Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
85
9
~
86
9
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
521
8
59
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
A New All-Optical Signal Regen
e
ration Technique for 10 GB/S
DPSK T
r
ansmiss
i
on Syst
em
B
h
agw
an D
a
s
*
, M.
F.L
Abd
u
l
l
a
h*
, Nor
S
h
ahi
d
a M
o
hd
Sha
h*
*Faculty
of Electrical and Electr
onic Engineer
in
g, Universi
ti
Tu
n Hussein Onn
Mala
y
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 29, 2015
Rev
i
sed
D
ec 18
, 20
15
Accepte
d
Ja
n 10, 2016
The transmission of high power inside
the optical fiber
,
produce amplitude
noise, ph
ase no
ise and o
t
her
transmi
ssion impairm
ents th
at
degrade
th
e
perform
ance of
optic
al com
m
unica
ti
on s
y
stem. The signal
regener
a
tio
n
techn
i
ques are u
s
ed to m
itigat
e t
h
ese nonlinear i
m
p
airm
ents in the electr
ical
or in the optical
domain. All-optical
signal reg
e
neration techn
i
ques are one of
the solutions to
m
itigat
e these
nonlinear trans
m
ission im
pairm
e
nts in the
optical domain
without
converting th
e
sign
al from optical
to electr
i
cal
domain. Th
e ex
isting techniqu
es are not
cap
ab
le enough
to attain th
e Bit
Error Rate (BER
) less than 10
-10
with the power p
e
nalty
less than
– 9dBm. In
this paper
,
a n
e
w all-opt
ica
l
sig
n
al re
g
e
ner
a
tion
techn
i
que is d
e
veloped
that
m
itigate
am
plitu
de and phase no
ises in the opti
c
al dom
ain. Th
e
new optica
l
signal r
e
generation technique is
deve
loped b
y
com
b
ining th
e t
w
o existing
techn
i
que one is
3R (Reshaping,
Ream
plification
and Retiming) regeneration
and oth
e
r is Pha
s
e Sensitiv
e Am
plific
at
ion (PSA). Th
e 10Gb/s
Different
ia
l
Phase shift Ke
yi
ng (DPSK) noisy
transm
i
ssion sy
ste
m
is use
d
to ve
rify
the
featur
es of developed techniqu
e.
The dev
e
lop
e
d techn
i
que s
u
cces
s
f
u
l
l
y
m
itigates th
e n
online
a
r im
pair
m
e
nts from
the nois
y
DPSK system
with
significant improvement in BER at lo
w power penalty
with th
e additional
featur
e
of
high Q-factor and an ey
e
op
en r
e
sponse for th
e r
e
generated
signal.
It is d
e
term
ined
that
BER
of 10
-12
i
s
a
c
h
i
e
ve
d
at
t
h
e p
o
w
e
r
pe
na
l
t
y
of
-
14
dBm with Q-factor of 42
and
an ey
e open
e
d response.
Th
e dev
e
loped
techn
i
que in th
e DPSK
sy
st
e
m
is realized
using com
m
e
rcial softwar
e
packag
e Optis
y
s
tem. The d
e
sign
ed technique will be helpfu
l to enhance
the
performance existing high-speed
opti
cal
com
m
unica
tion b
y
a
c
h
i
eving
the
minimum BER at low power
pen
a
lty
.
Keyword:
3R
re
ge
nerat
i
o
n
Bit Erro
r Rate
Eye diagram
Op
tical reg
e
n
e
ratio
n
Ph
ase Sen
s
itiv
e Am
p
lifier
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Bhag
wa
n Das,
Faculty of Elec
trical an
d
El
ect
ro
ni
c E
ngi
neer
i
ng,
Un
i
v
ersiti
Tu
n Hu
ssein
On
n Malaysia,
Un
i
v
ersiti
Tu
n Hu
ssein
On
n Malays
ia (UTHM), 864
00
Par
it
Raj
a
,
Batu
Pah
a
t, Joho
r, Malaysia.
Em
a
il: h
e
1
3
0
0
9
2
@siswa.u
thm
.
ed
u
.
my
1.
INTRODUCTION
The m
odern
o
p
t
i
cal
co
m
m
uni
cat
i
on sy
st
em
s req
u
i
r
e n
o
i
s
el
ess hi
gh
-s
pe
ed t
r
ansm
i
ssi
on of
dat
a
at
l
o
n
g
di
st
ance
[
1
]
.
The
hi
g
h
-s
peed t
r
a
n
sm
i
ssi
on
of
dat
a
ent
a
i
l
s
, l
a
unchi
n
g
of hi
g
h
p
o
we
r
i
n
t
h
e o
p
t
i
cal
fi
ber
.
The
hi
g
h
p
o
w
er t
r
a
n
sm
i
ssion i
n
si
de
o
p
t
i
cal
fi
ber
pr
o
d
u
ces
vari
o
u
s t
r
ansm
i
ssi
on i
m
pai
r
m
e
nt
s for e.
g
.
scattering loss
es, linea
r a
n
d
nonlinea
r e
ffe
cts and
ot
he
rs
i
n
[1]
.
The
s
e
t
r
ansm
i
ssi
on
im
pai
r
m
e
nt
s p
r
o
d
u
ce
li
mitatio
n
s
to
yield
th
e
o
p
t
i
m
u
m
d
a
ta rate at lon
g
d
i
sta
n
ce. T
h
ese tra
n
s
m
ission im
pai
r
m
e
nt
s are m
i
t
i
gat
e
d i
n
two ways i.e. in the electrical dom
ain
or in the optical domain. In the elec
trical dom
ain,
the degra
d
ed optical
sig
n
a
l is converted
i
n
an
electrical sig
n
a
l
to
m
itig
ate th
ese tran
sm
issio
n
im
p
a
ir
m
e
n
t
s u
s
i
n
g D
i
g
ital sign
al
pr
ocessi
ng (
D
SP),
di
spe
r
si
o
n
com
p
ensat
i
n
g fi
be
r (
D
C
F
)
,
fi
ber
bra
ggi
n
g
an
d ot
hers i
n
[
1
]
.
The el
e
c
t
r
o
n
i
c
sig
n
a
l
reg
e
n
e
ratio
n
h
a
s th
e li
mited
sig
n
a
l
reg
e
n
e
ration
capab
ilities in
term
s o
f
d
a
ta rate up
t
o
5
G
b
/
s
[1]. In th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
9 – 8
6
9
86
0
o
p
tical do
m
a
in
, all-op
tical sig
n
a
l
reg
e
n
e
ratio
n
prov
id
es the sig
n
a
l
reg
e
neratio
n
fo
r m
o
re th
an
1
0
Gb
/s d
a
ta
rate [2]. Recently, several
m
odulation
form
ats are introduc
ed to transm
it
the signals at long distance
. Thes
e
m
odul
at
i
on f
o
rm
at
s
i
n
cl
ude
On
-O
ff
key
i
n
g
(O
OK
), P
h
as
e Shi
f
t
Key
i
n
g
(P
SK
), F
r
eq
uency
S
h
i
f
t
K
e
y
i
ng
(FS
K
) a
n
d ot
h
e
rs i
n
[2]
.
F
r
o
m
t
h
ese
m
odul
at
i
on f
o
rm
at
s, PSK
fo
rm
at
has capt
u
red
t
h
e
i
n
t
e
rest
t
o
be u
s
ed i
n
tran
sm
issio
n
syste
m
s d
u
e
to its 3
-
d
B
sen
s
itiv
ity an
d
m
o
re immu
n
e
to
n
o
i
se du
ri
n
g
transmissio
n
[2
].
2.
LITERATU
R
E
REVIE
W
Recently,
m
a
ny technique
s are deve
loped t
o
perform
the
optical si
gnal
regeneration.
The optical
si
gnal
re
ge
ner
a
t
i
on i
n
opt
i
c
a
l
dom
ai
n have
been
p
r
evi
ous
l
y
i
nvest
i
g
at
ed
t
h
eo
ret
i
cal
l
y
,
num
eri
cal
l
y
and vi
a
sim
u
l
a
t
i
on u
s
i
n
g
di
ffe
rent
t
e
chni
que
s [
3
]
.
These t
e
c
h
ni
q
u
es i
n
cl
u
d
e
2
R
(R
eam
pl
i
f
y
,
res
h
api
n
g
)
re
gene
rat
o
r
con
f
i
g
urat
i
o
n
[
3
]
,
3R
(R
eam
pl
i
f
y
,
resha
p
i
n
g,
ret
i
m
i
ng) [
5
]
,
pha
se ext
r
act
i
o
n,
pum
p di
t
h
er
i
ng,
Sem
i
cond
uct
o
r
opt
i
cal
am
pl
i
f
ier (S
O
A
),
fo
r
m
at
conve
rsi
o
n an
d
wi
t
h
bl
ack b
o
x
m
ode [3]
.
Am
ong
t
h
ese o
p
t
i
cal
si
gnal
rege
nerat
i
on t
e
chni
que
s, t
h
e
PSA i
s
wi
del
y
i
n
use
d
due
t
o
i
t
s
seve
ral
adva
nt
age
s
suc
h
as s
u
p
p
o
rt
s t
h
e P
S
K
form
at, si
m
p
le
in
d
e
si
g
n
and p
r
ov
id
es t
h
e
fu
ll con
t
ro
l
d
u
r
in
g sig
n
al re
g
e
neratio
n
[3]
,
[4]
.
Ho
we
ver
,
It is
di
scuss
e
d i
n
[
3
]
,
[4]
t
h
at
PSA al
one i
s
not
such so m
u
ch use
f
ul
i
n
o
p
t
i
cal
si
gnal
regene
rat
i
o
n, t
h
e
ot
her
t
echni
q
u
es
m
u
st
be
use
d
t
o
get
h
e
r
s
u
ch
a
s
;
cl
ock
rec
o
v
e
ry
, i
n
ject
l
o
c
k
i
n
g a
n
d
ot
he
rs i
n
[
2
]
-
[
5
]
.
These
ad
d
ition
a
l techn
i
qu
es con
s
u
m
e eno
r
m
o
u
s
power
and
m
a
k
e
d
e
sign
co
m
p
lex
so
that BER
is d
e
g
r
ad
ed at
m
o
r
e
penal
t
y
. T
h
e
r
e
are
seve
ral
al
l
-
o
p
t
i
cal
si
gna
l
rege
ne
rat
i
o
n
t
ech
ni
q
u
es a
r
e p
r
o
p
o
sed
f
o
r
di
ffe
re
nt
dat
a
rat
e
,
m
odul
at
i
on
fo
r
m
at
s as descri
b
e
d i
n
Ta
bl
e 1
.
Tabl
e
1. T
h
e
e
x
i
s
t
i
n
g
o
p
t
i
cal
si
gnal
rege
ne
ra
t
i
on t
ech
ni
que
Author
and
Publication y
ear
Pr
oblem
T
echnique used
Advantages/ Disadvantages
Per
f
orm
a
nce
analysis
Car
l
L
undstr
o
m
(
2014)
[6]
L
i
near
and nonlinear
noise m
itigation
Phase r
e
gener
a
tion
and phase
extinction.
BE
R of 10
-9
at -9
.3
d
B
m
Noise m
itigation
w
ith
am
plification and suppor
ts
only
O
O
K
form
a
t
BER v/s
received power
analysis
Francesca P
a
r
m
igi
a
ni
(
2014)
[7]
Regener
a
tion of ph
ase
encoded signals
Phase r
e
gener
a
tion
of QAM
signal
of two harm
onics
of M
-
ary
using
PSA attained B
E
R
of 10
-
10
at -9
.1
dB
m
Regener
a
tion is per
f
orm
e
d
without phase to am
plitude
conver
s
ion and cannot adjust
am
plitude noise
BER analy
s
is
Ju W
a
ng (
2014)
[8
]
All optical
r
e
gener
a
tion for
WDM
sy
ste
m
s
Using optical fiber nonlinearities
achieved the BE
R
of 10
-9
.
Rem
ove SBS scatter
i
ng using
single CW
pu
m
p
and cann’
t
adjust nonlinear noises
BER V/s
OSNR
L
i
an Jones (
2015)
[9]
Phase r
e
gener
a
tion
of
M
-
PSK signal
Phase harm
onic
r
e
gener
a
tion,
r
e
-
sy
nthesize of phase has achieved
the BER of 10
-
10
at -9
.6
d
B
m
Partial
Phase regen
e
ration is
possible and
m
a
nage only
phase noise
BER, Ey
e
diagr
a
m
v
Alan E.
Wi
llner
(
2014)
[10]
E
n
coding o
f
Am
plitude,
phase,
wavelength,
Polar
i
zation of an
optical wave
Advanced
m
M
odulation
techniques are used such PSK,
DPSK,
DQPS
K
,
Q
A
M a
r
e used
for
high speed o
p
ti
cal signal
Per
f
orm
r
e
gener
a
tion,
equalization
BER v/s
received power
analysis
R.
Da
m
a
ni(
2015)
[11]
Optical 3R r
e
generator
for
optical clock
r
ecover
y
Optical Clock Recover
y
using All-
Optical Ke
rr shutte
r switching
T
echniquewith alm
o
st zer
o jitter
s
All-
optical r
e
generator
up to
10Gb/s and su
ffer
s
fr
o
m
phase
noise dur
ing r
ecov
e
r
y
of signal
at rece
iver.
BER v/s
received power
analysis, Eye
diagr
a
m
Bill Corcoran (2013)
[12]
Mitigation of
nonlinear
im
pair
m
e
nts
PSA with optical n
onlinearity
r
e
m
ove over
3dB
noise figur
e in
low noise a
m
plification
Pr
ovides onlinear
m
i
tigation at
high tr
ans
m
ission
power
.
Because of
this additional
power
is r
e
quir
e
d.
BER v/s
received power
analysis,
Noise f
i
gure
Masatoshi Kagawa
(
2012)
[13]
3R regeneration
XPM and F
W
M b
a
sed
m
u
ltilevel
optical 3R r
e
generation per
f
orm
e
d
for
BPSK and OOK signal
Pr
ovides ultr
a-
signal
processing and at the receiver
NPN noise pr
oduces
additional losses with each
m
odulation form
ats
BER analy
s
is
Z.
Tong (2012) [1
4]
Ch
allenges in PSA
SBS
m
itigation, pu
m
p
phase
m
odulation,
inject
locking
im
p
r
oves the per
f
orm
a
nce of PSA
with m
e
ntioned
techniques.
Mitigate the SB
S e
ffect. Phase
noise
m
itigation. But still
suffers fro
m
AS
E
noise at
receiver
.
Var
i
ous
analysis ar
e
per
f
orm
e
d
Z
h
iy
u Chen (
2012)
[15]
Ph
ase reg
e
n
e
ratio
n
f
o
r
PSK signal
PSA with single p
u
m
p sche
m
e
opti
m
iz
ed BER sig
n
al fidelity
form
10
-6
input BE
R to 10
-9
output
BE
R by
setting the power
level of
channel and par
a
m
e
ter
s
of HNLF
Pr
ovides s
m
all distance and
consu
m
es less power
.
Suffer
i
ng fr
o
m
ASE
noise
when high power
is launched
inside fiber
.
BER, Ey
e
diagr
a
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A New All-Op
t
i
ca
l S
i
gna
l Regen
e
ra
tio
n Techn
i
qu
e for
1
0
GB/S
DPS
K
Tran
smissi
o
n
System
(
B
h
agw
a
n
Das)
86
1
Ho
we
ver
,
t
h
e
prese
n
t
t
ech
ni
que
s are n
o
t
c
a
pabl
e e
n
o
u
g
h
t
o
pr
o
v
i
d
e t
h
e
opt
i
cal
si
gnal
rege
nerat
i
on
for
h
i
gh
d
a
te rate o
f
m
o
re th
an
1
0
Gb
/s sign
als at lo
wer BER th
an 10
-10
at
t
h
e l
o
wer
pe
na
l
t
y
of -
9
.
6
dB
m
[6]
-
[1
5]
. T
h
ere i
s
i
n
t
e
nse
nee
d
t
o
devel
op t
h
e t
e
c
hni
que
s t
h
at
ca
n m
i
t
i
g
at
e no
n
l
i
n
ear i
m
pai
r
m
e
nt
s f
o
r
hi
g
h
s
p
eed
transm
ission s
y
ste
m
s at low
BER than 10
-10
and
at
l
o
w
po
wer
pe
nal
t
y
t
h
an
-9
.6
dB
m
.
In
t
h
i
s
pa
per,
t
h
e
no
nl
i
n
ea
r t
r
ansm
i
ssi
on i
m
pai
r
m
e
nt
s i
.
e.
am
pl
i
t
ude a
n
d
pha
se
noi
ses
a
r
e m
i
ti
gat
e
d
fr
om
10G
b/
s
Di
ffe
re
nt
i
a
l
Phase S
h
i
f
t
Ke
y
i
ng (
D
P
S
K
)
t
r
ansm
i
ssi
on s
y
st
em
usi
ng
n
e
w al
l
-
o
p
t
i
cal
si
gnal
rege
nerat
i
on
. The ne
w al
l
-
o
p
t
i
cal
si
gnal
re
gene
rat
i
o
n t
echni
que i
s
deve
l
ope
d by
i
n
t
e
g
r
at
i
ng t
h
e t
w
o
exi
s
t
i
n
g
tech
n
i
qu
e
on
e
is Ph
ase Sen
s
itiv
e Am
p
lificati
o
n (PSA) an
d
o
t
h
e
r is
3
R
. The PSA techn
i
qu
e is
d
e
sign
ed
u
s
ing
si
ngl
e p
u
m
p
con
f
i
g
urat
i
o
n
t
h
at
saves 3
0
%
po
wer c
o
n
s
um
pt
i
on t
h
an
t
h
e exi
s
t
i
ng t
echni
q
u
es
. The 3
R
tech
n
i
qu
e
d
o
e
sn
’t requ
ire any clo
c
k
reco
very o
r
o
t
h
e
r
ad
d
ition
a
l circuits to
m
i
tig
ate th
e no
ises fro
m
th
e
o
p
tical sign
al.
It is
d
e
term
in
ed
th
at
th
e
d
e
velo
p
e
d
tech
n
i
qu
e
h
a
s
su
ccessfu
lly m
i
tig
ated
th
e am
p
litu
d
e
and
pha
se n
o
i
s
es
fr
om
t
h
e noi
sy
10
G
b
/
s
D
P
S
K
t
r
ansm
i
ssi
on s
y
st
em
. The de
vel
o
ped
t
ech
ni
que
at
t
a
i
n
ed t
h
e l
o
w
B
E
R
at
l
o
w
p
o
we
r
penal
t
y
wi
t
h
hi
g
h
Q
-
f
a
ct
or t
h
a
n
t
h
e e
x
i
s
t
i
ng t
e
c
h
ni
q
u
es
di
scus
sed i
n
Ta
bl
e 1
.
I
n
t
h
e ne
xt
sect
i
on, t
h
e m
e
t
h
o
dol
ogy
i
s
di
scuss
e
d t
o
p
e
rf
orm
t
h
e de
vel
o
ped
al
l
-
o
p
t
i
cal
si
gnal
re
gene
rat
i
o
n f
o
r
n
o
i
s
y
10Gb/s DPS
K
transm
ission s
y
ste
m
.
3.
METHO
D
OL
OGY
The o
p
t
i
cal
si
gnal
rege
nerat
i
o
n
usi
n
g p
r
op
os
ed t
echni
que
f
o
r 1
0
G
b/
s D
P
SK t
r
an
sm
i
ssion sy
st
em
is
devel
ope
d
i
n
d
i
ffere
nt
desi
g
n
st
ep
as s
h
ow
n
i
n
Fi
g
u
re
1
.
E
ach
desi
g
n
st
ep i
s
f
u
rt
her
co
nsi
s
t
i
n
g
of
di
f
f
e
ren
t
i
n
p
u
t
bl
ock
s
t
h
at
are
di
scusse
d
next
i
n
det
a
i
l
.
Fig
u
re 1
.
DPSK NRZ
tran
smitter
It
i
s
i
l
l
u
st
rat
e
d i
n
Fi
gu
re 1 t
h
a
t
10G
b/
s o
p
t
i
cal
t
r
ansm
i
ssi
on
sy
st
em
i
s
designe
d usi
ng
di
ff
erent
bl
oc
k
suc
h
as;
P
s
eu
d
o
R
a
nd
om
B
i
nary
Se
que
nce
(
P
R
B
S
),
NR
Z
s
i
gnal
gen
e
rat
o
r
,
co
nt
i
n
uo
us
w
a
ve l
a
ser
si
g
n
a
l
and
anM
Z
IM
m
odul
at
or
. Each
bl
ock i
n
10
G
b
/
s
opt
i
cal
DPS
K
t
r
ansm
i
ssi
on sy
st
em
i
s
confi
g
u
r
e
d
by
sel
ect
i
ng t
h
e
param
e
t
e
r val
u
es t
o
gene
rat
e
t
h
e 10
G
b
/
s
opt
i
cal
si
gnal
.
Thi
s
10
Gb/
s
opt
i
c
al
si
gnal
i
s
gi
ven t
o
n
o
i
s
e em
ul
at
or
bl
oc
k. T
h
e n
o
i
s
e em
ul
at
or bl
ock c
o
nsi
s
t
s
of
am
pl
i
t
ude and
phase m
odul
a
t
or t
h
at
i
n
cl
u
d
e
s t
h
e am
pl
it
ude an
d
p
h
a
se n
o
i
ses i
n
th
e 10
Gb
/s op
tical tran
smissio
n
system
. T
h
ese no
ises are in
clu
d
e
d
in
the sig
n
a
l to
v
e
ri
fy th
e
fun
c
tion
a
lity o
f
dev
e
l
o
p
e
d
op
tical sig
n
a
l
reg
e
n
e
ration
tech
n
i
q
u
e
. Th
e
dev
e
lop
e
d op
tical sig
n
a
l
regeneratio
n
tech
n
i
qu
e u
tilizes th
e
PSA an
d 3
R
techn
i
qu
es. Th
e
p
e
rform
a
n
ce o
f
th
e
d
e
v
e
l
o
p
e
d techn
i
qu
e is an
aly
zed
b
y
com
p
ari
ng t
h
e
B
E
R
at
pow
er pe
nal
t
y
, Q-
fact
or a
n
d ey
e di
ag
ram
before a
n
d aft
e
r
im
pl
em
ent
a
t
i
on
o
f
devel
ope
d si
g
n
a
l
regene
rat
i
o
n
t
echni
q
u
e o
v
e
r
de
gra
d
ed si
g
n
al
. I
n
t
h
e ne
x
t
, sim
u
l
a
t
i
on set
up o
f
ne
w o
p
t
i
cal
si
gnal
rege
ne
ra
t
i
on fo
r noi
sy
1
0
G
b
/
s
opt
i
cal
DPS
K
t
r
a
n
sm
issi
on
sy
st
em
i
s
di
sc
usse
d.
4.
SIMULATION SET
U
P
The
new
o
p
t
i
cal
si
gnal
re
ge
n
e
rat
i
on t
e
c
hni
q
u
e f
o
r
1
0
G
b
/
s
opt
i
cal
t
r
an
sm
issi
on
sy
st
em
i
s
devel
o
ped
i
n
O
p
t
i
s
y
s
t
e
m
as dem
onst
r
at
e
d
i
n
Fi
g
u
re
2.
The
de
vel
o
pe
d m
odel
co
nt
ai
ns m
a
i
n
l
y
fou
r
desi
g
n
st
age
.
The
d
e
sign
stag
e 1
co
nsists o
f
th
e
g
e
n
e
ration
o
f
10
Gb
/s op
tical DPSK sign
al fo
r in
itiatin
g
the tran
sm
issio
n
o
f
th
e
si
gnal
s
usi
n
g
d
i
ffere
nt
bl
oc
ks
as di
sc
usse
d a
b
o
v
e.
T
h
e
desi
gn
st
age
2
co
nt
ai
ns t
h
e
n
o
i
s
e
em
ul
at
i
on
pr
oc
ess t
o
in
clu
d
e
t
h
e no
ise in
th
e g
e
n
e
rated
10
Gb
/s optical DPSK
signal. The
design stage 3 i
n
cludes the de
vel
o
pm
ent
of
pr
op
ose
d
si
gnal
re
ge
nerat
i
on.
In t
h
e de
si
gn st
e
p
4,t
h
e per
f
o
r
m
a
nce of d
e
vel
ope
d
si
gnal
re
gene
rat
i
o
n
technique is analyzed by defi
ningth
e BER,
an eye diagra
m and Q-factor
bef
o
re an
d af
t
e
r si
gnal
re
ge
nerat
i
o
n
tech
n
i
qu
e. Each
design
step is d
e
v
e
lop
e
d b
y
u
tilizin
g
th
e
differen
t
b
l
o
c
k
av
ailab
l
e in
optisyste
m
lib
rary. Th
e
di
ffe
re
nt
bl
oc
k
s
are con
f
i
g
ure
d
by
defi
ni
n
g
t
h
e par
a
m
e
t
e
rs
i
n
t
h
e com
pon
ent
s
bl
oc
k p
r
o
p
ert
y
. The
opt
i
s
y
s
t
e
m
bl
oc
k
fo
r
di
f
f
e
r
ent
c
o
m
pone
n
t
s pr
o
v
i
d
es
t
h
e
wi
de
ra
n
g
e
o
f
val
u
es
t
o
sel
ect
fo
r eac
h c
o
m
pone
nt
. Fi
g
u
re
2
descri
bes t
h
e
sy
st
em
m
odel
of
o
p
t
i
cal
si
gnal
reg
e
ne
rat
i
on t
e
c
hni
que
fo
r
noi
sy
1
0
G
b/
s
o
p
t
i
cal
DPS
K
tran
sm
issio
n
syste
m
. It illu
strates th
at
first
1
0
Gb
/s
o
p
tical sign
al is
g
e
n
e
rated
u
s
i
n
g PR
BS sequ
en
ce,
NRZ
10Gb/s
Opti
c
al
DPSK
Tran
sm
ission
system
External
Noise
addi
ti
o
n
in
10Gb/s
DPSK
tran
sm
ission
system
Apply
Proposed
all
‐
optical
sig
n
al
reg
e
neration
technique
over
noisy
transm
iss
i
on
sy
st
em
Per
f
o
r
mance
analysis
at
rec
e
iver
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
9 – 8
6
9
86
2
si
gnal
ge
ne
rat
o
r
,
l
a
ser si
g
n
al
and a m
odul
a
t
or.
Aft
e
r t
h
at
,
t
h
i
s
opt
i
cal
si
gnal
i
s
de
gra
d
ed by
n
o
i
s
e e
m
ul
at
or
using am
plitude a
n
d phase
m
odulator. This noisy si
gna
l
is optically regene
rated and
noise m
itigation i
s
achi
e
ve
d usi
n
g
t
h
e de
vel
o
ped
t
ech
ni
q
u
e.
The optical signal is converte
d i
n
the electrical signal to anal
yze the
per
f
o
r
m
a
nce of de
vel
o
ped re
gene
rat
i
o
n sy
st
em
usi
ng B
E
R
,
Q-
fact
o
r
an
d an ey
e di
agra
m
.
In t
h
e ne
xt
sect
i
o
n
,
each m
odel is
discuss
e
d in
de
tails with its
pa
ram
e
ters section a
n
d worki
n
g
mechanism
.
Fi
gu
re
2.
Si
m
u
l
a
t
i
on set
u
p i
n
Opt
i
s
y
s
t
e
m
of
new
o
p
t
i
cal
si
g
n
al
re
ge
nerat
i
o
n t
ech
ni
q
u
e
f
o
r
1
0
G
b
/
s
transm
ission s
y
ste
m
4.1. 10Gb/s
O
p
tical DPS
K
Transmissi
on
s
System
The 1
0
Gb/
s
opt
i
cal
DP
SK
t
r
ansm
i
ssi
on sy
st
em
cont
ai
ns t
h
e
10
G
b
/
s
Pseu
do R
a
n
d
o
m
Bi
nary
sequ
en
ce at th
e b
it rate o
f
10
Gb
/s. Th
e g
e
n
e
rated
sequ
en
ce is g
i
v
e
n
to
NRZ
sig
n
a
l
g
e
n
e
rator th
at produ
ces th
e
1
0
Gb
/s DPSK- NRZ
sign
al. After th
at, a
co
n
tinuo
us la
s
e
r si
g
n
al
i
s
ge
nerat
e
d o
f
15
5
0
nm
. B
o
t
h
1
0
G
b
/
s
DPS
K
-
NR
Z si
gnal
an
d l
a
s
e
r si
gnal
are
m
odul
at
ed usi
ng Li
Nb
O
3
M
Z
IM
m
odul
at
or
. In Fi
gu
re
2, t
h
e
arra
ngem
e
nt
o
f
ge
ne
rat
i
ng t
h
e 10
G
b
/
s
o
p
t
i
c
al
si
gnal
ca
n
be see
n
. T
h
e
10
G
b
/
s
o
p
t
i
cal
DPS
K
t
r
a
n
sm
i
ssi
on
sy
st
em
i
s
confi
g
u
r
e
d
usi
n
g
pa
ram
e
t
e
rs defi
n
e
d i
n
Ta
bl
e 2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A New All-Op
t
i
ca
l S
i
gna
l Regen
e
ra
tio
n Techn
i
qu
e for
1
0
GB/S
DPS
K
Tran
smissi
o
n
System
(
B
h
agw
a
n
Das)
86
3
Tabl
e 2. Param
e
t
e
rs
u
s
ed
f
o
r
g
e
nerat
i
n
g
t
h
e 1
0
G
b
/
s
opt
i
cal
DPS
K
si
gnal
Para
m
e
ters
Valu
es
Bit Rate
10Gbps
Nu
m
b
er
of leading zer
os
(
T
i
m
e window * 3
/ 100 )
* Bit r
a
te
Nu
m
b
e
r
of trailing
zeros
(Ti
m
e window * 3
/ 100 ) * Bit rat
e
Operation m
ode
DPSK
sequence
w
ith Mark P
r
obability of 0.5
Pulse shape
Gaussian Wave
Am
plitude 10
a.
u
Bias 0.
1
a.
u
Rise T
i
m
e
0.
05 bit
Fall T
i
m
e
0.
05 bit
Continu
ous-
w
ave L
a
ser
Fr
equency
1550 nm
CW
laser
Power
0.
001 W
CW lase
r linewidt
h
10 MHz
M
Z
M
m
odulator
s
y
m
m
etr
y
factor
-
1
M
Z
M
m
odulator
n
e
gative chipped value
enabled
M
Z
M
m
odulator
Extinction r
a
tio
30 dB
4.
2.
N
o
i
s
e E
m
ul
ati
o
n i
n
1
0
G
b
/
s
Op
ti
cal
D
P
SK
Si
gn
al
N
o
n
lin
ear
ph
ase n
o
i
se an
d
Am
p
l
itu
d
e
Spontan
eou
s
Em
issi
o
n
(
A
SE)
n
o
i
ses ar
e ex
tern
ally in
ser
t
ed
in
10
G/
b
opt
i
cal
DPS
K
si
g
n
al
t
o
t
e
st
t
h
e deve
l
ope
d al
l
-
o
p
t
i
cal
si
gnal
rege
n
e
rat
i
o
n
.
The a
m
pli
t
ude an
d pha
s
e
noi
se a
r
e ge
ne
rat
e
d
usi
n
g am
pl
i
t
ude a
nd
p
h
a
se m
odul
at
ors
respect
i
v
el
y
.
I
n
Fi
g
u
r
e 2
,
i
t
i
s
dem
onst
r
at
ed
t
h
at
am
pl
i
t
ude
noi
s
e
has
t
h
e l
e
vel
of
7
dB
a
n
d
ph
ase n
o
i
s
e
has t
h
e l
e
vel
o
f
20
dB
.
4.
3.
New
Al
l
-
Opti
c
a
l
Si
g
n
al
Re
gener
a
ti
on
T
echni
que
f
o
r 1
0
Gb/
s
N
o
i
s
y O
p
ti
c
a
l
DP
S
K
Si
g
n
al
New all-op
tical sig
n
a
l
reg
e
n
e
ration
tech
niq
u
e
is
d
e
v
e
lop
e
d b
y
in
teg
r
atin
g
th
e Ph
ase Sensitiv
e
Am
pl
i
f
i
cat
i
on (PS
A
) a
n
d 3R
(R
eam
pl
i
f
i
cati
on, R
e
s
h
a
p
i
n
g
and R
e
t
i
m
i
ng) re
gene
rat
i
o
n
t
echni
q
u
e.
Fi
g
u
re
3
sho
w
s
t
h
e
o
p
t
i
s
y
s
t
e
m
m
odel
f
o
r
de
vel
o
pe
d
o
p
t
i
cal
si
gnal
re
gene
rat
i
o
n t
ech
ni
q
u
e.
Fi
gu
re
3.
O
p
t
i
s
y
s
t
e
m
M
odel
o
f
N
e
w
o
p
t
i
cal
si
gnal
rege
ne
rat
i
on t
e
c
hni
q
u
e
The
1
0
G
b/
s
n
o
i
s
y
o
p
t
i
cal
si
g
n
al
i
s
gi
ve
n t
o
PSA
m
odel
.
T
h
e P
S
A
m
odel
cont
ai
n
s
t
h
e
H
N
LF
fi
be
r
o
f
0.
5 km
l
e
ngt
h t
h
at
generat
e
s
t
h
e di
ffere
nt
spect
ral
co
m
pone
nt
s usi
ng
d
e
gene
rat
e
d F
W
M
.
It
i
s
defi
ned t
h
a
t
opt
i
cal
si
gnal
i
s
m
odul
at
ed at
15
50
nm
and pum
p si
gnal
h
a
s t
h
e wavel
e
n
g
t
h
o
f
1
5
51 n
m
. When
bot
h
t
h
ese
sig
n
a
l are inj
e
cted
in
HNLF fi
b
e
r it g
e
n
e
rates th
e id
ler signal at 1
5
5
0
.
5
nm as d
i
scu
ssed in
[7
]. Du
e to
FW
M
the
various
s
p
ectral com
p
onents a
r
e
gene
rated at
,
,
and
2
.
The
F
W
M
c
o
m
ponent
s t
h
at
sat
i
s
fy
t
h
e
pha
se m
i
sm
at
ch fact
or
∆
2
[9
] with
in
-p
h
a
se
g
a
i
n
i
n
th
e sig
n
a
l is filtered
ou
t. Here th
e n
o
i
sy 1
0
Gb
/s o
p
tical
sign
al is reg
e
n
e
rated
at 1
5
5
2
.
6
n
m
wav
e
len
g
t
h
with
i
n
-
phase
gai
n
o
f
3
dB
usi
n
g E
quat
i
o
n
(
1
) a
n
d
(
2
)
[
9
]
;
∅
2
1
2
cos
∅
2
∅
2
cos
∅
2
cos
2∅
(
1
)
∆
(2
)
Whe
r
e
ѵ
is the o
p
tical frequen
c
y, PP is t
h
e p
u
m
p
po
wer, Ps is th
e si
gn
al pu
m
p
p
o
wer,
∆
k
is th
e
pha
se m
i
s
m
atc
h
fact
or,
s
is th
e p
h
a
se of th
e
10
Gb
/s no
isy optical DPSK si
gn
al,
n
i
s
t
h
e pha
se of s
p
ect
ral
com
pone
nt
s at
w
h
i
c
h
si
gn
al
i
s
re
ge
nerat
e
d
an
d
̅
is t
h
e
n
o
n
lin
ear co
efficien
t.
Th
e
op
tical filter h
a
s the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
9 – 8
6
9
86
4
wavel
e
ngt
h o
f
15
5
1
nm
and ban
d
w
i
d
t
h
of
10
GHz
. In P
S
A
, p
h
ase c
h
an
ges f
r
om
ɸ
s
=0 to
π
o
f
p
u
m
p
a
s
i
n
equat
i
o
n
(
1
)
re
l
a
t
e
s t
o
s
h
i
f
t
i
n
g t
h
e m
odul
at
i
o
n
by
½
pum
p
peri
od
,
whi
c
h i
s
eq
ui
val
e
nt
t
o
1/
4
si
g
n
al
peri
od
.
I
n
one
q
u
a
d
rat
u
re
am
pl
it
ude
of
t
h
e si
gnal
wa
ve
co
rres
p
on
di
n
g
t
o
t
h
e
ɸ
s
= zero
, t
h
e si
g
n
a
l is
a
m
p
lified
b
y
a
g
a
in
by
g
but
i
n
sec
o
n
d
q
u
ad
rat
u
re
co
rres
p
on
di
n
g
t
o
ɸ
s
=
π
am
p
litu
d
e
is
d
eam
p
lified
1
/
G(s). Th
is is
ho
w th
e
p
h
a
se
noi
se
i
s
r
e
m
oved
usi
n
g
PS
A.
The
opt
i
m
u
m
val
u
e
of
p
h
as
e i
s
cl
ose
t
o
3
π
/2 beca
use
s
p
ectrum
then e
xhi
bits
t
w
o
peak
s wi
t
h
a shar
p
di
p at
t
h
e o
r
i
g
i
n
al
wa
vel
e
n
g
t
h
.
The
PSA i
s
desi
g
n
e
d
usi
n
g si
n
g
l
e
pum
p co
nfi
g
u
r
at
i
o
n
th
at sav
e
s add
itio
n
a
l
3
0
%
p
o
wer fro
m
p
r
esen
t sch
e
me d
e
scrib
e
d in
Figu
re 3. Th
e
p
h
a
se sen
s
itiv
e
a
m
p
lificatio
n
p
r
o
cess rem
o
ves
th
e p
h
ase no
ise
fro
m
n
o
i
sy
o
p
tical
signal,
bu
t
th
e
am
p
litu
d
e
no
ise
i
s
stil
l
prese
n
t
i
n
t
h
e
si
gnal
.
T
h
e a
m
pli
t
ude n
o
i
s
e i
s
m
i
t
i
g
at
ed usi
n
g 3R
reg
e
nerat
i
o
n t
ech
ni
q
u
e as de
fi
n
e
d i
n
Equ
a
tio
n (2
) [13
]
;
0,
(
3
)
The
3R
re
gen
e
rat
i
o
n
t
ech
ni
que
i
n
o
p
t
i
s
y
s
t
e
m
i
s
devel
o
ped
i
n
di
ffe
re
nt
st
ep
s.
In
t
h
e fi
rst
st
ep,
PSAsi
g
n
a
l is
rea
m
p
lified
u
s
i
n
g
op
tical a
m
p
lifier EDAF, t
h
e
sig
n
a
l is
ream
p
l
ified
to
raise th
e lev
e
l
o
f
no
ise so
t
h
at
noi
se a
n
d
si
gnal
ca
n be e
a
si
l
y
di
st
i
ngui
s
h
ed
. I
n
t
h
e se
c
o
n
d
st
e
p
t
h
e
re
am
pl
i
f
i
e
d si
g
n
a
l
i
s
resha
p
ed
usi
n
g
raised
co
sin
e
filter so
t
h
at
sig
n
a
l can
b
e
sm
o
o
t
h
and
t
h
e ed
g
e
s should
b
e
rem
o
v
e
d
.
A
t
th
is stag
e, t
h
e
am
pl
i
t
ude noi
se i
s
rem
oved
usi
ng t
h
e res
h
api
ng a
nd
re
am
pl
i
f
i
cat
i
on t
echni
que
s. Th
e si
gnal
i
s
del
a
y
e
d
because the raised c
o
sine
use
s
the
Kaise
r
wi
ndow which
has the lim
ited
bandwidth a
nd window
range
.
In the
th
ird step
, th
e
ream
p
lified
and
resh
ap
ed
si
gn
al is re
t
i
m
ed usi
n
g si
ngl
e i
n
t
e
rfer
o
m
e
t
e
r d
e
vel
o
ped
u
s
i
n
g
di
rect
decision m
e
thod.
Table
3 illus
t
rates the
para
m
e
ters use
d
to
devel
o
p the
optical signal re
generation tec
h
nique.
Tabl
e
3.
Param
e
t
e
rs u
s
ed
f
o
r
n
e
w
opt
i
cal
si
g
n
a
l
rege
ner
a
t
i
o
n
t
echni
que
All-optical signal regeneration stage
Para
m
e
ters
Values
Re-a
m
p
lification s
t
age
Cor
e
Radius
2.
2
μ
m
Nu
m
e
ric
a
l Ape
r
tur
e
0.24
L
e
ngth 5
m
L
o
ss 0.
1
dB/Km
M
a
x.
I
t
er
ations
50
Noise thr
e
shold
-
100 dB
Reshaping Stage
Roll of
f factor
of
0.
25
Truncate the filter
6 sym
bols
order of the filter
3
T
s
is the Sa
m
p
ling per
i
od
1
η
S
Pu
m
p
Configur
ati
o
n
Pu
m
p
fr
equency
1550 nm
Pu
m
p
Power
100
m
W
Highly
Nonlinear
f
i
ber
Fiber
L
e
ngth
50
m
Fiber
L
e
ngth T
o
lerance
± 3
Cutof
f
W
a
velength
< 1650 n
m
Disp
ersio
n
-2
.5
to
+2
.0
p
s
/(n
m
·
k
m
)
Disper
sion Slope
0.
019 ± 0.
004 ps/(
n
m
²·
k
m
)
Attenuation
≤
0.
90 dB/k
m
Non-Linear Coef
f
i
cient
(T
ypical)
11.
5 W
-
1•
k
m
-
1
Optical Gaussian filter
Fr
equency 1550
nm
Bandwidth
10
GHz
Retim
i
ng Stage
Using decision dir
ect
m
e
thod
Low Pass Filt
er
Cut-
of
f fr
equency
1.
89 GHz
Depth
100 dB
Or
der 3
The
dev
e
l
o
ped
t
echni
que
re
g
e
nerat
e
s t
h
e
no
i
s
y
10
Gb/
s
o
p
t
i
cal
si
gnal
wi
t
h
i
n
-p
hase
gai
n
usi
n
g P
S
A
and
ream
i
ng noi
se a
r
e m
i
t
i
gat
e
d
usi
n
g 3
R
. The
per
f
o
r
m
a
nce of
dev
e
l
ope
d o
p
t
i
cal
si
gnal
re
ge
ne
rat
i
o
n
technique is analyzed by conve
rtin
g the optical signal in the electr
oni
c si
gnal
usi
n
g
ph
ot
o
d
et
ect
or
. The
perform
a
nce is
analyzed using BER an
alysis, Q-factor and eye diagram
a
v
a
ilab
l
e in
Op
tisyste
m
.
In
th
e n
e
x
t
section, res
u
lts that contain the res
p
onse
s
for each
desi
gn stage a
r
e
discuss
e
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
A New All-Op
t
i
ca
l S
i
gna
l Regen
e
ra
tio
n Techn
i
qu
e for
1
0
GB/S
DPS
K
Tran
smissi
o
n
System
(
B
h
agw
a
n
Das)
86
5
5.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The n
o
n
l
i
n
ear
t
r
ansm
i
ssi
on im
pai
r
m
e
nt
s are
m
i
ti
gat
e
d usi
ng
new
opt
i
cal
si
gnal
rege
nerat
i
o
n
tech
n
i
qu
e
fo
r
no
isy 10
Gb
/s
optical tran
sm
issi
o
n
system
. Th
e resp
on
se of t
r
an
sm
itted
1
0
Gb
/s
PRBS seq
u
e
n
c
e
and laser signal use
d
as
carrier signal are
descri
bed in
Fig
u
r
e
4
an
d in Figu
r
e
5 r
e
spectiv
ely. Th
is
PRBS
seq
u
ence i
s
m
i
xed wi
t
h
l
a
se
r si
gnal
an
d g
i
ven t
o
M
Z
IM
m
odul
at
o
r
t
o
pr
o
duce t
h
e
1
0
G
b
/
s
o
p
t
i
cal
si
gnal
sho
w
n i
n
Fi
gu
r
e
6.
Fig
u
re
4
.
Respo
n
s
e
o
f
t
r
an
sm
itted
1
0
Gb
/s PRBS
Figure
5. Laser signal
Fi
gu
re
6.
M
o
d
u
l
a
t
e
d si
gnal
o
r
10
Gb/
s
o
p
t
i
cal
si
gnal
Thi
s
o
p
t
i
cal
si
gnal
i
s
t
r
a
n
sm
it
t
e
d ove
r l
o
n
g
di
st
ance
d n
o
i
s
y
fi
ber l
i
n
k
of
15
0
km
. The 1
0
G
b
/
s
opt
i
cal
DPSK sign
al is d
e
grad
ed
d
u
ring
tran
sm
issi
o
n
as sh
own
in
Figu
re
7
.
Th
e tran
sm
itted
PRBS seq
u
e
nce as
sho
w
n i
n
Fi
gu
r
e
4 i
s
de
gra
d
e
d
as
descri
bed
i
n
Fi
gu
re
8.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
9 – 8
6
9
86
6
Fi
gu
re 7.
R
e
sp
ons
e of de
gra
d
ed opt
i
cal
si
g
n
a
l
Fi
gu
re 8.
R
e
sp
ons
e of de
gra
d
es
PR
B
S
se
q
u
e
n
ce
Whe
n
t
h
e
de
gr
aded
o
p
t
i
cal
si
gnal
i
s
gi
ven
t
o
new
opt
i
cal
s
i
gnal
rege
ne
rat
i
on t
e
c
h
ni
q
u
e,
t
h
e si
g
n
al
i
s
success
f
ully regene
rated a
nd
also bot
h am
plitude and phas
e noises are m
i
tig
ated for the degra
d
ed signa
l
. The
r
e
spon
se
o
f
PSA
m
o
d
e
is show
n in
Figu
r
e
9.
Fi
gu
re
9.
R
e
sp
ons
e
of
PS
A m
odel
use
d
i
n
de
vel
o
ped
o
p
t
i
cal
si
g
n
al
re
gene
r
a
t
i
on t
e
c
hni
que
Fi
gu
re
9.
R
e
sp
ons
e
of
3R
reg
e
nerat
i
o
n m
o
d
e
l
use
d
i
n
de
ve
l
ope
d
opt
i
cal
si
gnal
re
gene
rat
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
A New All-Op
t
i
ca
l S
i
gna
l Regen
e
ra
tio
n Techn
i
qu
e for
1
0
GB/S
DPS
K
Tran
smissi
o
n
System
(
B
h
agw
a
n
Das)
86
7
The optical signal receive
d at the
end of de
veloped
optica
l
signal re
ge
ne
ration m
ode i.e. at the end
of
3R
re
ge
nera
t
i
on st
age i
s
c
o
nve
rt
ed
i
n
the
electrical signa
l using photo
diode
. T
h
e electrical signal rece
ived
at th
e en
d
of a p
h
o
t
od
iod
e
is an
alyzed
u
s
i
n
g o
s
cillo
scop
e av
ailab
l
e in
op
tisyste
m
e
l
ectric
a
l v
i
su
alizer lib
rary.
The
res
p
onse
of recei
ved PRB
S
seque
n
ce is
de
m
onstrated in Figure
10.
Fi
gu
re
1
0
. R
e
s
p
o
n
se
o
f
rege
n
e
rat
e
d
PR
B
S
s
e
que
nce
usi
n
g
new
o
p
t
i
cal
si
g
n
al
re
ge
nerat
i
o
n t
ech
ni
q
u
e
The system perform
a
nce is analy
zed usi
ng
B
E
R
,
Q-
fact
o
r
and a
n
eye diagram
calculate
d be
fore a
nd
aft
e
r
opt
i
cal
si
gnal
rege
ne
rat
i
o
n
t
ech
ni
q
u
e.
Fi
gu
re
11
dem
onst
r
at
es t
h
e B
E
R
,
ey
e di
a
g
ra
m
and Q-
fact
o
r
bef
o
re
al
l
-
opt
i
cal
reg
e
nerat
i
o
n.
It
i
s
defi
ne
d t
h
at
B
E
R
of 1
0
-5
,
Q-factor was
9
with
j
itters in
th
e eye d
i
agram
is
reco
rde
d
i
n
t
h
e resp
o
n
se.
W
h
en t
h
e de
vel
o
ped si
g
n
al
reg
e
nerat
i
o
n t
ech
ni
q
u
e i
s
i
m
pl
em
ent
e
d o
n
de
gra
d
e
d
signal the BE
R, Q-factor and eye diagram responses are
im
pro
v
ed as
d
e
scri
be
d i
n
Fi
g
u
re
12
. It
i
s
re
cor
d
e
d
t
h
at
aft
e
r ap
pl
y
i
ng t
h
e
new
op
t
i
cal
si
gnal
reg
e
nerat
i
o
n t
ech
ni
q
u
e B
E
R
of
10
-12
,
Q-factor 4
2
with
less j
itters i
n
th
e reg
e
n
e
rated
si
g
n
a
l is achiev
e
d is
o
f
42
. Th
e sign
if
ican
t im
p
r
o
v
e
m
e
n
t
is
record
ed
in
BER,
Q-facto
r
and
ey
e di
agram
pat
t
e
rn f
o
r
noi
s
y
10
Gb/
s
DP
SK t
r
a
n
sm
i
ssion sy
st
em
. Fu
rt
herm
ore, t
h
e
am
pl
i
t
ude n
o
i
se i
s
red
u
ce
d f
r
om
7
dB
t
o
0.
9
d
B
and
p
h
ase
n
o
i
s
e re
d
u
ced
f
r
om
20
dB
t
o
1.
3
dB
.
Usi
n
g
t
h
e p
r
op
ose
d
opt
i
cal
si
gnal
r
e
ge
ner
a
t
i
on t
ech
ni
q
u
e
t
h
e am
pl
i
t
ude noi
se i
s
re
d
u
ced
8
7
% a
n
d p
h
ase
n
o
i
s
e
i
s
red
u
ce
d 9
2
%
fr
om
noisy 10Gb/s DPS
K
system
.
Fi
gu
re
1
1
. B
E
R
an
d Ey
e
di
ag
ram
befo
re a
p
p
l
y
i
ng ne
w
o
p
t
i
cal
si
gnal
re
ge
nerat
i
o
n t
e
c
hni
que
o
v
e
r
deg
r
a
d
ed
si
gnal
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
9 – 8
6
9
86
8
Fi
gu
re
1
1
. B
E
R
an
d Ey
e
di
ag
ram
aft
e
r ap
pl
y
i
ng
ne
w
opt
i
c
a
l
si
gnal
rege
ne
rat
i
o
n
t
ech
ni
q
u
e
o
v
er
de
gra
d
e
d
si
gnal
6.
CO
NCL
USI
O
N
In t
h
i
s
wo
rk
, t
h
e
opt
i
cal
si
g
n
a
l
rege
nerat
i
on
i
s
pe
rf
orm
e
d
ove
r
n
o
i
s
y
1
0
G
b/
s
o
p
t
i
cal
D
PSk
sy
st
em
usi
n
g t
h
e
ne
w
devel
ope
d si
gn
al
rege
nerat
i
o
n
t
echni
que
. T
h
e devel
o
ped
o
p
t
i
cal
si
gnal
re
gene
rat
i
o
n t
echni
qu
e
si
gni
fi
ca
nt
l
y
i
m
prove
d t
h
e
B
E
R
at
l
o
w
p
o
we
r
penal
t
y
wi
t
h
hi
g
h
Q
-
f
act
or t
h
an e
x
i
s
t
i
ng t
e
c
hni
qu
es. T
h
e
d
e
v
e
l
o
p
e
d
tech
n
i
q
u
e
prov
i
d
es th
e
reg
e
n
e
ratio
n
an
d no
is
e
mitig
atio
n
fo
r h
i
gh
d
a
ta rate
d
e
grad
ed sig
n
a
ls
with
ou
t co
nv
ertin
g
th
e sign
al
fro
m
o
p
tical to
electrical
dom
ai
n. T
h
e
desi
g
n
ed
sy
st
em
wi
ll
be
usef
ul
fo
r
hi
g
h
sp
eed
co
mm
u
n
i
catio
n
system
s
in
reg
e
n
e
ratin
g
th
e l
o
ng d
i
stan
ce
with n
o
i
se m
itig
ati
o
n. In
fu
t
u
re,
th
e n
e
w
opt
i
cal
si
g
n
al
r
e
gene
rat
i
o
n ca
n be e
n
hance
d
t
o
p
r
o
v
i
d
e t
h
e
opt
i
cal
si
g
n
al
rege
nerat
i
on
f
o
r
ot
he
r m
odul
at
i
on
fo
rm
ats.
ACKNOWLE
DGE
M
ENTS
Th
is
work is su
ppo
rted
b
y
Un
iv
ersiti Tun
Hu
ssei
n
On
n
Malaysia
(UTHM),
Malaysia un
d
e
r
g
r
an
ts
Research
Accu
ltu
ration
Co
ll
ab
orativ
e Effort (RACE)
g
r
an
t n
o
. {vo
t
14
37
}& Po
stgr
aduates I
n
cen
tive G
r
an
t
(
G
I
P
S)
{U
168}.
REFERE
NC
ES
[1]
L.N. Binh
, "Optical fiber communication s
y
stems with Matlab and Simulink mo
dels", 2
nd
editio
n, CRC Press, p
p
.
30-200, 2014
.
[2]
M.Matsumoto, "All-optical DQPSK
signal regen
e
ration using 2R
amplitude reg
e
n
e
rators",
Opti
cs
Expr
es
s
, vol. 18
,
pp. 10-24
, 2010
.
[3]
D.J. Rich
ardson,
et
al
.
"Advanc
es in Opti
ca
l Si
gnal Proc
essing Ba
sed on Phas
e Sensitiv
e Par
a
m
e
tric Mix
i
ng",
Nonlinear Photo
n
ics
, pp
. NM3C-
1
, 2012
.
[4]
T. Roethlingsho
efer,
et a
l
.
,
"All-
Optica
l
Multi
lev
e
l Am
plitude
an
d Phase Regen
e
r
a
tion",
in
IEEE Photonics
So
ciety
Summer Topical Meeting
Series
2014
, pp
.89-90.
[5]
C. Yu,
et
al
., "
W
avelength-shif
t-free 3R r
e
generator for
40-Gb/s
RZ s
y
stem b
y
optical p
a
ra
metr
ic amplification
in
fiber",
IEEE pho
tonics
techno
log
y
letters
, vol. 18
pp. 2569-2571
,
2014.
[6]
C. Lundstrom
,
et al., "Phase and am
plitude characterist
ics of
a phase-sensi
ti
ve am
plifi
e
r op
erat
ing in g
a
i
n
saturation", Optics Express,
vol.
19: pp. 21400-2
1412, 2012
.
[7]
F.
Pa
rmigia
ni,
et al
.,
"All-opti
cal ph
as
e
and
am
p
litude
regen
e
rator
for nex
t
-
g
eneration telecommunications
s
y
ste
m
s",
Natur
e
Pho
t
onics
, vol. 4, pp. 690-695,
2014.
[8]
J. Wang,
et a
l
., "4×
160-Gbit/s m
u
lti-chann
e
l
r
e
generation
in a single
fib
e
r",
O
p
tics e
x
press
, vol. 22, pp
. 1145
6-
11464, 2014
.
[9]
L. Jones,
et al
.,
"Phase regener
a
tion of an M-PSK signal using
partial reg
e
ner
a
tion of
its M/2-PSK second phase
harmonic",
Optics Communications
, vol. 334, pp
. 35-40
, 2015
.
[10]
A.E.
W
illner
,
et al.
, "All-optical
signal pro
cessin
g
",
Journal of
Lightwave
Techno
log
y
, vo
l. 32, pp. 660-680, 2014.
[11]
R. Damani,
et
al
., "Alm
ost Z
e
ro-Jitt
er Opti
c
a
l Clo
c
k Re
co
ver
y
Using All
-
Optica
l
Kerr
Shutter Switch
i
ng
Techn
i
ques
"
,
Jo
urnal of Ligh
twave Technolog
y
, v
o
l. 33
, pp
. 1737-
1747, 2015
.
[12]
B. Corcor
an,
et
al
., "Mitigation
of nonlinear
im
pairm
e
nts on QPSK
data in ph
ase-
sensitive
am
plifi
e
d links", in
39
th
European Conference on
Optical Communi
cation
and Exhibition
,
ECOC 2013, Lo
ndon
, 2013
.
[13]
M.
Kagawa
et al.
,
"Multi-form
at
all-opt
ic
al-3R-r
e
genera
tion te
chn
o
log
y
"
,
OKI T
e
c
hnical
Re
vi
ew
, v
o
l. 79
, 2012
.
[14]
Z. Tong,
et al.
, "Ultralow noise,
broadband phase
-sensitive opti
c
a
l
am
plifiers, and t
h
eir appli
c
a
tions
", IEEE Journal
of Quantum Electronics Selected
Topics, vo
l. 18,
pp. 1016-1032
,
2012.
[15]
Z. Ch
en,
et
al
., "Phase sensitiv
e am
plifier for
PSK signals b
a
sed
o
n
non-degen
e
rat
e
four-wav
e-m
i
xing in
the opti
c
al
fiber",
Optics
Communications
,
vol. 285
, pp
. 244
5-2450, 2012
.
Evaluation Warning : The document was created with Spire.PDF for Python.