Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 5
,
O
c
tob
e
r
201
6, p
p
. 2
331
~233
7
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
5.1
064
5
2
331
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Analysis
and Comparis
on of
SMAC and TMAC Protocol for
Energy Effici
ent
Dyn
a
mi
c T
o
pol
o
gy in Sensor Net
w
ork
Tapaswini
Saman
t
, Aml
a
n Datta
School of
Electr
onics Eng
i
neerin
g, KIIT University
, Ind
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 28, 2016
Rev
i
sed
Ju
l 13
,
20
16
Accepte
d
J
u
l 30, 2016
In the era of wirel
e
s
s
com
m
uni
cat
ion,
wireless sensor is one
of the best
techno
logies
we
are wi
tnes
s
i
ng.
I
n
cas
e
of enviro
nmental
m
onitor
i
ng, tac
tic
al
s
y
stems and diff
erent
tracking
applica
tions, wireless sensors are
being used.
Here, th
e corr
esponding nodes operate on
inco
mplete power and thus th
e
energ
y
comes into play
to operate th
ese entir
e networks. Managing th
e
energ
y
and its u
tili
zat
ion is v
ita
l
for
TCP/IP pro
t
ocol sui
t
e whi
c
h is MAC
lay
e
r’s application. T
hus keeping in mind the above
challenges, th
e
techn
i
ques used are increasing the sleep duration, over hearin
g and ideal
listening
,
collision of pa
cket
an
d elim
in
ating
hi
dde
n terminal p
r
oblem. Th
is
paper is or
iented towards the comparison of en
erg
y
consumptio
n b
y
SMAC
and TMAC protocol. The ch
aracter
i
s
tics of
TMAC and SMAC protocols
were
exp
l
ored keeping rea
l
tr
ans
m
i
ssion conditions in
tact, like variab
le
transmission bit rate, d
y
n
a
mic topolog
y
and mobile sensors
in network
.
TMAC and SMAC protocols ar
e contenti
on bas
e
d protocols and
are design
ed
to keep
the
ener
g
y
consumption
low using duty
cy
cle.
Keyword:
Ener
gy
C
ons
u
m
pti
o
n
SMAC
TMAC
W
i
reless Sens
or
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Tap
a
swin
i Saman
t
,
Sch
ool
o
f
El
ec
t
r
o
n
i
c
s E
ngi
ne
eri
n
g,
KI
IT Uni
v
er
sity
,
B
h
u
b
a
n
eswa
r,
Odi
s
ha,
I
ndi
a.
Em
a
il: tsa
m
an
tfet@k
iit.ac.i
n
1.
INTRODUCTION
In a wireless network,
m
u
ltiple nodes m
a
y
conte
nd to
tra
n
sm
it on the sam
e
shared channel at the
sam
e
tim
e. In t
h
is situation, transm
itted data
woul
d
get
gra
bbe
d unless a
suitable m
e
dium
access arbitration
schem
e
i
s
appl
i
e
d.
So
i
t
'
s t
h
e w
o
r
k
o
f
M
e
di
um
Access C
o
nt
r
o
l
(M
AC
)
p
r
ot
ocol
t
o
per
f
o
rm
t
h
i
s
t
a
sk
.
The
M
A
C
pr
ot
oc
ol
[1]
-
[
4
]
i
s
a su
b l
a
y
e
r of t
h
e
dat
a
l
i
nk l
a
y
e
r
pr
ot
oc
ol
and i
t
di
rect
l
y
i
nvo
kes t
h
e p
h
y
s
i
c
al
l
a
y
e
r
pr
ot
oc
ol
.
Wi
r
e
l
e
ss net
w
o
r
k
s
are m
a
i
n
l
y
di
vi
ded
i
n
t
o
t
w
o
cat
eg
ori
e
s nam
e
l
y
i
n
frast
r
u
ct
ure
ba
sed
a
n
d
infra
struct
ure l
e
ss wireless
ne
two
r
k
.
T
h
e former includes
WL
AN'
s and t
h
e sec
o
nd
one
include
s m
obile Ad-
hoc net
w
orks
.
IEEE 802.11 standa
rds
are being used
for infra
structure
base
d wi
reless network a
nd IEE
E
8
0
2
.
3
is
u
tilized
fo
r in
frastru
c
ture less wi
reless n
e
two
r
k
.
Man
y
MAC layer p
r
o
t
o
c
o
l
fo
r
wireless
n
e
t
w
orks
have al
ready
b
een p
r
op
ose
d
,
st
anda
rdi
z
e
d
a
nd a
r
e
us
e
d
.
M
A
C
p
r
ot
ocol
s fo
r
bot
h i
n
fr
ast
r
uct
u
re
base
d an
d
i
n
fra
st
ruct
ure l
e
ss wi
rel
e
ss ne
t
w
o
r
k
have m
a
ny
t
h
i
n
g
s
i
n
com
m
on but
M
A
C
pr
ot
oc
ol
f
o
r i
n
frast
ruct
ur
e l
e
ss
wireless
n
e
twork
is m
o
re com
p
lex
sin
ce they h
a
v
e
to
addr
ess so
m
e
p
r
ob
lem
s
th
at arise in
th
e in
frast
r
u
c
t
u
re
l
e
ss en
vi
r
onm
ent
.
The m
a
i
n
aim
of t
h
e M
A
C
p
r
ot
oc
ol
[
5
]
-
[
9
]
i
s
t
a
nt
am
ount
t
o
en
fo
rce
di
sci
p
l
i
n
e i
n
t
h
e ac
cess of t
h
e
share
d
cha
n
nel when m
u
ltipl
e
nodes
c
o
ntained to access
that cha
n
nel.
Th
ere
are
othe
r
obj
ectives of MAC
p
r
o
t
o
c
o
l
lik
e max
i
m
i
zat
io
n
o
f
u
tilizatio
n
ch
ann
e
l
and
min
i
mizatio
n
o
f
av
erag
e
lat
e
n
c
y o
f
transmissio
n
.
Agai
n, a M
A
C
pr
ot
oc
ol
m
u
st
be fai
r
an
d e
n
s
u
re t
h
at
n
o
no
d
e
s ha
ve t
o
wai
t
fo
r a l
o
n
g
t
i
m
e
bef
o
r
e
i
t
i
s
al
l
o
we
d
to
tran
sm
i
t
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
233
1
–
23
37
2
332
The ne
w ge
ner
a
t
i
on o
f
wi
rel
e
ss sens
or net
w
or
ks ha
s
vari
o
u
s ap
pl
i
cat
i
ons
and di
st
i
n
ct
i
v
e chal
l
e
nges
[10
]
-[12
]. Few of th
e d
i
stin
ct
iv
e ch
allen
g
e
s
are ind
e
p
e
nd
en
t op
eratio
n, limited
resou
r
ces and
t
o
po
log
y
of a
dynam
i
c nature. E
n
ergy problem
is also a challenge.
So, kee
p
ing i
n
view of t
h
e m
a
ny applications and
l
i
m
i
t
a
t
i
ons of
wi
rel
e
ss se
ns
o
r
net
w
o
r
k
s
, a
sui
t
a
bl
e p
r
ot
ocol
l
i
k
e M
A
C
has a rem
a
rka
b
l
e
ef
fect
on t
h
e
con
s
um
pt
i
on
o
f
e
n
er
gy
s
o
as t
o
pr
ol
o
n
g
t
h
e
l
i
f
et
im
e of t
h
e
n
e
t
w
o
r
k
.
There
f
ore t
o
meet the energy const
r
aints
of
WS
Ns
ap
pl
i
cat
i
ons,
TM
AC
an
d SM
AC
p
r
ot
oc
ol
s wa
s
desi
g
n
e
d
i
n
t
h
i
s
pa
per
.I
n
t
h
i
s
pa
per T
M
ac and S
M
ac pr
ot
oc
ol
s
are desi
gne
d t
o
keep t
h
e
ener
gy
con
s
um
pt
i
on l
o
w
usi
n
g
d
u
t
y
cy
cl
e. The
rest
of t
h
i
s
pape
r i
s
or
ga
ni
zed
as f
o
l
l
o
w
s
.
We
di
s
c
uss t
h
e rel
a
t
e
d
wo
rk
i
n
sect
i
o
n 2
.
In
sect
i
on
3 t
h
e
basi
c M
A
C
p
r
ot
oc
ol
i
s
p
r
ese
n
t
e
d i
n
bri
e
f
.
I
n
sect
i
o
n
4 si
m
u
l
a
t
i
on f
r
am
ewo
r
k i
s
expl
ai
ne
d.
Sect
i
on
5,
si
m
u
l
a
t
i
on
o
u
t
c
om
es i
s
ex
pl
ai
ned
a
n
d
fi
nal
l
y
, we
co
n
c
l
ude t
h
e
pa
per
i
n
sect
i
o
n
6.
2.
RELATED WORK
A
W
i
r
e
less Sen
s
or
N
e
t
w
or
k
(W
SN)
is a se
lf
-
o
rg
an
ized
netw
or
k
of
tin
y sen
s
or
no
d
e
s. Each
sen
s
or
no
de
(al
s
o
cal
l
e
d m
o
t
e
) us
ual
l
y
senses ce
rt
ai
n
phy
si
cal
ch
a
r
acteristics of it
s environm
ent suc
h
as tem
p
erature,
so
und
,
v
i
bration
etc. and
th
en tran
sm
its
th
e sen
s
ed
in
fo
rmation to the
us
er of the net
w
ork.
It comm
u
n
icates
wirelessly in
a
m
u
l
ti h
o
p
netwo
r
k
.
W
i
rel
e
ss se
ns
or
net
w
o
r
ks
a
r
e ge
ne
ral
l
y
bat
t
e
ry
o
p
erat
ed s
o
e
n
er
gy
co
nsum
pt
i
o
n
i
s
of
g
r
eat
i
m
p
o
r
tan
ce
[12
]
. As a resu
lt
o
f
th
ese critical en
erg
y
features and
greater n
e
two
r
k
failure p
r
o
b
a
b
ility, WSN
need
s a
wel
l
-re
gul
at
ed
M
A
C
pr
ot
oc
ol
desi
g
n
.
Th
us,
re
d
u
ct
i
on
o
f
c
ons
um
pt
i
o
n
o
f
p
o
we
r
i
s
o
n
e
o
f
t
h
e
p
r
i
m
ary
goal
s
i
n
WS
Ns
an
d i
t
en
ha
nce
s
t
h
e
net
w
or
k l
i
fet
i
m
e
i
n
real
t
i
m
e
[13]
.
Th
e M
A
C is th
e su
b-layer
of layer
2
(
Data
lin
k
laye
r)
w
h
i
c
h i
s
f
u
rni
s
hi
n
g
t
h
e
p
r
os
pect
of
o
p
t
i
m
al
users
o
f
c
ont
ro
l
l
i
ng cha
n
nel
a
n
d
com
m
uni
cat
i
on c
h
an
nel
a
ccessed
by
n
o
d
es.
It
i
s
l
i
k
e
w
i
s
e t
h
e p
r
i
m
ary cause
of
data packet
s to m
ove from a pa
rticular Network
Interface Card (NIC
) to a
not
her
throughout the
share
d
channel.
Whi
l
e
desi
g
n
i
ng a M
A
C
p
r
ot
ocol
t
h
e
r
e
are di
sc
ret
e
f
act
ors l
i
k
e t
h
ro
u
g
h
p
u
t
,
l
a
t
e
ncy
,
ene
r
gy
efficien
cy an
d qu
ality o
f
serv
ice.
So, sche
m
i
n
g
a
well-regu
lated
WSN is
v
e
ry essen
tial an
d com
p
o
s
ite
problem
.
The function
of the
MAC is
to help each a
n
d eve
r
y node to m
a
ke
a decision as
to whe
n
a
nd
how
t
o
access the c
h
a
nnel. In
othe
r
words,
when
to send a
fram
e, listen and slee
p.
3.
MEDI
U
M
AC
CESS CO
NT
ROL (M
A
C
)
PROTO
C
OL
S
In
WS
Ns t
h
e n
ode
s ha
ve t
o
s
h
ar
e t
h
eir information through a c
o
mm
on channel at the s
a
m
e
time. In
su
ch
situ
atio
n
,
th
e in
form
ati
o
n
g
e
ts grabb
e
d
un
less a su
itab
l
e m
e
d
i
u
m
a
ccess arb
itration
sch
e
m
e
is a
p
p
lied
and i
t
i
s
t
h
e dut
y
of M
A
C
p
r
ot
ocol
t
o
carr
y
out
t
h
i
s
t
a
sk. It
i
s
t
h
e sub-l
a
y
e
r of t
h
e dat
a
l
i
nk l
a
y
e
r prot
oc
ol
whic
h provide
s
fair access to the ch
a
nnels by avoidi
ng
collision. So th
e m
a
in ai
m
of the MAC prot
ocol
design for an e
ffective
WSN
is
energy efficiency [14]-[17].
In
a wi
rel
e
ss sens
or net
w
or
k
,
for
a h
i
gh
qu
ality
M
A
C
p
r
ot
oc
ol
,
t
h
ese at
t
r
i
but
e
s
are t
o
be m
easure
d
.
1.
Throughput: It
represe
n
ts how fa
st the am
ount of i
n
form
ation is se
nt
to the receiver t
h
rough
WS
Ns wit
h
in
a pe
ri
o
d
of t
i
m
e.
2
.
Laten
c
y: It represen
ts th
e
d
e
l
a
y i.e.,
h
o
w m
u
ch ti
m
e
req
u
i
r
ed
fo
r a
dat
a
w
h
en
se
nt
t
h
r
o
u
g
h
a
net
w
or
k.
3.
Fairness:
It represents
to provide
fair
access
for all nodes
by avoi
di
ng possible
collision.
4.
Energy Efficiency: It is an es
sen
tial attrib
u
t
e in
WSN. Since sen
s
or no
d
e
s are b
a
ttery d
r
iv
en
it's
d
i
fficu
l
t
to replace or recharge batteries that's
why they require energy efficient
protocol design in
order to prolong
lifetim
e.
5
.
Co
llisio
n
avo
i
d
a
n
ce:
A co
llisio
n d
e
tection
sch
e
m
e
is d
i
fficu
lt to
im
p
l
e
m
en
t in
a
wireless env
i
ro
nment
sin
ce co
llisio
n
s
are
h
a
rd
t
o
b
e
d
e
tected
b
y
th
e tran
sm
issio
n
no
d
e
s. So
, th
ey
h
a
v
e
to
b
e
avo
i
d
e
d.
6
.
Ad
ap
tab
ility: Th
is
p
r
o
t
o
c
o
l
n
e
ed
s t
o
b
e
ad
ap
t
a
b
l
e fo
r an
y
n
e
twork top
o
l
o
g
y
.
3.
1.
Scheduled
MAC pr
otoc
ols
In this particul
ar MAC protocol, the m
u
ltip
le acce
ss used
is based
on time
division.
Only a single
no
de i
s
al
l
o
we
d f
o
r t
h
e t
r
a
n
s
m
i
ssi
on i
n
e
v
er
y
t
i
m
e
sl
ot
gi
ven. T
h
ese c
o
rr
esp
o
n
d
i
n
g
no
d
e
s are t
h
e
n
a
rra
nge
d
i
n
a cl
ust
e
re
d m
a
nne
r i
n
s
u
ch
a
way
t
h
at
eac
h
cl
ust
e
r i
s
ha
vi
ng
a si
ngl
e cl
u
s
t
e
r hea
r
d
wh
o
s
e res
p
o
n
si
bl
e
i
s
fo
r
t
h
e w
hol
e c
o
m
m
uni
cat
i
on i
n
s
i
de t
h
e cl
ust
e
r
al
on
g wi
t
h
t
h
e ot
he
r
cl
ust
e
rs near
by
.
T
h
e cl
uster
head als
o
deals
wi
t
h
t
h
e t
i
m
e
sy
nch
r
o
n
i
zat
i
o
n, t
i
m
e
di
vi
si
on an
d cha
nnel
.
Thi
s
m
a
y
creat
e
i
n
t
e
rfere
nc
e whi
c
h m
a
y
avoi
ded
by using Code
Division M
u
ltiple
Acce
ss (CDMA) or
t
h
e Freque
ncy
Di
vision M
u
ltiple Access (FDM
A). The
sch
e
d
u
l
e b
a
sed
p
r
o
t
oco
l
s (TDMA) h
a
v
e
n
o
co
llisio
n
s
b
ecau
s
e
o
f
th
e si
n
g
le n
o
d
e
op
erat
io
n
p
e
r tim
e wh
ich
facilitates n
o
id
le-listen
i
ng
as well as
n
o
ov
erh
e
aring
.
After co
m
p
letio
n
o
f
th
e ti
m
e
slo
t
, t
h
e no
d
e
en
ters
sleep
m
o
d
e
. Du
e to
l
ack
of p
e
er to
p
eer co
nn
ection
s
in
th
ese
protocols,
results in the comm
unication bet
w
een any
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ana
l
ysis and
C
o
mpa
r
ison
o
f
SMAC and
TMAC Pro
t
o
c
o
l
f
o
r
En
erg
y
Efficien
t
.... (Tapa
sw
in
i Sa
man
t
)
2
333
of t
h
e
no
de o
n
l
y
wi
t
h
cl
ust
e
r head
(C
H
)
. Thi
s
sho
w
s t
h
eir
poor scalable and ada
p
ta
bl
e nat
u
re
. Fo
r eve
r
y
no
de
whic
h leaves
or
joi
n
s the cl
uster,
t
h
e C
H
every
t
i
m
es redefi
nes nee
d
s
t
o
sy
nch
r
oni
ze
wh
ol
e t
i
m
e
t
a
bl
e o
f
fram
e
wor
k
i
n
si
de t
h
e cl
ust
e
r.
Due t
o
t
h
i
s
t
h
e
C
H
get
s
m
o
re press
u
re be
ha
ves as uni
t
exe
r
ci
si
ng t
y
pi
cal
no
de
p
e
rform
a
n
ce.
Th
e tim
e syn
c
h
r
on
izatio
n
is
main
tain
ed
a
lth
oug
h th
e clu
s
ters face so
m
e
clo
c
k drifts. Blu
e
too
t
h
and LE
ACH (Low E
n
ergy
Adaptive
Cl
ust
e
r
i
ng
Hi
era
r
chy
)
.
3.
2.
Event-dri
v
en protoc
ols
Here i
n
t
h
es
e
t
y
pes o
f
p
r
ot
o
c
ol
s,
pre
-
al
l
o
c
a
t
i
on
of t
h
e c
h
an
nel
s
fo
r e
v
ery
n
ode
i
s
n
o
t
per
f
o
r
m
e
d
co
nsid
er
i
n
g the no
d
e
s ar
e emp
t
y or
an
y d
a
ta to
send
to
any
ot
he
r
n
ode
. T
h
ese e
v
e
n
t
d
r
i
v
en
pr
ot
oc
ol
s al
l
o
cat
e
t
h
e cha
nnel
s
b
a
sed o
n
t
h
e
re
q
u
i
r
em
ent
of an
y
i
ndi
vi
d
u
al nodes for t
h
eir c
o
mmunication.
These are thus
m
o
r
e
adapt
a
bl
e w
h
e
n
any
net
w
o
r
k
t
o
p
o
l
o
gy
chan
ges w
h
i
c
h m
a
kes i
t
a bet
t
e
r prot
ocol
as com
p
are
d
wi
t
h
sc
h
e
dul
e
base
d pr
ot
oc
ol
s. C
h
an
gi
n
g
i
n
no
de de
nsi
t
y
can al
so be m
a
i
n
t
a
i
n
ed i
n
e
v
ent
dri
v
en
pr
ot
ocol
s
.
As i
n
T
D
M
A
whi
c
h re
q
u
i
r
es
t
i
m
e
sy
nchro
n
i
zat
i
on,
eve
n
t
dri
v
en
pr
ot
oc
ol
s are i
nde
pe
nde
nt
o
f
i
t
b
u
t
l
acks i
n
ove
r
h
eari
n
g
an
d
id
le listen
i
n
g
wh
ich
was
n
o
t
in
case
o
f
TDMA, th
us l
eads to wa
stage in energy.
Al
so som
e
the energy is
wasted is during
freq
u
e
n
c
y collisio
n
s
wh
ile t
r
an
sm
issio
n
o
f
sig
n
a
l.
3.
3.
Al
oh
a Pro
t
oc
o
l
The fi
rst
i
n
t
r
o
duce
d
M
A
C
p
r
ot
ocol
f
o
r ge
n
e
ral
use
in
n
e
t
w
orks. Th
e tran
sm
it
ter is in
dep
e
nd
en
t of
send
ing
th
e p
a
ck
ets
o
n
its own
an
d w
ithou
t
an
y nod
e co
ord
i
n
a
tion
.
3.
4.
Pure Al
oh
a
P
r
ot
oc
ol
In this prot
ocol, without any c
once
r
n with c
h
annel availability,
node
s perform
s
transm
is
sion. Here
retransm
issio
n
m
a
y b
e
req
u
i
re as th
ere m
a
y
b
e
t
h
e cas
e
of frequ
e
n
t
co
llisio
n
s
am
o
n
g
t
h
e
p
ack
ets. For less
co
llisio
n
s
an
d
l
o
w traffic th
ese p
r
o
t
o
c
o
l
s are b
e
ing
u
s
ed
.
Fo
r in
crease in
t
r
affic lo
ad
, t
h
e ch
an
ces
o
f
co
l
lisio
n
s
increases
and c
h
annel c
o
ngest
i
on
occ
u
rs
.
3.
5.
Sl
ot
ted Al
o
h
a
Prot
oc
ol
Thi
s
com
p
ri
se
s t
h
e i
m
prove
d
versi
on
o
f
b
o
t
h
ab
o
v
e p
r
ot
oc
ol
s.
Here i
n
t
h
i
s
pr
ot
oc
ol
,
no
des ca
n be
t
r
ansm
i
t
t
e
d i
n
di
vi
de
d t
i
m
e sl
ot
s fr
om
a channel
.
F
o
r t
h
e
begi
n
n
i
n
g o
f
a sl
ot
t
o
be us
ed f
o
r t
r
a
n
sm
issi
on
,
n
o
d
e
s are in waitin
g
po
sition
.
Thu
s
co
llisio
n is av
o
i
d
e
d
in
t
r
an
sm
issio
n
b
u
t
m
a
y h
a
p
p
e
n
d
u
ring
th
e b
e
g
i
n
n
i
n
g
o
f
t
h
e tran
sm
i
ssio
n
. En
erg
y
sav
i
ng
can
b
e
d
o
n
e
b
y
avo
i
din
g
these co
lli
sio
n
s
b
y
using co
llisio
n
av
o
i
d
a
n
ce
mech
an
ism
s
. After
d
e
tecting an
y co
llisio
ns, a ran
d
o
m
b
ack
-o
ff in
terv
al i
s
u
s
ed
b
y
t
h
e statio
n
s
wh
ich
av
o
i
d
s
th
e su
b
s
equ
e
n
t
co
llisio
n in
t
h
e n
e
x
t
tim
e slo
t
du
ri
n
g
th
e transmissio
n
.
3.
6.
Alo
h
a
with prea
mble sa
mpling
In case o
f
t
h
i
s
m
odi
fi
ed pr
ot
o
c
ol
s, t
o
l
i
s
t
e
n to t
h
e cha
nnel
,
no
des wa
ke u
p
and t
h
ey
agai
n g
o
back t
o
sleep
if th
e chan
n
e
l s free until th
e n
e
x
t
ti
me slo
t
. If th
e
no
d
e
s id
en
tify an
yth
i
ng
th
en
th
ey stay awake for a
val
i
d
m
e
ssage.
Som
e
t
i
m
e
s a l
o
n
g
d
u
m
m
y
p
acket
i
s
bei
n
g
sen
d
by
t
h
e
se
nde
r’
s n
o
d
e t
o
avoi
d m
i
ssi
ng t
h
e
w
a
k
e
-u
p schedu
le
o
f
n
e
i
g
hbor
w
h
ich
is call
e
d
t
h
e “p
r
eam
b
l
e”. Th
e d
e
tectio
n
o
f
th
e prea
m
b
le b
y
th
e
activ
e
n
e
igh
bor
n
o
d
e
co
n
tinu
e
s listen
i
ng
till it g
e
ts a
v
a
lid
d
a
ta
wh
ich is th
en
con
f
irm
e
d
with
t
h
e ackn
owledge
m
e
n
t
fram
e
(ACK
).
3.
7.
Sl
ot
ted Pro
t
oc
ol
s
3.
7.
1.
SM
AC
Pr
ot
oc
ol
SM
AC
o
r
Se
n
s
or
-M
AC
i
s
a
M
A
C
pr
ot
oc
ol
gene
ral
l
y
use
d
i
n
WS
N (
W
i
r
el
ess Sen
s
o
r
s
Net
w
or
k)
fo
r
en
erg
y
sav
i
ng
an
d hav
i
n
g
adv
a
n
t
ag
es
su
ch
as co
llision
avo
i
d
a
n
ce and
scalab
ility. Du
e t
o
its
fix
e
d
d
u
t
y-cycle
whi
c
h hel
p
s re
duci
ng t
h
e i
d
l
e
l
i
s
t
e
ni
ng of
t
h
e no
des
.
In t
h
ese cases, the
nodes are bat
t
ery operate
d and a
com
m
on sl
eep
sche
dul
e i
s
set
up
w
h
i
c
h
i
s
f
o
r
m
ed by
t
h
e
n
e
i
g
h
b
o
ri
ng
n
o
d
e
s
.
3.
7.
2.
Timeout
- MA
C
(T
M
A
C
)
It
st
ands
fo
r Tim
e
out
-M
AC
[1
8]
,[
19]
. It
i
s
equal
l
y
a co
nt
ent
i
o
n base
d
M
A
C
pr
ot
oc
ol
wi
t
h
hi
g
h
energy efficiency and
ea
sy implem
entation. Here t
h
e
duty
cycle is
n
o
t
fi
xed
i.e. it in
trodu
ces an
ad
ap
ti
v
e
d
u
t
y
cy
cl
e. It
i
s
al
s
o
desi
g
n
e
d
fo
r
W
S
N
t
o
dec
r
ease ene
r
gy
c
ons
um
pt
i
on.
S
-
M
A
C
pr
ot
oc
o
l
’s st
at
i
c
sl
eep
-l
i
s
t
e
n
peri
ods
res
u
l
t
s
i
n
l
o
wer t
h
r
o
u
g
h
p
u
t
an
d al
s
o
per
f
o
rm
s hi
gh
er l
a
t
e
ncy
.
Wh
i
l
e
as i
n
case
o
f
T-M
A
C
pr
ot
ocol
s
,
wh
en
t
h
ere is
no
activ
ation
even
t fo
r a Tim
e
th
resh
o
l
d
TA, t
h
e listen
p
e
ri
od
s en
d du
e to its cap
ab
ility to
wo
rk
unde
r various t
r
affic loa
d
s.
T
A
decision is
presente
d
with
so
lu
tion
for early sleep
ing
prob
lem
o
f
th
e
n
o
d
e
.
As
th
e n
o
d
e
s clo
s
er to
th
e sink
th
ey
m
u
st relay
m
o
re traffic resu
lts in
v
a
riab
le lo
ad
in
WSN. Fo
r t
h
is variab
le
l
o
ad,
p
e
r
f
o
r
m
a
nce
of
T-M
A
C
per
f
o
rm
s be
t
t
e
r b
u
t
wi
t
h
t
h
e l
o
ss
of
b
r
o
k
en
l
i
s
t
e
n
peri
ods
i
n
si
de t
h
e
vi
rt
ual
clusters.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
233
1
–
23
37
2
334
3.
7.
3.
S-M
A
C
Prot
oco
l
It is inten
d
e
d
f
o
r
WS
Ns
. It is
desig
n
e
d
f
o
r t
h
e
pu
rp
ose o
f
savin
g
e
n
er
gy
in WSNs
with refe
rence
to
IEEE
802.11 [18],[19] MAC. It take
s up va
rious sc
hem
e
s to re
duce
wast
a
g
e and cons
um
ption
of e
n
ergy
from
di
ffe
re
nt
so
urc
e
s i
n
W
S
Ns.
It
wo
rks t
oget
h
e
r
wi
t
h
a fi
xed
dut
y
cy
cl
e app
r
oac
h
.
It
i
s
bui
l
t
on t
h
e co
nce
p
t
o
f
'
l
i
s
t
e
n/
sl
eep m
ode
cy
cl
e''
and
i
t
i
s
si
ngl
e
fre
q
u
ency
c
o
nt
ent
i
on
ba
sed
p
r
ot
o
c
ol
.
Ti
m
e
fra
m
e
in
SMAC is sep
a
rated
in
two
p
a
rts o
n
e
is fo
r sl
eep
and
th
e o
t
h
e
r is to
listen
.
Fo
r a listen
i
n
t
e
rval
,
sen
s
o
r
n
o
d
es a
r
e al
l
o
we
d t
o
e
x
cha
nge
i
n
fo
rm
ati
on
wi
t
h
ot
her
n
ode
s an
d
sen
d
a few
co
nt
r
o
l
packe
t
s
suc
h
as SYNC
, R
T
S and C
T
S. The m
a
i
n
goal
of SM
AC
desi
g
n
i
s
t
o
m
i
ni
m
i
ze consum
pt
i
on
of ene
r
g
y
fro
m
all th
e v
a
riou
s sou
r
ces wh
ich are i
d
en
tified
to
b
e
th
e
reason
b
e
h
i
n
d
en
ergy wastag
e (co
llisio
n
,
ov
erh
e
aring
,
o
v
e
r
h
e
ad
ing
etc.) an
d in
crease go
od
scalab
ility. To
ach
i
ev
e th
is th
ere are
3
m
a
j
o
r co
m
p
on
en
ts in
SMAC.
• Period
ic listen
an
d sleep.
• Co
llisio
n
an
d ov
erh
eari
n
g av
o
i
d
a
n
c
e.
•
M
e
ssage
pass
i
ng.
3.
8.
Periodic listen and sleep:
Each o
f
n
odes
i
n
a sensor
n
e
t
w
o
r
k act
ual
l
y
has a fi
xed cy
cl
e consi
s
t
i
ng of t
h
ree di
f
f
e
rent
st
at
es,
in
itiatio
n
,
sleep
, an
d
listen. Th
e first step
, i
n
itial sta
t
e, wh
en
a nod
e is sp
read
in
to th
e field
,
is to
in
itiate and
start its o
w
n
sch
e
du
le, and
th
en
ev
ery nod
e go
to
sleep
fo
r
a
peri
od
o
f
t
i
m
e
and
aft
e
r
w
ar
d
s
wa
ke u
p
t
o
l
i
st
en i
f
an
ano
t
h
e
r node w
i
sh
es to
tal
k
to
it. So, cycle fo
r slee
p
/listen
p
e
riod
is rep
eated
u
n
til it
is sto
p
p
e
d
d
u
e
to
its
b
a
ttery life. For th
e sleep
p
e
rio
d
, th
e no
d
e
rad
i
o
is tu
rn
ed
off b
y
th
e nod
e, an
d
d
e
term
in
e
s
a ti
me to
wak
e
it
l
a
t
e
r. Eve
r
y
n
ode
has t
h
e f
r
eedom
t
o
ch
o
o
se i
t
s
o
w
n l
i
st
en/
s
l
eep p
e
ri
ods
. H
o
wev
e
r,
t
o
m
i
nim
i
ze
cont
rol
ove
rhead,
we pre
f
er neighboring
node
s
to s
y
nchronize with each
othe
r. It
m
eans they listen all together and
g
o
to
sp
end
the n
i
g
h
t
sim
u
lt
an
eou
s
ly. All n
e
igh
borin
g
no
d
e
s d
o
n
o
t
syn
c
hron
ize to
geth
er in
a
m
u
lti-h
o
p
net
w
or
k.
No
de
s br
oadca
s
t
t
h
ei
r sched
u
l
e
s t
o
exc
h
an
ge t
h
ei
r ow
n f
o
r i
t
s
im
m
e
di
at
e nei
g
h
b
o
r
s.
If t
h
e
r
e are
m
u
lt
i
p
l
e
nei
g
h
b
o
r
s,
N
o
des s
h
oul
d c
ont
e
n
d
f
o
r t
h
e m
e
di
um
by
usi
n
g R
e
q
u
est
T
o
Se
n
d
(
R
TS) a
n
d
C
l
ear
T
o
Send (CTS) packets when t
h
e node is listening. RTS pa
ck
et
i
s
fi
rst
sent
by
t
h
e part
i
c
ul
ar n
o
d
e, wi
ns t
h
e
medium
and the receive
r re
ply with CTS.
After be
ginnin
g
of tra
n
sm
ission of
data, their sleep sche
dule doe
s
n
o
t
co
m
p
ly with
u
n
til and
u
n
l
ess th
ey fi
n
i
sh
th
eir tran
sm
iss
i
o
n
.
Fig. 1 shows th
e co
m
p
lete cycle o
f
listen
an
d
sleep
whic
h is
called as a
fra
me.
Fi
gu
re 1.
T
Fram
e
=T
listen
+T
sleep
Duty cycle = T
listen
/ T
F
r
am
e
(1)
3.
9.
Co
llisio
n
and o
v
e
rhea
ring
av
o
i
da
nce:
Th
e
n
o
d
e
s are ab
le to
m
o
n
ito
r info
rm
atio
n
fro
m
th
eir d
i
rect n
e
ig
hbo
ri
ng
nod
es,
wh
enev
er
d
a
ta is
t
r
ansm
i
t
t
e
d fr
o
m
node
A t
o
n
ode
B
.
E a
n
d
F d
o
es
n
o
t
af
fe
ct
t
h
e t
r
an
sm
i
s
si
on
o
f
dat
a
o
f
A a
n
d
B
as E
and
F
are ou
t of two
-
h
o
p
o
f
A an
d
B.
Wh
en
A is
tran
sm
it
tin
g
d
a
ta to
B an
d
at
th
e sam
e
t
i
m
e
D wan
t
s to
tran
sm
it
d
a
ta to
F, B
will o
v
e
rh
ear
th
e in
form
atio
n
as D is th
e
d
i
rect n
e
ighb
or o
f
D an
d
thu
s
it in
terferes in
th
e
tran
sm
issio
n
of d
a
ta fro
m
A to
B. So
, to
av
oid
th
e co
llis
ion, D m
u
st g
o
to
sleep
. As C is a d
i
rect n
e
i
g
hbo
r
o
f
A, C
will also
o
v
e
rh
ear t
h
e
data th
at is transmit
ted
fro
m
n
o
d
e
A to nod
e B
.
To
av
o
i
d
co
llisio
n
C
h
a
s also go
n
e
to sleep. Fi
gure 2
re
prese
n
ts t
h
e a
b
ove
proce
ss.
Fig
u
r
e
2
.
N
e
i
g
h
bou
r nod
es to go
to sleep
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ana
l
ysis and
C
o
mpa
r
ison
o
f
SMAC and
TMAC Pro
t
o
c
o
l
f
o
r
En
erg
y
Efficien
t
.... (Tapa
sw
in
i Sa
man
t
)
2
335
W
i
t
h
r
e
f
e
r
e
n
c
e to
80
2.11
M
A
C pr
o
t
o
c
o
l
s,
SMA
C
pr
o
t
o
c
o
l
ob
eys bo
th
r
e
qu
ests to
send
or
clear
t
o
send m
echanism
and virt
ual or physi
cal carrier
s
e
nsi
n
g m
echani
s
m
.
C
o
m
m
uni
cat
i
o
n c
o
u
r
se o
f
RTS/CTS/DATA/AC
K
is experie
n
ced
by e
ach node
whe
n
tr
ansm
i
ssi
on o
f
dat
a
i
s
t
a
ke
n.
Every
pac
k
et
t
h
at
i
s
b
e
ing
transm
i
t
t
ed
con
t
ain
s
a d
o
m
ain
v
a
lu
e th
at sh
ows the rem
a
in
in
g
time fo
r th
e su
rfeit co
mm
u
n
i
c
a
tion
course. Whe
n
e
v
er overheari
n
g
occ
u
rs during
listen
ti
m
e
in the transm
i
ttin
g and
r
eceiving node. The le
ngt
h of
ti
m
e
is reco
rded
m
ean
wh
ile th
ey sleep
. Th
e rem
a
in
in
g
ti
m
e
red
u
ces as th
e ti
m
e
is
all. If th
e no
de is in
listen
i
n
g
state an
d
th
e
residu
al ti
me
is red
u
c
ed
to
zero
.
Nod
e
will b
e
ev
ok
ed. If it is n
o
t
ev
ok
ed
th
en
un
til th
e
next listeni
ng c
y
cle the nodes
keep on
sleepi
n
g.
3.
10
.
Mess
age
P
a
ssi
ng
Re-transm
i
ssion is neede
d
whene
v
e
r
an error occ
u
rs wh
ile tran
sm
issio
n
o
f
a larg
e p
a
ck
et. Du
ri
ng
tran
sm
issio
n
,
v
e
ry few b
its
are corru
p
t
ed
. So
,
re-tra
n
s
mittin
g
th
e b
its wh
ich
are
n
o
t
co
rrup
ted, resu
lt in
wastage
of e
n
ergy.
Instead
of t
h
at we
transm
it th
e long m
e
ssage fragm
e
nts into a num
b
er of sm
a
ll
inde
pende
n
t packets, in whic
h we
ha
ve t
o
face a long
e
r
delay and a large control
overhead. SM
AC restricts
th
e m
e
d
i
u
m
to
tran
sm
it al
l th
e frag
m
en
ts an
d con
v
e
rt th
e l
o
n
g
m
e
ssag
e
in
to
a
n
u
m
b
e
r
o
f
sm
a
ll frag
m
en
ts and
all to
g
e
th
er sen
d
s
th
em
to
a b
u
rst in
ord
e
r
to
m
i
n
i
mize th
e con
t
ro
l
ov
erh
ead of RTS an
d
C
T
S .
Each
an
d
every
m
e
ssage and co
nt
r
o
l
ov
erhea
d
o
f
C
T
S
and R
T
S co
nt
ai
n a dom
ai
n val
u
e t
h
at
i
ndi
c
a
t
e
s t
h
e l
e
ft
ove
r t
i
m
e
f
o
r
th
e su
rf
eit co
mm
u
n
i
catio
n
.
Th
e tr
an
sm
i
ssio
n
t
o
b
e
accu
r
ate an
d
to
i
n
tr
od
u
ce t
h
e n
e
i
g
hbo
ur
ing
nodes, th
e
receiving
node
sends
an ac
knowle
dgem
e
nt (ACK)
for eac
h
of
t
h
e receive
d fra
gm
ent.
If t
h
e transm
itting node
doe
s
not
o
r
f
a
i
l
s
t
o
get
an
a
c
kn
o
w
l
e
d
g
em
ent
(
A
C
K
)
t
o
t
h
e tran
sm
issio
n
tim
e is ex
ten
d
e
d
fo
r on
e
m
o
re
fra
gm
ent and i
t
transm
its
the sam
e
fragm
en
t immediatel
y.
Both the t
r
ansmitting
and receiving
node record
th
e len
g
t
h
of
ti
m
e
if
th
e n
e
ig
hbo
ur
ing
node o
v
e
r
h
ear
s the p
ack
ets. In
th
e m
ean
ti
m
e
,
th
ey g
e
t so
m
e
sleep
.
During
th
e commu
n
i
catio
n
pro
cess, as tim
e
p
a
sses
b
y
, th
e residu
al ti
m
e
record
ed
will b
e
d
e
creased
.
If the
n
o
d
e
is i
n
listen
i
ng
state an
d th
e residu
al ti
me is red
u
c
ed
t
o
zero. Nod
e
will b
e
ev
ok
ed
.
If
it is n
o
t
ev
ok
ed th
en
u
n
til th
e
n
e
x
t
listen
i
ng
cycle th
e
n
o
d
e
s k
e
ep
sleep
ing
.
Figure
3. Mess
age Pa
ssing
4.
SIMULATION
FR
AM
EWO
R
K
In t
h
i
s
pape
r,
we com
p
are t
h
e ene
r
gy
co
n
s
um
pt
i
on by
SM
AC
an
d T
M
AC
pr
ot
oc
ol
i
n
di
ffe
rent
si
m
u
latio
n
scen
ari
o
.
We
u
s
ed Castalia Si
m
u
lato
r to sim
u
lat
e
ou
r
exp
e
rim
e
n
t
. Th
e Castalia sim
u
lato
r is b
a
sed
on
t
h
e
OM
Ne
T++ pl
at
f
o
rm
. As s
h
o
w
n i
n
t
h
e t
a
bl
e
1,
t
h
e
param
e
ters for the fram
ework are
ass
u
m
e
d and the
com
p
ari
s
on
i
s
sho
w
n i
n
Fi
gu
r
e
4 a
n
d
5.
Tabl
e 1. Si
m
u
lat
i
on
Sce
n
a
r
i
o
Gen
e
ral P
a
ra
m
e
te
r
Value
T
e
r
r
a
i
n A
r
ea
60×60 m
e
ter
s
Deploym
ent
5*5/7
*
7
Power
Consu
m
ption per
device
0.
5
m
w
MAC Listen
interv
al
10
m
s
Radio Used
T
e
lco CC2420
Trans
m
ission Pow
e
r
5dB
m
5.
SIMULATION OUTCOMES
We sim
u
lated
th
e abo
v
e
scen
ario
s u
s
i
n
g Cast
alia Si
m
u
lato
r. First
we sim
u
l
a
ted
a
static n
e
twork with
25
n
u
m
b
er
of
n
ode
s.
We
o
b
ser
v
e
d
e
n
er
g
y
con
s
um
ed b
y
SM
AC
a
n
d
TM
AC
pr
ot
oc
ol
s i
n
di
f
f
ere
n
t
t
i
m
e
i
n
t
e
rval
a
n
d
pl
ot
t
e
d a
g
r
ap
h
usi
n
g
G
NUP
L
O
T.
Sec
o
n
d
l
y
,
we
si
m
u
l
a
t
e
d a st
at
i
c
net
w
or
k
wi
t
h
4
9
num
ber
o
f
no
des
,
obse
r
ve
d t
h
e
ene
r
gy
co
nsum
ed
by
SM
AC
a
n
d
TM
A
C
pr
ot
oc
ol
a
n
d
agai
n
pl
ot
a
gr
aph
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
233
1
–
23
37
2
336
Fi
gu
re
4.
Ene
r
gy
C
o
ns
um
ed i
n
SM
AC
a
n
d
T
M
AC
i
n
wi
rel
e
ss sen
s
o
r
net
w
or
k
wi
t
h
2
5
nu
m
b
er of
n
ode
s
In Fi
g
u
r
e 4, w
e
pl
ot
t
e
d t
i
m
e
in sec i
n
X-a
x
i
s
and Ene
r
gy
co
nsum
ed i
n
Jo
ul
e i
n
Y-axi
s
. In
t
h
i
s
fi
gu
re
we
have
s
h
o
w
n t
h
e
ene
r
gy
c
ons
um
pt
i
on
by
SM
AC
a
n
d T
M
AC
p
r
ot
oc
ol
i
n
a
wi
rel
e
ss
s
e
ns
or
net
w
o
r
k
wi
t
h
49
num
ber
of
no
d
e
s. Fr
om
t
h
e Fi
gu
re
5,
we o
b
s
e
rve
d
t
h
at
e
n
er
gy
co
ns
um
ed by
SM
AC
i
s
ap
pr
o
x
i
m
at
e 77%
m
o
re
th
an
TMA
C
.
Fi
gu
re
5.
Ene
r
gy
C
o
ns
um
ed i
n
SM
AC
a
n
d
T
M
AC
i
n
wi
rel
e
ss sen
s
o
r
net
w
or
k
wi
t
h
2
5
nu
m
b
er of
n
ode
s
In Fi
g
u
r
e 5, w
e
pl
ot
t
e
d t
i
m
e
in sec i
n
X-a
x
i
s
and Ene
r
gy
co
nsum
ed i
n
Jo
ul
e i
n
Y-axi
s
. In
t
h
i
s
fi
gu
re
we
have
s
h
o
w
n t
h
e
ene
r
gy
c
ons
um
pt
i
on
by
SM
AC
a
n
d T
M
AC
p
r
ot
oc
ol
i
n
a
wi
rel
e
ss
s
e
ns
or
net
w
o
r
k
wi
t
h
49
n
u
m
b
e
r
o
f
nodes. Fr
o
m
th
e f
i
g
u
r
e
, w
e
ob
serv
ed th
at en
ergy co
nsu
m
ed
b
y
SMA
C
is
75
% m
o
r
e
th
an TM
A
C
.
6.
CO
NCL
USI
O
N
In case of
WSN, ene
r
gy
plays the fore
m
o
st
im
portant role because
of
their distance
constrai
nts
an
d h
i
g
h
d
i
rectiv
ity, th
e power is th
e m
o
st i
m
p
o
r
tan
t
p
a
rameters to
b
e
tak
e
n care. Th
us, th
e
po
wer sav
i
ng
i
n
WS
N i
s
st
udi
e
d
.
I
n
t
h
i
s
pa
pe
r,
we c
o
m
p
ared t
w
o
sl
ot
t
e
d
M
A
C
p
r
ot
oc
ol
, SM
AC
an
d
T
M
AC
wi
t
h
res
p
ect
t
o
t
h
ei
r ene
r
gy
c
ons
um
pt
i
on an
d f
o
u
n
d
t
h
at
TM
AC
pe
rf
or
m
s
bet
t
e
r t
h
an
SM
AC
. T
h
es
e pr
ot
oc
ol
s ar
e been
st
udi
e
d
un
de
r t
h
e sam
e
sy
st
em
param
e
t
e
rs
and t
h
e real
t
i
m
e M
A
C
l
a
y
e
r fram
e
wor
k
s
e
t
up an
d co
ncl
ude
d as
TM
AC
p
r
ot
oc
ol
m
o
re ene
r
gy
effi
ci
ent
t
h
a
n
SM
AC
.
REFERE
NC
ES
[1]
I. F. Ak
yild
iz
,
et al.
, “A survey
on sensor networks,”
IEEE Com
m
unications ma
gazine,
vol/issue: 40(8), pp
. 102-
114, 2002
.
[2]
M. B. Ali and
M. Johnson A., “Wireless
senso
r
networks for surveillance a
pplications- A comparative survey
o
f
MAC protocols,”
Proc. The Fo
urth Internation
a
l Conference
on wireless and
Mobile Communications(
I
CWMC
2008)
, Athens, G
r
eece
,
pp
. 399-4
03, 2008
.
[3]
D
u
rves
h P
.,
et al.
, “Eff
icient energ
y
s
a
ving algorithm b
y
modern
c
l
uste
r head se
l
e
ct
i
on in
Wireless Sensors
Network,”
Inter
national Journal
of Electric
al an
d Computer Eng
i
neering
,
vol/issue: 3(4)
, pp
. 167
-176, 2015
.
[4]
Deepak S
.
S
.
an
d Bas
a
var
a
ju
T.
G.
,
“
E
nerg
y
effi
cien
t schem
e
to j
o
intl
y op
tim
ize
c
overage
and
con
n
ect
ivit
y
in l
a
r
g
e
scale wireless sensor network,”
International Jou
r
nal of Elect
rica
l and Computer
Engineering,
vol/issue: 5(3), pp.
454-463, 2015
.
[5]
A. Sinha and A. Chandrakasan,
“Dy
n
amic power
management in wirele
ss senso
r
networks,”
IEEE De
sign
&
Te
st
of Computers,
v
o
l/issue: 1
8
(2), p
p
. 62-74
, 2001
.
[6]
Babak N. and Karim
F., “
E
nerg
y-effi
ci
ent m
u
lti-SPEED
routing protocol
for wireless sensor networks,”
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l/issue: 3
(
2), pp.
246-253, 2013
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ana
l
ysis and
C
o
mpa
r
ison
o
f
SMAC and
TMAC Pro
t
o
c
o
l
f
o
r
En
erg
y
Efficien
t
.... (Tapa
sw
in
i Sa
man
t
)
2
337
[7]
A. Woo and D.
Culler
,
“A trans
m
ission control
sc
heme for media access in
sens
or networks,” in
Proc.
ACM/
IEE
E
Int. Con
f
. Mobile Computing
an
d Networking, Rome, Ita
l
y,
July
,
pp. 221–235
, 20
01.
[8]
B. N
a
ra
in,
et a
l
.
, “Energ
y
Eff
i
cient Mac Proto
c
ols For
Wireless Sensor Netw
orks: A Survey
,”
International Journa
l
Of Computer Science
&
E
ngineering Survey (
I
JCS
E
S)
,
vol/issue: 2
(
3), pp
. 121-131
, 2011.
[9]
H. Jadidoleslamy
, “A Survey
on
Medi
um Access Control Protocols based on
S
y
nchronous Duty
C
y
cle Approach in
Wireless Sensor Network,”
IJC
S
NS Internation
a
l Journal of C
o
mputer Scien
c
e and Network S
ecurity,
vo
l/issu
e:
14(3), pp
. 81-88
, 2014.
[10]
I. F. Ak
yi
ldiz
,
et al.
, “Wireless sensor ne
tworks: a survey
,”
Co
mputer Networks,
vol/issue: 38(
4), pp. 393-422
,
2002.
[11]
J. Kabara and M. Calle, “MAC Pr
otocols Used b
y
Wirele
ss Sensor Netwo
r
ks and a Gen
e
ral Method of
P
e
rform
ance Ev
alua
tion,
”
Intern
ational Journal
of Di
stributed S
e
nsor Networks,
Article ID 8347
84, vol. 2012
, pp.
1-11, 2012
.
[12]
P. K. Pattnaik
an
d R. M
a
ll, “Funda
mentals of
Mob
ile Computing,”
PHI Publication
, 2012
.
[13]
P. Udhawani an
d S. K. Pathan, “Rev
iew of Wi
reless Sensor Networks a
nd Energ
y
Efficien
t MAC Protocols,”
International Jo
urnal of Compu
t
er Scie
nce and
Information Technologies (
I
JCS
I
T)
,
vol/issue: 5
(
1), pp. 868-872
,
2014.
[14]
R. R. Lanj
ewar and D. S
.
Adane,
“Comparative Stud
y
of MAC
Lay
e
r Protoc
ols in Wire
le
ss Se
ns
or -Ne
t
works: A
Survey
,
”
Interna
tional Journal
o
f
Engin
eer
ing
Trends and Techno
logy (
I
JETT)
,
vol/issue: 12
(1), pp
. 13-19
, 2014
.
[15]
R. Kannan
,
et al.
, “En
e
rg
y
and r
a
te based
MAC protoc
ol for wir
e
less sensor n
e
tworks,”
Special
section
on senso
r
network
techno
logy and se
nsor d
a
ta management,
vol/issue: 32(4)
, pp
. 60-65
, 200
3.
[16]
Raja V.,
et al.
, “
R
eal Time domestic power consu
m
ption m
onitoring using wireless sensor network
s
,”
Internationa
l
Journal of Electrical and
Comp
uter
Eng
i
neer
ing
,
vol/issue: 5(4),
pp. 685-694
, 20
15.
[17]
U
m
ar S
.,
et al
., “Tree based en
erg
y
b
a
lan
c
ing r
outing protoco
l
b
y
self-org
anizing in wire
less sensor networks,”
International Jo
urnal of
Electr
ical and Computer Engin
eering
,
vo
l/issue: 5
(
6), pp.
1486-1491, 201
5.
[18]
S.
Agarwal,
et al.
, “Energ
y
Eff
i
cient MAC Protocol
s for Wir
e
less Sensor Network,"
International Journal on
Computational S
c
ien
ces
&
Applications (
I
JCSA)
,
vol/issue: 4(1)
,
pp. 153-160
, 20
14.
[19]
Sm
ritijoshi,
et al.
, “A Novel
Analy
s
is of
TMAC and SMAC Pr
otocol for Wireless Se
nsor Networks Using
Castalia,”
International Journal of
Soft
Computi
ng and Engin
eer
ing (
I
JSCE)
ISSN: 2231-2307,
v
o
l/issue: 2(6)
,
pp
.
128-131, 2013
.
BIOGRAP
HI
ES OF
AUTH
ORS
Mrs.Tapaswini
Samant has do
ne
B.
Tech
, M
.
t
ech from
KIIT
Univers
i
t
y
,
O
d
is
ha, Ind
i
a
.
Currently
she is
pursuing PhD from KIIT Un
ive
r
sity
in Wire
le
ss
Communication and
her
research
in
teres
t
s includes Networking, Routi
ng, Protocol designing. She is working a
s
Assistant Professor in School o
f
Electronics K
IIT University
since last 10
years. She has
published man
y
papers in
Inter
n
ation
a
l Conf
er
en
ces
and par
t
i
c
ipat
ed in m
a
n
y
nation
a
l l
e
ve
l
workshops regarding her
research.
Amlan Datta h
a
s done his B.
Tech, M. Tech
and Ph. D from IIT, Khar
agpur,
India. He has
worked in DRDO for nearl
y
5
years in Microw
ave and Millim
et
er wave. Subsequentl
y
, h
e
has
worked with R
e
lian
ce Communication,
India
an
d ZTE, India in
GSM,
CDMA,
WCDMA &
LTE for ne
arl
y
1
5
y
e
ars. Since
,
l
a
st 4
y
ears, he
is working as Prof
essor in School of Elec
troni
cs
Engine
er, KIIT
Univers
i
t
y
, In
dia. His
curren
t
interests inc
l
u
d
e W
i
reless Sensor Network,
Cogni*ve R
a
dio, Bod
y
ar
ea network
and Mi
llim
et
er wav
e
com
m
unication.
Evaluation Warning : The document was created with Spire.PDF for Python.