
for s
a
l
t
to
ler
a
nt
rice
(Or
y
za
s
a
tiv
a L
.
) g
e
not
ypes
at
earl
y
s
eed
ling
s
t
age
,
”
Journa
l
of Agricultural Technolog
y,
vol/issue: 10(1), pp.
265-75, 2014
.
[35]
S.
J.
Roy
,
et a
l
.
, “
S
alt
res
i
s
t
an
t cr
op
plan
ts
,”
Current Opin
ion in
Biotechnology,
vo
l. 26
, pp
. 115-24
, 2014
.
[36]
G.
B.
Gregorio,
et al.
, “
S
creeni
ng rice for s
a
l
i
n
it
y tol
e
ran
ce,
”
International
Ri
ce R
e
search Institut
e
discussion
paper series,
vol. 22
, 1997
.
[37]
M. L. Dionisio-
Sese & S.
T
obita, “Eff
ects of salinity
on sodiu
m
cont
ent
and
photos
y
n
th
etic r
e
sponses of rice
seedlings d
i
ffer
i
ng in sa
lt
tol
e
ran
ce,
”
Journal o
f
Plant Physio
log
y
,
vo
l/issue: 157
(1), pp
. 54-8
,
20
00.
[38]
M. T. Campbell,
et a
l
.
, “Integ
rating imag
e-based phenomics and asso
cia
tion
anal
ysis to dis
s
ect the g
e
ne
tic
architecture of
temporal sa
lin
ity
r
e
sponses
in rice,”
Plant ph
ysiolo
gy,
vo
l/issue: 16
8(4), pp
. 1476-8
9
, 2015
.
[39]
J
.
A. Bac-M
o
l
e
naar,
et a
l
.
, “Genome-wide association mappin
g
of gr
owth d
y
nam
i
cs
dete
cts
t
i
m
e
-s
pecifi
c an
d
genera
l
qu
anti
tat
i
ve trai
t loci
,”
Jo
urnal of
exp
erimental botany,
pp
. 176, 2015.
[40]
T. B. Brown,
et al
., “Trait Captu
r
e: genomic and
environm
ent modelling of plan
t phenomic data,”
Current opinion
in plant bio
l
ogy,
vol. 18, pp. 73-
9, 2014
.
[41]
R. Karan
,
et a
l
.
,
“Salt stress induced variation
in
DNA methy
l
ation pattern
and its
influence on gene
expression in
contrasting rice
genoty
p
es,”
Plo
S
one,
vol/issue:
7(6), pp
.
e40203
, 2012
.
[42]
A.
R.
Yeo,
et al.
, “Selection for
ph
y
s
iolog
i
cal ch
aracters – exam
ples from breedi
ng for salt tolerance Plants under
Stress,” Cambridge Univ
ersity
P
r
ess, 1989.
[43]
H.
X.
Lin,
et al.
, “QTLs for
Na+ and K+ uptake o
f
the shoots
and roots controlling
rice salt to
ler
a
n
ce,”
T
h
eor
e
ti
cal
and Applied G
e
n
e
tics,
vol/issue:
108(2), pp
. 253-
60, 2004
.
[44]
D.
M.
Ooste
r
huis,
et a
l
.
, “The p
h
y
siolog
y
of potassium in crop p
r
oduction
,
”
Advances in
Agronomy,
vol. 126
, pp
.
203-33, 2014
.
[45]
S
.
Y. Lee,
et al.
, “Mapping QTL
s
related to salin
ity
toler
a
nce of rice at the
y
oung seedling stag
e,”
Plant Breedin
g
,
vol/issue:
126(1)
, pp
. 43-6
,
2007
.
[46]
T. J. Flowers, “Improving crop
salt to
ler
a
nce,”
Journal of Exp
e
rimental bo
tany,
vol/issue: 55(3
96), pp
. 307-19
,
2004.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
252
-88
06
IJP
H
S V
o
l
.
5, No
. 2,
J
u
ne 2
0
1
6
:
20
1 – 2
1
2
21
0
[47]
G. B. Gregorio & D. Senadhira
,
“
G
enetic ana
l
y
s
is
of salinit
y tol
e
ranc
e in ric
e
(
O
r
y
z
a
sativa
L.)
,
”
T
h
eor
e
ti
cal a
nd
Applied
Gene
ti
c
s
,
vol/issue: 86(2
-
3), pp
. 333-8
,
1
993.
[48]
K.
S.
Lee,
et al
.
,
“
S
alinit
y to
lera
nce of japon
ic
a and indic
a
ric
e
(
O
r
y
z
a
sativ
a L.)
at the se
edling
stage,
”
Plan
ta
,
vol/isssue: 216(6
)
, pp
. 1043-6
,
20
03.
[49]
N. K. F
a
g
e
ri
a,
“
S
alt to
ler
a
nc
e of
rice
cul
tiv
ars
,
”
Plant and
soil,
vol/issue: 88(2)
, pp
. 237-43, 1985.
[50]
D. P
.
Heenan
,
et al.
, “
S
alinit
y t
o
leran
ce in r
i
ce
varie
ties a
t
diffe
rent growth stag
es,”
An
imal Production Scien
c
e,
vol/issue: 28(3), pp.
343-9
,
1988
.
[51]
El Mokhtar
,
et al.
, “
E
ff
ect
of d
i
fferen
t
lev
e
ls o
f
salinit
y
on ger
m
ination and
early
s
eedling gro
w
th of three rice
varie
ties cul
tiva
t
ed in Mauritani
a,”
International Journal of Ag
riculture and Crop Sciences,
vol/issue: 8(3), pp.
346, 2015
.
[52]
A. S
h
ereen,
et al.
, “
S
alini
t
y
indu
ced m
e
tabol
ic c
h
anges in rice
(
O
r
y
za sativa L.)
seeds during germination,”
Pak J
Bot
., vo
l/issue: 4
3
(3), pp
. 1659-6
1
, 2011
.
[53]
U. Deinl
e
in
, “
P
l
a
nt sa
lt-to
ler
a
nc
e m
ech
anism
s
,”
Trends in plant scien
c
e,
vol/issue: 19(6), pp. 371-
9, 2014
.
[54]
V.
D.
Taffouo,
et al.
, “Eff
ects of
salinity
s
t
ress on
seedlings growth,
mineral nu
trients and
total ch
loroph
y
l
l of
some
tom
a
to (L
yc
oper
s
icum
esculen
t
u
m
L.)
cult
ivars,
”
African Journal
of Biotechno
log
y
,
vo
l/issue: 9(3
3
), 2013
.
[55]
H. Fan,
et a
l
.
, “Effect of d
i
ffer
e
nt potassium lev
e
ls on th
e grow
th and photos
y
n
thesis of sweet s
o
rghum seedling
s
under salt stress,”
Ad
vances in
Energy,
Environ
m
ent and Materials
Scien
ce: Pr
oceed
ings of the Internation
a
l
Conference on
Energy, Environment and Materials Sc
ience (
EEMS 2015)
, Guanghzou, PR Ch
ina, August 25-2
6
,
2015
; 2016.
[56]
D. Bhusan,
et a
l
.
, “Improvement of salt toleran
ce in rice (Or
y
za sativ
a L.) b
y
increasing
antioxidant def
e
nse
s
y
stems using exogenous application of prolin
e,”
Australian Jo
urnal of Crop S
c
ien
c
e,
vol/issue: 10(1), pp. 50,
2016.
[57]
G.
A.
D.
Miller,
et a
l
.
, “Reactiv
e ox
y
g
en species homeostasis and si
gnalling du
ring drought
and
salinity
stresses
,
”
Plant, cell
&
environment,
vo
l/iss
u
e: 33(4)
, pp
. 45
3-67, 2010
.
[58]
T. Yam
a
guchi
& E. Blum
wald, “Developing salt-to
le
r
a
nt crop
plants: chal
len
g
es and opportunities
,
”
Trends in
plant science,
vo
l/issue: 10
(12), p
p
. 615-20
, 2005
.
[59]
S.
J.
Oh,
et al.
, “Arabidopsis CBF3/DREB1A and ABF3 in transgenic
rice increased
toler
a
nce to ab
iotic stres
s
without stunting
growth,”
Plan
t Physiology,
vol/is
sue: 138(1), pp
.
341-51, 2005
.
[60]
D.
M.
Almeida,
et al.
, “Screenin
g for Abiotic Stress Toleran
ce in Rice: Salt, Co
ld, and Drought,”
Envir
onmenta
l
Responses in
Plants: Methods a
nd Protoco
l
s,
vo
l. 155
, pp
. 82
, 20
16.
[61]
M.
M.
Cha
v
e
s
,
et al.
, “Photos
y
n
thesis under dr
ought and salt s
t
ress:
regulation
mechanisms from whole plant to
cel
l,”
Anna
ls of
botany,
vol/issue: 103(4), pp. 551
-60, 2009
.
[62]
R. M. R
i
vero,
et al.
, “
T
he
com
b
ined
effec
t
of s
a
linit
y
and h
e
a
t
r
e
vea
l
s a spe
c
ifi
c
ph
y
s
io
l
ogical, biochemical and
m
o
lecular
respo
n
se in
tom
a
to p
l
ants,”
Plant, cell
&
environment,
vol/issue: 37(5), pp.
1059-73
,
20
14.
[63]
I.
G.
B.
Arsa,
et al.
, “Evaluation
of Grain Yield and Aroma of Up
land Rice (Par
e
Wangi Var.)
as Response to Soil
Moisture and
Sa
linit
y,
”
Current
Agriculture Research Journal,
vo
l/issue: 4
(
1), 201
6.
[64]
G. Cécco
li,
et al.
, “
P
lastic
it
y in s
unflower le
af an
d cell growth un
der high salin
it
y,
”
Plant Biolog
y,
vol/issue:
17(1)
,
pp. 41-51
, 2015
.
[65]
B. Faiy
ue,
et al.
,
“
A
new s
c
reeni
ng techn
i
que for
s
a
lini
t
y
res
i
s
t
an
ce
in
rice (Or
y
za sativa L.)
seed
lings using b
y
pass
flow,”
Plan
t,
ce
l
l
&
envir
onment,
vol/issue: 35(6)
, pp. 1099-108, 2
012.
[66]
M. Thitisaksaku
l,
et al.
, “Effects of timing and
severity
of salinity
s
t
r
e
s
s
on rice (Or
y
za s
a
tiv
a
L.)
yield
,
grain
composition, an
d star
ch func
tion
a
lit
y,
”
Journal o
f
agricultural an
d food chemistry,
vol/issue: 63(8
)
, pp. 2296-304
,
2015.
[67]
B. Sánchez,
et a
l
.
, “Temperatures and the growth and deve
lopm
ent of m
a
ize an
d rice: a revi
ew,
”
Global change
biology,
vol/issue: 20(2)
, pp
. 408
-17, 2014
.
[68]
M.
A.
Ca
usse
,
et al.
, “Satur
ated
molecular map o
f
the rice g
e
nome
based on
an interspecif
i
c b
ackcr
oss population,”
Genetics,
vo
l/issue: 138(4)
, pp
. 1
251-74, 1994
.
[69]
K.
K.
Je
na & D.
J.
Mac
k
ill,
“Mole
c
u
la
r ma
rke
r
s a
nd th
eir use
in
m
a
rker-assisted
sele
ction
in ri
ce
,”
C
r
o
p
Sc
i
e
nce,
vol/issue: 48(4), pp.
1266-76
,
20
08.
[70]
M
.
S
h
ahbaz &
M
.
As
hraf, “
I
mproving s
a
lini
t
y
toler
a
nce
in ce
re
als
,
”
Crit
ica
l
re
views in plan
t scien
ces,
vol/issue:
32(4), pp
. 237-4
9
, 2013
.
[71]
V.
A.
Martinez,
et al.
, “On th
e use of doub
le
haploids for
detecting QTL in
outbred popu
lations,”
Heredity,
vol/issue: 88(6), pp.
423-31
,
200
2.
[72]
T
.
J
.
F
l
o
w
e
r
s
&
A
.
R
.
Y
e
o
,
“
B
reeding for salinity
resistance
in cr
op plants: wher
e next?
”
Function
a
l Plant
Biolog
y,
vol/issue: 22(6), pp.
875-84
,
199
5.
[73]
J. Ahmadi &
M. H. Fotokian, “Iden
tifi
cat
ion
and m
a
pping of quantit
ativ
e trait lo
ci associ
ated with sal
i
n
i
t
y
toler
a
nce in ri
ce
(Oryza S
a
tiv
a) us
ing S
S
R
m
a
rkers
,
”
Iranian Jo
urnal of Biotech
nology,
vol/issue: 9(1), pp. 21-30,
2011.
[74]
Z. Wang,
et al.
,
“
I
dentific
ation
of QTLs with
m
a
in, epist
a
ti
c a
nd QTL× envir
onm
ent intera
ct
i
on effec
t
s for salt
toler
a
nce
in ri
ce
seedlings under
differen
t
salin
it
y conditions
,”
Th
eoretical and Ap
plied Gen
e
tics,
v
o
l/issue: 125(4)
,
pp. 807-15
, 201
2.
[75]
A. Pandit,
et
al.
, “Combining
QTL mapping
and transcr
i
ptome profi
ling of
b
u
lked RI
Ls for
identif
ic
ation
of
function
a
l po
l
y
m
o
rphism
for salt
toler
a
nc
e ge
nes in ri
ce
(Or
y
za sa
tiva
L.)
,
”
Molecu
lar Genetics and Genom
ics,
vol/issue:
284(2)
, pp
. 121-36
, 20
10.
Evaluation Warning : The document was created with Spire.PDF for Python.