Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 2
,
A
p
r
il
201
5, p
p
.
28
0
~
28
8
I
S
SN
: 208
8-8
7
0
8
2
80
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Improvement of Steptracking
Algorithm Used F
o
rmobile
Receiver System Via Satellite
T
r
an Va
n Hoi
*
, N
g
u
y
en
X
u
an
T
r
u
o
n
g
*
,
B
a
ch Gi
a Du
on
g*
*
* Broadcasting
College 1, Ra
dio the Voice of Viet Nam
**Electronics an
d Telecommunica
tions C
e
nter
, V
NU University
o
f
Engin
eering
an
d Technolog
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 12, 2015
Rev
i
sed
Feb 9, 20
15
Accepted
Feb 20, 2015
In the mobile co
mmunicati
on via satellite, receiv
e
d s
y
stems are
mounted on
the m
obil
e
dev
i
ce s
u
ch
as
s
h
ip
,
tra
i
n,
car
or
ai
rplane
. In
order
to r
ece
ive
continuous sign
als, r
e
ceived
an
tenna
s
y
stem must be steer
ed in both
th
e
azimuthal and
elevation
angle to track
a satellite. This p
a
per
p
r
oposes the
im
proved s
t
ep-track
ing algori
t
h
m
us
ing for m
obile recei
ver s
y
s
t
em
vias
at
ell
ite
Vina
s
a
t I.
This
p
a
per
als
o
presen
ts the results of stud
y
,
design an
d
manufacture of the discrete-time controll
er s
y
s
t
e
m
for the fas
t
tracking of a
satell
it
e b
y
ap
pl
ying an
improved step
tracking algor
ithm with f
u
zzy
proportional in
tegral d
e
rivativeco
n
troller.
Simulated and
exper
i
mental r
e
sults
indic
a
te th
at the
sy
st
em
perform
an
ces obtain f
r
om apply
i
ng th
e improved
step track
ing al
gorithm
and the
fuzz
y contro
lle
r was better th
a
n
tradit
iona
l
c
ontrol s
y
ste
m
s.
Keyword:
Aut
o
-trac
k
in
g sy
stem
Discrete-tim
e c
o
n
t
ro
ller
Fuzzy PID c
o
ntroller
Sattelite co
mmu
n
i
cation
Step-trac
k
in
g
a
l
go
rithm
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Tran
Va
n Hoi,
Facul
t
y
o
f
El
ec
t
r
o
n
i
c
s an
d C
o
m
m
uni
cat
i
ons
Tech
nol
ogy
,
B
r
oa
dcast
i
n
g C
o
l
l
e
ge 1,
13
6
Q
u
y
L
u
u
Road
, P
h
u Ly
City
, Ha Nam
Pro
v
i
n
ce,
Viet
Nam
.
Em
a
il: tran
v
a
nh
o
i
@vov
.o
rg
.vn
1.
INTRODUCTION
In
t
h
e co
mm
u
n
i
catio
n
ways, satellite co
mm
u
n
i
catio
n
is k
nown
su
ch
as a m
ean
s o
f
p
r
ov
id
ing
n
o
t
onl
y
fi
xed
br
o
a
dba
n
d
an
d i
n
t
e
rnet
se
rvi
ces
but
al
s
o
p
r
o
v
i
d
es m
obi
l
e
co
m
m
uni
cat
i
on ser
v
i
ces an
d se
rvi
ces o
f
a ne
w
gene
ration net
w
orks.
The satellite received
system
shown in
Figure
1,
whic
h consists of a
satellite
an
tenn
a, a l
o
w
-
n
o
i
se
b
l
o
c
k-
do
wn
con
v
e
r
t
er
(
L
N
B
), a set-
to
p
bo
x tuner
,
an
tenn
a con
t
ro
l un
it (
A
C
U
)
and
mechanical sys
t
e
m
.
In
order to
receive signal
effi
ciently from
the satel
l
ite, particularl
y
, on a m
obile satel
lite
comm
unication system
, a satellite antenna
m
u
st be contro
lled to trac
k a
target satellite accurately. Tra
c
king
cap
ab
ilities d
e
p
e
nd
on
m
a
n
y
p
a
rts,
for ex
am
p
l
e track
ing
al
g
o
rith
m
,
th
e b
e
a
m
wid
t
h
of the an
tenn
as, th
e sp
eed
o
f
m
o
b
ile
m
o
ti
o
n
s
and
th
e resp
on
se tim
e
o
f
m
o
to
r co
n
t
ro
ller. On
e of th
e trad
ition
a
l trackin
g
algo
rith
m
i
s
u
s
ed
a step t
r
acki
n
g
algorithm
[1].
Howe
ve
r, algorith
m
was m
a
i
n
ly app
lied
for syste
m
, wh
ich h
a
s stab
le si
g
n
al an
d
not
fa
ding s
u
c
h
as
shi
p
boa
r
d system
, fixed
receive
r sy
ste
m
. Many a
n
tenna trac
king system
using ste
p
t
r
acki
n
g al
g
o
ri
t
h
m
have bee
n
im
pl
em
ent
e
d [
1
-
4
]
.
B
u
t
t
r
ack
i
ng t
i
m
e
i
s
l
i
mi
t
e
d. Thi
s
pa
pe
r pr
o
pose
s
im
pro
v
e
d
step
track
i
n
g alg
o
rith
m
b
y
co
m
b
in
in
g
trad
itio
n
a
l step
tr
ack
i
n
g
al
g
o
rith
m
with
op
en
ed
alg
o
rith
m
,
wh
ich
use
global positioning
syste
m
(GPS)
receive
r a
n
d a
ngle
sens
or
in order t
o
des
c
reasetrac
k
ing
tim
e
of control
l
er.
Mo
reo
v
e
r, i
n
th
e propo
rtion
a
l in
teg
r
al d
e
rivativ
e (P
I
D
) co
nt
r
o
l
sy
st
em
, due t
o
t
h
e e
ffec
t
s of
noi
s
e
and m
easurement errors
as
well as no
n-lin
ear
n
a
ture
o
f
the eng
i
n
e
, lead
i
n
g to th
e cali
b
ratio
n p
a
ram
e
t
e
rs
o
f
th
e PID con
t
ro
ller is d
i
fficult to
ach
iev
e
go
od
v
a
l
u
es, specially
th
e resp
on
se tim
e
is
n
o
t
op
tim
al
[2] [5
].
There
f
ore,
co
n
t
rol
sy
st
em
i
s
perf
orm
e
d by
us
i
ng a
f
u
zzy
c
o
n
t
rol
l
e
r t
o
desc
re
ase res
p
onse
t
i
m
e.
To
dem
onst
r
at
e t
h
e effect
i
v
e
n
ess
of t
h
e sy
st
em
, t
h
e pape
r
descri
bes t
h
e
desi
g
n
a
nd
fab
r
i
cat
i
on
of
a
co
n
t
ro
l
system
, wh
ich
h
a
s b
e
en cap
able o
f
search
ing
and
satellite au
t
o
-track
ing
u
s
ed
for
Vi
n
a
sat-1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
28
0 – 2
8
8
2
81
satellite.
Un
d
e
r th
ese con
d
ition
s
, t
h
e
pu
rp
ose o
f
th
is
p
a
p
e
r
is (i) t
o
p
r
esen
t
satellite track
in
g algo
rith
m
,
(ii) to
p
r
op
o
s
e im
p
r
ov
ed
step
track
i
n
g
al
g
o
rith
m
(iii) to
d
e
si
gn
an
d
fab
r
icate the satellite trac
k
i
ng
con
t
ro
l syste
m
and (i
v)
res
u
lts and a
n
alysis.
Figure 1.
Confi
g
uration of
satellite receiver syste
m
2.
SATELLITE
TRACKING ALGORITHM
2
.
1
.
Satellite
Sea
rching
Metho
d
Satellite track
in
g con
t
ro
l syst
e
m
d
i
v
i
d
e
s in
t
o
two
fu
n
c
tion group
s, n
a
m
e
ly search
i
n
g an
d track
i
ng
cont
rol m
e
thod [6], it is shown in Fi
gure
2. T
h
ere ar
e t
w
o types
of sa
tellite searching m
e
thod: Mechanical
and electrical. In the m
echanical m
e
th
od, bo
th elev
atio
n an
d azim
u
th angles
of fixed t
r
ansm
itter are
cont
rol
l
e
d
by
p
r
essi
n
g
azi
m
u
t
h
up
an
d
d
o
w
n
key
s
or
el
evat
i
o
n
ri
ght
a
n
d l
e
f
t
key
s
t
o
d
r
i
v
e
a m
o
t
o
r sy
st
em
. F
o
r
electronic m
e
thod, sea
r
c
h
ing syste
m
is
d
o
n
e au
to
m
a
tical
l
y
b
y
ro
tating
th
e
ante
nna acc
ording to the elevation
and azim
u
th angle,
whic
h
was
calculated.
Fig
u
re
2
.
Satellite search
i
n
g an
d track
i
ng
m
e
th
od
s
To
p
e
rfo
r
m
th
e p
r
ocess of fin
d
i
n
g
a satellit
e, we m
u
st b
a
se o
n
th
e p
a
rameters o
f
th
e satellite
and
g
r
ou
nd
station
.
A
gr
oun
d statio
n is lo
cated
at
a kno
wn
po
in
t
on
th
e su
rface of th
e Eart
h
is d
e
fin
e
d
b
y
latitu
d
e
, and
long
itud
e
.
Geostatio
n
a
ry satellite is d
e
term
in
ed
b
y
lon
g
itud
e
G
an
d altitu
d
e
ab
ov
e
groun
d. Th
ese
param
e
ters can calculate the azim
u
th angle (angle m
eas
ure
d
east
fr
om
nort
h
i
n
t
h
e ho
ri
zo
nt
al
pl
ane) a
n
d
elev
atio
n
ang
l
e (an
g
l
e
b
e
tween
th
e lin
e
o
f
sig
h
t
t
o
th
e sa
tellite an
d
th
e lo
cal horizon
tal p
l
an
e)
o
f
th
e l
i
n
e
of
sig
h
t
(LOS) to th
e
g
e
ostatio
nary satellite. Based
on
th
ese
p
a
ram
e
ters can con
t
ro
l au
t
o
matically o
r
m
a
n
u
a
lly
th
e gro
und
statio
n
an
tenn
a t
o
cap
ture th
e sat
e
llite.
2
.
2
.
Satellite
T
r
a
c
king
Algo
rithm
There ar
e t
w
o
t
r
acki
ng al
g
o
r
i
t
h
m
,
nam
e
ly an ope
ned
-
l
o
op m
e
t
hod an
d cl
osed
-l
o
o
p
m
e
t
hod. T
h
e
ope
ne
d-l
o
op uses inform
ation of m
obile position
from
GPS
receive
r and a
n
gle se
nsors
.
In contra
ry, the
clo
s
ed-loo
p
m
e
th
od
u
tilizes th
e satellite sig
n
a
l to
track
it su
ch
as t
h
e step track
ing
algo
rith
m
.
To
in
crease th
e
accuracy
of the
tracki
n
g pr
oc
e
ss both ope
n
ed-loop and cl
ose
d
-l
oop a
r
e
use
d
.
The
di
ag
ram
of st
ep
t
r
ac
ki
n
g
al
go
ri
t
h
m
i
s
show
n i
n
Fi
gu
re
3.
The
st
ep
t
r
a
c
ki
n
g
al
g
o
r
i
t
h
m
operat
i
o
n
start wh
en th
e
an
tenn
a con
t
rol syste
m
set in
itial step
sh
ift
i
n
an
y d
i
rectio
n, th
en
t
h
e receiv
ed sign
al lev
e
l will
be used
for c
o
m
p
arison wit
h
the signal level
before
m
oving.
If the recei
ved signal ha
s increase
d
, t
h
e a
n
tenna
continues
one
-step shift in the sa
m
e
direction. If t
h
e
recei
ved si
gnal leve
l has decrea
se
d, the a
n
tenna
m
oves
S
earching
m
e
tho
d
s
Track
ing m
e
tho
d
s
E
l
ec
t
r
onic
Opened-loop
M
echani
cal
Close
d
-loo
p
EL
AZ
ACU
Set-top Box
LNB
M
echani
cal
S
y
ste
m
Display
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Imp
r
o
vemen
t
of step
tra
cki
n
g
a
l
go
rithm
u
s
ed fo
rmob
ile receiver system vi
a sa
tellite
(
T
ran Va
n Hoi
)
28
2
in the opposite direction. By
step-by-step t
u
rns
,
the
r
eceiver ante
nna ca
n
track the
point
of t
h
e hi
ghest
signal
lev
e
l [7
].
Firstly, th
e contro
l system
o
p
e
rates in
the man
u
a
lly or au
tomatical
ly search
m
o
d
e
v
i
a
p
a
ra
m
e
ters of
g
r
ou
nd
stations and
satellites. Then
t
h
e syst
e
m
switch
e
s to track
i
n
g m
o
d
e
. In
th
is m
o
d
e
, th
e con
t
ro
l syste
m
will p
e
rfo
r
m
track
ing
pro
c
ess u
n
til AGC sign
al lev
e
l is o
v
er th
e th
resho
l
d
lev
e
l and
track
i
ng
state k
e
ep
s th
e
idle stage.
Wh
en the
receive
r system
m
oves, if th
e
AGC signal le
vel drops
betwee
n the t
h
res
h
ol
d level,
track
ing
system
wil
l
m
o
v
e
to search
ing
m
o
de.
Fi
gu
re
3.
Di
a
g
r
a
m
of st
e
p
t
r
ac
ki
n
g
al
g
o
r
i
t
h
m
This algorithm has the adva
ntages
that the hardware confi
g
uration
and t
h
e software are sim
p
le and
low c
o
st beca
use this algorithm
uses only feedbac
k
a
bout the recei
ve
d signal leve
l
to the control
facility.
Howe
ver, algorithm
also has disadva
n
ta
ges that the recei
ved
signal from
the satellite
to be
stable a
nd
not
fadi
ng,
and when
the receive
r
m
ove on de
tour
or i
n
tersecti
o
n, the system
will
take ti
m
e
t
o
searc
h
a
n
d track to
stabilize the signal. To usi
n
g effective t
h
e
step trac
ki
n
g
al
go
ri
t
h
m
,
we ha
ve com
b
i
n
ed wi
t
h
o
p
e
n
e
d
-l
oo
p
al
go
ri
t
h
m
.
Di
agram
of
p
r
o
p
o
s
e
d
ope
ne
d-l
o
o
p
al
g
o
r
i
t
h
m
i
s
sho
w
n i
n
Fi
gu
r
e
4.
This algorithm uses the location i
n
formation of
rec
e
iver stations
th
rough hi
gh-accuracy GPS
receiver c
o
m
b
ined
with se
nsor syste
m
s elevation angl
e and azim
u
th angl
e. Inform
ation about longitude and
latitude of the
stations
obtained
from
the
GPS receive
r
to calculate
the base ele
v
ation angle (EL1) a
nd
azi
m
u
th
(AZ1) o
f
th
e m
o
b
ile statio
n
s
.
Th
is v
a
lu
e is
com
p
ared
with t
h
e
elevation a
n
gle (EL
2
) a
n
d a
z
im
uth
(AZ
2
)
obt
ai
ne
d
fr
om
t
h
e angl
e sens
o
r
s,
w
h
i
c
h a
r
e l
o
cat
e
d
o
n
t
h
e
r
o
t
a
t
e
d a
x
i
s
of t
h
e a
n
t
e
n
n
a.
Ope
n
e
d
-l
oo
p a
l
go
ri
t
h
m
s
has t
h
e a
dva
nt
a
g
e
o
f
m
a
i
n
t
a
i
n
i
ng t
h
e t
r
ac
ki
n
g
p
r
ocess
w
h
en
sy
st
em
m
oves
wi
t
h
hi
gh s
p
e
e
d an
d m
oves across t
h
e st
r
eet
. Ho
we
ver,
th
e d
i
sadv
an
t
a
g
e
s of th
is
algorithm
are ac
curac
y
depe
nds
on t
h
e accuracy
of t
h
e GPS receiver, a
s
well as the angle sens
ors a
nd a
n
gle converters.
There
f
ore,
t
h
i
s
m
e
t
hod ca
n
co
m
b
i
n
e wi
t
h
st
e
p
t
r
ac
ki
n
g
al
go
ri
t
h
m
s
t
o
t
a
ke t
h
e a
dva
nt
ag
e
o
f
t
h
e
t
w
o m
e
t
hods
.
Fi
gu
re
4.
Di
a
g
r
a
m
of
o
p
ene
d
-l
oo
p al
go
ri
t
h
m
N
N
Y
Y
Y
Y
N
N
Cal. AZ1, EL1
Convert AZ2
,
EL2
AZ shift r
i
ght
GPS inputs
Sensor in
p
uts
IDLE mode
Restart
AZ1-AZ2
≤
1
AZ
2-
AZ
1>0
EL1
-E
L2
≤
2
EL2
-E
L1
>0
AZ shift
lef
t
EL turn
up
EL Turn
down
Y
N
Restart
Track
ing mode
S
earching
m
ode
IDLE mode
AGC>Thres
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
28
0 – 2
8
8
2
83
3.
PROP
OSES
I
M
P
R
O
V
ED
S
TEP-
T
RA
CKIN
G A
L
GORITHM
To t
a
ke t
h
e ad
vant
a
g
es an
d r
e
st
ri
ct
t
h
e di
s adva
nt
age
s
of t
h
e t
w
o m
e
t
hod
s abo
v
e, t
h
e pa
per p
r
op
oses
im
proved t
r
ac
king algorithm
by com
b
in
ing step
tr
ack
i
ng
an
d
op
en
ed-
l
o
op al
gorithm
,
the algorithm
diagram
sho
w
n i
n
Fi
gu
r
e
5.
Fi
rst
l
y
, t
h
e con
t
rol
sy
st
em
operat
e
s i
n
t
h
e o
p
ene
d
-l
o
op t
r
a
k
i
n
g m
ode. Th
e param
e
t
e
rs obt
ai
ned
fr
om
the GPS recei
ver and a
ngle se
nsors will be calculated to
adj
u
st antenna elevation a
ngle a
nd azim
u
th angle to
track
th
e satellite. Th
en, th
e
syste
m
switch
e
s to
step
tr
ack
i
ng
m
o
d
e
. In th
is
m
o
d
e
, the co
n
t
ro
l system will
p
e
rform
track
in
g pro
c
ess
u
n
t
il AGC sign
al
lev
e
l is ov
er
t
h
e thres
h
old le
vel and t
r
acki
n
g state keeps
the idle
stage.
Whe
n
the receive
r syste
m
m
oves, if t
h
e AGC si
gnal
level drops
be
low the t
h
res
h
old
1 due t
o
movi
ng
o
r
ro
und
ing
o
f
a v
e
h
i
cle, trackin
g
syste
m
will switch
t
o
o
p
e
n
e
d-loop
track
i
n
g
m
o
d
e
to
repo
sitio
n th
e an
t
e
n
n
a
p
o
s
ition
,
after t
h
at system
sh
ifts to
step
t
r
ack
i
n
g m
o
d
e
. If the AGC sign
al lev
e
l dro
p
s
b
e
t
w
een th
e t
h
resh
o
l
d
1
o
r
th
resho
l
d 2 lev
e
ls, track
i
n
g
syste
m
will sh
ifts to
step
trackin
g
m
o
d
e
.
Whic
h thres
h
old 2 is greater t
h
an threshold
1.
When
the
AGC is
greater than
threshold
2, t
h
e system
still o
b
t
ain
s
a stab
le sig
n
a
l.
Wh
en
th
e
AGC sig
n
a
l lev
e
l
d
r
o
p
s b
e
low t
h
e th
resho
l
d
1 d
u
e
to
t
h
e receiv
e
d
an
tenn
a is sh
i
f
ted
co
m
p
letely
d
i
fferen
t
d
i
rect
io
n
,
and
th
en
th
e system
wil
l
b
eco
m
e
d
i
so
rien
ted
.
To
redu
ce the
searchi
ng a
nd t
r
acki
ng tim
e,
the syste
m
needs to determ
ine
the azim
u
th and elevati
on a
n
gle of the antenna by
swi
t
c
hi
n
g
t
o
o
p
ene
d
-l
o
op m
ode.
In t
h
i
s
m
ode, t
h
e
sy
st
em calcu
lates po
sitio
n
co
m
b
in
ed with
sen
s
o
r
syste
m
s
to
con
t
ro
l th
e
an
tenn
a to
a
new lo
cation
an
d
t
h
e system switch
e
s to
step
track
i
n
g
t
o
tu
n
i
ng
th
e anten
n
a
p
o
s
ition
.
Fi
gu
re
5.
Di
a
g
r
a
m
of i
m
pro
v
e
d
st
e
p
t
r
ac
ki
n
g
al
go
ri
t
h
m
In step trac
king algorithm
,
the
tracking tim
e
com
e
back
to
the steady state fo
r a long time because
th
e an
ten
n
a
has b
e
en
co
m
p
letely ch
an
g
e
d d
i
r
ection
and
m
u
st b
e
done f
r
o
m
th
e sear
ch
i
n
g
m
o
d
e
.
W
h
en
com
b
ining algorithm
s
are
op
ened-loop trac
king, ele
v
ation angle a
n
d
azim
u
th are calc
u
lated i
n
a
ve
ry fast
tim
e
, thus the
tracki
n
g tim
e
is shorte
n a
n
d the receive
d si
gnal to ensure c
o
ntinuity.
4.
DESIGN AND
FABRICATION OF SA
TELLITE TRACKING
CONTROL
SYSTEM
The arc
h
itecture of the trac
king co
ntrol system is shown
in Figure 6. Cent
er microcontroller receives
signals from
in
puts s
u
c
h
as ke
yboa
rd,
GPS
receiver, AGC, angle
se
ns
ors
,
en
code
r. After that,
microcont
r
oller
i
m
p
l
e
m
en
ts co
n
t
ro
l pro
c
ess
usin
g th
e co
m
b
in
ed trac
k
i
ng
al
g
o
rith
m
with
fu
zzy PID con
t
ro
ller [7
].
N
N
Y
Y
Opened-loop tracking
S
t
ep tr
acking
m
ode
IDLE mode
AGC
≥
Thres2
Restart
AGC
≥
Thres1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Imp
r
o
vemen
t
of step
tra
cki
n
g
a
l
go
rithm
u
s
ed fo
rmob
ile receiver system vi
a sa
tellite
(
T
ran Va
n Hoi
)
28
4
Fi
gu
re
6.
B
l
oc
k
di
ag
ram
of e
xpe
ri
m
e
nt
al
confi
g
u
r
at
i
o
n
To o
b
t
a
i
n
t
h
e AGC
si
g
n
al
l
e
vel
,
t
h
e AGC
det
ect
or
p
r
ovi
ded
t
h
e
p
r
op
or
t
i
onal
si
gnal
l
e
vel
of A
G
C
voltage. This
AGC signal passed th
rough
the A/D converter
to convert digital si
gnal. Because the AGC
signal range
is
very narrow, A/D
converter must
have
a
high accur
acy
with 12
bit resol
u
tion.
To calculating the elevation
and azi
m
u
th
an
g
l
e of an
ten
n
a,
m
i
cro
c
on
troller read
th
e latitu
d
e
and
longitude
value of ground st
ation fr
om
the
GPS receive
r and angle va
lue from
sensors
.
By co
m
p
arison
b
e
tween
th
e ang
l
e v
a
l
u
e
o
f
GPS an
d sen
s
ors, system
co
n
t
rols
th
e
m
o
to
r d
r
i
v
ing
ro
tating
new p
o
s
ition
.
The el
ect
ro
ni
c
schem
e
and t
r
a
c
ki
n
g
co
nt
r
o
l
s
y
st
em
are sho
w
n i
n
Fi
g
u
re
7.
M
o
t
o
r
dri
v
i
n
g
ci
rcui
t
uses
po
we
r t
r
ansi
st
or 2
S
C
2
5
81
and
2S
A1
1
0
6
,
whi
c
h i
n
st
a
l
l
e
d i
n
t
h
e form
of H-
bri
dge
. Sy
st
em
uses
micro
c
on
tro
ller Atm
e
g
a
-128
t
h
at
is 8
b
it
mic
r
o
c
on
tro
ller
[8
].
Fi
gu
re
7.
The
e
l
ect
roni
c s
c
he
m
e
and c
o
m
p
l
e
t
e
d t
r
ac
ki
n
g
c
o
nt
r
o
l
sy
st
em
In
order t
o
confirm
a performance of tracki
n
g algo
rith
m
an
d
fu
zzy con
t
roller, th
e p
a
rabo
la an
tenn
a
with
a d
i
am
ete
r
of 60
cm
is u
s
ed
fo
r
Vin
a
sat 1
sate
llite. M
ech
an
ical system u
s
e two
2
4
V-DC servo
mo
tors
wi
t
h
s
p
ee
d
of
1
5
0
0
r
p
m
,
el
evat
i
on
ran
g
e
of
r
o
t
a
t
i
on i
s
f
r
om
0
0
to
9
0
0
a
n
d az
im
ut
h i
s
f
r
om
0
0
to 355
0
.
In t
h
e PID
controll syste
m
, due to t
h
e effect
s of
noise a
n
d
measurem
ent erro
rs
as well as
non-linear
n
a
ture of th
e en
g
i
n
e
, lead
ing
to
th
e calibratio
n
p
a
ram
e
ters o
f
t
h
e PID contro
ller is
d
i
fficu
lt to
ach
iev
e
g
ood
val
u
e
[9]
.
The
r
efo
r
e, a
fi
ne
-t
u
n
i
n
g
pr
ocess i
s
per
f
o
rm
ed by
a fuzzy
c
o
nt
r
o
l
l
e
r be
fo
re a
ppl
y
i
ng t
o
t
h
e sy
s
t
em
cont
roller.
AGC Detector
Motor Driver
A/D
converter
Motor EL,
AZ
SensorAZ, EL
LNB
GP
S
Receiver
Mic
r
o-
controller
Display
Key
b
oard
A/D converter
Am
plifier
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
28
0 – 2
8
8
2
85
Fi
gu
re
8.
Si
m
u
l
i
nk
di
ag
ram
fuzzy
P
I
D
co
nt
r
o
l
l
e
r
Th
e
st
ru
ct
u
r
e o
f
th
e fu
zzy PID
co
n
t
ro
ller
is
s
hown in
Fig
u
re
8
.
Fu
zzy co
n
t
ro
ller
will p
e
rfor
m
opt
i
m
i
z
i
ng con
t
rol
pa
ram
e
t
e
rs of
PI
D c
ont
rol
l
er base
d
on
t
h
e cur
r
e
n
t
pa
ra
m
e
t
e
rs of t
h
e c
l
assi
cal
erro
r (
e
) an
d
the rate
of t
h
e
change
of error (de/
d
t
). Th
erefo
r
e, th
e i
n
pu
t
of th
e
fuzzy contro
ller in
cl
u
d
e
s con
t
ro
l error sig
n
a
l
e(t
)
a
n
d
i
t
s
de
ri
vat
i
v
e
de(t
). T
h
e
out
put
s
o
f
t
h
e
fuzzy c
o
ntroller are
three
PID pa
ram
e
ters: K
P
, K
I
, K
D
[10
]
.
The si
m
u
l
a
t
e
d resul
t
s
of P
I
D co
nt
r
o
l
l
e
r a
nd
f
u
zzy
co
nt
r
o
l
l
e
r are s
h
ow
n i
n
Fi
gu
res
9
and
1
0
. T
h
e
r
e
su
lt sh
ow
s t
h
at th
e
r
e
sponse o
f
PID
con
t
r
o
ller
is
o
s
cillato
r
y
and
l
o
ng
settin
g
ti
m
e
, wh
ich
can
d
a
m
a
g
e
th
e
syste
m
. Bu
t the resp
on
se of
fu
zzy PID con
t
ro
ller is
b
e
tter t
h
an PID
con
t
roller.
Fi
gu
re
9.
The
s
t
ep res
p
on
se
of
t
h
e P
I
D c
ont
r
o
l
l
e
r
Figu
re 1
0
.
T
h
e
step res
p
o
n
se of
the fuzzy
PI
D
c
ont
roller
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Imp
r
o
vemen
t
of step
tra
cki
n
g
a
l
go
rithm
u
s
ed fo
rmob
ile receiver system vi
a sa
tellite
(
T
ran Va
n Hoi
)
28
6
5.
R
E
SU
LTS AN
D ANA
LY
SIS
Fi
gu
re
11
i
n
di
cat
es vari
at
i
o
n
s
o
f
t
h
e
A
G
C
vol
t
a
ge
ve
rs
us
t
i
m
e
when
us
i
ng t
h
e P
I
D
co
nt
r
o
l
l
e
r an
d
fu
zzy
PID contro
ller. At t
h
e
p
o
i
n
t
of
10
s, th
e tim
e to
reach
the fo
cu
s it
e
m
is o
b
serv
ed
0
.
8
s
i
n
case
o
f
PID
cont
rol
l
e
r an
d 0.
4s
i
n
case o
f
fuzzy
PI
D
c
ont
rol
l
e
r.
Th
e
resu
lts show th
at t
h
e
AGC lev
e
l curve i
s
flatter th
an
i
n
case
o
f
PID con
t
ro
ller.
Fig
u
re
11
.
AGC lev
e
l with PID co
n
t
ro
ller
(a)
Fig
u
re
12
.
AGC lev
e
l with fuzzy PID co
n
t
roller
Fi
gu
res
1
3
,
1
4
a
n
d
1
5
sh
o
w
s t
h
e t
r
ac
ki
n
g
t
i
m
e usi
ng
st
ep-t
rac
k
i
n
g,
ope
ne
d-l
o
o
p
a
l
go
ri
t
h
m
and
im
proved step
tracking algori
t
h
m
.
The sy
st
em
perfo
rm
s searchi
ng m
ode i
n
t
h
e t
i
m
e
from
0 t
o
5 secon
d
s, t
h
e
n
m
oves to trac
king m
ode and turn t
o
stabl
e
m
ode.
When the recei
ver s
y
ste
m
m
oves, the receive
d a
n
tenna
wo
ul
d
be di
so
r
i
ent
e
d, so t
h
e s
y
st
em
swi
t
c
hes t
o
t
r
acki
n
g m
ode (at
poi
nt
A) an
d t
h
e t
i
m
e t
o
t
r
ack and ret
u
r
n
st
abl
e
st
at
e t
a
kes ab
out
2-
4s
whe
n
usi
n
g st
e
p
-t
rac
k
i
n
g al
go
ri
t
h
m
and ab
o
u
t
0.
5
-
0
.
7s
w
h
en u
s
i
n
g o
p
e
n
e
d
-l
oo
p
al
go
ri
t
h
m
or i
m
prove
d st
ep
t
r
acki
n
g
al
g
o
ri
t
h
m
.
Fig
u
re
13
. Th
e track
i
n
g ti
m
e
u
s
ing
step
-track
ing
alg
o
rith
m
Fi
gu
re
1
4
. T
h
e
t
r
acki
n
g
t
i
m
e
usi
n
g
o
p
ene
d
-l
oo
p
alg
o
rith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 2, A
p
ri
l
20
15
:
28
0 – 2
8
8
2
87
Fig
u
re
15
. Th
e track
i
n
g ti
m
e
u
s
ing
im
p
r
ov
ed
step
track
i
ng
alg
o
rith
m
From
the Figures 14 and 15, we can see that
whe
n
usi
n
g the com
b
ined
track
i
n
g
algo
rith
m
th
e
track
ing
tim
e i
s
sho
r
ten
e
d
ti
me eq
u
i
v
a
len
t
wh
en
u
s
ing
op
en
ed-loo
p
al
go
rith
m
,
b
u
t
the q
u
a
lity o
f
sig
n
a
l is
m
o
re stab
le due to
co
m
b
in
in
g step
-t
rak
i
n
g
alg
o
rith
m
to
tu
ne th
e an
tenn
a
po
sitio
n m
o
re accu
rately.
6.
CO
NCL
USI
O
N
Thi
s
pa
pe
r p
r
o
pos
ed i
m
pro
v
e
d
st
ep t
r
ac
ki
n
g
al
go
ri
t
h
m
by
com
b
i
n
i
ng st
e
p
t
r
ac
ki
n
g
an
d
ope
ne
d-l
o
o
p
al
go
ri
t
h
m
t
o
descrease t
r
ac
ki
ng t
i
m
e. The pape
r al
so
p
r
e
s
ent
e
d t
h
e st
u
d
y
,
desi
g
n
an
d fa
bri
cat
i
o
n
of t
h
e
searchi
ng a
n
d
satellite auto-tracking system
use
d
for m
obile satellite recei
ver. In orde
r to descrease response
t
i
m
e
, t
h
e sy
st
em
al
so ap
pl
i
e
d
fuzzy
c
o
nt
rol
m
e
t
hod t
o
d
e
si
gn sel
f-t
uni
n
g
f
u
zzy
P
I
D c
ont
rol
l
e
r.
The
resul
t
sh
ows t
h
at the syste
m
ap
plies i
m
p
r
o
v
e
d track
ing
al
go
rith
m
with
fu
zzy PID con
t
ro
ller h
a
s
a b
e
tter
p
e
rform
a
n
ce in resp
on
se ti
m
e
, track
i
n
g ti
m
e
.
Tab
l
e
1
.
C
o
m
p
arison
with
th
e prev
i
o
u
s
pub
lish
e
d
Ref
Contr
o
ller
T
r
acking tim
e
Response tim
e
[1]
H
∞
r
obustcontr
o
ller
0.
6s
-
[2]
PI
contr
o
ller
0.
6s
0.
6s
T
h
is wor
k
Fuzzy
PI
D
contr
o
ller
0.
5-
0.
7s
0.
4s
ACKNOWLE
DGE
M
ENTS
The
resea
r
ch has bee
n
sponsored by
Vietna
m
Acad
emy o
f
Scien
c
e and Tech
no
log
y
and carr
i
ed
ou
t
at U
n
i
v
er
sity of
En
g
i
n
eer
i
n
g
an
d Tech
no
logy, VN
U.
REFERE
NC
ES
[1]
Chang-Ho C., Sang-H
y
o L.,
Tae-Yong K., and Cheol L. “A
ntenna Control S
y
stem Using
Step Tracking Algorith
m
with H
∞
Contro
ller”.
Internationa
l Journal of Co
n
t
rol,
Automation
and System
. Vol 1, No. 1
,
pp
83-
92, 2003
.
[2]
M
y
eongk
y
un K
i
m
,
Jinsoo Kim and Oh Yang. “Precise
Attitu
de Control S
y
s
t
em
Design for the Tr
acking of
Pa
ra
bol
ic
Sa
te
l
lit
e
Ante
nna”
. International Journ
a
l of Smart Ho
me
. Vol. 7
,
No.5
, pp
. 275-290
, 2
013.
[3]
Jinsoo Kim
,
My
eong K
y
un Kim
,
Oh Yang. “P
arabolic Satel
lite T
r
ack
ing Sy
stem
”.
The 3rd International
Conference on
Circuits, Con
t
rol, Comm
unica
tio
n, Electricity,
Electronics, En
ergy, S
y
st
em, Signa
l and Simula
tion
.
Vol. 25
, pp
. 123
-126, 2013
.
[4]
Weimin Jia,
Lu
yao Hao,
Kai Du
.“Step
track
ing algorithm based
on finite di
ff
erence stoch
a
stic approximation fo
r
SATCOM on-th
e-move”.
International Confer
ence on Electric
Information and Control Engineering.
pp. 2632
–
2635, 2011
.
[5]
Sobuty
e
h
Rezan
ezhad
. “Design
of
Fuzzy
Optimized Con
t
roller f
o
r Satellite
Attitude Control b
y
Two State actu
ator
to reduce Limit C
y
cle b
a
sed
o
n
Takag
i
-Sugen
o
Method”.
International Journal
of
Electrica
l
and Computer
Engineering.
Vol 4, No 3, 2014.
[6]
Nazzar
eno Diod
ato. “
S
atel
lit
e C
o
m
m
unication”,
chap.2
, pp
. 33-5
8
. Int
ech
, Sep
t
e
m
ber, 2010.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Imp
r
o
vemen
t
of step
tra
cki
n
g
a
l
go
rithm
u
s
ed fo
rmob
ile receiver system vi
a sa
tellite
(
T
ran Va
n Hoi
)
28
8
[7]
Lu
y
a
o Hao
,
Min
li Yao
.
SPSA-b
ased step
tr
acking algorithm fo
r mobile DBS r
ecep
tion’.
Journ
a
l on
Simu
lation
Modelling
Pract
i
ce and Theory
.
2011n vol. 19, n
o
. 2
,
pp
. 837-84
6.
[8]
Roop Singh Tak
u
r, E. R
a
m
kum
ar. “
I
m
p
roving Qualit
y
of V
e
hic
l
e Tra
c
king S
y
s
t
em
s in Hill Stati
ons Using IEEE
802.16 Network
s
”.
International Journal o
f
Electr
ical and
Computer Eng
i
neering
.
2013, Vol 3, No
1.
[9]
Kam
a
l Y., Far
i
d
H., Am
ir M. “
D
esign of Inte
lli
gent
PID Controller for AVR Sy
stem
Using an
Adaptive Neur
o
F
u
zz
y Infe
renc
e
S
y
s
t
em
”.
International Journal of
Electric
al and
Computer Eng
i
neering.
2014, V
o
l 4, No 5
.
[10]
Jium
-Ming Lin, Po-Kuang Chang. “
I
ntellig
ent
Mob
ile Satel
lit
e
Antenna Track
i
ng Sy
st
em
Design”.
SICE Annu
al
Confer
enc
e
.
200
8, pp
. 2922-292
7.
BIOGRAP
HI
ES OF
AUTH
ORS
Tran Van Hoi
was born in Phu
Ly
City
, Ha Nam Provin
ce, Viet Nam, in 1978
.
He received
th
e
B.S degree in telecommunicatio
n techniqu
es from
University
of Transport and communications
(UTC) in 2001. He receiv
e
d M.S degree in el
ect
r
onic wirel
e
ss and com
m
unicatio
n from
Le Quy
DonTechnicalU
n
iversity
in 200
4. Since 2001, He ha
s been a lecturer in Broadcas
ting Colleg
e
1,
Radio the Voice
of Viet Nam.
Cu
rrenlly
, He is
a Ph.
D
student
in
VNU University
of Engineering
and Technolog
y
.
His research in
terests involv
e
s in RF Analog Si
gnal Processing, RF design, RF
chip d
e
sign,
Sate
llit
e Com
m
unica
tion,
Autom
a
ti
c
Control.
Email: tranv
a
nh
oi@vov.org.vn
Dr
.
Nguy
e
n
X
u
an Tr
uong
was
born in Ha Noi
City
, Viet Na
m,
in 1964. He
completed his B.S
degree
in
ele
c
t
r
onics
and
te
le
com
m
unications
from
Ha Noi
Univers
i
t
y
of
S
c
ien
ce
and
Techno
log
y
in
1
986, M.S degr
ee in 2002
and Ph.D
. degree
in 20
09. Since 1986
,
He has been
a
lecturer in Broad
casting College
1, Voice of Viet
Nam. His research inte
r
e
sts involves in Analog
and Digital Sig
n
al Processing,
Television
Technolog
y
,
Satellite Communi
cation, Automatic
Control.
Email: ngu
y
e
nx
uantruong@vov.org.vn
Assoc. Prof. Ba
ch Gia Duong
was born in Ha D
ong Dist, Ha No
i Province, Viet
Nam, in 1950.
He received
the B.S degree
in r
a
dio ph
y
s
ics
in
1972 and the Ph
.D. degr
ee in wireless ph
y
s
ics
from University
of Hanoi, in 198
8. From 1988 to
1990, he was a r
e
search
assistant in Lening
rad
University
, Russ
ia. From 1991 to
2005, he was a
re
search
er in
academ
y
of
air for
c
e. Since 2006
He is
a
l
ectur
er and
Head
of el
ect
ronics
and t
e
le
com
m
unica
tion
cen
ter,
Univers
i
t
y
of
Engineering
and
Technolog
y
,
Vi
etnam National
Univer
sity
. His r
e
search
focuses
on RF Analog
Signal Processing, RF ch
ip d
e
sig
n
, Rad
a
r
Engi
n
e
ering and Techn
o
log
y
,
Automatic
Contro
l.
Email: duongbg
@vnu.edu.vn
Evaluation Warning : The document was created with Spire.PDF for Python.