I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
201
7
,
p
p
.
3
5
3
~
3
6
2
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
1
.
p
p
3
5
3
-
3
6
2
353
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Selection o
f
t
h
e B
est P
ro
po
sa
l usin
g
F
AH
P:
Cas
e of
Procure
m
en
t
o
f
IT M
a
ster P
la
n
’s
Rea
liz
a
tion
A
m
a
do
u Dia
ba
g
a
t
é
1
,
Abdell
a
h Az
m
a
n
i
2
,
M
o
ha
m
ed
E
l H
a
rz
li
3
1,
2
De
p
a
r
tm
e
n
t
o
f
Co
m
p
u
t
e
r
S
c
ien
c
e
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
ies
,
Un
i
v
e
r
s
it
y
Ab
d
e
l
M
a
lek
Essa
a
d
i,
M
o
r
o
c
c
o
3
De
p
a
r
tm
e
n
t
o
f
El
e
c
t
r
i
c
a
l
En
g
in
e
e
r
in
g
,
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
ies
,
Un
iv
e
r
s
it
y
Ab
d
e
l
M
a
l
e
k
Essa
a
d
i,
M
o
r
o
c
c
o
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
4
,
2
0
1
6
R
ev
i
s
ed
Dec
2
0
,
2
0
1
6
A
cc
ep
ted
J
an
4
,
2
0
1
7
I
T
m
a
s
ter
p
l
a
n
,
wh
ic
h
a
ll
o
ws
p
l
a
n
n
in
g
a
n
d
m
a
n
a
g
in
g
th
e
d
e
v
e
l
o
p
m
e
n
t
o
f
th
e
c
o
m
p
u
ter
s
y
s
tem
s
,
d
e
r
iv
e
s
it
s
imp
o
r
t
a
n
c
e
in
th
e
c
e
n
tra
l
r
o
le
o
f
th
e
c
o
m
p
u
ter
s
y
s
tem
s
in
th
e
f
u
n
c
ti
o
n
in
g
o
f
o
r
g
a
n
iza
ti
o
n
s
.
Th
i
s
a
r
ti
c
le f
o
c
u
s
e
s
o
n
th
e
u
s
e
o
f
F
AH
P
m
e
th
o
d
f
o
r
a
n
a
ly
s
is
a
n
d
e
v
a
lu
a
ti
o
n
o
f
ten
d
e
r
s
d
u
r
in
g
th
e
a
wa
r
d
in
g
o
f
c
o
n
tra
c
t
s
o
f
I
T
m
a
s
ter
p
la
n
’s
r
e
a
li
z
a
ti
o
n
.
F
o
r
th
o
s
e
p
u
r
p
o
s
e
s,
a
p
a
in
s
t
a
k
in
g
wo
r
k
w
a
s
r
e
a
li
z
e
d
f
o
r
m
a
k
in
g
a
n
in
v
e
n
to
r
y
o
f
c
r
it
e
r
i
a
a
n
d
s
u
b
-
c
r
it
e
r
ia
in
v
o
l
v
e
d
i
n
th
e
e
v
a
lu
a
ti
o
n
o
f
ten
d
e
r
s
a
n
d
f
o
r
sp
e
c
i
f
y
in
g
th
e
d
e
g
r
e
e
s
o
f
p
r
e
f
e
r
e
n
c
e
f
o
r
e
a
c
h
p
a
i
r
o
f
c
rit
e
ri
a
a
n
d
s
u
b
-
c
r
it
e
r
i
a
.
To
f
in
d
a
p
r
o
v
i
d
e
r
f
o
r
th
e
I
T
m
a
s
ter
p
la
n
’s
r
e
a
li
z
a
ti
o
n
,
o
r
g
a
n
iz
a
ti
o
n
s
a
r
e
in
c
r
e
a
s
in
g
ly
u
s
in
g
te
n
d
e
r
in
g
a
s
th
e
m
o
d
e
o
f
a
wa
r
d
in
g
c
o
n
t
r
a
c
t
s
.
Th
is
p
a
p
e
r
is
a
n
im
p
r
o
v
e
m
e
n
t
o
f
a
p
r
e
v
io
u
s
p
u
b
li
s
h
e
d
p
a
p
e
r
in
wh
ic
h
AH
P
m
e
th
o
d
wa
s
u
s
e
d
.
Th
e
g
o
a
l
s
o
f
th
i
s
wo
r
k
a
r
e
to
m
a
k
e
a
v
a
il
a
b
le
to
m
e
m
b
e
r
s
o
f
ten
d
e
r
s
c
o
m
m
it
tee
a
d
e
c
is
io
n
s
u
p
p
o
r
t
to
o
l
f
o
r
e
v
a
lu
a
ti
n
g
ten
d
e
r
s
o
f
I
T
m
a
s
ter
p
l
a
n
’s
r
e
a
li
z
a
ti
o
n
a
n
d
e
n
d
o
w
t
h
e
o
r
g
a
n
iza
ti
o
n
s
wi
th
e
ff
e
c
ti
v
e
I
T
m
a
s
te
r
p
la
n
s
in
o
r
d
e
r
to
in
c
re
a
s
e
th
e
ir
in
f
o
r
m
a
ti
o
n
s
y
s
tem
s
’
p
e
rf
o
r
m
a
n
c
e
.
K
ey
w
o
r
d
:
A
r
ti
f
icial
i
n
tel
lig
e
n
ce
Fu
zz
y
A
HP
I
T
m
a
s
ter
p
lan
Mu
lti
-
cr
iter
ia
d
ec
is
io
n
m
a
k
i
n
g
T
en
d
er
in
g
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Am
ad
o
u
Diab
a
g
até,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
,
Un
i
v
er
s
it
y
A
b
d
el
Ma
lek
E
s
s
aa
d
i,
Z
iaten
,
T
an
g
ier
4
1
3
,
Mo
r
o
cc
o
.
E
m
ail:
a
h
m
ad
o
u
.
d
iab
ag
ate@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Or
g
an
iza
tio
n
s
in
cr
ea
s
in
g
l
y
u
s
e
I
T
m
aster
p
la
n
f
o
r
lead
in
g
t
h
e
d
ev
elo
p
m
e
n
t
o
f
t
h
e
co
m
p
u
ter
s
y
s
te
m
w
h
ic
h
i
s
a
n
e
s
s
e
n
tial
ele
m
en
t
f
o
r
t
h
eir
o
p
er
atio
n
s
[
1
]
.
T
h
u
s
,
p
u
b
lic
a
n
d
p
r
i
v
ate
p
r
o
cu
r
e
m
en
t
o
f
I
T
m
aster
p
lan
’
s
r
ea
lizatio
n
ar
e
b
ec
o
m
i
n
g
m
o
r
e
f
r
eq
u
e
n
t.
T
h
e
I
T
m
as
ter
p
lan
is
a
s
tr
ateg
ic
p
lan
in
ten
d
ed
f
o
r
p
ilo
tin
g
th
e
d
ev
elo
p
m
e
n
t o
f
I
T
in
an
o
r
g
an
izatio
n
.
I
t
allo
w
s
h
a
v
in
g
a
co
m
p
u
ter
s
y
s
te
m
t
h
at
m
ee
t
s
t
h
e
s
tr
ateg
i
c
o
p
tio
n
s
o
f
t
h
e
D
ir
ec
to
r
ate
Gen
er
al.
I
ts
s
tar
ti
n
g
p
o
in
t
is
t
h
e
s
tr
ate
g
y
o
f
an
o
r
g
an
iza
tio
n
to
r
ea
ch
t
h
e
d
ef
i
n
i
tio
n
o
f
a
tar
g
e
t
in
ter
m
s
o
f
I
T
an
d
in
f
o
r
m
atio
n
s
y
s
te
m
.
T
h
e
r
ea
lizatio
n
o
f
a
n
I
T
m
aster
p
la
n
ai
m
s
a
t
m
an
y
o
b
j
ec
tiv
es
s
u
ch
as
t
h
e
u
r
b
an
izatio
n
o
f
th
e
co
m
p
u
ter
s
y
s
te
m
,
t
h
e
m
o
d
er
n
i
za
tio
n
o
f
I
T
in
f
r
a
s
tr
u
ct
u
r
es
(
h
ar
d
w
ar
e
an
d
s
o
f
t
w
ar
e)
,
th
e
r
e
d
u
ctio
n
o
f
I
T
co
s
ts
,
th
e
ac
co
m
p
a
n
i
m
en
t
o
f
t
h
e
lau
n
ch
o
f
s
tr
ate
g
ic
p
r
o
j
ec
ts
,
th
e
cr
ea
tio
n
o
f
m
o
n
ito
r
in
g
i
n
d
icat
o
r
s
,
th
e
m
u
lti
-
s
ite
s
d
ep
lo
y
m
en
t o
f
th
e
co
m
p
u
ter
s
y
s
te
m
.
Or
g
an
iza
tio
n
s
,
i
n
o
r
d
er
to
en
s
u
r
e
t
h
eir
ta
s
k
s
,
n
ee
d
to
p
u
r
c
h
a
s
e
g
o
o
d
s
o
r
s
er
v
ice
s
o
r
to
e
x
e
cu
te
w
o
r
k
.
T
h
ese
p
u
r
ch
ases
d
esi
g
n
ated
b
y
t
h
e
ter
m
"
p
r
o
cu
r
em
e
n
t"
p
lay
a
co
n
s
id
er
ab
le
ec
o
n
o
m
i
c
r
o
le
an
d
h
av
e
a
s
ig
n
i
f
ica
n
t
ec
o
n
o
m
ic
w
ei
g
h
t
[
2
]
esti
m
ated
at
ab
o
u
t
2
0
%
o
f
g
lo
b
al
GDP
[
3
]
.
T
h
e
aw
ar
d
o
f
co
n
tr
ac
ts
is
a
s
en
s
iti
v
e
ar
ea
as
th
e
ec
o
n
o
m
i
c
in
ter
ests
at
s
ta
k
e
ar
e
h
u
g
e
[
3
]
,
[
4]
.
T
h
er
e
ar
e
s
ev
er
al
m
o
d
es
f
o
r
aw
ar
d
in
g
co
n
tr
ac
ts
i
n
cl
u
d
in
g
ten
d
er
in
g
[
5]
w
h
ich
ca
n
b
e
d
ef
i
n
ed
a
s
a
p
r
o
ce
s
s
t
h
at
allo
w
s
to
e
m
it
a
r
eq
u
est
f
o
r
w
o
r
k
s
,
s
er
v
ices
an
d
g
o
o
d
s
to
b
u
s
i
n
ess
es
an
d
t
h
e
n
c
h
o
o
s
e
t
h
e
p
r
o
v
id
er
af
ter
a
n
al
y
s
is
o
f
p
r
o
p
o
s
als
ac
co
r
d
in
g
to
p
r
ed
eter
m
i
n
ed
cr
iter
ia
w
it
h
o
u
t
n
eg
o
tiatio
n
[
6
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
S
elec
tio
n
o
f th
e
B
est P
r
o
p
o
s
a
l u
s
in
g
F
A
HP
:
C
a
s
e
o
f P
r
o
cu
r
eme
n
t o
f I
T Ma
s
ter P
la
n
’
s
…
(
A
ma
d
o
u
D
.
)
354
T
h
e
an
al
y
s
is
an
d
e
v
al
u
atio
n
o
f
te
n
d
er
s
is
a
d
ec
is
i
v
e
s
te
p
in
th
e
ten
d
er
i
n
g
p
r
o
ce
s
s
[
7
]
,
[
8
]
.
T
h
e
p
r
in
cip
le
estab
lis
h
ed
to
an
al
y
ze
an
d
ev
alu
ate
te
n
d
er
s
is
b
ased
o
n
th
e
u
s
e
o
f
a
w
ar
d
i
n
g
cr
iter
ia
[
9
]
.
T
h
ese
cr
iter
ia
m
u
s
t
b
e
d
esig
n
ed
s
o
as
to
b
e
n
o
n
d
is
cr
i
m
in
ato
r
y
a
n
d
lin
k
ed
to
th
e
o
b
j
ec
t
o
f
th
e
co
n
tr
ac
t.
T
h
u
s
,
th
e
s
elec
tio
n
o
f
th
e
b
est
ten
d
er
ca
n
b
e
c
h
ar
ac
ter
ized
as
a
m
u
ltip
le
cr
iter
ia
d
ec
is
io
n
-
m
a
k
i
n
g
(
MCDM)
p
r
o
b
le
m
.
A
f
r
eq
u
en
tl
y
u
s
ed
m
eth
o
d
to
s
o
lv
e
th
e
M
C
DM
p
r
o
b
le
m
s
i
s
A
HP
(
An
al
y
tic
Hier
ar
c
h
y
P
r
o
ce
s
s
)
m
et
h
o
d
[
1
0
]
,
[
11]
w
h
ic
h
h
a
s
b
ee
n
d
e
v
elo
p
ed
b
y
t
h
e
m
at
h
e
m
aticia
n
T
h
o
m
as
Saat
y
L
o
r
ie
[
1
2
]
.
I
t
is
a
p
o
w
er
f
u
l
an
d
f
le
x
ib
le
m
et
h
o
d
o
f
d
ec
is
io
n
s
u
p
p
o
r
t a
p
p
lied
f
o
r
s
o
lv
in
g
s
i
m
p
le
an
d
c
o
m
p
le
x
p
r
o
b
le
m
s
i
n
m
a
n
y
s
it
u
atio
n
s
[
1
3
]
,
[
1
4
]
.
F
A
HP
(
Fu
zz
y
An
al
y
tic
H
ie
r
ar
ch
y
P
r
o
ce
s
s
)
m
et
h
o
d
is
an
i
m
p
r
o
v
e
m
e
n
t
o
f
th
e
AHP
m
et
h
o
d
w
h
ic
h
its
el
f
co
n
ta
in
s
s
o
m
e
s
h
o
r
tco
m
in
g
s
.
I
n
p
ar
ticu
lar
,
its
ef
f
ec
ti
v
en
es
s
is
r
e
d
u
ce
d
i
n
s
o
lv
i
n
g
p
r
o
b
lem
s
w
i
th
v
a
g
u
e
an
d
i
m
p
r
ec
is
e
i
n
f
o
r
m
atio
n
[
1
5
]
in
w
h
ic
h
F
A
HP
is
m
o
r
e
ad
ap
ted
[
1
6
]
,
[
17]
.
T
h
er
e
a
r
e
v
ar
io
u
s
F
A
HP
m
et
h
o
d
s
,
th
e
f
ir
s
t
w
a
s
p
r
o
p
o
s
e
d
in
1
9
8
3
b
y
Van
L
aa
r
h
o
v
e
n
a
n
d
P
ed
r
y
cz
[
1
8
]
.
T
h
e
FA
HP
m
eth
o
d
p
r
o
p
o
s
ed
b
y
C
h
a
n
g
,
w
h
ich
is
u
s
ed
i
n
t
h
is
p
ap
er
,
h
as
t
w
o
m
ai
n
ad
v
an
t
ag
es
n
a
m
el
y
t
h
e
g
r
ea
t
s
i
m
ila
r
it
y
w
i
th
th
e
b
asic
m
et
h
o
d
A
HP
a
n
d
f
e
w
co
m
p
u
tatio
n
s
d
u
r
in
g
it
s
i
m
p
le
m
e
n
ta
tio
n
[
1
9
]
.
Fo
r
th
ese
ad
v
a
n
tag
es,
th
e
m
o
s
t
o
f
t
h
e
r
ec
en
t a
p
p
licatio
n
s
o
f
F
A
HP
u
s
e
th
e
C
h
a
n
g
m
et
h
o
d
[
1
8
]
.
T
o
im
p
r
o
v
e
th
e
p
r
o
ce
s
s
o
f
s
el
ec
tin
g
t
h
e
b
est
te
n
d
er
,
m
an
y
s
o
lu
tio
n
s
b
ased
o
n
ar
ti
f
icial
i
n
t
ellig
e
n
ce
m
et
h
o
d
s
p
ar
ticu
lar
l
y
o
n
m
u
l
t
i
-
cr
iter
ia
d
ec
is
io
n
m
a
k
i
n
g
m
e
th
o
d
s
h
av
e
b
ee
n
p
r
o
p
o
s
ed
[
2
0
]
,
[
2
1
]
.
T
s
ai
an
d
C
h
o
u
h
a
v
e
w
o
r
k
ed
o
n
t
h
e
e
s
t
ab
lis
h
m
e
n
t
o
f
a
f
u
zz
y
s
y
s
te
m
f
o
r
o
n
li
n
e
a
w
ar
d
in
g
co
n
tr
ac
ts
th
at
allo
w
s
b
id
d
er
s
s
u
b
m
itti
n
g
ten
d
er
s
o
n
l
in
e.
T
h
e
ten
d
er
s
w
ill
b
e
ev
al
u
ated
o
n
lin
e
b
y
t
h
e
f
u
zz
y
s
y
s
te
m
ac
co
r
d
in
g
t
h
e
a
w
ar
d
in
g
cr
iter
ia
[
2
2
]
.
Diab
ag
até
et
al.
h
av
e
p
r
o
p
o
s
ed
a
n
e
w
m
et
h
o
d
o
f
an
al
y
s
i
s
an
d
ev
al
u
atio
n
o
f
ten
d
er
s
b
ased
o
n
th
e
u
s
e
o
f
f
u
zz
y
lo
g
ic
an
d
r
u
le
o
f
p
r
o
p
o
r
tio
n
[
2
3
]
.
R
eg
ar
d
in
g
t
h
e
m
u
lti
-
cr
iter
ia
d
ec
is
io
n
m
a
k
in
g
m
et
h
o
d
s
,
A
HP
an
d
F
A
HP
s
ee
m
b
e
v
er
y
p
o
p
u
lar
m
et
h
o
d
s
an
d
h
av
e
b
ee
n
w
id
el
y
ap
p
lied
to
d
e
al
w
it
h
v
ar
io
u
s
co
m
p
lex
d
ec
is
io
n
-
m
a
k
i
n
g
p
r
o
b
le
m
s
m
ain
l
y
t
h
e
p
r
o
b
lem
o
f
s
elec
t
in
g
th
e
b
est
ten
d
er
[
1
8
-
2
4
]
.
T
h
u
s
,
P
r
iy
a
et
al.
h
av
e
d
ev
elo
p
ed
a
d
ec
is
io
n
s
u
p
p
o
r
t
s
y
s
te
m
i
n
t
h
e
co
n
te
x
t
o
f
th
e
d
em
a
ter
ializatio
n
o
f
p
u
b
lic
p
r
o
cu
r
e
m
en
t
f
o
r
th
e
ch
o
ice
o
f
t
h
e
b
est
t
e
n
d
er
a
m
o
n
g
w
h
ic
h
p
r
o
p
o
s
ed
b
y
au
to
m
an
u
f
ac
t
u
r
in
g
co
m
p
a
n
ies.
T
h
e
y
in
teg
r
ated
A
HP
m
et
h
o
d
in
t
h
i
s
e
-
p
r
o
cu
r
e
m
e
n
t
s
y
s
te
m
f
o
r
th
e
s
elec
tio
n
o
f
t
h
e
b
est
p
r
o
p
o
s
al
[
2
4
]
.
A
tan
a
s
o
v
a
-
P
ac
e
m
s
k
a
et
al.
h
av
e
p
r
o
p
o
s
ed
a
d
ec
is
io
n
m
a
k
in
g
to
o
l
f
o
r
th
e
ch
o
o
s
i
n
g
o
f
th
e
b
est
ec
o
n
o
m
ic
o
f
f
er
f
o
r
p
u
r
ch
a
s
e
o
f
co
m
p
u
ter
eq
u
ip
m
e
n
t,
esp
ec
ial
l
y
p
u
r
ch
a
s
e
o
f
d
esk
to
p
co
m
p
u
ter
s
.
I
n
th
is
r
esear
ch
,
t
h
e
s
e
lectio
n
cr
iter
ia
ac
co
r
d
in
g
to
w
h
ic
h
th
e
s
elec
t
io
n
o
f
t
h
e
b
est
b
id
w
il
l
b
e
m
ad
e
is
i
n
ac
co
r
d
an
ce
w
it
h
t
h
e
L
a
w
o
n
P
u
b
lic
P
r
o
cu
r
e
m
en
t
o
f
th
e
R
ep
u
b
lic
o
f
Ma
ce
d
o
n
ia
[
2
5
]
.
Ay
d
in
a
n
d
Kah
r
a
m
a
n
p
r
o
p
o
s
ed
A
HP
b
ased
an
aly
tical
to
o
l
f
o
r
d
ec
is
io
n
s
u
p
p
o
r
t
en
ab
lin
g
a
n
e
f
f
ec
t
iv
e
m
u
lti
-
cr
i
ter
ia
s
u
p
p
lier
s
elec
t
io
n
p
r
o
ce
s
s
in
a
n
air
co
n
d
it
io
n
er
s
eller
f
i
r
m
u
n
d
er
f
u
z
zi
n
es
s
.
I
n
t
h
is
w
o
r
k
,
t
h
e
An
al
y
tic
H
ie
r
ar
ch
y
P
r
o
ce
s
s
(
A
HP
)
u
n
d
er
f
u
zz
in
e
s
s
is
e
m
p
lo
y
ed
f
o
r
it
s
p
er
m
is
s
iv
e
n
es
s
to
u
s
e
an
ev
a
lu
atio
n
s
ca
le
in
cl
u
d
i
n
g
li
n
g
u
i
s
tic
e
x
p
r
ess
io
n
s
,
cr
is
p
n
u
m
er
ical
v
alu
e
s
,
f
u
zz
y
n
u
m
b
er
s
a
n
d
r
an
g
e
n
u
m
er
ical
v
alu
e
s
[
2
6
]
.
C
h
an
a
n
d
Ku
m
ar
p
r
o
p
o
s
ed
a
m
o
d
el
f
o
r
p
r
o
v
id
in
g
a
f
r
a
m
e
w
o
r
k
f
o
r
an
o
r
g
an
izat
io
n
to
s
elec
t
t
h
e
g
lo
b
al
s
u
p
p
lier
b
y
c
o
n
s
id
er
in
g
r
is
k
f
ac
to
r
s
.
T
h
e
y
u
s
ed
f
u
zz
y
e
x
ten
d
ed
an
a
l
y
t
ic
h
ier
ar
ch
y
p
r
o
ce
s
s
i
n
th
e
s
elec
tio
n
o
f
g
lo
b
al
s
u
p
p
lier
[
2
7
]
.
Ay
h
a
n
h
a
s
ap
p
lied
F
u
zz
y
AHP
in
a
g
ea
r
m
o
to
r
co
m
p
a
n
y
f
o
r
d
eter
m
i
n
in
g
th
e
b
est
ten
d
er
a
m
o
n
g
w
h
ic
h
s
u
b
m
itted
b
y
co
m
p
an
ie
s
w
it
h
r
esp
ec
t
to
s
elec
ted
cr
iter
ia
[
2
8
]
.
T
as
p
r
o
p
o
s
ed
a
f
u
zz
y
a
n
al
y
tic
h
ier
ar
ch
y
p
r
o
ce
s
s
(
f
u
zz
y
-
AHP
)
to
ef
f
icie
n
tl
y
tack
le
b
o
th
q
u
an
t
itati
v
e
an
d
q
u
alitati
v
e
cr
iter
ia
in
v
o
l
v
ed
i
n
s
elec
tio
n
o
f
g
lo
b
al
s
u
p
p
lier
i
n
p
h
ar
m
ac
eu
tica
l
in
d
u
s
tr
y
.
Fo
r
t
h
is
s
t
u
d
y
,
f
o
u
r
m
ain
cr
iter
ia
an
d
th
ir
tee
n
s
u
b
-
cr
iter
ia
w
er
e
id
e
n
ti
f
ied
f
o
r
s
u
p
p
lier
s
elec
tio
n
in
t
h
i
s
p
r
o
b
le
m
[
2
9
]
.
Sh
a
w
e
t
al.
d
ev
elo
p
ed
an
in
te
g
r
ated
ap
p
r
o
ac
h
f
o
r
s
elec
ti
n
g
th
e
ap
p
r
o
p
r
iate
s
u
p
p
lier
in
th
e
s
u
p
p
l
y
c
h
ai
n
,
ad
d
r
ess
in
g
t
h
e
ca
r
b
o
n
e
m
i
s
s
io
n
is
s
u
e,
u
s
in
g
f
u
zz
y
-
AHP
an
d
f
u
zz
y
m
u
lti
-
o
b
j
ec
tiv
e
lin
ea
r
p
r
o
g
r
a
m
m
i
n
g
.
F
u
zz
y
AHP
(
FAHP
)
is
ap
p
lied
f
ir
s
t
f
o
r
an
al
y
zi
n
g
t
h
e
w
ei
g
h
ts
o
f
th
e
m
u
ltip
le
f
ac
to
r
s
.
T
h
ese
weig
h
ts
o
f
th
e
m
u
ltip
le
f
ac
to
r
s
ar
e
u
s
ed
in
f
u
zz
y
m
u
lti
-
o
b
j
ec
tiv
e
lin
ea
r
p
r
o
g
r
a
m
m
i
n
g
f
o
r
s
u
p
p
lier
s
elec
tio
n
an
d
q
u
o
ta
allo
ca
tio
n
[
3
0
]
.
T
h
e
ai
m
o
f
t
h
i
s
w
o
r
k
is
to
p
r
o
p
o
s
e
a
d
ec
is
io
n
m
a
k
in
g
to
o
l
th
at
allo
w
s
s
elec
ti
n
g
t
h
e
b
est
te
n
d
er
d
u
r
in
g
th
e
co
n
tr
ac
ts
a
w
ar
d
in
g
o
f
in
f
o
r
m
at
io
n
tech
n
o
lo
g
y
(
I
T
)
m
as
ter
p
lan
’
s
r
ea
lizatio
n
.
T
o
ac
h
iev
e
th
at,
th
e
F
A
HP
m
et
h
o
d
h
as
b
ee
n
u
s
ed
f
o
r
its
p
er
f
o
r
m
a
n
ce
a
n
d
its
g
r
ea
t
s
u
cc
e
s
s
i
n
p
u
b
li
s
h
ed
w
o
r
k
s
.
I
n
t
h
e
liter
at
u
r
e,
w
e
h
a
v
e
n
o
t
f
o
u
n
d
t
h
e
p
u
b
lis
h
ed
r
esear
ch
u
s
i
n
g
F
A
HP
w
h
i
ch
ad
d
r
ess
t
h
e
s
elec
t
io
n
o
f
th
e
b
est
ten
d
er
d
u
r
i
n
g
a
w
ar
d
in
g
co
n
tr
ac
ts
o
f
I
T
m
a
s
ter
p
lan
’
s
r
ea
lizatio
n
.
T
h
is
f
ac
t
r
ef
lect
s
t
h
e
g
r
ea
t
i
m
p
o
r
ta
n
ce
o
f
t
h
is
w
o
r
k
w
h
ic
h
ca
n
b
e
co
n
s
id
er
ed
as r
ef
er
en
ce
b
y
o
r
g
a
n
izatio
n
s
d
u
r
i
n
g
te
n
d
e
r
in
g
o
f
I
T
m
aster
p
lan
’
s
r
ea
liz
atio
n
.
2.
P
RE
S
E
NT
AT
I
O
N
O
F
F
AH
P
M
E
T
H
O
D
F
A
HP
is
a
m
u
lti
-
cr
iter
ia
d
ec
is
io
n
s
u
p
p
o
r
t
m
e
th
o
d
w
h
ic
h
co
m
b
in
e
s
AHP
m
e
th
o
d
an
d
th
e
co
n
ce
p
ts
o
f
f
u
zz
y
s
et
s
[3
1
]
,
[
32
]
.
2
.
1
.
F
uzzy
Set
s
a
nd
F
uzzy
N
u
m
ber
s
T
h
e
co
n
ce
p
t
o
f
f
u
zz
y
s
et
w
a
s
in
tr
o
d
u
ce
d
f
o
r
th
e
f
ir
s
t
ti
m
e
in
1
9
6
5
b
y
L
o
tf
i
Z
ad
eh
to
co
r
r
ec
t
th
e
li
m
ita
tio
n
s
o
f
class
ical
lo
g
ic
d
u
e
to
th
e
i
m
p
r
ec
is
io
n
an
d
v
ag
u
en
e
s
s
[
3
3
]
,
[
3
4
]
.
Sin
ce
its
in
t
r
o
d
u
ctio
n
,
th
e
f
u
zz
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
5
3
–
362
355
s
et
t
h
eo
r
y
h
a
s
b
ee
n
w
id
el
y
u
s
e
d
in
t
h
e
r
eso
lu
tio
n
o
f
m
an
y
p
r
o
b
lem
s
i
n
w
h
ich
d
ec
is
io
n
m
a
k
er
s
n
ee
d
to
an
a
l
y
z
e
an
d
p
r
o
ce
s
s
i
m
p
r
ec
is
e
an
d
v
ag
u
e
in
f
o
r
m
at
io
n
[
1
7
]
,
[
1
8
]
.
A
f
u
zz
y
s
et
{
)
)
|
}
is
a
s
et
o
f
o
r
d
er
ed
p
air
s
w
h
er
e
is
a
s
u
b
s
et
o
f
th
e
r
ea
l
n
u
m
b
er
s
an
d
)
is
a
m
e
m
b
er
s
h
i
p
f
u
n
ctio
n
t
h
at
ass
ig
n
s
to
ea
c
h
o
b
j
ec
t
a
g
r
ad
e
o
f
m
e
m
b
er
s
h
ip
r
an
g
i
n
g
f
r
o
m
0
to
1
.
A
f
u
zz
y
n
u
m
b
er
{
)
)
|
}
is
a
p
ar
ti
cu
lar
ca
s
e
o
f
f
u
zz
y
s
e
t
w
h
i
ch
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
o
b
ey
s
to
th
e
co
n
d
itio
n
s
o
f
n
o
r
m
a
li
t
y
(
)
)
an
d
co
n
v
ex
it
y
(
)
)
{
)
)
}
)
[
1
3
]
.
T
h
er
e
ar
e
s
ev
er
al
t
y
p
es
o
f
f
u
z
z
y
n
u
m
b
er
s
,
th
e
m
o
s
t
u
s
ed
b
ein
g
th
e
tr
ia
n
g
u
lar
a
n
d
tr
ap
ez
o
id
al
f
u
zz
y
n
u
m
b
er
s
[
35
]
,
[
36
]
.
Giv
e
n
t
h
at
t
h
i
s
p
ap
er
is
u
s
i
n
g
t
h
e
F
A
HP
m
et
h
o
d
i
n
tr
o
d
u
ce
d
b
y
C
h
a
n
g
w
h
ic
h
u
s
e
s
tr
ian
g
u
lar
f
u
z
z
y
n
u
m
b
er
s
[3
7
]
.
T
h
u
s
,
tr
ia
n
g
u
lar
f
u
z
z
y
n
u
m
b
e
r
s
w
ill b
e
ta
k
e
n
to
p
r
esen
t
th
e
p
r
o
p
er
ties
o
f
f
u
zz
y
n
u
m
b
er
s
.
L
et
)
b
e
a
tr
ian
g
u
lar
f
u
zz
y
n
u
m
b
er
,
its
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
is
d
ef
in
ed
b
y
:
)
{
(
1
)
w
h
er
e
,
an
d
ar
e
r
esp
ec
tiv
ely
th
e
s
m
alle
s
t
an
d
t
h
e
lar
g
es
t
o
f
th
e
s
u
p
p
o
r
t
o
f
an
d
is
th
e
m
ed
ian
v
al
u
e
o
f
.
T
h
e
s
u
p
p
o
r
t
o
f
is
t
h
e
s
et
d
ef
in
ed
as
)
{
⁄
}
.
I
f
th
en
,
b
y
co
n
v
en
t
io
n
,
is
n
o
t
a
f
u
zz
y
n
u
m
b
er
.
L
et
)
an
d
)
b
e
t
w
o
f
u
zz
y
n
u
m
b
er
s
,
th
e
m
ai
n
r
u
le
s
o
n
th
eir
m
a
th
e
m
atica
l o
p
er
ati
o
n
s
ar
e
as f
o
llo
w
s
:
)
)
)
(
2
)
)
)
)
(
3
)
)
)
(
4
)
)
(
⁄
⁄
⁄
)
(
5
)
2
.
2
.
T
heo
ry
o
f
F
AH
P
M
e
t
ho
d
T
h
e
i
m
p
le
m
e
n
tat
io
n
o
f
F
AHP
m
et
h
o
d
w
it
h
a
v
ie
w
to
ch
o
o
s
in
g
t
h
e
b
es
t
alter
n
ati
v
e
is
d
o
n
e
i
n
t
w
o
m
ai
n
p
h
ase
s
.
T
h
e
f
ir
s
t
p
h
a
s
e
co
n
s
is
ts
i
n
th
e
co
n
s
tr
u
ctio
n
o
f
a
m
a
tr
ix
o
f
j
u
d
g
m
e
n
t,
t
h
e
d
eter
m
i
n
atio
n
o
f
th
e
v
alu
e
s
o
f
f
u
zz
y
s
y
n
th
e
tic
ex
t
en
ts
,
t
h
e
c
alcu
latio
n
o
f
d
e
g
r
ee
s
o
f
p
o
s
s
ib
ilit
y
an
d
t
h
e
d
eter
m
in
a
tio
n
o
f
w
ei
g
h
t
v
ec
to
r
(
p
r
io
r
ity
v
ec
to
r
)
[
38
]
.
T
h
e
s
ec
o
n
d
p
h
ase
co
n
s
is
ts
i
n
m
a
k
i
n
g
a
co
m
p
ar
ativ
e
s
tu
d
y
o
f
alter
n
ativ
e
s
in
o
r
d
er
to
ch
o
o
s
e
th
e
b
est
[1
2
-
39
]
.
T
h
e
s
tep
s
an
d
th
e
m
a
th
e
m
atica
l
t
h
eo
r
y
o
f
t
h
e
s
ec
o
n
d
p
h
ase
ar
e
s
i
m
ilar
to
th
o
s
e
o
f
t
h
e
f
ir
s
t p
h
a
s
e.
Ste
p
o
f
co
ns
t
ruct
io
n
o
f
j
ud
g
m
e
nt
m
a
t
ri
x
:
let
̃
b
e
th
e
m
at
r
ix
o
f
j
u
d
g
m
en
t
o
r
co
m
p
ar
is
o
n
,
̃
is
d
ef
i
n
ed
as
f
o
llo
w
s
:
̃
(
)
(
)
)
(
6
)
I
n
th
e
m
a
tr
ix
̃
,
th
e
d
ec
is
io
n
m
a
k
er
s
ets
t
h
e
p
r
ef
er
en
ce
s
w
i
th
r
esp
ec
t
to
ea
ch
p
air
o
f
cr
iter
ia
an
d
ea
ch
p
air
o
f
s
u
b
cr
iter
ia.
T
h
ese
p
r
ef
er
en
ce
s
,
w
h
ic
h
ar
e
ex
p
r
es
s
ed
as
v
er
b
al
f
o
r
m
s
b
y
th
e
d
ec
is
io
n
m
ak
er
ar
e
co
n
v
er
ted
[
40
]
to
f
u
zz
y
n
u
m
b
er
f
o
r
m
s
.
Fo
r
th
e
C
h
a
n
g
m
et
h
o
d
,
th
e
co
n
v
er
s
io
n
s
ca
le
in
tab
le
1
ca
n
b
e
u
s
ed
[
1
9
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
S
elec
tio
n
o
f th
e
B
est P
r
o
p
o
s
a
l u
s
in
g
F
A
HP
:
C
a
s
e
o
f P
r
o
cu
r
eme
n
t o
f I
T Ma
s
ter P
la
n
’
s
…
(
A
ma
d
o
u
D
.
)
356
T
ab
le
1
.
T
r
ian
g
u
lar
Fu
zz
y
C
o
n
v
er
s
io
n
Scale
L
i
n
g
u
i
st
i
c
sc
a
l
e
T
r
i
a
n
g
u
l
a
r
f
u
z
z
y
sca
l
e
T
r
i
a
n
g
u
l
a
r
f
u
z
z
y
r
e
c
i
p
r
o
c
a
l
s
c
a
l
e
Ju
st
e
q
u
a
l
(
1
,
1
,
1
)
(
1
,
1
,
1
)
Eq
u
a
l
l
y
i
mp
o
r
t
a
n
t
(1
/
2
,
1
,
3
/
2
)
(
2
/
3
,
1
,
2
)
W
e
a
k
l
y
i
mp
o
r
t
a
n
t
(
1
,
3
/
2
,
2
)
(
1
/
2
,
2
/
3
,
1
)
S
t
r
o
n
g
l
y
mo
r
e
i
mp
o
r
t
a
n
t
(
3
/
2
,
2
,
5
/
2
)
(
2
/
5
,
1
/
2
,
2
/
3
)
V
e
r
y
st
r
o
n
g
l
y
m
o
r
e
i
mp
o
r
t
a
n
t
(
2
,
5
/
2
,
3
)
(
1
/
3
,
2
/
5
,
1
/
2
)
A
b
so
l
u
t
e
l
y
i
mp
o
r
t
a
n
t
(
5
/
2
,
3
,
7
/
2
)
(
2
/
7
,
1
/
3
,
2
/
5
)
Ste
p
o
f
t
he
det
er
m
i
na
t
io
n
o
f
f
uzzy
s
y
nthet
ic
ex
t
ent
:
th
e
d
eter
m
i
n
atio
n
o
f
t
h
e
v
al
u
es
o
f
Fu
zz
y
S
y
n
t
h
etic
E
x
ten
ts
(
FS
E
)
f
o
r
ea
ch
cr
iter
io
n
h
a
s
b
ee
n
d
o
n
e
u
s
in
g
t
h
e
f
o
ll
o
w
i
n
g
f
o
r
m
u
la:
∑
[
∑
∑
]
(
7
)
w
h
er
e
∑
(
∑
∑
∑
)
(
8
)
∑
∑
(
∑
∑
∑
∑
∑
∑
)
(
9
)
[
∑
∑
]
(
∑
∑
∑
∑
∑
∑
)
(
1
0
)
Ste
p deg
re
e
o
f
po
s
s
ibi
lity
ca
l
cula
t
io
n:
T
h
e
v
alu
es o
f
f
u
zz
y
s
y
n
t
h
etics e
x
te
n
ts
ar
e
co
m
p
ar
e
d
an
d
th
e
d
eg
r
ee
o
f
p
o
s
s
ib
ilit
y
o
f
)
)
,
n
o
ted
)
is
ca
lcu
lated
.
T
h
is
ca
lcu
latio
n
is
d
o
n
e
u
s
i
n
g
t
h
e
f
o
llo
w
i
n
g
f
o
r
m
u
la:
)
{
)
)
(
1
1
)
T
h
e
d
eg
r
ee
o
f
p
o
s
s
ib
ilit
y
f
o
r
a
f
u
zz
y
n
u
m
b
er
to
b
e
g
r
ea
ter
t
h
an
f
u
zz
y
n
u
m
b
er
s
{
}
is
d
ef
in
e
d
b
y
:
)
)
)
)
)
(
1
2
)
)
Ste
p o
f
det
er
m
i
na
t
io
n o
f
w
eig
ht
v
ec
t
o
r
:
T
o
c
o
m
p
ar
e
an
d
,
)
is
d
ef
in
ed
as
f
o
llo
w
s
:
)
)
(
1
3
)
T
h
e
w
eig
h
t
v
ec
to
r
co
n
tain
in
g
t
h
e
w
eig
h
t
s
o
f
t
h
e
cr
iter
ia
is
g
i
v
en
b
y
:
)
)
)
)
(
1
4
)
Af
ter
n
o
r
m
aliza
tio
n
,
th
e
n
o
r
m
alize
d
w
ei
g
h
t v
ec
to
r
f
r
o
m
t
h
e
w
ei
g
h
t v
ec
to
r
is
d
ef
in
ed
as
f
o
llo
w
s
:
)
)
)
)
(
1
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
5
3
–
362
357
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
T
h
is
s
ec
tio
n
d
escr
ib
es
a
n
d
d
is
cu
s
s
e
s
th
e
d
i
f
f
er
en
t
s
tep
s
a
n
d
r
esu
lts
o
f
th
e
ap
p
licatio
n
o
f
F
A
HP
m
et
h
o
d
to
ev
alu
ate
te
n
d
er
s
f
o
r
th
e
r
ea
lizatio
n
o
f
I
T
m
aster
p
l
an
.
3
.
1
.
Crit
er
ia
,
Sub
-
Crit
er
ia
a
nd
P
re
f
er
ence
Deg
re
es
T
h
e
id
en
tif
icatio
n
o
f
cr
iter
ia,
s
u
b
-
cr
iter
ia
an
d
t
h
eir
w
eig
h
ts
is
a
cr
u
cial
s
tep
t
o
w
ar
d
th
e
i
m
p
le
m
en
ta
tio
n
o
f
t
h
e
F
AHP
m
et
h
o
d
.
I
n
th
is
s
t
u
d
y
,
t
h
e
ap
p
r
o
ac
h
ad
o
p
ted
h
as
b
ee
n
to
co
n
s
u
lt
s
ev
er
al
ten
d
er
d
o
cu
m
en
ts
g
at
h
er
i
n
g
ex
p
er
ti
s
e
f
r
o
m
m
a
n
y
e
x
p
er
ts
ab
o
u
t
cr
iter
ia,
s
u
b
-
cr
iter
ia
a
n
d
w
eig
h
ti
n
g
.
T
en
d
er
d
o
cu
m
en
ts
ab
o
u
t
I
T
m
aster
p
lan
r
ea
lizatio
n
f
r
o
m
d
i
f
f
er
en
t
co
u
n
tr
ies
h
a
v
e
b
ee
n
co
n
s
u
lt
ed
.
T
h
e
p
r
o
ce
s
s
o
f
id
en
ti
f
icatio
n
h
a
s
b
ee
n
d
o
n
e
i
n
t
w
o
m
ai
n
p
h
a
s
es.
I
n
t
h
e
f
ir
s
t
p
h
ase,
t
h
e
e
x
p
er
tis
e
o
f
m
a
n
y
ex
p
er
ts
w
h
o
h
av
e
p
ar
ticip
ated
in
t
h
e
d
r
af
ti
n
g
o
f
t
h
e
s
e
v
er
al
co
n
s
u
lted
te
n
d
er
d
o
cu
m
e
n
t
s
allo
w
ed
id
e
n
ti
f
y
i
n
g
c
r
iter
ia,
s
u
b
-
cr
iter
ia
an
d
w
ei
g
h
ts
.
A
s
i
m
ilar
w
o
r
k
h
a
s
b
ee
n
d
o
n
e
in
th
e
s
ec
o
n
d
p
h
ase
to
co
n
s
o
lid
ate
th
e
r
esu
lt
s
o
f
t
h
e
f
ir
s
t
p
h
ase
an
d
estab
lis
h
th
e
d
ef
i
n
iti
v
e
lis
t
o
f
cr
iter
ia,
s
u
b
-
cr
iter
ia
an
d
th
eir
w
ei
g
h
ts
.
T
h
e
T
a
b
le
2
co
n
tain
s
s
o
m
e
o
f
t
h
e
m
a
n
y
te
n
d
er
d
o
cu
m
e
n
ts
t
h
at
h
a
v
e
b
e
en
co
n
s
u
lted
.
T
h
is
ap
p
r
o
ac
h
allo
w
ed
,
o
n
t
h
e
o
n
e
h
a
n
d
,
to
id
en
t
if
y
all
cr
iter
ia
an
d
s
u
b
cr
iter
ia
a
n
d
o
n
t
h
e
o
th
er
h
a
n
d
to
h
a
v
e
a
g
o
o
d
ap
p
r
ec
iatio
n
o
f
p
r
ef
er
e
n
ce
d
eg
r
ee
o
f
ea
c
h
p
air
o
f
cr
iter
ia
a
n
d
ea
c
h
p
air
o
f
s
u
b
-
cr
iter
ia
f
o
r
a
g
iv
e
n
cr
iter
io
n
.
T
h
e
Fig
u
r
e
1
p
r
esen
ts
i
n
a
h
ier
ar
ch
ica
l
s
tr
u
ct
u
r
e
all
cr
iter
ia
an
d
s
u
b
-
cr
iter
ia
f
o
r
th
e
i
m
p
le
m
en
ta
tio
n
o
f
F
A
HP
m
et
h
o
d
.
T
ab
le
2
.
So
m
e
ten
d
er
d
o
cu
m
e
n
ts
co
n
s
u
lted
C
o
n
t
r
a
c
t
s
C
o
u
n
t
r
y
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
I
T
mast
e
r
p
l
a
n
’
s re
a
l
i
z
a
t
i
o
n
o
f
A
N
A
P
EC
(
N
a
t
i
o
n
a
l
A
g
e
n
c
y
f
o
r
P
r
o
mo
t
i
o
n
o
f
Emp
l
o
y
m
e
n
t
a
n
d
S
k
i
l
l
s)
M
o
r
o
c
c
o
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
I
T
mast
e
r
p
l
a
n
f
o
r
t
h
e
p
e
r
i
o
d
2013
-
2
0
1
7
o
f
L
o
i
r
e
-
B
r
e
t
a
g
n
e
w
a
t
e
r
A
g
e
n
c
y
F
r
a
n
c
e
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
I
T
mast
e
r
p
l
a
n
f
o
r
t
h
e
mi
n
i
s
t
r
y
o
f
h
i
g
h
e
r
e
d
u
c
a
t
i
o
n
,
t
r
a
i
n
i
n
g
o
f
ma
n
a
g
e
r
s
a
n
d
s
c
i
e
n
t
i
f
i
c
r
e
se
a
r
c
h
f
o
r
t
h
e
p
e
r
i
o
d
o
f
2
0
1
2
-
2
0
1
6
M
o
r
o
c
c
o
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
I
T
M
a
st
e
r
P
l
a
n
f
o
r
M
a
u
r
i
t
a
n
i
a
C
e
n
t
r
a
l
B
a
n
k
M
a
u
r
i
t
a
n
i
a
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
I
T
mast
e
r
p
l
a
n
d
e
d
i
c
a
t
e
d
t
o
t
h
e
h
e
a
l
t
h
su
r
v
e
i
l
l
a
n
c
e
o
f
S
a
i
n
t
-
M
a
u
r
i
c
e
G
u
y
a
n
a
T
e
n
d
e
r
d
o
c
u
me
n
t
s o
f
t
h
e
r
e
a
l
i
z
a
t
i
o
n
o
f
a
n
I
T
M
a
st
e
r
P
l
a
n
f
o
r
t
h
e
c
i
t
y
o
f
P
e
s
sac
F
r
a
n
c
e
Fig
u
r
e
1
.
Hier
ar
ch
y
o
f
C
r
iter
ia
an
d
Su
b
-
cr
iter
ia
f
o
r
E
v
al
u
atio
n
T
en
d
er
s
Wo
rking
m
et
ho
do
lo
g
y
(
C2
)
P
la
nn
ing
a
nd
co
nd
uct
o
f
w
o
rk
(
C2
2
)
P
rice
(
C1
)
T
ea
m
Q
ua
lific
a
t
io
n
(
C4
)
C
a
pita
l a
nd
re
f
er
ence
s
o
f
t
endere
r
(
C3
)
Ass
ig
n
m
ent
o
f
ex
pert
s
in
t
he
t
a
s
ks
(
C2
4
)
Understa
nd
ing
t
he
co
nte
x
t
a
nd
t
he
needs
(
C2
5
)
P
ro
po
s
ed
qu
a
lity
a
pp
ro
a
ch
a
nd
ris
k
m
a
na
g
e
m
e
nt
(
C2
6
)
E
x
perience
a
nd
co
m
p
et
ence
o
f
t
he
pro
j
ec
t
m
a
na
g
er
(
C4
1
)
E
x
perience
a
nd
e
x
pert
is
e
o
f
o
t
her
t
ea
m
m
e
m
ber
s
(
C4
2
)
E
x
perience
a
nd
co
m
p
et
ence
o
f
co
ns
ulta
nts a
nd
e
x
pert
s
(
C4
3
)
Q
ua
lity
o
f
t
he
re
f
er
ence
s
(
C3
1
)
A
m
o
un
t
s
o
f
re
f
er
ence
s
(
C3
2
)
Deliv
er
y
t
i
m
e
(
C2
3
)
T
urno
v
er
o
f
t
endere
r
(
C3
3
)
Cho
ice
o
f
t
he
bes
t
t
ender
T
o
o
ls
,
t
ec
hn
iqu
e
s
a
nd
w
o
rk
i
ng
m
et
ho
ds
(
C2
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
S
elec
tio
n
o
f th
e
B
est P
r
o
p
o
s
a
l u
s
in
g
F
A
HP
:
C
a
s
e
o
f P
r
o
cu
r
eme
n
t o
f I
T Ma
s
ter P
la
n
’
s
…
(
A
ma
d
o
u
D
.
)
358
3
.
2
.
Co
ns
t
ruct
io
n o
f
J
ud
g
m
e
nt
M
a
t
rix
o
f
Crit
er
ia
a
nd
Det
er
m
i
na
t
io
n
o
f
t
he
P
rio
rit
y
Vec
t
o
r
I
n
th
is
s
u
b
-
s
ec
tio
n
,
t
h
e
j
u
d
g
m
en
t
m
atr
i
x
o
f
cr
iter
ia
an
d
th
e
ca
lcu
latio
n
o
f
h
is
p
r
io
r
it
y
v
ec
to
r
ar
e
p
r
esen
ted
.
T
h
e
T
ab
les
3
an
d
4
co
n
tain
r
esp
ec
tiv
el
y
th
e
j
u
d
g
m
en
t
m
atr
ix
o
f
cr
iter
ia
a
n
d
t
h
e
ca
lcu
latio
n
s
o
f
t
h
e
p
r
io
r
ity
v
ec
to
r
.
T
h
e
m
o
s
t
i
m
p
o
r
tan
t
cr
iter
io
n
i
s
t
h
e
cr
iter
io
n
"
Pric
e
"
w
it
h
a
w
e
ig
h
t
o
f
0
.
5
1
.
I
t
is
f
o
llo
w
ed
b
y
th
e
cr
iter
ia
"
T
ea
m
Qu
a
lific
at
io
n
s
"
an
d
"
W
o
r
k
in
g
m
e
th
o
d
o
lo
g
y
"
h
a
v
in
g
r
e
s
p
ec
tiv
el
y
weig
h
t
o
f
0
.
1
9
4
an
d
0
.
1
7
8
.
T
ab
le
3
.
J
u
d
g
m
e
n
t M
atr
i
x
o
f
C
r
iter
ia
P
r
i
c
e
W
o
r
k
i
n
g
me
t
h
o
d
o
l
o
g
y
C
a
p
i
t
a
l
a
n
d
r
e
f
e
r
e
n
c
e
s
T
e
a
m Q
u
a
l
i
f
i
c
a
t
i
o
n
P
r
i
c
e
1
1
1
3
/
2
2
5
/
2
2
5
/
2
3
3
/
2
2
5
/
2
W
o
r
k
i
n
g
me
t
h
o
d
o
l
o
g
y
2
/
5
½
2
/
3
1
1
1
1
/
2
1
/
1
3
/
2
2
/
3
1
2
C
a
p
i
t
a
l
a
n
d
r
e
f
e
r
e
n
c
e
s
1
/
3
2
/
5
½
2
/
3
1
2
1
1
1
1
/
2
2
/
3
1
T
e
a
m Q
u
a
l
i
f
i
c
a
t
i
o
n
2
/
5
½
2
/
3
1
/
2
1
/
1
3
/
2
1
3
/
2
2
1
1
1
T
ab
le
4
.
C
alcu
latio
n
o
f
P
r
io
r
ity
Vec
to
r
o
f
C
r
iter
ia
C
r
i
t
e
r
i
a
F
S
E
L
o
w
e
r
(
S
i
)
M
i
d
d
l
e
(
S
i
)
U
p
p
e
r
(
S
i
)
W
e
i
g
h
t
(
d
'(
S
i
)
)
W
e
i
g
h
t
N
o
r
mal
i
z
e
d
C1
S1
0
.
2
5
1
0
.
4
1
5
0
.
6
4
4
1
0
.
5
1
3
C2
S2
0
.
1
0
8
0
.
1
9
3
0
.
3
6
9
0
.
3
4
8
0
.
1
7
8
C3
S3
0
.
1
0
5
0
.
1
6
9
0
.
3
2
2
0
.
2
2
3
0
.
1
1
4
C4
S4
0
.
1
2
1
0
.
2
2
1
0
.
3
6
9
0
.
3
7
9
0
.
1
9
4
3
.
3
.
Co
ns
t
ruct
io
n o
f
J
ud
g
m
e
nt
M
a
t
rice
s
o
f
Sub
-
Crit
er
ia
a
nd
Det
er
m
ina
t
io
n
o
f
P
rio
rit
y
Vec
t
o
rs
T
h
is
s
u
b
-
s
ec
tio
n
ad
d
r
ess
es
t
h
e
ca
lcu
latio
n
s
o
f
s
u
b
-
cr
iter
ia
'
s
w
ei
g
h
t
s
.
T
h
e
ca
s
e
o
f
th
e
s
u
b
-
cr
iter
ia
o
f
cr
iter
io
n
―
W
o
r
k
i
n
g
Me
th
o
d
o
l
o
g
y
‖
i
s
p
r
esen
ted
i
n
T
ab
les
5
an
d
6
an
d
th
e
Ta
b
le
7
co
n
tain
s
th
e
w
e
ig
h
ts
o
f
all
s
u
b
-
cr
iter
ia.
T
h
e
Ta
b
les
5
an
d
6
p
r
esen
t
r
esp
e
ctiv
el
y
t
h
e
j
u
d
g
m
e
n
t
m
atr
ix
o
f
s
u
b
-
cr
iter
ia
o
f
cr
iter
io
n
―
W
o
r
k
Me
th
o
d
o
lo
g
y
(
C
2
)
‖
an
d
t
h
e
ca
lcu
latio
n
s
o
f
t
h
e
as
s
o
ciate
d
p
r
io
r
ity
v
ec
to
r
.
T
ab
le
5
.
J
u
d
g
m
e
n
t
M
atr
i
x
o
f
S
ub
-
cr
iter
ia
o
f
C
r
iter
io
n
―
W
o
r
k
in
g
Me
th
o
d
o
lo
g
y
‖
C
2
1
C
2
2
C
2
3
C
2
4
C
2
5
C
2
6
C
2
1
1
1
1
3
/
2
2
5
/
2
2
5
/
2
3
3
/
2
2
5
/
2
1
/
2
1
3
/
2
2
5
/
2
3
C
2
2
2
/
5
½
2
/
3
1
1
1
1
/
2
1
3
/
2
1
3
/
2
2
1
/
2
2
/
3
1
1
/
2
1
3
/
2
C
2
3
1
/
3
2
/
5
½
2
/
3
1
2
1
1
1
2
/
5
1
/
2
2
/
3
2
/
5
1
/
2
2
/
3
2
/
3
1
2
C
2
4
2
/
5
½
2
/
3
½
2
/
3
1
3
/
2
2
5
/
2
1
1
1
2
/
5
1
/
2
2
/
3
1
/
2
1
3
/
2
C
2
5
2
/
3
1
2
1
3
/
2
2
3
/
2
2
5
/
2
3
/
2
2
5
/
2
1
1
1
3
/
2
2
5
/
2
C
2
6
1
/
3
2
/
5
½
2
/
3
1
2
1
/
2
1
3
/
2
2
/
3
1
2
2
/
5
1
/
2
2
/
3
1
1
1
Ta
b
le
6
.
C
alcu
latio
n
o
f
P
r
io
r
ity
V
ec
to
r
o
f
S
ub
-
cr
iter
ia
o
f
Cr
i
ter
io
n
―
W
o
r
k
i
n
g
Me
th
o
d
o
lo
g
y
‖
C
r
i
t
e
r
i
a
F
S
E
L
o
w
e
r
(
S
i
)
M
i
d
d
l
e
(
S
i
)
U
p
p
e
r
(
S
i
)
W
e
i
g
h
t
(
d
’
(
S
i
)
)
W
e
i
g
h
t
N
o
r
mal
i
z
e
d
C
2
1
S1
0
.
2
4
1
0
.
4
1
1
0
.
6
6
9
1
0
.
3
0
0
C
2
2
S2
0
.
1
1
0
0
.
2
1
2
0
.
3
8
0
0
.
4
1
2
0
.
1
2
4
C
2
3
S3
0
.
0
9
8
0
.
1
6
5
0
.
3
3
9
0
.
2
8
5
0
.
0
8
6
C
2
4
S4
0
.
1
2
2
0
.
2
1
2
0
.
3
6
4
0
.
3
8
2
0
.
1
1
7
C
2
5
S5
0
.
2
0
3
0
.
3
5
5
0
.
6
2
0
0
.
8
7
1
0
.
2
6
2
C
2
6
S6
0
.
1
0
1
0
.
1
8
3
0
.
3
8
0
0
.
3
8
0
0
.
1
1
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
5
3
–
362
359
T
ab
le
7
.
Su
m
m
ar
y
Ta
b
le
o
f
th
e
W
eig
h
t
s
o
f
S
ub
-
cr
iter
ia
C
r
i
t
e
r
i
o
n
W
o
r
k
i
n
g
me
t
h
o
d
o
l
o
g
y
(
C
2
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
2
1
C
2
2
C
2
3
C
2
4
C
2
5
C
2
6
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
3
0
0
0
.
1
2
4
0
.
0
8
6
0
.
1
1
5
0
.
2
6
2
0
.
1
1
4
C
r
i
t
e
r
i
o
n
C
a
p
i
t
a
l
a
n
d
R
e
f
e
r
e
n
c
e
s
(
C
3
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
3
1
C
3
2
C
3
3
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
5
5
8
0
.
0
9
7
0
.
3
4
5
C
r
i
t
e
r
i
o
n
T
e
a
m Q
u
a
l
i
f
i
c
a
t
i
o
n
(
C
4
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
4
1
C
4
2
C
4
3
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
3
4
5
0
.
5
5
8
0
.
0
9
7
T
h
e
T
ab
le
7
d
is
p
lay
s
th
e
w
ei
g
h
t
s
o
f
t
h
e
s
u
b
-
cr
iter
ia
o
f
ea
c
h
cr
iter
io
n
.
T
h
e
cr
iter
io
n
"P
r
i
ce
"
h
as
n
o
s
u
b
-
cr
iter
io
n
th
er
e
f
o
r
e
it d
o
esn
’
t a
p
p
ea
r
in
th
e
tab
le.
3
.
4
.
Co
m
pa
ri
s
o
n o
f
T
ender
s
a
nd
Det
er
m
ina
t
io
n
o
f
t
he
B
e
s
t
T
h
is
s
ec
tio
n
co
n
s
is
ts
in
m
a
k
in
g
a
test
w
ith
t
h
r
ee
ten
d
er
s
,
,
.
T
h
e
T
ab
le
8
g
iv
es
th
e
co
m
p
ar
is
o
n
m
a
tr
ix
o
f
t
h
e
t
h
r
e
e
ten
d
er
s
ac
co
r
d
in
g
t
h
e
cr
iter
io
n
―
P
r
ice‖
an
d
th
e
w
ei
g
h
ts
o
f
ten
d
er
s
.
T
ab
le
8
.
C
o
m
p
ar
is
o
n
M
atr
i
x
o
f
T
en
d
er
s
A
cc
o
r
d
in
g
C
r
iter
io
n
―
P
r
ice‖
an
d
th
e
W
eig
h
t V
ec
to
r
1
1
1
/
2
1
3
/
2
3
/
2
2
5
/
2
1
1
1
2
1
1
1
1
/
2
1
3
/
2
1
0
,
7
8
9
2
7
7
6
6
1
/
2
2
/
3
2
/
3
1
2
1
1
1
1
/
2
0
,
6
3
8
6
5
0
9
7
Fo
r
th
e
cr
iter
ia
w
h
ic
h
h
a
v
e
s
u
b
-
cr
iter
ia,
th
e
T
ab
le
9
co
n
tain
s
th
e
w
eig
h
t
s
o
f
th
e
te
n
d
er
s
ac
co
r
d
in
g
to
s
u
b
-
cr
iter
ia
o
f
ea
ch
cr
iter
io
n
.
T
h
e
w
eig
h
t
o
f
te
n
d
er
s
ac
co
r
d
in
g
cr
iter
ia
t
h
at
h
a
v
e
s
u
b
-
cr
iter
ia
ar
e
ca
lcu
lated
b
y
th
e
w
ei
g
h
ted
s
u
m
o
f
t
h
e
w
ei
g
h
ts
o
f
s
u
b
-
cr
iter
ia
an
d
t
h
e
w
ei
g
h
t
s
o
f
te
n
d
er
s
ac
co
r
d
in
g
s
u
b
-
cr
it
er
ia
[
41
].
T
ab
le
9
.
R
esu
lts
o
f
th
e
C
o
m
p
a
r
is
o
n
o
f
T
en
d
er
s
at
Su
b
-
cr
iter
i
a
L
ev
e
l
C
r
i
t
e
r
i
o
n
W
o
r
k
i
n
g
me
t
h
o
d
o
l
o
g
y
(
C
2
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
2
1
C
2
2
C
2
3
C
2
4
C
2
5
C
2
6
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
3
0
0
0
.
1
2
4
0
.
0
8
6
0
.
1
1
5
0
.
2
6
1
0
.
1
1
4
T
e
n
d
e
r
T
e
n
d
e
r
s
w
e
i
g
h
t
s a
t
su
b
-
c
r
i
t
e
r
i
a
l
e
v
e
l
W
e
i
g
h
t
o
f
t
e
n
d
e
r
1
1
0
.
0
9
8
0
.
9
0
5
0
.
1
0
9
1
0
.
6
7
9
0
.
4
7
2
0
.
1
0
9
1
1
1
0
.
4
8
2
0
.
6
7
2
0
0
.
2
0
1
1
0
.
3
2
8
0
.
2
0
1
0
.
6
8
4
0
.
2
7
8
C
r
i
t
e
r
i
o
n
C
a
p
i
t
a
l
a
n
d
R
e
f
e
r
e
n
c
e
s
(
C
3
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
3
1
C
3
2
C
3
3
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
5
5
8
0
.
0
9
7
0
.
3
4
5
T
e
n
d
e
r
T
e
n
d
e
r
s
w
e
i
g
h
t
s a
t
su
b
-
c
r
i
t
e
r
i
a
l
e
v
e
l
W
e
i
g
h
t
s o
f
t
e
n
d
e
r
s
1
1
0
0
.
6
5
5
0
.
3
5
9
0
.
8
4
4
0
.
4
7
2
0
.
4
4
5
0
.
3
3
4
0
.
1
7
1
1
0
.
5
4
8
C
r
i
t
e
r
i
o
n
T
e
a
m Q
u
a
l
i
f
i
c
a
t
i
o
n
(
C
4
)
S
u
b
-
c
r
i
t
e
r
i
o
n
C
4
1
C
4
2
C
4
3
W
e
i
g
h
t
o
f
s
u
b
-
c
r
i
t
e
r
i
o
n
0
.
3
4
5
0
.
5
5
8
0
.
0
9
7
T
e
n
d
e
r
T
e
n
d
e
r
s
w
e
i
g
h
t
s a
t
su
b
-
c
r
i
t
e
r
i
a
l
e
v
e
l
W
e
i
g
h
t
s o
f
t
e
n
d
e
r
s
0
1
1
0
.
6
5
5
1
0
.
9
0
4
0
.
4
9
5
0
.
8
9
8
0
.
7
5
6
0
.
7
9
5
0
.
5
0
2
0
.
7
5
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
S
elec
tio
n
o
f th
e
B
est P
r
o
p
o
s
a
l u
s
in
g
F
A
HP
:
C
a
s
e
o
f P
r
o
cu
r
eme
n
t o
f I
T Ma
s
ter P
la
n
’
s
…
(
A
ma
d
o
u
D
.
)
360
T
ab
le
1
0
.
R
esu
lts
o
f
t
h
e
co
m
p
ar
is
o
n
o
f
te
n
d
er
s
at
cr
iter
ia
lev
el
W
e
i
g
h
t
o
f
c
r
i
t
e
r
i
o
n
C1
1
0
.
7
8
9
2
7
7
6
6
0
.
6
3
8
6
5
0
9
7
0
.
5
1
2
8
3
0
2
3
5
C2
0
.
6
7
8
6
8
1
3
4
0
.
6
7
1
9
9
6
7
9
0
.
2
7
8
4
9
3
8
2
0
.
1
7
8
4
7
3
2
0
8
C3
0
.
6
5
5
3
5
4
3
4
0
.
4
4
4
9
2
0
2
2
0
.
5
4
7
9
5
8
5
7
0
.
1
1
4
3
8
7
5
5
8
C4
0
.
6
5
5
3
5
4
3
4
0
.
8
9
7
7
2
6
0
3
0
.
7
5
3
0
5
7
1
1
0
.
1
9
4
3
0
8
9
9
9
S
c
o
r
e
s o
f
t
e
n
d
e
r
0
.
8
3
6
2
6
2
3
0
.
7
5
0
0
2
8
4
5
0
.
5
8
6
2
2
8
6
3
T
h
e
f
in
al
r
esu
l
ts
ac
co
r
d
in
g
to
cr
iter
ia
ar
e
d
is
p
lay
ed
in
th
e
T
ab
le
1
0
.
T
h
e
ten
d
er
is
th
e
b
est
w
it
h
a
s
co
r
e
o
f
0
.
8
3
6
.
A
s
w
e
d
id
'n
t
f
i
n
d
an
y
p
ap
er
w
h
ic
h
d
ea
ls
w
i
t
h
th
e
s
elec
tio
n
o
f
t
h
e
b
est
ten
d
er
d
u
r
in
g
a
w
ar
d
in
g
co
n
tr
ac
ts
o
f
I
T
Ma
s
ter
p
lan
'
s
r
ea
lis
atio
n
,
w
e
h
a
v
e
co
n
d
u
ct
ed
a
co
m
p
ar
i
s
o
n
b
et
w
ee
n
t
h
e
r
esu
lt
s
w
it
h
t
h
o
s
e
o
b
tain
ed
u
s
in
g
A
HP
m
et
h
o
d
.
T
h
e
w
ei
g
h
ts
o
f
cr
iter
ia
an
d
s
u
b
-
cr
iter
ia
an
d
th
e
s
co
r
es
o
f
ten
d
er
s
ar
e
clo
s
e
r
w
h
e
n
u
s
in
g
F
AHP
m
eth
o
d
.
4.
CO
NCLU
SI
O
N
T
h
e
co
m
p
u
ter
s
y
s
te
m
h
a
s
b
ec
o
m
e
o
n
e
o
f
t
h
e
ce
n
ter
p
iece
s
i
n
th
e
f
u
n
c
tio
n
i
n
g
o
f
o
r
g
a
n
izat
io
n
s
h
en
ce
th
e
i
m
p
o
r
tan
ce
o
f
a
n
I
T
m
aste
r
p
lan
to
m
an
a
g
e
i
ts
d
e
v
elo
p
m
en
t
.
A
w
ar
e
th
e
i
m
p
o
r
tan
ce
o
f
th
e
I
T
m
aster
p
la
n
,
m
an
y
o
r
g
an
izatio
n
s
ar
e
w
o
r
k
i
n
g
o
n
th
e
es
tab
lis
h
in
g
o
f
a
n
I
T
m
a
s
ter
p
la
n
a
n
d
t
h
e
y
i
n
cr
ea
s
in
g
l
y
u
s
e
te
n
d
er
in
g
to
f
in
d
a
p
r
o
v
id
er
ab
le
to
p
u
t
in
p
lace
an
e
f
f
ec
t
iv
e
I
T
Ma
s
ter
p
lan
.
T
h
is
allo
w
s
t
h
e
m
to
cr
ea
te
a
co
m
p
etit
io
n
b
et
w
ee
n
s
e
v
er
al
p
r
o
v
id
er
s
w
it
h
a
v
ie
w
to
ch
o
o
s
i
n
g
th
e
o
n
e
t
h
at
p
r
o
p
o
s
es th
e
b
est p
r
o
p
o
s
al.
Ho
w
e
v
er
,
as
o
th
er
s
p
u
b
lic
an
d
p
r
iv
ate
co
n
tr
ac
t
s
,
co
n
tr
ac
ts
a
w
ar
d
in
g
o
f
I
T
m
a
s
ter
p
la
n
'
s
r
ea
lizatio
n
f
ac
es t
h
e
p
r
o
b
lem
a
tic
o
f
ch
o
o
s
in
g
t
h
e
b
est te
n
d
er
a
m
o
n
g
t
h
o
s
e
p
r
o
p
o
s
ed
b
y
th
e
b
id
d
er
s
.
T
h
e
p
r
esen
t
w
o
r
k
is
a
r
esp
o
n
s
e
to
th
is
p
r
o
b
lem
at
ic
b
y
p
r
o
p
o
s
in
g
a
d
ec
is
io
n
s
u
p
p
o
r
t
to
o
l
th
at
h
a
s
b
ee
n
th
o
u
g
h
t
f
u
ll
y
d
esi
g
n
ed
f
o
r
f
ac
ilit
at
in
g
t
h
e
c
h
o
ice
o
f
t
h
e
b
est
ten
d
er
.
S
u
ch
w
o
r
k
ai
m
s
to
i
m
p
r
o
v
e
t
h
e
s
te
p
o
f
th
e
e
v
alu
at
io
n
o
f
te
n
d
er
s
o
f
I
T
m
aster
p
lan
's
r
ea
lizatio
n
an
d
en
d
o
w
th
e
o
r
g
a
n
izatio
n
s
w
it
h
e
f
f
ec
tiv
e
I
T
Ma
s
ter
P
lan
in
o
r
d
er
to
in
cr
ea
s
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
eir
in
f
o
r
m
at
io
n
s
y
s
te
m
.
I
n
th
e
er
a
o
f
th
e
u
s
e
o
f
i
n
f
o
r
m
atio
n
an
d
co
m
m
u
n
icatio
n
tech
n
o
lo
g
ies
(
I
C
T
)
w
h
er
e
al
m
o
s
t
all
p
r
iv
ate
an
d
p
u
b
lic
o
r
g
a
n
izat
io
n
s
h
a
v
e
an
in
f
o
r
m
atio
n
s
y
s
te
m
,
t
h
e
n
u
m
b
er
o
f
co
n
tr
ac
ts
co
n
ce
r
n
i
n
g
t
h
e
r
ea
lizatio
n
o
f
I
T
m
a
s
ter
p
lan
is
i
n
cr
ea
s
i
n
g
c
o
n
s
id
er
ab
l
y
r
ef
lect
in
g
t
h
e
i
m
p
o
r
tan
ce
o
f
th
i
s
p
r
o
p
o
s
ed
d
ec
is
i
o
n
s
u
p
p
o
r
t to
o
l.
RE
F
E
R
E
NC
E
S
[
1
]
Oz
ta
y
s
i
B
.
A d
e
c
is
io
n
m
o
d
e
l
f
o
r
in
f
o
r
m
a
ti
o
n
tec
h
n
o
l
o
g
y
s
e
lec
ti
o
n
u
s
in
g
AH
P
in
teg
r
a
ted
TOP
S
I
S
-
Gr
e
y
:
Th
e
c
a
s
e
o
f
c
o
n
ten
t
m
a
n
a
g
e
m
e
n
t
s
y
s
te
m
s
.
Kn
o
wl.
-
B
a
se
d
S
y
st
.
M
a
r
c
h
2
0
1
4
.
[
2
]
Ko
n
i
n
g
P
,
De
M
e
e
r
e
n
d
o
n
k
A.
Th
e
i
m
p
a
c
t
o
f
s
c
o
r
in
g
we
ig
h
ts
o
n
p
r
i
c
e
a
n
d
q
u
a
li
ty
o
u
tc
o
m
e
s
:
An
a
p
p
li
c
a
t
io
n
to
th
e
p
r
o
c
u
r
e
m
e
n
t
o
f
Welfa
r
e
-
to
-
Wo
r
k
c
o
n
tra
c
t
s.
Eu
r
.
Eco
n
.
Rev
.
O
c
to
b
e
r
2
0
1
4
;
7
1
:
1
-
1
4
.
[
3
]
Au
r
io
l
E.
Co
rr
u
p
ti
o
n
in
p
r
o
c
u
r
e
m
e
n
t
a
n
d
p
u
b
li
c
p
u
rc
h
a
s
e
.
I
n
t.
J
.
In
d
.
Or
g
a
n
.
S
e
p
tem
b
e
r
2
0
0
6
;
2
4
(
5
)
:
8
6
7
-
8
8
5
.
[
4
]
A
m
e
y
a
w
C,
M
e
n
s
a
h
S
.
Cu
r
b
in
g
Co
rr
u
p
ti
o
n
in
th
e
P
u
b
li
c
P
r
o
c
u
r
e
m
e
n
t
P
r
o
c
e
ss
in
Gh
a
n
a
.
P
u
b
l
ic
Po
li
c
y
Ad
m.
Res
.
2
0
1
3
;
3
(
5
):
4
4
–
5
3
.
[
5
]
Cir
i
b
in
i
ALC,
e
t
a
l.
An
I
n
n
o
v
a
ti
v
e
Ap
p
r
o
a
c
h
to
e
-
p
u
b
li
c
Ten
d
e
r
in
g
B
a
s
e
d
o
n
M
o
d
e
l
Ch
e
c
k
in
g
.
Pro
c
e
d
ia
Eco
n
.
Fi
n
a
n
c
e
.
2
0
1
5
;
2
1
:
3
2
-
3
9
.
[
6
]
Wo
o
d
s
GG.
F
in
a
n
c
ia
l
M
a
n
a
g
e
m
e
n
t
a
n
d
c
o
s
t
a
c
c
o
u
n
ti
n
g
.
Ca
p
e
T
o
w
n
:
Un
ive
rs
it
y
o
f
S
tellen
b
o
sc
h
.
2
0
0
8
.
[
7
]
Wa
tt
D,
e
t
a
l.
I
d
e
n
ti
f
y
in
g
k
e
y
f
a
c
to
rs
in
th
e
e
v
a
lu
a
ti
o
n
o
f
ten
d
e
r
f
o
r
p
r
o
jec
ts
a
n
d
s
e
r
v
ic
.
I
n
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Pro
jec
t
M
a
n
a
g
e
me
n
t.
A
p
r
il
2
0
0
9
;
2
7
:
2
5
0
–
2
6
0
.
[
8
]
Co
s
ta
C,
e
t
a
l.
F
a
c
il
il
a
ti
n
g
b
id
e
v
a
lu
a
ti
o
n
in
p
u
b
li
c
c
a
ll
f
o
r
ten
d
e
r
s:
A
s
o
c
io
-
c
li
n
i
c
a
l
a
p
p
r
o
a
c
h
.
Om
e
g
a
.
J
u
n
e
2
0
0
2
;
3
0
:
2
2
7
–
2
4
2
.
[
9
]
Wa
tt
D
,
e
t
a
l.
Th
e
r
e
lativ
e
i
m
p
o
r
ta
n
c
e
o
f
ten
d
e
r
e
v
a
lu
a
ti
o
n
a
n
d
c
o
n
trac
to
r
s
e
le
c
ti
o
n
c
r
it
e
r
i
a
.
I
n
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Pro
jec
t
M
a
n
a
g
e
me
n
t.
Ja
n
u
a
r
y
2
0
1
0
;
2
8
:
5
1
–
6
0
.
[
1
0
]
M
a
fa
k
h
e
ri
F
,
Br
e
to
n
M
.
,
Gh
o
n
iem
,
A.
S
u
p
p
li
e
r
s
e
lec
ti
o
n
-
o
r
d
e
r
a
l
lo
c
a
ti
o
n
:
A
two
-
sta
g
e
m
u
lt
ip
le
c
rit
e
r
i
a
d
y
n
a
m
ic
p
r
o
g
r
a
m
m
i
n
g
a
p
p
r
o
a
c
h
.
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Pro
d
u
c
ti
o
n
Eco
n
o
mic
s.
2
0
1
1
;
5
2
–
5
7
.
[
1
1
]
Or
d
o
o
b
a
d
i,
S
M
.
Ap
p
li
c
a
t
io
n
o
f
AH
P
a
n
d
Ta
g
u
c
h
i
lo
ss
f
u
n
c
ti
o
n
s
in
s
u
p
p
ly
c
h
a
in
.
In
d
u
stria
l
M
a
n
a
g
e
me
n
t
a
n
d
Da
ta
S
y
ste
ms
.
2
0
1
0
;
2
5
1
–
1
2
6
.
[
1
2
]
S
a
a
ty
RW.
Th
e
a
n
a
ly
ti
c
h
iera
rc
h
y
p
r
o
c
e
ss
—
wh
a
t
it
i
s a
n
d
h
o
w i
t
is
u
s
e
d
.
M
a
th
.
M
o
d
e
l.
1
9
8
7
;
9
(
3
):
1
6
1
–
1
7
6
.
[
1
3
]
Da
lala
h
D,
e
t
a
l.
Ap
p
li
c
a
ti
o
n
o
f
th
e
A
n
a
ly
ti
c
Hie
r
a
rc
h
y
P
r
o
c
e
s
s
(AH
P
)
in
m
u
lt
i
-
c
r
it
e
r
i
a
a
n
a
ly
s
i
s
o
f
th
e
s
e
lec
ti
o
n
o
f
c
r
a
n
e
s.
J
o
rd
a
n
J
.
M
e
c
h
.
In
d
.
En
g
.
2
0
1
0
;
4
(5
)
:
6
7
–
5
7
8
[
1
4
]
Ah
m
a
d
N,
La
p
l
a
n
te
P
A.
S
o
ft
w
a
re
p
ro
jec
t
ma
n
a
g
e
me
n
t
to
o
ls:
ma
k
in
g
a
p
ra
c
ti
c
a
l
d
e
c
isio
n
u
sin
g
AHP
.
S
o
f
twa
r
e
En
g
in
e
e
r
in
g
Wo
r
k
s
h
o
p
,
S
EW
’0
6
.
3
0
th
An
n
u
a
l
I
EE
E/
NA
S
A.
2
0
0
6
;
7
6
–
8
4
.
[
1
5
]
Ba
o
h
u
i
J,
Yu
x
in
Z,
Xia
n
g
L
.
Re
s
e
a
rc
h
on
Zo
n
a
l
I
n
s
p
e
c
ti
o
n
In
ter
v
a
l
s
of
Civ
il
Air
c
ra
f
t
Ba
s
e
d
on
Im
p
r
o
v
e
d
F
AH
P
.
In
d
o
n
e
s
ia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
.
2
0
1
4
;
1
2
(1
)
:
1
2
9
-
1
3
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
1
,
Feb
r
u
ar
y
2
0
1
7
:
3
5
3
–
362
361
[
1
6
]
S
a
lem
M
S
.
An
Ap
p
li
c
a
t
io
n
o
f
th
e
An
a
l
y
ti
c
Hie
ra
r
c
h
y
P
r
o
c
e
ss
to
De
ter
m
in
e
B
e
n
c
h
m
a
r
k
in
g
Cr
it
e
r
ia
f
o
r
M
a
n
u
fa
c
tu
r
in
g
Or
g
a
n
isa
ti
o
n
s
.
I
n
t.
J
.
T
ra
d
e
Eco
n
.
Fi
n
a
n
c
e
,
2
0
1
0
;
1
(1
)
[
1
7
]
Os
i
r
o
L,
e
t
a
l
.
A
f
u
z
z
y
lo
g
ic
a
p
p
r
o
a
c
h
to
s
u
p
p
li
e
r
e
v
a
lu
a
ti
o
n
f
o
r
d
e
v
e
lo
p
m
e
n
t.
In
t.
J
.
Pr
o
d
.
Eco
n
.
Ju
l
y
2
0
1
4
;
1
5
3
:
95
-
1
1
2
.
[
1
8
]
Hu
n
g
Q
a
n
d
F
u
n
g
J
.
P
r
io
r
i
ti
z
in
g
th
e
F
a
c
to
r
Weig
h
ts
Aff
e
c
ti
n
g
To
u
r
is
m
P
e
rf
o
r
m
a
n
c
e
b
y
F
AH
P
.
I
n
t.
J
.
En
g
.
B
u
s.
M
a
n
a
g
.
2
0
1
3
.
[
1
9
]
De
m
ir
e
l
T,
e
t
a
l
.
F
u
z
z
y
a
n
a
ly
ti
c
h
ier
a
rc
h
y
p
r
o
c
e
ss
a
n
d
it
s
a
p
p
l
ica
ti
o
n
.
in
F
u
z
z
y
M
u
lt
i
-
C
r
it
e
r
i
a
De
c
i
s
io
n
M
a
k
in
g
,
S
p
r
in
g
e
r
,
2
0
0
8
;
5
3
–
83.
[
2
0
]
Kra
s
n
i
q
i
S
.
P
u
b
li
c
p
r
o
c
u
r
e
m
e
n
t
p
r
o
c
e
d
u
r
e
s a
n
d
it
s
c
y
c
les
.
I
n
t.
J
.
Res
.
Rev
.
Ap
p
l.
S
c
i.
2
0
1
2
;
1
0
(1
)
.
[
2
1
]
Wo
n
g
J
KW,
Li
H.
A
p
p
li
c
a
ti
o
n
o
f
th
e
a
n
a
ly
ti
c
h
iera
r
c
h
y
p
r
o
c
e
ss
(AH
P
)
in
m
u
lt
i
-
c
rit
e
ria
a
n
a
ly
s
is
o
f
th
e
s
e
lec
ti
o
n
o
f
in
telli
g
e
n
t
b
u
il
d
in
g
s
y
s
te
m
s
.
Bu
il
d
.
E
n
v
iro
n
.
.
J
a
n
u
a
r
y
2
0
0
8
;
4
3
(1
)
:
1
0
8
-
1
2
5
.
[
2
2
]
Tsa
i
K,
Ch
o
u
F
.
De
v
e
lo
p
in
g
a
F
u
z
z
y
M
u
lt
i
-
a
tt
r
i
b
u
te
M
a
t
c
h
in
g
a
n
d
Ne
g
o
ti
a
ti
o
n
M
e
c
h
a
n
is
m
f
o
r
S
e
a
led
-
b
id
On
li
n
e
Re
v
e
r
s
e
Au
c
ti
o
n
s
.
J
.
T
h
e
o
r.
A
p
p
l.
El
e
c
tro
n
.
C
o
mm
e
r.
Res
.
2
0
1
1
;
6
(3
)
:
3
-
1
4
.
[
2
3
]
Dia
b
a
g
a
t
é
A,
A
z
m
a
n
i
A,
El
Ha
rz
li
M
.
Ten
d
e
r
in
g
P
r
o
c
e
ss
:
I
m
p
r
o
v
e
m
e
n
t
o
f
An
a
ly
s
is
a
n
d
Ev
a
lu
a
ti
o
n
o
f
Ten
d
e
r
s
b
a
s
e
d
o
n
th
e
Us
e
o
f
F
u
z
z
y
Lo
g
ic
a
n
d
Ru
le
o
f
P
r
o
p
o
r
ti
o
n
.
In
t
e
rn
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
C
o
mp
u
ter
Ap
p
li
c
a
ti
o
n
s,
S
e
p
te
m
b
e
r
2
0
1
4
;
1
0
1
(1
4
):
43
-
50
.
[
2
4
]
P
r
iy
a
P
,
e
t
a
l.
E
-
P
r
o
c
u
r
e
m
e
n
t
S
y
s
tem
with
E
m
b
e
d
d
e
d
S
u
p
p
li
e
r
S
e
lec
ti
o
n
DSS
f
o
r
a
n
Au
to
m
o
b
il
e
M
a
n
u
fa
c
tu
r
in
g
I
n
d
u
s
tr
y
.
In
t.
J
.
Da
t
a
b
a
se
M
a
n
a
g
.
S
y
st.
Ap
r
i
l
2
0
1
2
;
4
(
2
)
:
8
5
-
9
6
.
[
2
5
]
Ata
n
a
s
o
v
a
-
P
a
c
e
m
s
k
a
T,
L
a
p
e
v
s
k
i
M
,
Ti
m
o
v
s
k
i
R.
An
a
lytica
l
Hie
ra
rc
h
ica
l
Pro
c
e
ss
(
AHP)
me
th
o
d
a
p
p
li
c
a
ti
o
n
i
n
th
e
p
ro
c
e
ss
o
f
se
lec
ti
o
n
a
n
d
e
v
a
l
u
a
ti
o
n
.
I
n
ter
n
a
ti
o
n
a
l
S
c
ien
ti
f
i
c
Co
n
f
e
r
e
n
c
e
G
a
b
r
o
v
o
.
No
v
e
m
b
e
r
2
0
1
4
.
[
2
6
]
A
y
d
i
n
S
,
Ka
h
ra
m
a
n
C.
M
u
lt
i
a
tt
rib
u
te
s
u
p
p
li
e
r
s
e
lec
ti
o
n
u
s
in
g
f
u
z
z
y
a
n
a
ly
ti
c
h
iera
r
c
h
y
p
r
o
c
e
ss
.
I
n
t.
J
.
Co
m
p
u
t
.
In
tell.
S
y
st.
2
0
1
0
;
3
(
5
)
:
5
5
3
–
5
6
5
.
[
2
7
]
Ch
a
n
F
TS
,
K
u
m
a
r
N.
Glo
b
a
l
su
p
p
li
e
r
d
e
v
e
lo
p
m
e
n
t
c
o
n
s
id
e
r
in
g
r
i
sk
fa
c
to
rs
u
sin
g
f
u
z
z
y
e
x
te
n
d
e
d
AH
P
-
b
a
s
e
d
a
p
p
r
o
a
c
h
.
Om
e
g
a
I
n
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
M
a
n
a
g
e
me
n
t
S
c
ien
c
e
.
2
0
0
7
;
3
5
:
4
1
7
–
4
3
1
.
[
2
8
]
A
y
h
a
n
M
B
.
A
F
u
z
z
y
Ah
p
Ap
p
r
o
a
c
h
f
o
r
S
u
p
p
l
ier
S
e
lec
ti
o
n
P
r
o
b
le
m
:
A
Ca
s
e
S
tu
d
y
I
n
A
Ge
a
r
m
o
t
o
r
Co
m
p
a
n
y
.
In
t.
J
.
M
a
n
a
g
.
V
a
l
u
e
S
u
p
p
ly Ch
a
in
s
.
S
e
p
te
m
b
e
r
2
0
1
3
;
4
(3
)
:
1
1
-
2
3
.
[
2
9
]
Tas
A.
A
F
u
z
z
y
AH
P
a
p
p
r
o
a
c
h
fo
r
s
e
lec
ti
n
g
a
g
lo
b
a
l
s
u
p
p
l
ier
in
p
h
a
r
m
a
c
e
u
ti
c
a
l
in
d
u
s
tr
y
.
Af
r.
J
.
B
u
s.
M
a
n
a
g
.
A
p
r
il
2
0
1
2
;
6
(
1
4
)
.
[
3
0
]
S
h
a
w
K,
e
t
a
l.
S
u
p
p
li
e
r
s
e
lec
ti
o
n
u
s
in
g
f
u
z
z
y
AH
P
a
n
d
f
u
z
z
y
m
u
lt
i
-
o
b
jec
ti
v
e
li
n
e
a
r
p
r
o
g
ra
m
m
in
g
f
o
r
d
e
v
e
lo
p
in
g
lo
w c
a
rb
o
n
s
u
p
p
ly
c
h
a
in
.
Ex
p
e
rt
S
y
ste
ms
w
it
h
Ap
p
li
c
a
ti
o
n
s.
J
u
ly
2
0
1
2
;
3
9
(
9
):
8
1
8
2
–
8
1
9
2
.
[
3
1
]
Liu
L
,
Ch
e
n
H
.
C
o
m
p
r
e
h
e
n
s
i
v
e
Ev
a
lu
a
ti
o
n
of
Ex
a
m
in
a
ti
o
n
Qu
a
li
ty
B
a
s
e
d
on
F
u
z
z
y
AHP
.
I
n
d
o
n
e
sia
n
J
o
u
r
n
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
.
2
0
1
3
;
1
1
(9
)
:
5
3
8
4
-
5
3
9
.
[
3
2
]
Ta
y
la
n
O,
e
t
a
l.
Co
n
s
t
r
u
c
ti
o
n
p
r
o
jec
t
s
s
e
lec
ti
o
n
a
n
d
r
i
sk
a
ss
e
ss
m
e
n
t
b
y
f
u
z
z
y
AH
P
a
n
d
f
u
z
z
y
TOP
S
IS
me
th
o
d
o
l
o
g
ies
.
Ap
p
l.
S
o
f
t
Co
m
p
u
t.
Ap
r
il
2
0
1
4
;
1
7
:
1
0
5
-
1
1
6
.
[
3
3
]
Lee
AH
I
,
e
t
a
l.
A
f
u
z
z
y
AH
P
a
n
d
B
S
C
a
p
p
r
o
a
c
h
f
o
r
e
v
a
lu
a
ti
n
g
p
e
rfo
r
m
a
n
c
e
o
f
I
T
d
e
p
a
r
tm
e
n
t
in
t
h
e
m
a
n
u
f
a
c
tu
rin
g
in
d
u
s
tr
y
in
Ta
iwa
n
.
Exp
e
rt
S
y
ste
ms
w
it
h
A
p
p
li
c
a
ti
o
n
s.
2
0
0
8
;
3
4
(
7
0
7
)
:
9
6
-
1
0
7
.
[
3
4
]
Z
a
d
e
h
LA.
F
u
z
z
y
S
e
ts
.
In
f
o
rm
a
ti
o
n
Co
n
tro
l
,
1
9
6
5
;
8
:
3
3
8
-
3
5
3
.
[
3
5
]
Na
g
h
a
d
e
h
i
M
Z
,
e
t
a
l.
Th
e
a
p
p
li
c
a
ti
o
n
o
f
f
u
z
z
y
a
n
a
ly
ti
c
h
ier
a
rc
h
y
p
ro
c
e
ss
(
F
AH
P
)
a
p
p
r
o
a
c
h
to
s
e
lec
ti
o
n
o
f
o
p
ti
m
u
m
u
n
d
e
r
g
r
o
u
n
d
m
in
in
g
m
e
th
o
d
f
o
r
J
a
jar
m
B
a
u
x
it
e
M
in
e
,
I
r
a
n
.
Exp
e
rt
S
y
ste
ms
w
it
h
Ap
p
li
c
a
t
io
n
s.
2
0
0
9
;
3
6
:
8
2
1
8
–
8
2
2
6
.
[
3
6
]
Er
tu
g
r
u
lI
,
Ka
ra
k
a
s
o
g
lu
N.
T
h
e
fu
zz
y
a
n
a
lytic
h
ier
a
rc
h
y
p
ro
c
e
ss
fo
r
su
p
p
l
ier
se
lec
ti
o
n
a
n
d
a
n
a
p
p
li
c
a
ti
o
n
i
n
a
tex
ti
le
c
o
mp
a
n
y
.
I
n
P
r
o
c
e
e
d
in
g
s
o
f
5
th
in
ter
n
a
ti
o
n
a
l
s
y
m
p
o
s
iu
m
o
n
in
telli
g
e
n
t
m
a
n
u
f
a
c
tu
r
in
g
s
y
s
tem
s
,
2
0
0
6
;
1
9
5
–
2
0
7
.
[
3
7
]
Ch
a
n
g
DY
.
Ap
p
li
c
a
ti
o
n
s o
f
th
e
e
x
ten
t
a
n
a
ly
s
is
m
e
th
o
d
o
n
f
u
z
z
y
AH
P
.
Eu
r.
J
.
Op
e
r
.
Re
s.
1
9
9
6
;
9
5
(3
)
:
6
4
9
–
6
5
5
.
[
3
8
]
J
i
a
J,
e
t
a
l
.
Th
e
lo
w
c
a
r
b
o
n
d
e
v
e
l
o
p
m
e
n
t
(
LCD)
lev
e
ls
’
e
v
a
lu
a
ti
o
n
o
f
th
e
wo
r
ld
’s
4
7
c
o
u
n
tr
ie
s
(
a
r
e
a
s)
b
y
c
o
m
b
in
in
g
th
e
F
AH
P
with
th
e
TOP
S
I
S
m
e
th
o
d
.
Exp
e
rt S
y
ste
ms
w
it
h
Ap
p
li
c
a
t
i
o
n
s.
2
0
0
8
;
3
9
:
6
6
2
8
–
6
6
4
0
.
[
3
9
]
S
a
a
ty
TL
.
S
o
m
e
m
a
th
e
m
a
ti
c
a
l
c
o
n
c
e
p
ts
o
f
th
e
a
n
a
ly
ti
c
h
iera
rc
h
y
p
r
o
c
e
ss
.
Beh
a
v
io
rm
e
trika
.
1
9
9
1
;
2
9
:
1
–
9.
[
4
0
]
Ja
la
o
ER,
e
t
a
l.
A
s
to
c
h
a
s
ti
c
AH
P
d
e
c
i
s
io
n
m
a
k
in
g
m
e
t
h
o
d
o
l
o
g
y
f
o
r
im
p
r
e
c
i
s
e
p
r
e
f
e
r
e
n
c
e
s
.
In
f
o
r
ma
ti
o
n
S
c
ien
c
e
.
J
u
n
e
2
0
1
4
;
2
7
0
:
1
9
2
-
2
0
3
.
[
4
1
]
La
i
W,
e
t
a
l.
S
tu
d
y
a
n
d
i
m
p
le
m
e
n
ta
ti
o
n
o
f
f
i
r
e
s
it
e
s
p
l
a
n
n
in
g
b
a
s
e
d
o
n
G
IS
a
n
d
AH
P
.
Pro
c
e
d
ia
En
g
.
J
a
n
u
a
r
y
2
0
1
1
;
1
1
:
p
p
.
4
8
6
-
4
9
5
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
Dr
.
A
m
a
d
o
u
Dia
b
a
g
a
te
r
e
c
e
iv
e
d
h
is
P
h
.
D.
in
c
o
m
p
ter
sc
ien
c
e
(Ar
ti
f
i
c
i
a
l
I
n
telli
g
e
n
c
e
a
n
d
B
ig
Da
ta
S
c
ien
c
e
)
in
2
0
1
6
a
t
th
e
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
ie
s
o
f
T
a
n
g
ier
(
M
o
r
o
c
c
o
)
.
He
i
s
a
l
s
o
s
tate
e
n
g
i
n
e
e
r
in
s
ta
ti
s
ti
c
a
n
d
b
u
s
in
e
s
s
in
telli
g
e
n
c
e
.
His
r
e
s
e
a
rc
h
f
o
c
u
s
e
s
o
n
a
r
ti
f
i
c
i
a
l
in
telli
g
e
n
c
e
,
B
ig
Da
ta
,
d
a
ta
sc
ie
n
c
e
a
n
d
e
-
g
o
v
e
r
n
m
e
n
t
(
e
-
p
r
o
c
u
re
m
e
n
t)
.
He
h
a
s
f
o
u
r
sc
ien
ti
fic
p
a
p
e
rs
in
in
ter
n
a
ti
o
n
a
l
in
d
e
x
e
d
jo
u
r
n
a
ls
a
n
d
h
e
h
a
s
p
a
r
ti
c
i
p
a
t
e
d
to
i
n
ter
n
a
ti
o
n
a
l
sc
ien
ti
f
i
c
c
o
n
g
r
e
ss
e
s
a
n
d
c
o
n
f
e
r
e
n
c
e
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
S
elec
tio
n
o
f th
e
B
est P
r
o
p
o
s
a
l u
s
in
g
F
A
HP
:
C
a
s
e
o
f P
r
o
cu
r
eme
n
t o
f I
T Ma
s
ter P
la
n
’
s
…
(
A
ma
d
o
u
D
.
)
362
Dr
.
Ab
d
e
ll
a
h
Az
m
a
n
i
r
e
c
e
iv
e
d
h
is
P
h
.
D.
in
I
n
d
u
s
tr
i
a
l
Co
m
p
u
ti
n
g
a
t
th
e
Un
iv
e
r
s
it
y
o
f
S
c
ien
c
e
a
n
d
Tec
h
n
o
lo
g
y
o
f
Li
ll
e
(
F
r
a
n
c
e
)
in
1
9
9
1
.
He
wo
r
k
e
d
a
s
a
p
r
o
f
e
ss
o
r
a
t
th
e
E
c
o
le
Ce
n
tra
le
d
e
Li
ll
e
a
n
d
a
t
th
e
In
s
ti
tu
te
o
f
Co
m
p
u
ter
a
n
d
In
d
u
s
tri
a
l
En
g
in
e
e
r
in
g
fr
o
m
Len
s
.
He
is
a
m
e
m
b
e
r
o
f
th
e
La
b
o
r
a
to
r
y
o
f
Au
to
m
a
ti
c
s
a
n
d
I
n
f
o
r
m
a
ti
c
s
o
f
Li
ll
e
(
LAI
L)
.
He
j
o
in
e
d
th
e
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
iq
u
e
s
o
f
Ta
n
g
ier
in
2
0
0
4
wh
e
r
e
h
e
p
ra
c
ti
c
e
s
a
s
a
p
r
o
f
e
ss
o
r
o
f
c
o
m
p
u
ter
m
o
d
e
li
n
g
a
n
d
Ar
ti
f
i
c
i
a
l
I
n
telli
g
e
n
c
e
.
He
h
a
s
c
o
n
tr
ib
u
ted
to
m
a
n
y
s
c
ien
ti
f
i
c
r
e
s
e
a
rc
h
p
r
o
jec
t
s
a
n
d
h
e
e
la
b
o
ra
tes
a
n
d
p
r
o
d
u
c
e
s
m
a
n
y
I
T
s
o
lu
ti
o
n
f
o
r
le
a
r
n
in
g
g
a
m
e
s
,
e
-
le
a
r
n
in
g
,
P
u
b
li
c
Ad
m
in
is
tr
a
ti
o
n
,
g
o
o
d
g
o
v
e
r
n
a
n
c
e
a
n
d
d
e
c
isio
n
s
u
p
p
o
r
t.
Dr
.
M
o
h
a
m
e
d
El
H
a
r
z
li
is
a
ss
o
c
i
a
te
p
r
o
f
e
ss
o
r
a
t
F
a
c
u
lt
y
o
f
S
c
ien
c
e
s
a
n
d
Tec
h
n
o
lo
g
y
o
f
Ta
n
g
ie
r
,
M
o
r
o
c
c
o
.
He
r
e
c
e
iv
e
d
h
is
sta
te
d
o
c
to
r
a
te
in
In
s
tr
u
m
e
n
ta
ti
o
n
a
t
F
a
c
u
lt
y
o
f
S
c
ien
c
e
o
f
M
e
k
n
e
s
(
M
o
r
o
c
c
o
),
a
f
te
r
h
i
s
P
h
D
fr
o
m
th
e
Un
i
v
e
r
s
i
ty
o
f
Li
ll
e
(F
r
a
n
c
e
)
in
El
e
c
t
r
o
n
ics
.
He
h
a
s
ta
u
g
h
t
in
s
e
v
e
r
a
l
u
n
i
v
e
r
s
it
ie
s
a
n
d
g
r
a
d
u
a
te
sc
h
o
o
ls
in
F
r
a
n
c
e
a
n
d
M
o
r
o
c
c
o
.
H
e
r
e
c
e
iv
e
d
r
e
c
e
n
tl
y
h
is
M
a
s
te
r
i
n
"
I
n
t
e
ll
e
c
tu
a
l
P
r
o
p
e
r
ty
Rig
h
ts
"
se
t
u
p
b
y
th
e
Wo
r
ld
In
tellec
tu
a
l
P
r
o
p
e
r
ty
Or
g
a
n
iza
ti
o
n
(
WI
P
O
)
a
n
d
th
e
Af
r
i
c
a
n
I
n
tellec
tu
a
l
P
r
o
p
e
r
t
y
Or
g
a
n
iz
a
ti
o
n
(
OA
P
I
).
Evaluation Warning : The document was created with Spire.PDF for Python.