I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
1
1
4
0
~
1
1
4
9
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
p
p
1
1
4
0
-
1149
1140
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
A Survey
on
G
ra
ph Data
ba
se M
a
n
a
g
e
m
ent
Techni
q
ues for
H
ug
e U
nstruc
tur
ed Data
P
a
t
il N.
S
.
1
,
K
ira
n P
2
,
K
a
v
y
a
N.
P
.
3
,
Na
re
s
h P
a
t
el
K
.
M
.
4
1
In
f
o
rm
a
ti
o
n
S
c
ien
c
e
&
E
n
g
in
e
e
rin
g
,
BIET
,
Da
v
a
n
g
e
re
,
Ka
rn
a
ta
k
a
,
I
n
d
ia
2
Co
m
p
u
ter S
c
ien
c
e
&
En
g
in
e
e
rin
g
,
RNSIT
,
Be
n
g
a
lu
ru
,
Ka
rn
a
tak
a
,
In
d
ia
3
M
CA
De
p
a
rt
m
e
n
t,
RNSIT
,
Be
n
g
a
lu
ru
,
Ka
rn
a
tak
a
,
In
d
ia
4
Co
m
p
u
ter S
c
ien
c
e
&
En
g
in
e
e
rin
g
,
BIET
,
Da
v
a
n
g
e
re
,
Ka
rn
a
tak
a
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
1
8
,
2
0
1
7
R
ev
i
s
ed
J
an
1
,
2
0
1
8
A
cc
ep
ted
Dec
1
1
,
2
0
1
8
Da
ta an
a
l
y
sis,
d
a
ta
m
a
n
a
g
e
m
e
n
t,
a
n
d
b
ig
d
a
ta p
la
y
a
m
a
jo
r
ro
le i
n
b
o
t
h
so
c
ial
a
n
d
b
u
sin
e
ss
p
e
rsp
e
c
ti
v
e
,
in
th
e
las
t
d
e
c
a
d
e
.
No
wa
d
a
y
s,
th
e
g
r
a
p
h
d
a
tab
a
se
is
th
e
h
o
tt
e
s
t
a
n
d
tren
d
i
n
g
re
se
a
rc
h
to
p
ic.
A
g
ra
p
h
d
a
tab
a
se
is
p
re
f
e
rre
d
to
d
e
a
l
w
it
h
th
e
d
y
n
a
m
ic
a
n
d
c
o
m
p
lex
re
latio
n
sh
ip
s
i
n
c
o
n
n
e
c
ted
d
a
ta
a
n
d
o
f
fe
r
b
e
tt
e
r
re
su
lt
s.
Ev
e
r
y
d
a
ta
e
le
m
e
n
t
is
re
p
re
se
n
ted
a
s
a
n
o
d
e
.
F
o
r
e
x
a
m
p
le,
in
so
c
ial
m
e
d
ia
site,
a
p
e
rso
n
is
re
p
re
se
n
ted
a
s
a
n
o
d
e
,
a
n
d
it
s
p
r
o
p
e
rti
e
s
n
a
m
e
,
a
g
e
,
li
k
e
s,
a
n
d
d
isli
k
e
s,
e
tc
a
n
d
th
e
n
o
d
e
s are
c
o
n
n
e
c
ted
w
i
th
th
e
re
l
a
ti
o
n
sh
i
p
s
v
ia
e
d
g
e
s.
Us
e
o
f
g
r
a
p
h
d
a
tab
a
se
is
e
x
p
e
c
ted
to
b
e
b
e
n
e
f
icia
l
in
b
u
sin
e
ss
,
a
n
d
so
c
ial
n
e
tw
o
rk
in
g
sites
th
a
t
g
e
n
e
r
a
te
h
u
g
e
u
n
stru
c
tu
re
d
d
a
ta
a
s
th
a
t
Big
Da
t
a
re
q
u
ires
p
ro
p
e
r
a
n
d
e
f
f
ic
ien
t
c
o
m
p
u
tatio
n
a
l
tec
h
n
i
q
u
e
s
t
o
h
a
n
d
le
w
it
h
.
T
h
is
p
a
p
e
r
re
v
iew
s
th
e
e
x
isti
n
g
g
ra
p
h
d
a
ta
c
o
m
p
u
tati
o
n
a
l
tec
h
n
i
q
u
e
s
a
n
d
t
h
e
re
se
a
rc
h
w
o
rk
,
to
o
ff
e
r
th
e
f
u
tu
re
re
se
a
rc
h
li
n
e
u
p
in
g
ra
p
h
d
a
tab
a
se
m
a
n
a
g
e
m
e
n
t.
K
ey
w
o
r
d
:
B
ig
d
ata
D
y
n
a
m
ic
s
ch
e
m
a
Gr
ap
h
d
atab
ase
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
P
atil N
.
S.,
I
n
f
o
r
m
a
tio
n
Scie
n
ce
&
E
n
g
i
n
e
er
in
g
,
B
I
E
T
,
Dav
a
n
g
er
e,
Kar
n
ata
k
a
,
I
n
d
ia.
E
m
ail:
n
s
p
4
0
4
1
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
o
d
ay
,
t
h
e
u
s
er
d
ata
i
s
i
n
cr
ea
s
in
g
r
ap
id
l
y
d
u
e
to
m
a
n
y
d
at
a
g
e
n
er
atin
g
p
r
o
ce
s
s
e
s
li
k
e
la
test
s
o
cial
m
ed
ia
n
et
w
o
r
k
s
,
r
ap
id
ad
a
p
tatio
n
o
f
s
m
ar
tp
h
o
n
e
s
an
d
h
a
n
d
h
eld
d
ev
ices
f
u
r
t
h
er
en
h
a
n
ce
s
th
e
d
ata
cr
ea
tio
n
.
T
h
e
co
m
p
u
tatio
n
o
f
th
i
s
d
ata
is
b
ec
o
m
i
n
g
m
o
r
e
d
if
f
ic
u
lt
d
ay
b
y
d
a
y
,
as
th
e
u
s
er
s
o
f
t
h
e
d
ig
ital
d
ata
a
n
d
n
et
w
o
r
k
s
ar
e
in
cr
ea
s
in
g
b
y
m
an
if
o
ld
s
[
1
]
.
T
r
ad
itio
n
al
d
a
tab
ases
ca
n
n
o
t
co
m
p
u
te
t
h
is
h
u
g
e
d
ata
w
it
h
o
u
t
co
m
p
le
x
it
y
f
o
r
t
h
e
r
ea
l
-
ti
m
e
r
esp
o
n
s
es;
w
h
er
ea
s
,
i
n
t
h
e
ca
s
e
o
f
g
r
ap
h
d
atab
ase
s
,
a
g
r
ap
h
is
g
e
n
er
ated
f
o
r
ea
c
h
en
tit
y
,
w
h
ic
h
s
p
ee
d
s
u
p
t
h
e
p
r
o
ce
s
s
.
T
h
e
u
s
e
ca
s
e
f
o
r
a
g
r
ap
h
d
atab
ase
s
ce
n
ar
io
is
co
n
ten
t
-
b
ased
d
ata
f
ilter
i
n
g
.
Gr
ap
h
d
atab
ase
p
r
o
v
id
es
b
etter
p
er
f
o
r
m
a
n
ce
a
n
d
d
ata
co
n
s
is
ten
c
y
;
h
en
ce
m
a
n
y
r
esear
c
h
er
s
ar
e
co
n
s
id
er
in
g
th
e
g
r
ap
h
m
o
d
el
s
[
2
]
.
I
n
o
r
d
er
to
h
an
d
le
th
e
is
s
u
e
s
o
f
s
to
r
in
g
h
u
g
e
d
ata,
m
an
y
o
f
t
h
e
r
esear
c
h
er
s
h
av
e
p
r
esen
ted
t
h
e
co
n
ce
p
t
o
f
g
r
ap
h
an
d
g
r
ap
h
s
t
o
r
ag
e,
in
w
h
ic
h
t
h
e
g
r
ap
h
s
ar
e
i
m
p
lied
to
m
o
d
el
th
e
h
u
g
e
d
a
ta
w
it
h
co
m
p
licated
d
esig
n
.
I
n
e
v
er
y
g
r
ap
h
,
th
er
e
w
ill
b
e
n
o
d
es,
p
r
o
p
er
ties
,
an
d
ed
g
es
as
t
h
e
r
elatio
n
s
h
ip
a
m
o
n
g
t
h
e
m
.
T
h
e
co
n
n
ec
ted
d
ata
g
r
ap
h
d
atab
as
e
also
o
f
f
er
s
th
e
s
i
g
n
i
f
ican
t
c
h
o
ice
to
d
ea
l
w
i
th
th
e
s
tr
u
ct
u
r
ed
,
s
e
m
i
-
s
tr
u
c
t
u
r
e
an
d
u
n
s
tr
u
ct
u
r
ed
d
ata
[
3
]
.
T
h
e
g
r
ap
h
d
atab
ase
o
f
f
er
s
t
h
e
f
astes
t
r
esp
o
n
s
e
to
a
q
u
er
y
,
m
a
n
y
ti
m
es,
i
n
m
illi
s
ec
o
n
d
s
.
T
o
d
ay
,
t
h
e
g
r
ap
h
d
atab
ases
ar
e
w
id
el
y
u
s
ed
i
n
r
etail,
s
o
cial
n
e
t
w
o
r
k
,
h
ea
lth
ca
r
e,
co
m
m
u
n
icatio
n
an
d
o
t
h
er
o
n
l
in
e
s
o
lu
tio
n
s
.
Op
er
atio
n
s
l
ik
e
cr
ea
te,
u
p
d
ate,
r
ea
d
an
d
d
ele
te
ar
e
av
ailab
le
i
n
g
r
ap
h
d
atab
ase
s
y
s
te
m
.
T
h
e
d
r
a
w
b
ac
k
o
f
t
h
ese
s
y
s
te
m
s
i
s
t
h
at
it
is
m
o
r
e
e
x
p
en
s
iv
e
b
y
n
at
u
r
e
t
h
a
n
t
h
e
tr
ad
itio
n
al
m
et
h
o
d
s
[
4
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
S
u
r
ve
y
o
n
Gra
p
h
Da
ta
b
a
s
e
Ma
n
a
g
eme
n
t
Tech
n
i
q
u
es fo
r
Hu
g
e
Un
s
tr
u
ctu
r
ed
Da
ta
(
P
a
til N
.
S
.
)
1141
T
h
is
s
u
r
v
e
y
p
ap
er
d
is
c
u
s
s
e
s
th
e
co
n
ce
p
ts
o
f
g
r
ap
h
d
atab
ases
,
r
ev
ie
w
o
f
t
h
e
e
x
is
ti
n
g
r
esear
c
h
r
eg
ar
d
in
g
ex
is
ti
n
g
co
m
p
u
tatio
n
al
tec
h
n
iq
u
e
s
o
f
d
ata
m
a
n
ag
e
m
en
t.
Sect
io
n
2
d
i
s
cu
s
s
e
s
s
o
m
e
b
asic
co
n
ce
p
t
u
al
asp
ec
ts
o
f
g
r
ap
h
d
atab
ases
,
m
o
d
eli
n
g
,
co
m
p
u
tatio
n
a
l
tech
n
iq
u
e
s
an
d
co
m
p
ar
i
s
o
n
s
o
f
te
ch
n
iq
u
es.
Sectio
n
3
p
r
o
v
id
es
th
e
liter
atu
r
e
r
ev
ie
w
o
f
r
ec
en
t
r
esear
ch
w
o
r
k
i
n
g
r
ap
h
d
atab
ase
m
a
n
ag
e
m
e
n
t,
Gr
ap
h
d
atab
ase
co
m
p
u
tatio
n
al
tech
n
iq
u
es.
Se
ctio
n
4
p
r
o
v
id
es
th
e
r
esear
ch
g
ap
in
r
ec
en
t
r
esear
c
h
w
o
r
k
o
f
Gr
ap
h
Data
b
ase
s
.
Sectio
n
5
d
escr
ib
es th
e
f
u
t
u
r
e
r
esear
ch
lin
e
u
p
,
an
d
f
i
n
all
y
,
S
ec
tio
n
6
co
n
clu
d
es t
h
e
p
ap
er
.
2.
G
ARAP
H
DA
T
A
I
n
r
ec
en
t
y
ea
r
s
th
e
w
a
y
I
n
ter
n
et
an
d
m
o
b
ile
co
m
m
u
n
icat
io
n
h
a
v
e
b
ee
n
u
s
ed
f
o
r
d
if
f
er
en
t
an
d
v
ar
ied
n
ee
d
s
a
n
d
ap
p
licatio
n
s
b
y
a
c
o
m
m
o
n
u
s
er
,
ac
ad
e
m
icia
n
s
,
r
esear
ch
er
s
h
av
e
b
ee
n
s
tar
ted
r
eth
i
n
k
i
n
g
as
f
o
r
h
o
w
to
s
to
r
e
th
e
h
u
g
e
d
ata
w
h
ic
h
is
b
ein
g
g
e
n
er
ated
ev
er
y
d
a
y
,
ev
er
y
h
o
u
r
an
d
e
v
er
y
m
in
u
te
.
T
h
is
n
ee
d
f
o
r
t
h
e
s
to
r
ag
e
an
d
r
etr
iev
al
o
f
d
ata
an
d
in
f
o
r
m
atio
n
b
r
o
u
g
h
t b
ac
k
t
h
e
co
n
ce
p
ts
o
f
g
r
ap
h
an
d
g
r
ap
h
m
o
d
els [
4
]
,
[
5
].
Gr
ap
h
s
ar
e
u
s
ed
to
m
o
d
el
co
m
p
licated
s
tr
u
ctu
r
e
s
.
T
h
e
g
r
ap
h
is
a
co
llectio
n
o
f
n
o
d
es,
ed
g
es,
an
d
th
e
r
elatio
n
s
h
ip
s
b
et
w
ee
n
t
h
e
m
.
I
n
t
h
e
g
r
ap
h
,
n
o
d
es
ar
e
ca
lled
en
titi
e
s
,
a
n
d
th
er
e
ar
e
m
a
n
y
w
a
y
s
in
w
h
ich
t
h
ese
en
titi
e
s
ar
e
co
-
r
elate
d
i
n
a
d
if
f
er
en
t
t
y
p
e
o
f
ap
p
licatio
n
s
.
T
h
e
co
n
n
ec
tio
n
b
et
w
ee
n
th
e
s
e
e
n
titi
e
s
i
s
ca
lled
as
a
r
elatio
n
s
h
ip
.
I
n
g
r
ap
h
s
,
d
ata
ter
m
“Attr
ib
u
te
s
”
r
elate
d
to
en
titi
es
an
d
r
elatio
n
s
h
ip
s
ar
e
ca
lled
lab
els.
I
n
a
g
r
ap
h
lik
e
s
tr
u
ct
u
r
e,
d
ata
is
s
to
r
ed
in
to
n
o
d
es,
an
d
t
h
ese
n
o
d
es
h
av
e
s
o
m
e
p
r
o
p
er
ties
.
I
n
g
r
ap
h
s
,
r
elatio
n
s
h
ip
s
co
n
s
i
s
t
o
f
p
r
o
p
er
ties
an
d
co
n
n
ec
t o
n
e
n
o
d
e
to
th
e
o
th
er
n
o
d
e.
T
h
e
ex
a
m
p
le
s
h
o
w
n
i
n
Fig
u
r
e
1
,
d
e
m
o
n
s
tr
ates
th
e
r
elatio
n
s
h
ip
b
et
w
ee
n
t
h
e
t
w
o
a
n
i
m
als.
I
n
t
h
e
ab
o
v
e
f
ig
u
r
e,
t
w
o
th
in
g
s
ar
e
id
en
tifie
d
th
at
T
h
in
g
-
1
an
d
T
h
in
g
-
2
,
ex
h
ib
it
p
r
o
p
er
ties
lik
e
an
i
m
al
t
y
p
e,
n
a
m
e
(
ca
t
&
d
o
g
)
a
n
d
r
elatio
n
s
h
i
p
.
T
h
e
r
ep
r
esen
tatio
n
s
a
y
s
t
h
at
t
h
e
T
h
in
g
-
1
an
d
T
h
i
n
g
-
2
ar
e
d
o
g
an
d
ca
t
r
esp
ec
tiv
el
y
a
n
d
ar
e
n
a
m
ed
as
cu
te
an
d
h
a
n
d
s
o
m
e
r
e
s
p
ec
tiv
el
y
.
Fi
n
all
y
,
b
o
th
d
o
g
an
d
ca
t
r
elatio
n
s
h
ip
i
s
m
en
tio
n
ed
d
u
e
to
its
a
n
i
m
al
ca
teg
o
r
y
.
T
y
p
e
1
T
y
p
e
2
C
u
t
e
H
a
n
d
s
o
m
e
R
e
l
a
t
i
o
n
s
h
i
p
G
r
a
p
h
d
a
t
a
b
a
s
e
C
r
e
a
t
i
o
n
R
e
a
d
i
n
g
U
p
d
a
t
a
t
i
o
n
R
e
m
o
v
i
n
g
Fig
u
r
e
1
.
E
x
am
p
le
o
f
G
r
a
p
h
d
ata
Fig
u
r
e
2
.
Un
its
o
f
g
r
a
p
h
d
ata
b
ase
s
y
s
tem
2
.
1
.
G
ra
ph
Da
t
a
ba
s
es
T
h
e
G
r
a
p
h
d
ata
b
as
e
s
y
s
tem
h
as
f
o
u
r
d
if
f
er
en
t
u
n
its
s
u
ch
as
c
r
ea
ti
o
n
,
r
e
ad
in
g
,
u
p
d
atat
io
n
an
d
r
em
o
v
in
g
,
w
h
ich
ca
n
b
e
u
s
e
d
in
d
esig
n
in
g
o
f
g
r
a
p
h
d
ata
m
o
d
el
.
T
h
e
I
n
d
ex
f
r
ee
s
q
u
a
r
e
m
atr
ix
o
f
f
in
ite
g
r
a
p
h
r
e
p
r
esen
t
ati
o
n
is
m
o
r
e
n
ec
ess
ar
y
to
g
et
th
e
h
ig
h
-
p
e
r
f
o
r
m
an
ce
g
r
ap
h
tr
av
e
r
s
al
.
Gr
ap
h
d
ata
b
as
e
u
ti
liz
es
th
e
s
q
u
a
r
e
m
atr
ix
o
r
a
d
jace
n
cy
th
en
ea
ch
n
o
d
e
m
an
ag
es
th
e
d
i
r
ec
t
r
e
lat
io
n
s
h
i
p
w
ith
th
e
ad
ja
ce
n
t
n
o
d
es
.
T
h
e
g
r
a
p
h
d
at
a
b
ase
ex
h
i
b
it
a
s
in
g
le
d
ata
s
tr
u
ctu
r
e
k
n
o
w
n
as
a
g
r
a
p
h
,
a
n
d
it
h
as
n
o
c
o
m
b
in
ed
o
p
er
ati
o
n
,
an
d
h
en
c
e
ea
ch
ed
g
e
w
ill
b
e
co
n
n
e
cte
d
t
o
an
o
t
h
er
e
d
g
e.
T
h
e
g
r
a
p
h
w
ill
s
to
r
e
th
e
d
ata
in
n
o
d
es
h
av
in
g
a
r
el
ati
o
n
s
h
ip
.
T
h
e
d
at
a
in
th
e
g
r
a
p
h
d
at
ab
ase
w
ill
f
o
ll
o
w
th
e
m
o
d
el
g
r
a
p
h
p
r
o
p
e
r
ty
.
Gr
a
p
h
-
o
r
i
en
te
d
d
at
ab
ase
is
s
p
ec
i
aliz
e
d
N
o
SQL
,
w
h
er
e
r
e
lat
io
n
s
h
i
p
s
am
o
n
g
th
e
n
o
d
es
a
r
e
s
t
o
r
ed
an
d
m
an
ag
ed
g
en
e
r
ic
ally
.
B
u
il
t
-
in
s
u
p
p
o
r
t
f
o
r
r
el
ati
o
n
s
m
ak
es
th
e
tr
av
er
s
al
m
u
ch
f
aster
f
o
r
m
u
ltid
im
en
s
io
n
al
,
in
te
r
c
o
n
n
ec
ted
d
a
tase
ts
;
h
en
ce
s
u
it
ab
le
f
o
r
o
n
lin
e
t
r
an
s
ac
t
io
n
p
r
o
ce
s
s
in
g
(
OL
T
P)
.
Fo
r
th
e
s
am
e
r
ea
s
o
n
,
o
r
g
an
i
c
an
d
g
r
o
u
n
d
-
u
p
p
r
o
d
u
c
ts
li
k
e
n
eo
4
j
o
f
f
e
r
m
u
ltif
o
ld
p
e
r
f
o
r
m
an
ce
b
en
ef
i
ts
in
c
o
m
p
ar
is
o
n
to
m
u
ltil
ay
er
a
b
s
t
r
a
cti
o
n
s
o
v
e
r
th
e
tr
ad
iti
o
n
al
t
ec
h
n
o
l
o
g
ies
lik
e
r
el
ati
o
n
a
l
d
at
a
b
ases
(
R
D
B
)
,
an
d
o
b
je
ct
-
o
r
ien
t
ed
d
ata
b
ases
(
OO
DB
)
.
I
t
als
o
s
im
p
lif
ies
th
e
co
m
p
l
e
x
ity
o
f
d
esig
n
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
1
4
0
–
1149
1142
im
p
lem
en
tatio
n
;
p
o
p
u
l
ar
n
o
t
ati
o
n
is
“
if
y
o
u
ca
n
s
ee
w
h
iteb
o
a
r
d
,
y
o
u
c
an
g
r
a
p
h
.
”
B
ein
g
a
h
ig
h
-
lev
el
a
b
s
t
r
a
cti
o
n
to
th
e
n
etw
o
r
k
m
o
d
e
l
d
a
ta
b
as
e,
it
r
ed
u
ce
d
th
e
co
d
in
g
ef
f
o
r
t
to
o
n
e
-
ten
th
;
it’
s
a
k
ey
tech
n
o
l
o
g
y
u
s
ed
in
r
a
p
i
d
ap
p
li
ca
ti
o
n
d
ev
e
lo
p
m
en
t (
R
A
D)
[
5
]
,
[
6
].
Gr
a
p
h
d
ata
b
as
es
a
r
e
q
u
i
ck
ly
m
ak
in
g
in
r
o
a
d
s
in
to
r
ea
l
lif
e
f
r
o
m
r
esea
r
ch
la
b
o
r
at
o
r
ies
;
m
an
y
s
o
cial
n
etw
o
r
k
in
g
en
te
r
p
r
is
es
l
ik
e
T
w
itter
,
F
ac
e
b
o
o
k
,
an
d
G
o
o
g
l
e
h
av
e
al
r
e
a
d
y
ad
o
p
te
d
y
ea
r
s
ag
o
.
R
ec
en
t
ly
th
e
tech
n
o
lo
g
y
-
n
o
t
o
n
ly
th
e
s
cien
tif
ic
d
ata
b
u
t
a
ls
o
th
e
w
eb
an
d
m
an
y
d
if
f
er
en
t
k
in
d
s
o
f
d
a
ta
c
an
b
e
m
o
d
el
ed
as
a
g
r
a
p
h
.
T
h
is
h
el
p
s
to
o
v
er
co
m
e
th
e
lim
itati
o
n
s
o
f
R
D
B
MS,
lik
e
p
r
e
d
ef
in
e
d
s
ch
em
a
an
d
t
o
p
r
o
ce
s
s
co
m
p
lex
q
u
e
r
ies
in
m
illi
s
ec
o
n
d
s
.
E
s
p
e
cial
ly
,
lack
o
f
s
ch
em
a
al
lo
w
s
d
ev
el
o
p
er
s
t
o
g
ain
h
ig
h
p
r
o
d
u
ctiv
ity
,
b
esi
d
es
p
r
o
v
i
d
in
g
th
e
ca
p
a
b
i
lity
to
p
r
o
ce
s
s
c
o
m
p
lex
m
u
ltil
ev
el
q
u
er
i
es
in
r
ea
l
-
t
im
e.
E
-
co
m
m
er
c
e
s
ites
an
d
u
s
e
r
s
b
en
ef
i
t
f
r
o
m
th
e
ea
s
y
p
r
o
ce
s
s
i
n
g
o
f
th
e
r
e
co
m
m
en
d
ed
p
r
o
d
u
ct.
M
ac
h
in
e
lea
r
n
in
g
alg
o
r
ith
m
s
ar
e
u
tili
z
ed
th
e
m
o
s
t,
f
o
r
th
e
a
p
p
lic
ati
o
n
s
s
u
c
h
as
th
ese
w
h
er
e
b
ig
d
ata
an
a
ly
tics
is
u
s
e
d
b
y
g
lo
b
a
l
t
o
p
1
0
0
c
o
m
p
an
ies
.
B
u
g
L
o
ca
l
iza
ti
o
n
is
an
o
th
er
a
p
p
lic
ati
o
n
a
r
e
a
w
o
r
th
m
en
tio
n
in
g
f
o
r
th
e
u
s
e
o
f
g
r
a
p
h
d
at
ab
ases
.
Ov
er
all
th
e
r
e
is
a
v
ar
i
ety
o
f
d
o
m
ain
s
w
h
er
e
g
r
a
p
h
d
ata
m
o
d
e
lin
g
c
an
b
e
a
p
p
li
e
d
to
r
ev
o
lu
ti
o
n
iz
e
th
e
u
s
e
r
ex
p
er
i
en
ce
[
7
].
2
.
2
.
E
x
i
s
t
ing
t
y
pes
o
f
G
ra
ph
Da
t
a
ba
s
e
M
o
dels
I
n
r
ec
en
t
p
ast,
m
an
y
to
o
ls
ar
e
d
ev
e
lo
p
ed
u
s
in
g
th
e
g
r
a
p
h
d
a
tab
ase
c
o
n
ce
p
t
,
f
o
r
ex
am
p
le,
Neo
4
J
an
d
Sp
a
r
k
s
ee
[
8
].
T
h
e
t
o
o
ls
l
ik
e
O
r
ac
l
e
s
p
at
ial
an
d
g
r
ap
h
,
O
QGr
a
p
h
,
an
d
A
r
an
g
o
D
B
a
r
e
d
esig
n
e
d
as
a
n
a
b
s
tr
ac
ti
o
n
w
ith
th
e
u
n
d
e
r
ly
in
g
ar
ch
i
te
ct
u
r
e
o
f
r
el
ati
o
n
al
d
at
ab
ases
M
y
Sq
l,
O
r
ac
le
[
9
]
.
Un
til
n
o
w
,
th
er
e
is
n
o
in
d
u
s
t
r
y
s
tan
d
ar
d
[
10
]
,
an
d
m
o
r
e
o
v
e
r
m
an
y
o
f
th
e
m
ar
e
d
esig
n
e
d
t
o
b
e
s
u
ited
f
o
r
a
p
a
r
ti
cu
la
r
d
o
m
ain
[
1
1
]
.
I
n
th
e
ca
s
e
o
f
In
-
m
e
m
o
r
y
m
o
d
el,
s
c
ala
b
i
lity
is
lim
ited
as
th
e
m
em
o
r
y
h
o
ld
s
th
e
c
o
n
t
en
t
[
12
]
.
A
n
o
th
er
r
ea
s
o
n
f
o
r
in
ef
f
icien
cy
in
to
th
e
m
o
d
e
l
is
d
u
e
t
o
h
o
r
i
z
o
n
tal
s
c
alin
g
an
d
l
ay
er
in
g
m
e
ch
an
is
m
.
T
h
e
r
e
q
u
ir
em
en
t
o
f
t
h
e
n
ew
p
ar
a
d
ig
m
is
f
o
r
h
an
d
lin
g
an
ex
ten
s
iv
e
d
at
a;
v
er
y
f
e
w
m
o
d
els
ar
e
d
esig
n
ed
to
a
d
o
p
t
p
ar
all
elis
m
as
well
OL
T
P
.
T
h
e
ea
r
ly
m
o
d
els
lack
s
tan
d
a
r
d
q
u
e
r
y
lan
g
u
ag
e,
A
p
p
li
ca
ti
o
n
p
r
o
g
r
am
m
in
g
in
ter
f
ac
e,
an
d
p
r
o
t
o
c
o
ls
as
f
o
u
n
d
in
co
n
v
en
ti
o
n
a
l
m
o
d
els
s
u
ch
as
SQL
,
J
D
B
C
,
an
d
R
E
S
T
.
L
ate
l
y
,
Gr
em
lin
an
d
SP
A
R
QL
ar
e
g
ain
in
g
co
n
s
en
s
u
s
,
b
u
t
th
e
a
d
a
p
ta
ti
o
n
is
t
o
o
s
l
o
w
.
2
.
3
.
Neo
4
j
(
Neo
T
ec
hn
o
lo
g
y
)
Neo
4
j
is
a
d
is
k
-
b
ase
d
t
r
an
s
ac
t
i
o
n
al
g
r
a
p
h
d
a
ta
b
as
e
an
d
n
am
ed
as
“
W
o
r
ld
le
a
d
in
g
g
r
ap
h
d
at
ab
ase
.
”
I
ts
f
ir
s
t
r
ele
ase
d
at
e
w
as
in
2
0
0
7
.
Ne
o
4
j
als
o
s
u
p
p
o
r
ts
an
o
th
er
lan
g
u
ag
e
lik
e
P
y
th
o
n
ex
ce
p
t
f
o
r
J
av
a
f
o
r
g
r
ap
h
o
p
e
r
at
io
n
s
.
Ne
o
4
j
is
an
o
p
en
s
o
u
r
ce
p
r
o
ject
[
7
]
av
ai
la
b
le
in
a
G
P
L
v
3
C
o
m
m
u
n
it
y
ed
iti
o
n
,
w
ith
A
d
v
an
ce
d
an
d
E
n
te
r
p
r
is
e
ed
iti
o
n
s
av
ail
a
b
le
u
n
d
er
b
o
th
th
e
A
GP
L
v
3
as
w
ell
as
a
c
o
m
m
er
cial
li
ce
n
s
e
.
Neo
4
j
is
b
est
g
r
ap
h
d
at
a
b
ase
f
o
r
en
t
er
p
r
is
e
d
ep
lo
y
m
en
t.
I
t
s
ca
les
t
o
b
i
lli
o
n
s
o
f
n
o
d
es
an
d
r
e
lat
io
n
s
h
i
p
s
i
n
a
n
etw
o
r
k
.
N
e
o
4
j
m
an
ag
es
all
th
e
o
p
e
r
a
ti
o
n
s
th
a
t
m
o
d
if
y
d
ata
in
a
tr
an
s
ac
ti
o
n
.
I
n
Ne
o
4
j
b
o
th
n
o
d
es
an
d
r
el
ati
o
n
s
h
ip
ca
n
c
o
n
tain
p
r
o
p
e
r
t
ies
.
Ne
o
4
j
is
a
g
r
a
p
h
d
at
a
b
ase
th
at
m
an
ag
es
g
r
a
p
h
s
an
d
is
o
p
tim
ized
f
o
r
g
r
ap
h
s
tr
u
ctu
r
e
in
s
te
ad
o
f
tab
les
.
I
t
is
th
e
m
o
r
e
ex
p
r
ess
i
v
e
ty
p
e
o
f
g
r
a
p
h
d
a
ta
b
as
e
is
s
im
ilar
t
o
o
th
e
r
g
r
a
p
h
d
at
ab
a
s
es.
Ne
o
4
j
is
m
o
s
t
p
o
p
u
l
ar
g
r
a
p
h
d
at
ab
ases
t
o
d
ay
[
8
].
2
.
4
.
H
y
per
G
ra
ph
DB
I
t
is
an
o
p
en
-
s
o
u
r
ce
d
at
ab
ase
s
u
p
p
o
r
ts
h
y
p
e
g
r
a
p
h
s
.
Hy
p
er
g
r
a
p
h
[
8
]
is
d
if
f
er
en
t
f
r
o
m
th
e
n
o
r
m
al
g
r
a
p
h
b
ec
au
s
e
in
th
is
e
d
g
e
is
p
o
in
ts
t
o
th
e
o
th
e
r
ed
g
es.
I
n
v
a
r
io
u
s
f
ie
ld
s
,
i
t
is
u
s
ed
in
th
e
m
o
d
el
in
g
o
f
th
e
g
r
ap
h
d
at
a.
I
t
s
u
p
p
o
r
ts
o
n
lin
e
q
u
e
r
y
in
g
w
ith
an
A
P
I
w
r
itten
in
J
av
a
.
I
t is
b
ase
d
o
n
th
e
Hy
p
e
r
G
r
a
p
h
DB
m
o
d
e
l.
I
t
is
a
un
iv
er
s
al
d
ata
m
o
d
el
h
ig
h
ly
co
m
p
lex
an
d
la
r
g
e
-
s
c
ale
k
n
o
w
l
ed
g
e
a
p
p
lic
ati
o
n
.
I
t
h
as
g
r
ap
h
-
o
r
ien
t
ed
s
to
r
ag
e
an
d
cu
s
to
m
iza
b
le
in
d
ex
in
g
.
I
n
th
is
g
r
a
p
h
d
a
ta
b
as
e,
a
h
y
p
er
ed
g
e
is
ea
s
y
to
c
o
n
v
er
t
in
t
o
a
tu
p
l
e.
I
t
is
a
d
is
tr
ib
u
t
ed
an
d
g
r
a
p
h
-
o
r
i
en
te
d
d
ata
b
as
e
[
8
-
14
].
2
.
5
.
DE
X
DE
X
[
1
5
]
is
s
a
id
t
o
b
e
v
e
r
y
ef
f
icien
t
an
d
b
itm
ap
s
-
b
ase
d
g
r
a
p
h
d
at
ab
ase
an
d
is
w
r
itt
en
in
C
++
lan
g
u
ag
e.
I
t
w
as
f
ir
s
t
r
el
ea
s
e
d
in
2
0
0
8
.
I
t
m
ak
es
g
r
a
p
h
q
u
er
y
in
g
p
o
s
s
i
b
l
e
in
d
if
f
er
en
t
n
etw
o
r
k
s
lik
e
s
o
c
ial
n
etw
o
r
k
an
aly
s
is
an
d
p
att
er
n
r
ec
o
g
n
iti
o
n
.
I
t
is
a
ls
o
k
n
o
w
n
a
s
h
ig
h
-
p
er
f
o
r
m
an
ce
g
r
a
p
h
d
at
ab
ase
in
th
e
ca
s
e
o
f
lar
g
e
g
r
a
p
h
s
an
d
u
s
ef
u
l
f
o
r
m
o
s
t
o
f
th
e
N
o
S
QL
a
p
p
lic
ati
o
n
s
.
T
h
e
l
at
est
v
e
r
s
i
o
n
o
f
D
E
X
s
u
p
p
o
r
ts
b
o
th
J
av
a
an
d
.
NE
T
p
r
o
g
r
am
m
in
g
.
I
t’
s
p
o
r
ta
b
l
e
an
d
r
eq
u
i
r
es
o
n
ly
a
s
i
n
g
le
J
A
R
f
ile
f
o
r
ex
ec
u
t
io
n
.
D
E
X
is
ca
lle
d
th
e
f
o
u
r
th
m
o
s
t
p
o
p
u
la
r
g
r
a
p
h
d
ata
b
as
e
t
o
d
ay
[
3
]
,
[
6
].
2
.
6
.
T
rinity
T
r
in
i
ty
is
a
d
is
tr
i
b
u
te
d
g
r
a
p
h
s
y
s
te
m
[
9
]
o
v
e
r
a
m
e
m
o
r
y
clo
u
d
.
M
em
o
r
y
C
lo
u
d
is
g
lo
b
ally
ad
d
r
ess
a
b
le
in
m
e
m
o
r
y
k
e
y
-
v
alu
e
s
to
r
e
o
v
er
a
clu
s
te
r
o
f
th
e
m
ac
h
in
e.
I
t
p
r
o
v
id
es
f
ast
d
a
ta
a
cc
ess
p
o
w
er
w
h
en
w
e
h
av
e
lar
g
e
d
atas
ets
.
I
t
is
a
la
r
g
e
g
r
a
p
h
p
r
o
ce
s
s
in
g
m
ac
h
in
e.
I
t
p
r
o
v
id
es f
as
t g
r
a
p
h
ex
p
l
o
r
ati
o
n
an
d
p
a
r
al
lel
co
m
p
u
tin
g
f
o
r
la
r
g
e
r
d
atas
ets
.
I
t
als
o
p
r
o
v
id
es
h
ig
h
th
r
o
u
g
h
p
u
t
o
n
l
a
r
g
e
g
r
a
p
h
s
w
h
ich
h
av
e
a
b
ill
io
n
n
o
d
es
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
S
u
r
ve
y
o
n
Gra
p
h
Da
ta
b
a
s
e
Ma
n
a
g
eme
n
t
Tech
n
i
q
u
es fo
r
Hu
g
e
Un
s
tr
u
ctu
r
ed
Da
ta
(
P
a
til N
.
S
.
)
1143
2
.
7
.
I
nfinit
e
G
ra
ph
(
O
bje
ct
iv
it
y
)
I
n
f
in
ite
Gr
a
p
h
is
p
r
o
d
u
c
e
d
b
y
an
o
r
g
an
i
za
t
io
n
ca
lle
d
Ob
je
cti
v
ity
.
I
t
is
a
ty
p
e
o
f
co
m
p
an
y
th
at
w
o
r
k
s
t
o
d
ev
e
lo
p
s
d
at
ab
ase
t
ec
h
n
o
lo
g
i
es
s
u
p
p
o
r
tin
g
la
r
g
e
-
s
c
ale
,
o
b
ject
p
e
r
s
is
ten
c
e
an
d
r
el
ati
o
n
s
h
ip
an
aly
tics
.
A
n
in
f
in
ite
g
r
a
p
h
d
ata
b
ase
is
a
d
is
tr
i
b
u
te
d
g
r
a
p
h
d
a
ta
b
as
e
in
J
av
a,
an
d
it is
b
as
ed
o
n
a
g
r
a
p
h
li
k
e
s
tr
u
ctu
r
e.
W
e
ca
n
ca
ll
in
f
in
ite
g
r
a
p
h
as
a
cl
o
u
d
-
e
n
ab
l
ed
g
r
a
p
h
d
at
ab
ase
.
I
t is
d
e
s
ig
n
ed
f
o
r
t
o
h
an
d
l
e
th
e
v
e
r
y
h
ig
h
th
r
o
u
g
h
p
u
t
.
I
t is
a
s
in
g
le
g
r
a
p
h
d
at
ab
as
e
d
is
t
r
ib
u
te
d
a
c
r
o
s
s
m
u
ltip
l
e
m
ac
h
in
es.
T
h
e
r
e
is
a
l
o
ck
s
e
r
v
e
r
w
h
ich
h
an
d
les
lo
ck
r
e
q
u
ests
f
r
o
m
d
a
ta
b
as
e
a
p
p
li
ca
tio
n
s
.
I
t is
ca
p
a
b
l
e
o
f
d
ea
l
in
g
w
ith
co
m
p
lex
r
el
ati
o
n
s
h
ip
r
eq
u
ir
in
g
m
u
ltip
le
h
o
p
s
.
I
t
p
r
o
v
i
d
es
g
r
a
p
h
-
w
is
e
in
d
e
x
es
o
n
m
u
ltip
le
k
ey
f
ield
s
an
d
a
ls
o
p
r
o
v
i
d
es
h
ig
h
p
e
r
f
o
r
m
an
ce
r
eg
a
r
d
in
g
q
u
e
r
y
[
7
]
,
[
10
].
2
.
8
.
T
it
a
n
T
itan
[
9
]
w
as
ad
o
p
te
d
in
2
0
1
2
.
I
t
is
w
r
itten
in
J
av
a
an
d
an
o
p
en
s
o
u
r
ce
p
r
o
ject
.
T
h
e
m
ain
b
en
ef
i
t
o
f
u
s
in
g
T
itan
is
its
s
ca
l
in
g
f
ea
tu
r
e
.
I
t
als
o
p
r
o
v
id
es
s
u
p
p
o
r
t
t
o
v
er
y
lar
g
e
g
r
a
p
h
s
an
d
s
c
al
es
w
ith
th
e
n
u
m
b
er
o
f
m
ac
h
in
es
in
a
c
lu
s
te
r
.
I
t
is
al
s
o
h
ig
h
ly
s
ca
la
b
l
e
g
r
a
p
h
d
at
a
b
as
e
r
eg
a
r
d
in
g
c
o
n
cu
r
r
en
t
u
s
er
s
an
d
s
iz
e
o
f
th
e
g
r
a
p
h
.
I
t
p
r
o
v
i
d
es
a
b
a
tch
g
r
ap
h
p
r
o
c
ess
in
g
w
ith
Had
o
o
p
f
r
am
e
w
o
r
k
an
d
als
o
g
iv
es
a
n
s
w
er
s
to
c
o
m
p
lex
q
u
e
r
ies
in
m
illi
s
e
c
o
n
d
s
.
I
t
c
o
n
s
is
ts
o
f
th
r
e
e
m
ain
c
o
m
p
o
n
en
ts
:
a.
Nativ
e
B
lu
ep
r
i
n
ts
I
m
p
le
m
e
n
ta
tio
n
b.
Gr
e
m
li
n
Qu
er
y
lan
g
u
ag
e
c.
R
ex
s
ter
Ser
v
er
I
t
f
o
l
lo
w
s
p
r
o
p
er
ty
g
r
ap
h
m
o
d
el
an
d
s
u
p
p
o
r
ts
G
r
em
lin
:
a
g
r
a
p
h
tr
av
er
s
al
q
u
er
y
lan
g
u
ag
e.
I
t
als
o
o
f
f
er
s
an
o
p
tim
ized
d
is
k
r
ep
r
es
en
ta
ti
o
n
f
o
r
ef
f
ici
en
t u
s
e
o
f
s
t
o
r
ag
e
an
d
s
p
e
ed
o
f
a
cc
ess
in
g
d
ata
.
A
p
p
li
ca
ti
o
n
s
c
an
in
te
r
ac
t
w
ith
T
it
an
in
m
ain
ly
tw
o
w
a
y
s
:
a.
First
Me
t
h
o
d
is
th
a
t
ca
ll
s
J
av
a
-
la
n
g
u
a
g
e
A
P
I
’
s
r
elate
d
to
T
itan
w
h
ic
h
i
n
cl
u
d
es
it
s
n
ati
v
e
A
P
I
i
m
p
le
m
en
ta
tio
n
.
b.
T
in
k
er
P
o
p
s
tack
u
tili
tie
s
s
u
ch
as Gr
e
m
li
n
q
u
er
y
lan
g
u
ag
e
b
u
ilt ato
p
B
lu
ep
r
in
ts
.
R
ec
en
t r
esear
c
h
s
u
r
v
e
y
T
h
e
r
esear
ch
in
t
h
e
d
o
m
ai
n
o
f
g
r
ap
h
d
ata
i
s
clas
s
i
f
ied
in
to
ten
d
if
f
er
e
n
t
ca
te
g
o
r
ies
b
y
co
n
s
id
er
in
g
I
E
E
E
Xp
lo
r
e
j
o
u
r
n
als.
T
h
e
ca
teg
o
r
izatio
n
is
g
iv
e
n
as b
elo
w
.
2
.
9
.
Da
t
a
Sto
re
E
f
f
iciency
I
n
o
r
d
e
r
t
o
b
r
in
g
th
e
b
et
te
r
ef
f
icien
cy
o
f
th
e
d
at
a
s
t
o
r
ag
e
,
s
o
m
e
o
f
th
e
is
s
u
es
m
a
y
ex
is
t
a
m
o
n
g
th
es
e
d
at
a
c
o
m
p
r
ess
i
o
n
is
n
ec
ess
a
r
y
to
s
t
o
r
e
m
o
r
e
d
at
a.
A
ls
o
,
th
e
d
ata
s
t
an
d
a
r
d
i
za
t
io
n
m
ay
p
lay
a
g
r
ea
t
er
r
o
le
t
o
m
ap
th
e
d
at
a
an
d
t
r
an
s
la
te
f
o
r
cl
o
u
d
s
t
o
r
ag
e
.
I
n
th
e
l
ar
g
e
,
th
e
s
u
p
e
r
g
r
a
p
h
s
e
ar
ch
is
r
e
q
u
ir
ed
to
ch
o
o
s
e
th
e
d
ata
g
r
a
p
h
s
f
ea
tu
r
es.
T
h
e
r
ec
en
t w
o
r
k
d
o
n
e
in
th
is
c
ateg
o
r
y
T
ab
le
1
b
el
o
w
.
T
a
b
le
1
.
W
o
r
k
f
o
r
d
at
a
s
to
r
e
ef
f
icien
cy
A
u
t
h
o
r
I
ssu
e
c
o
n
si
d
e
r
e
d
M
e
t
h
o
d
a
d
o
p
t
e
d
R
e
su
l
t
S
u
t
r
i
s
n
a
e
t
a
l
.
[
4
]
D
a
t
a
c
o
mp
r
e
ssi
o
n
G
r
a
p
h
c
l
u
s
t
e
r
i
n
g
a
l
g
o
r
i
t
h
m
w
i
t
h
d
a
t
a
se
t
o
f
c
o
l
l
a
b
o
r
a
t
i
o
n
d
a
t
a
a
mo
n
g
j
o
u
r
n
a
l
w
r
i
t
e
r
s
L
o
ssl
e
ss
c
o
mp
r
e
ss
e
d
g
r
a
p
h
d
a
t
a
i
s
a
c
h
i
e
v
e
d
B
a
n
sal
e
t
a
l
.
[
5
]
D
a
t
a
s
t
a
n
d
a
r
d
i
z
a
t
i
o
n
a
n
d
c
l
a
ssi
f
i
c
a
t
i
o
n
o
n
l
i
n
e
c
o
m
p
r
e
ssi
o
n
a
l
g
o
r
i
t
h
m
R
e
d
u
c
t
i
o
n
i
n
n
u
m
b
e
r
o
f
n
o
d
e
s
a
n
d
a
c
h
i
e
v
e
d
g
r
a
p
h
d
a
t
a
b
a
se
c
o
mp
r
e
ssi
o
n
f
o
r
l
e
ss st
o
r
a
g
e
sp
a
c
e
L
y
u
e
t
a
l
.
[
6
]
S
u
p
e
r
g
r
a
p
h
se
a
r
c
h
i
n
d
e
x
i
n
g
a
n
d
q
u
e
r
y
p
r
o
c
e
ssi
n
g
a
l
g
o
r
i
t
h
ms
,
C
C
D
d
a
t
a
se
t
a
n
d
N
C
I
d
a
t
a
se
t
I
n
d
e
x
i
n
g
a
n
d
p
r
o
c
e
ssi
n
g
t
i
me
C
h
e
n
a
n
d
C
h
e
n
[
7
]
S
u
p
p
o
r
t
i
n
g
r
e
a
c
h
a
b
i
l
i
t
y
q
u
e
r
i
e
s
D
e
c
o
mp
o
si
t
i
o
n
o
f
g
r
a
p
h
s
H
i
g
h
e
f
f
i
c
i
e
n
c
y
,
e
f
f
e
c
t
i
v
e
n
e
ss
a
n
d
q
u
e
r
y
i
n
g
t
i
me
2
.
1
0
.
Da
t
a
ba
s
e
I
nd
ex
ing
M
et
ho
d
I
n
o
r
d
er
t
o
f
ac
il
ita
te
is
o
m
o
r
p
h
i
s
m
an
d
s
i
m
ilar
i
ty
q
u
er
ies
an
d
b
u
il
d
in
g
ef
f
icien
t
g
r
ap
h
d
at
ab
a
s
e
s
y
s
te
m
s
an
d
a
cc
ele
r
a
te
g
r
ap
h
s
im
ila
r
it
y
s
ea
r
ch
,
m
u
ch
s
ig
n
if
ican
t
w
o
r
k
s
is
p
e
r
f
o
r
m
ed
.
T
h
e
f
o
ll
o
w
in
g
T
a
b
le
2
is
th
e
s
o
m
e
o
f
th
e
ch
o
s
en
w
o
r
k
in
d
a
tab
ase
in
d
ex
in
g
m
eth
o
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
1
4
0
–
1149
1144
T
a
b
le
2
.
W
o
r
k
f
o
r
d
at
a
b
ase
in
d
ex
in
g
m
eth
o
d
A
u
t
h
o
r
I
ssu
e
c
o
n
si
d
e
r
e
d
M
e
t
h
o
d
a
d
o
p
t
e
d
R
e
su
l
t
W
i
l
l
i
a
ms e
t
a
l
.
[
8
]
G
r
a
p
h
st
o
r
a
g
e
,
si
mi
l
a
r
i
t
y
a
n
d
i
n
d
e
x
i
n
g
S
u
b
-
g
r
a
p
h
i
so
mo
r
p
h
i
s
m
a
n
d
si
mi
l
a
r
i
t
y
q
u
e
r
i
e
s
me
c
h
a
n
i
sm
b
y
u
si
n
g
P
r
o
t
e
i
n
mo
t
i
f
s
a
n
d
sy
n
t
h
e
t
i
c
d
a
t
a
se
t
s
A
c
h
i
e
v
e
d
i
mp
r
o
v
e
d
q
u
e
r
y
t
i
me
s
f
o
r
su
b
-
g
r
a
p
h
i
so
mo
r
p
h
i
sm
q
u
e
r
i
e
s.
L
u
o
e
t
a
l
.
[
9
]
L
a
r
g
e
sca
l
e
g
r
a
p
h
d
a
t
a
b
a
se
i
n
d
e
x
i
n
g
a
n
d
se
a
r
c
h
a
p
p
r
o
a
c
h
T
-
mi
x
t
u
r
e
mo
d
e
l
(
C
o
mb
i
n
a
t
i
o
n
o
f
o
p
t
i
mi
z
e
d
v
e
c
t
o
r
q
u
a
n
t
i
z
e
r
a
n
d
p
r
o
b
a
b
i
l
i
s
t
i
c
a
p
p
r
o
x
i
m
a
t
e
a
t
e
b
a
se
d
i
n
d
e
x
i
n
g
sc
h
e
me
)
R
o
b
u
st
i
n
h
a
n
d
l
i
n
g
o
u
t
l
i
e
r
s.
Y
u
a
n
e
t
a
l
.
[
1
0
]
G
r
a
p
h
f
e
a
t
u
r
e
m
i
n
i
n
g
Q
u
e
r
y
g
r
o
u
p
i
n
g
me
c
h
a
n
i
sm
A
c
h
i
e
v
e
d
b
e
t
t
e
r
,
f
a
s
t
e
r
a
n
d
l
i
g
h
t
w
e
i
g
h
t
f
i
l
t
e
r
i
n
g
,
B
e
i
e
t
a
l
.
[
1
1
]
G
r
a
p
h
se
a
r
c
h
D
i
st
r
i
b
u
t
e
d
g
r
a
p
h
se
a
r
c
h
i
n
g
me
c
h
a
n
i
s
m
A
c
h
i
e
v
e
d
d
i
st
r
i
b
u
t
e
d
g
r
a
p
h
d
a
t
a
b
a
se
G
o
l
d
b
e
r
g
e
t
a
l
.
[
1
2
]
P
r
o
b
l
e
m
o
f
f
r
a
g
m
e
n
t
i
d
e
n
t
i
f
i
c
a
t
i
o
n
H
e
u
r
i
st
i
c
me
c
h
a
n
i
sm
A
c
h
i
e
v
e
s
o
p
t
i
mi
z
e
d
r
u
n
n
i
n
g
t
i
me
2
.
1
1
.
G
ra
ph
I
nd
e
x
ing
M
et
ho
d
T
h
e
im
p
r
o
v
i
s
atio
n
o
f
g
r
ap
h
d
a
ta
m
o
d
elin
g
w
as d
o
n
e
f
o
r
d
if
f
er
en
t d
ata.
T
h
e
f
o
llo
w
i
n
g
T
ab
le
3
b
r
ief
s
th
e
w
o
r
k
p
er
f
o
r
m
ed
f
o
r
g
r
ap
h
d
ata
m
o
d
eli
n
g
a
n
d
g
r
ap
h
b
ase
d
m
a
n
a
g
e
m
e
n
t
s
y
s
te
m
.
T
a
b
le
3
.
W
o
r
k
f
o
r
g
r
a
p
h
in
d
ex
in
g
m
eth
o
d
A
u
t
h
o
r
I
ssu
e
c
o
n
si
d
e
r
e
d
M
e
t
h
o
d
a
d
o
p
t
e
d
R
e
su
l
t
D
o
n
g
o
r
a
n
e
t
a
l
.
[
1
3
]
D
a
t
a
mo
d
e
l
i
n
g
I
n
d
e
x
c
o
n
st
r
u
c
t
i
o
n
,
d
a
t
a
b
a
se
f
i
l
t
e
r
i
n
g
,
s
u
b
-
g
r
a
p
h
ma
t
c
h
i
n
g
A
c
h
i
e
v
e
d
mo
r
e
p
a
t
h
l
e
n
g
t
h
,
mo
r
e
i
n
d
e
x
i
n
g
t
i
me
K
a
n
g
e
t
a
l
.
[
1
4
]
D
y
n
a
mi
c
g
r
a
p
h
s
s
t
o
r
a
g
e
a
n
d
man
a
g
e
G
r
a
p
h
b
a
se
d
d
a
t
a
b
a
se
man
a
g
e
me
n
t
sy
st
e
m
R
o
b
u
st
i
n
h
a
n
d
l
i
n
g
o
u
t
l
i
e
r
s.
2
.
1
2
.
Sub
-
g
ra
ph
m
a
t
ching
m
et
ho
d
T
h
is
p
ar
t
b
r
ief
s
s
o
m
e
r
esear
c
h
id
ea
s
p
r
esen
ted
b
y
m
an
y
r
esear
ch
er
s
i
n
d
ata
q
u
er
y
i
n
g
,
s
u
b
-
g
r
ap
h
m
atc
h
in
g
,
etc.
T
h
e
r
ec
e
n
t
w
o
r
k
s
f
o
r
b
etter
s
u
b
-
g
r
ap
h
m
atc
h
in
g
ar
e
p
r
esen
ted
.
A
l
s
o
,
th
e
w
o
r
k
s
s
h
o
w
n
i
n
t
h
e
f
o
llo
w
in
g
T
ab
le
4
g
iv
es t
h
e
id
ea
s
ab
o
u
t v
ar
io
u
s
g
r
ap
h
d
ata
t
ec
h
n
iq
u
es.
T
a
b
le
4
.
W
o
r
k
f
o
r
s
u
b
-
g
r
a
p
h
m
atch
in
g
m
eth
o
d
A
u
t
h
o
r
I
ssu
e
c
o
n
si
d
e
r
e
d
M
e
t
h
o
d
a
d
o
p
t
e
d
R
e
su
l
t
G
i
u
g
n
o
S
h
a
s
h
a
[
1
5
]
G
r
a
p
h
q
u
e
r
y
i
n
g
R
e
g
u
l
a
r
e
x
p
r
e
ssi
o
n
g
r
a
p
h
q
u
e
r
y
l
a
n
g
u
a
g
e
t
h
a
t
c
o
mb
i
n
e
s
X
p
a
t
h
a
n
d
S
mart
;
h
a
sh
-
b
a
se
d
f
i
n
g
e
r
-
p
r
i
n
t
i
n
g
p
e
r
f
o
r
ms
w
e
l
l
f
o
r
smal
l
q
u
e
r
y
g
r
a
p
h
s
o
n
l
a
r
g
e
g
r
a
p
h
d
a
t
a
b
a
se
s
(
i
n
t
h
e
t
h
o
u
sa
n
d
s
B
r
ö
c
h
e
l
e
r
e
t
a
l
.
[
1
6
]
S
u
b
-
g
r
a
p
h
M
a
t
c
h
i
n
g
p
r
o
b
a
b
i
l
i
s
t
i
c
me
t
h
o
d
t
o
e
st
i
mat
e
p
r
o
b
a
b
i
l
i
t
i
e
s;
P
a
r
t
i
t
i
o
n
a
l
g
o
r
i
t
h
m
f
o
r
c
r
e
a
t
i
n
g
i
n
d
e
x
W
o
r
k
s
e
f
f
i
c
i
e
n
t
l
y
,
a
n
sw
e
r
i
n
g
7
7
8
M
e
d
g
e
r
e
a
l
-
w
o
r
l
d
S
N
i
n
u
n
d
e
r
o
n
e
se
c
o
n
d
.
B
r
ö
c
h
e
l
e
r
e
t
a
l
.
[
1
7
]
A
p
p
r
o
x
i
mat
e
su
b
-
g
r
a
p
h
M
a
t
c
h
i
n
g
P
M
A
T
C
H
a
l
g
o
r
i
t
h
m
Ef
f
i
c
i
e
n
t
a
n
d
s
c
a
l
e
s
t
o
o
v
e
r
a
b
i
l
l
i
o
n
e
d
g
e
s.
B
r
ö
c
h
e
l
e
r
e
t
a
l
.
[
1
8
]
S
u
b
-
g
r
a
p
h
M
a
t
c
h
i
n
g
;
l
o
n
g
-
t
a
i
l
e
d
d
e
g
r
e
e
d
i
st
r
i
b
u
t
i
o
n
s
d
e
l
i
c
i
o
u
s
so
c
i
a
l
b
o
o
k
-
mar
k
i
n
g
se
r
v
i
c
e
F
a
st
e
r
t
h
a
n
s
t
a
t
i
c
c
o
st
mo
d
e
l
s
f
o
r
w
a
r
m c
a
c
h
e
s.
H
o
n
g
e
t
a
l
.
[
1
9
]
S
e
t
si
mi
l
a
r
i
t
y
S
e
t
si
mi
l
a
r
i
t
y
p
r
u
n
i
n
g
a
n
d
s
t
r
u
c
t
u
r
e
-
b
a
se
d
p
r
u
n
i
n
g
;
d
o
mi
n
a
t
i
n
g
-
se
t
-
b
a
se
d
su
b
-
g
r
a
p
h
ma
t
c
h
i
n
g
;
i
n
v
e
r
t
e
d
p
a
t
t
e
r
n
l
a
t
t
i
c
e
a
n
d
s
t
r
u
c
t
u
r
a
l
si
g
n
a
t
u
r
e
b
u
c
k
e
t
s
a
r
e
d
e
si
g
n
e
d
o
u
t
p
e
r
f
o
r
ms
st
a
t
e
-
of
-
t
h
e
-
a
r
t
me
t
h
o
d
s
b
y
a
n
o
r
d
e
r
o
f
mag
n
i
t
u
de
H
o
k
sz
a
a
n
d
Je
l
í
n
e
k
[
2
0
]
p
r
o
t
e
i
n
-
p
r
o
t
e
i
n
i
n
t
e
r
f
a
c
e
(
P
P
I
)
i
d
e
n
t
i
f
i
c
a
t
i
o
n
k
n
o
w
l
e
d
g
e
-
b
a
se
d
a
p
p
r
o
a
c
h
U
si
n
g
N
e
o
4
j
f
o
r
mi
n
i
n
g
p
r
o
t
e
i
n
g
r
a
p
h
s
i
n
c
o
m
p
a
r
i
so
n
t
o
M
i
c
r
o
so
f
t
S
Q
L
S
e
r
v
e
r
,
N
e
o
4
j
i
s
a
v
i
a
b
l
e
o
p
t
i
o
n
f
o
r
smal
l
,
su
b
-
g
r
a
p
h
q
u
e
r
y
t
y
p
e
s
2
.
1
3
.
Se
m
a
ntic
T
h
e
r
ec
en
t
w
o
r
k
s
th
at
ar
e
ad
d
r
ess
ed
th
e
s
e
m
a
n
tic
ap
p
r
o
ac
h
,
Qu
er
y
s
e
m
a
n
tic
d
ata
p
r
o
ce
s
s
i
n
g
;
d
ata
an
al
y
s
i
s
i
n
a
g
r
ap
h
d
atab
ase
is
g
iv
e
n
T
ab
le
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
S
u
r
ve
y
o
n
Gra
p
h
Da
ta
b
a
s
e
Ma
n
a
g
eme
n
t
Tech
n
i
q
u
es fo
r
Hu
g
e
Un
s
tr
u
ctu
r
ed
Da
ta
(
P
a
til N
.
S
.
)
1145
T
a
b
le
5
.
W
o
r
k
f
o
r
g
r
a
p
h
d
at
a
b
ase
s
em
an
tic
K
i
v
i
k
a
n
g
a
s
a
n
d
I
sh
i
z
u
k
a
[
2
1
]
S
e
man
t
i
c
Q
u
e
r
i
e
s
U
t
i
l
i
z
i
n
g
U
n
i
v
e
r
sal
W
o
r
d
s
(
U
W
s)
.
C
o
n
c
e
p
t
D
e
scri
p
t
i
o
n
L
a
n
g
u
a
g
e
(
C
D
L
)
f
o
r
se
man
t
i
c
d
a
t
a
i
n
st
e
a
d
o
f
R
D
F
,
a
n
d
N
e
o
4
j
I
mp
r
o
v
e
d
S
e
man
t
i
c
Q
u
e
r
i
e
s
K
a
l
m
e
g
h
a
n
d
N
a
v
a
t
h
e
[
2
2
]
h
i
g
h
-
p
e
r
f
o
r
man
c
e
g
r
a
p
h
d
a
t
a
b
a
se
s
S
u
r
v
e
y
D
e
f
i
n
e
,
C
h
a
r
a
c
t
e
r
i
st
i
c
s,
F
u
t
u
r
e
d
i
r
e
c
t
i
o
n
s
I
r
a
w
a
n
a
n
d
P
r
i
h
a
t
ma
n
t
o
[
2
3
]
I
mp
l
e
me
n
t
a
t
i
o
n
o
f
G
r
a
p
h
D
a
t
a
b
a
se
f
o
r
O
p
e
n
C
o
g
G
r
a
p
h
B
a
c
k
i
n
g
S
t
o
r
e
A
P
I
e
x
t
e
n
d
s
B
a
c
k
i
n
g
S
t
o
r
e
C
+
+
A
P
I
A
t
o
m
S
p
a
c
e
r
e
p
r
e
se
n
t
s
k
n
o
w
l
e
d
g
e
i
n
a
h
y
p
e
r
g
r
a
p
h
st
r
u
c
t
u
r
e
,
p
e
r
si
st
i
n
g
i
n
a
g
r
a
p
h
d
a
t
a
b
a
se
i
s
mo
r
e
i
n
t
u
i
t
i
v
e
a
n
d
mo
r
e
p
o
r
t
a
b
l
e
G
r
a
v
e
s e
t
a
l
.
[
2
4
]
D
e
si
g
n
o
f
d
a
t
a
st
o
r
e
f
o
r
g
e
n
o
me
R
e
v
i
e
w
a
l
l
a
v
a
i
l
a
b
l
e
o
p
t
i
o
n
s
a
n
d
c
o
mp
a
r
e
G
r
a
p
h
d
a
t
a
b
a
se
C
e
sare
e
t
a
l
.
[
2
5
]
A
u
t
o
mat
e
d
t
a
x
o
n
o
my
e
x
t
r
a
c
t
i
o
n
f
r
o
m
se
man
t
i
c
p
r
o
c
e
ss mo
d
e
l
s
l
i
n
g
u
i
s
t
i
c
a
p
p
r
o
a
c
h
b
a
se
d
o
n
se
man
t
i
c
si
mi
l
a
r
i
t
y
g
e
n
e
r
a
l
i
z
e
e
l
e
m
e
n
t
s
o
f
b
u
si
n
e
ss
p
r
o
c
e
sse
s
t
h
a
t
a
r
e
a
u
t
o
mat
i
c
a
l
l
y
d
i
s
c
o
v
e
r
e
d
f
r
o
m
s
e
mi
-
st
r
u
c
t
u
r
e
d
d
a
t
a
p
r
o
j
e
c
t
s
M
o
r
a
r
i
e
t
a
l
.
[
2
6
]
S
c
a
l
i
n
g
S
e
ma
n
t
i
c
G
r
a
p
h
D
a
t
a
b
a
se
s
S
P
A
R
Q
L
TO
-
C
+
+
C
O
M
P
I
L
ER
,
A
L
i
b
r
a
r
y
O
f
D
i
st
r
i
b
u
t
e
d
D
a
t
a
sy
st
e
m,
A
n
d
A
C
u
st
o
m
M
u
l
t
i
t
h
r
e
a
d
e
d
R
u
n
t
i
m
e
B
e
t
t
e
r
sca
l
i
n
g
W
a
r
d
a
n
i
a
n
d
K
i
i
n
g
[
2
7
]
S
e
m
a
n
t
i
c
M
a
p
p
i
n
g
R
e
l
a
t
i
o
n
a
l
t
o
G
r
a
p
h
M
o
d
e
l
c
r
e
a
t
e
p
r
o
p
e
r
t
y
r
e
l
a
t
i
o
n
s
h
i
p
i
n
t
h
e
r
e
su
l
t
o
f
t
h
e
ma
p
p
i
n
g
a
n
d
c
o
n
v
e
r
t
i
n
g
p
r
o
c
e
ss
map
a
n
d
c
o
n
v
e
r
t
t
h
e
r
e
l
a
t
i
o
n
a
l
d
a
t
a
mo
d
e
l
t
o
g
r
a
p
h
mo
d
e
l
w
i
t
h
o
u
t
se
man
t
i
c
l
o
ss
S
o
u
z
a
e
t
a
l
.
[
2
8
]
G
r
a
p
h
D
a
t
a
b
a
se
s
w
i
t
h
S
e
man
t
i
c
N
e
t
w
o
r
k
M
o
d
e
l
s
f
o
r
S
o
f
t
w
a
r
e
-
D
e
f
i
n
e
d
N
e
t
w
o
r
k
i
n
g
(
S
D
N
)
A
p
p
l
i
c
a
t
i
o
n
s
I
mp
o
r
t
t
h
e
N
e
t
w
o
r
k
M
a
r
k
u
p
L
a
n
g
u
a
g
e
(
N
M
L
)
mo
d
e
l
mo
d
e
l
i
n
g
t
a
sk
s
a
r
e
c
o
n
si
d
e
r
a
b
l
y
mo
r
e
n
a
t
u
r
a
l
c
o
m
p
a
r
e
d
t
o
R
D
B
M
;
t
o
r
e
p
r
o
d
u
c
e
S
D
N
a
p
p
l
i
c
a
t
i
o
n
p
r
i
m
i
t
i
v
e
s
H
a
y
a
k
a
w
a
a
n
d
N
i
sh
i
y
a
ma
[
2
9
]
Q
u
e
r
y
P
r
o
c
e
ssi
n
g
o
f
S
e
man
t
i
c
D
a
t
a
S
u
mm
a
r
i
z
e
d
g
r
a
p
h
i
n
a
d
v
a
n
c
e
i
mp
r
o
v
e
t
h
e
q
u
e
r
y
p
e
r
f
o
r
man
c
e
b
y
6
.
6
2
t
i
me
s
B
e
d
n
a
r
e
t
a
l
.
[
3
0
]
t
h
e
o
r
e
t
i
c
a
l
a
n
a
l
y
si
s
a
n
d
p
e
r
f
o
r
man
c
e
t
e
st
i
n
g
B
e
n
c
h
mar
k
d
a
t
a
mo
d
e
l
i
n
g
a
n
d
p
o
p
u
l
a
t
i
o
n
C
o
mp
a
r
a
t
i
v
e
b
e
n
e
f
i
t
s&
w
e
a
k
n
e
ss
H
a
r
t
l
e
y
e
t
a
l
.
[
3
1
]
st
o
r
i
n
g
,
A
c
c
e
ssi
n
g
a
n
d
a
n
a
l
y
z
i
n
g
T
r
i
l
l
i
o
n
v
e
r
t
i
c
e
s a
n
d
e
d
g
e
s.
se
man
t
i
c
g
r
a
p
h
s
e
x
e
c
u
t
i
o
n
o
f
p
a
r
a
l
l
e
l
o
u
t
-
of
-
c
o
r
e
g
r
a
p
h
a
l
g
o
r
i
t
h
ms
o
u
t
p
e
r
f
o
r
ms
w
i
d
e
l
y
u
se
d
o
p
e
n
-
so
u
r
c
e
C
a
v
o
t
o
e
t
a
l
.
[
3
2
]
N
e
t
w
o
r
k
-
D
r
i
v
e
n
D
a
t
a
A
n
a
l
y
si
s
F
i
sh
B
a
se
g
l
o
b
a
l
i
n
f
o
r
mat
i
o
n
sy
st
e
m
d
i
s
c
o
v
e
r
y
o
f
n
e
w
i
n
f
o
r
mat
i
o
n
a
n
d
v
a
l
i
d
a
t
i
n
g
t
h
e
e
x
i
st
i
n
g
d
a
t
a
C
a
l
d
a
r
o
l
a
e
t
a
l
.
[
3
3
]
B
i
g
G
r
a
p
h
-
b
a
se
d
D
a
t
a
V
i
su
a
l
i
z
a
t
i
o
n
T
h
e
W
o
r
d
N
e
t
e
f
f
i
c
i
e
n
c
y
,
e
f
f
e
c
t
i
v
e
n
e
ss
a
n
d
c
l
e
a
r
n
e
ss;
t
w
o
d
i
f
f
e
r
e
n
t
r
e
p
r
e
se
n
t
a
t
i
o
n
o
f
W
o
r
d
-
N
e
t
L
a
mh
a
d
d
a
b
a
n
d
El
b
a
a
mr
a
n
i
[
3
4
]
G
r
a
p
h
M
o
d
e
l
i
n
g
F
o
r
M
o
b
i
l
e
s
i
mp
l
e
me
n
t
a
t
i
o
n
o
f
a
n
e
x
t
r
a
c
t
o
r
mo
d
u
l
e
(
i
n
j
a
v
a
l
a
n
g
u
a
g
e
)
R
e
v
e
r
s
e
e
n
g
i
n
e
e
r
i
n
g
f
r
o
m
i
O
S
p
l
a
t
f
o
r
m t
o
A
n
d
r
o
i
d
p
l
a
t
f
o
r
m
L
e
i
d
a
a
n
d
.
C
h
u
[
3
5
]
D
i
st
r
i
b
u
t
e
d
S
P
A
R
Q
L
q
u
e
r
y
a
n
sw
e
r
i
n
g
o
v
e
r
R
D
F
d
a
t
a
s
t
r
e
a
ms
B
u
s
i
n
e
ss Pr
o
c
e
ss
M
o
n
i
t
o
r
i
n
g
d
o
mai
n
f
o
r
Q
u
e
r
y
w
o
r
k
l
o
a
d
b
a
l
a
n
c
i
n
g
A
p
p
r
o
a
c
h
f
o
r
e
f
f
i
c
i
e
n
t
a
n
d
sc
a
l
a
b
l
e
q
u
e
r
y
p
r
o
c
e
ssi
n
g
o
v
e
r
R
D
F
g
r
a
p
h
s
d
i
s
t
r
i
b
u
t
e
d
o
v
e
r
a
l
o
c
a
l
d
a
t
a
g
r
i
d
.
M
o
r
d
i
n
y
i
e
t
a
l
.
[
3
6
]
e
f
f
i
c
i
e
n
t
d
a
t
a
st
o
r
e
t
h
a
t
i
s
c
a
p
a
b
l
e
o
f
v
e
r
si
o
n
i
n
g
a
n
d
q
u
e
r
y
i
n
g
l
o
c
a
l
a
n
d
c
o
mm
o
n
c
o
n
c
e
p
t
s
N
o
S
Q
L
g
r
a
p
h
d
a
t
a
b
a
se
o
u
t
p
e
r
f
o
r
ms
o
n
t
o
l
o
g
y
st
o
r
e
s
a
n
d
mat
c
h
so
l
u
t
i
o
n
s
r
e
l
y
i
n
g
o
n
r
e
l
a
t
i
o
n
a
l
d
a
t
a
b
a
se
s
B
a
l
b
o
n
i
e
t
a
l
.
[
3
7
]
Ev
o
l
u
t
i
o
n
A
n
a
l
y
si
s
n
a
t
u
r
a
l
l
a
n
g
u
a
g
e
p
r
o
c
e
ssi
n
g
e
n
g
i
n
e
s
t
o
b
u
i
l
d
t
e
mp
o
r
a
l
g
r
a
p
h
d
a
t
a
b
a
se
G
o
t
l
a
r
g
e
a
mo
u
n
t
o
f
o
p
e
n
so
u
r
c
e
d
o
c
u
me
n
t
s
W
u
a
n
d
C
h
e
n
[
3
8
]
F
r
e
q
u
e
n
t
S
u
b
-
g
r
a
p
h
M
i
n
i
n
g
By
n
o
r
mal
i
z
i
n
g
t
h
e
i
n
c
i
d
e
n
c
e
m
a
t
r
i
x
A
c
h
i
e
v
e
d
h
i
g
h
e
r
sp
e
e
d
a
n
d
e
f
f
i
c
i
e
n
c
y
Jo
h
n
e
t
a
l
.
[
3
9
]
L
e
a
r
n
i
n
g
p
r
o
c
e
ss
e
n
h
a
n
c
e
me
n
t
a
g
a
i
n
s
t
p
o
p
u
l
a
t
i
o
n
N
a
t
u
r
a
l
L
a
n
g
u
a
g
e
P
r
o
c
e
ssi
n
g
e
n
h
a
n
c
e
d
l
e
a
r
n
e
r
c
e
n
t
e
r
e
d
o
n
l
i
n
e
l
e
a
r
n
i
n
g
e
x
p
e
r
i
e
n
c
e
X
u
a
n
d
L
u
o
[
4
0
]
Ex
p
r
e
ssi
o
n
-
D
r
i
v
e
n
S
k
e
t
c
h
G
r
a
p
h
M
a
t
c
h
i
n
g
f
o
r
F
a
c
e
R
e
c
o
g
n
i
t
i
o
n
mu
l
t
i
-
l
a
y
e
r
g
r
a
mm
a
t
i
c
a
l
f
a
c
e
mo
d
e
l
r
e
c
o
g
n
i
t
i
o
n
r
a
t
e
s
w
e
r
e
i
mp
r
o
v
e
d
,
e
sp
e
c
i
a
l
l
y
f
o
r
t
h
e
smil
i
n
g
a
n
d
scre
a
mi
n
g
f
a
c
e
s
w
h
o
se
l
i
n
e
-
e
d
g
e
map
s
a
r
e
g
r
e
a
t
l
y
d
i
st
o
r
t
e
d
F
i
g
u
e
i
r
a
a
n
d
L
i
b
k
i
n
[
4
1
]
Q
u
e
r
y
i
n
g
G
r
a
p
h
s
P
a
r
i
k
h
a
u
t
o
mat
a
rea
l
-
l
i
f
e
q
u
e
r
y
i
n
g
2
.
1
4
.
So
cia
l N
et
w
o
rk
ing
T
h
e
r
ec
en
t
id
ea
s
to
w
ar
d
s
t
h
e
g
r
ap
h
d
ata
g
e
n
er
ated
b
y
s
o
cial
n
et
w
o
r
k
s
ar
e
p
r
ese
n
ted
in
t
h
e
f
o
llo
w
in
g
T
ab
le
6
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
1
4
0
–
1149
1146
T
ab
le
6
.
W
o
r
k
f
o
r
s
o
cial
n
et
wo
r
k
in
g
g
r
ap
h
d
atab
ase
A
u
t
h
o
r
I
ssu
e
c
o
n
si
d
e
r
e
d
M
e
t
h
o
d
a
d
o
p
t
e
d
R
e
su
l
t
D
a
y
a
r
a
t
h
n
a
a
n
d
S
u
z
u
mu
r
a
[
4
2
]
G
r
a
p
h
D
a
t
a
b
a
se
f
o
r
H
y
b
r
i
d
C
l
o
u
d
s
D
i
st
r
i
b
u
t
e
d
G
r
a
p
h
D
a
t
a
b
a
se
A
c
h
i
e
v
e
s fast
e
r
p
e
r
f
o
r
man
c
e
S
o
u
ssi
[
4
3
]
S
o
c
i
a
l
N
e
t
w
o
r
k
Ex
t
r
a
c
t
i
o
n
G
r
a
p
h
D
a
t
a
b
a
se
A
c
h
i
e
v
e
s b
e
t
t
e
r
e
x
t
r
a
c
t
i
o
n
Y
a
r
a
n
d
T
u
n
[
4
4
]
S
e
a
r
c
h
i
n
g
P
e
r
so
n
n
e
l
R
e
l
a
t
i
o
n
s
h
i
p
G
r
a
p
h
D
a
t
a
b
a
se
r
e
l
a
t
i
o
n
sh
i
p
a
mo
n
g
p
e
r
so
n
s
c
a
n
si
mp
l
y
a
n
d
a
c
c
u
r
a
t
e
l
y
b
e
i
n
f
e
r
r
e
d
M
i
r
a
n
d
W
r
i
g
h
t
[
4
5
]
D
i
f
f
e
r
e
n
t
i
a
l
l
y
P
r
i
v
a
t
e
Est
i
m
a
t
o
r
K
r
o
n
e
c
k
e
r
g
r
a
p
h
mo
d
e
l
G
e
n
e
r
a
t
e
s
y
n
t
h
e
t
i
c
g
r
a
p
h
s
t
h
a
t
a
r
e
“
si
mi
l
a
r
”
t
o
t
h
e
o
r
i
g
i
n
a
l
t
a
r
g
e
t
g
r
a
p
h
s
i
n
a
p
r
i
v
a
c
y
p
r
e
se
r
v
i
n
g
man
n
e
r
.
S
h
r
i
v
a
st
a
v
a
a
n
d
P
a
l
[
4
6
]
G
r
a
p
h
M
i
n
i
n
g
G
r
a
p
h
d
a
t
a
p
r
o
c
e
ssi
n
g
,
e
x
t
r
a
c
t
i
o
n
a
n
d
v
i
s
u
a
l
i
z
a
t
i
o
n
A
c
h
i
e
v
e
d
q
u
a
l
i
t
y
i
n
p
r
o
c
e
ssi
n
g
2
RE
S
E
ARCH
G
AP
I
N
T
H
E
E
XI
ST
I
N
G
WO
RK
T
h
e
r
esear
ch
w
o
r
k
th
a
t
p
er
f
o
r
m
ed
i
n
r
ec
e
n
t
y
ea
r
s
is
l
ac
k
in
g
w
it
h
e
f
f
ec
ti
v
en
e
s
s
i
n
a
h
u
g
e
u
n
s
tr
u
ct
u
r
ed
g
r
ap
h
d
atab
ase.
T
h
e
w
o
r
k
o
f
th
e
v
ar
io
u
s
a
u
t
h
o
r
s
lack
s
t
h
e
r
esear
c
h
e
f
f
icien
c
y
i
n
t
h
eir
m
et
h
o
d
s
.
T
h
e
ap
p
licab
ilit
y
o
f
t
h
ese
m
e
th
o
d
s
in
r
ea
l
ti
m
e
ap
p
licatio
n
s
s
h
o
w
s
p
o
o
r
p
er
f
o
r
m
a
n
ce
.
T
h
er
e
is
a
n
ee
d
f
o
r
p
r
o
p
er
r
e
s
ea
r
ch
in
a
h
u
g
e
a
n
u
n
s
tr
u
ct
u
r
ed
g
r
ap
h
d
atab
ase
m
an
a
g
e
m
e
n
t.
T
h
e
f
o
llo
w
i
n
g
a
r
e
th
e
lis
ted
r
esear
ch
g
ap
s
in
t
h
e
e
x
is
ti
n
g
w
o
r
k
:
a.
T
h
e
ex
is
tin
g
r
esear
ch
e
s
ar
e
d
o
esn
’
t
s
u
p
p
o
r
t
th
e
h
u
g
e
u
n
s
tr
u
c
tu
r
ed
g
r
ap
h
d
ata
in
d
u
ce
s
co
m
p
lex
it
y
o
f
tech
n
iq
u
e
a
n
d
s
o
m
e
o
f
t
h
e
p
er
f
o
r
m
a
n
ce
m
etr
ics ar
e
n
ee
d
to
b
e
ex
p
lo
r
ed
in
g
r
ap
h
d
ata.
b.
T
h
e
ex
is
ti
n
g
r
esear
ch
e
s
d
o
esn
’
t
f
u
lf
ill
t
h
e
c
h
alle
n
g
e
s
o
f
th
e
h
o
s
ti
n
g
g
r
ap
h
d
atab
ase
lik
e
d
y
n
a
m
i
c
n
atu
r
e
o
f
g
r
ap
h
d
atab
ase
v
o
lu
m
e,
to
u
g
h
to
m
ai
n
tai
n
th
e
g
r
ap
h
d
ata
an
d
co
n
s
u
m
es
h
ig
h
e
r
co
m
p
u
tatio
n
al
ti
m
e
f
o
r
ev
al
u
a
tio
n
o
f
g
r
ap
h
q
u
er
ies.
c.
T
h
e
g
r
ap
h
h
as
p
ar
titi
o
n
i
n
g
is
s
u
e,
in
f
o
r
m
atio
n
lo
s
s
a
n
d
u
n
n
ec
es
s
ar
y
co
m
p
u
tatio
n
a
r
e
s
till
u
n
ad
d
r
ess
ed
an
d
ar
e
n
ee
d
to
ad
d
r
ess
f
o
r
u
n
s
tr
u
ct
u
r
ed
g
r
ap
h
d
atab
ase.
d.
T
h
e
r
esear
ch
es
w
h
ic
h
ar
e
m
e
n
tio
n
ed
in
p
ast ar
e
n
o
t d
esi
g
n
ed
f
o
r
d
ata
m
i
n
i
n
g
o
f
g
r
ap
h
d
ata
b
ase.
e.
T
h
e
ex
is
ti
n
g
p
r
iv
ac
y
p
r
eser
v
a
tio
n
tec
h
n
iq
u
es
u
s
i
n
g
d
ata
an
o
n
y
m
it
y
ap
p
r
o
ac
h
es
ar
e
n
o
t
e
f
f
icien
t
as
th
i
s
ap
p
r
o
ac
h
d
o
esn
’
t
p
r
o
v
id
e
th
eo
r
etica
l
e
v
id
en
ce
t
h
a
t
th
e
p
r
o
v
id
ed
s
o
lu
tio
n
i
s
e
f
f
ec
ti
v
e
ag
ain
s
t t
h
e
s
ec
u
r
it
y
i
s
s
u
es
.
3
L
I
N
E
O
F
RE
S
E
ARCH
I
N
F
UT
UR
E
T
h
e
b
etter
g
r
ap
h
d
atab
ase
s
ca
l
ab
ilit
y
an
d
m
a
n
a
g
e
m
en
t
o
f
h
u
g
e
u
n
s
tr
u
ct
u
r
ed
g
r
ap
h
d
atab
ase
ca
n
b
e
attain
ed
as
b
elo
w
s
tep
s
.
a.
Ou
tli
n
i
n
g
t
h
e
e
x
is
t
in
g
is
s
u
e
s
i
n
cu
r
r
en
t
w
o
r
k
.
b.
A
p
r
o
to
t
y
p
e
is
n
ee
d
s
to
b
e
d
esig
n
ed
to
g
en
er
ate
lar
g
e
an
d
u
n
s
tr
u
ct
u
r
ed
d
ata
f
o
r
r
e
al
-
ti
m
e
ap
p
licatio
n
s
an
d
also
i
m
p
le
m
e
n
t th
e
r
esp
ec
ti
v
e
g
r
ap
h
th
eo
r
y
to
m
o
d
el
t
h
e
g
r
ap
h
d
atab
ase.
c.
A
n
o
v
e
l
d
ata
m
i
n
in
g
al
g
o
r
it
h
m
i
s
n
ee
d
ed
to
b
e
d
ev
elo
p
ed
f
o
r
t
h
e
g
r
ap
h
d
atab
ase
h
av
i
n
g
lo
w
co
m
p
u
tatio
n
al
co
m
p
le
x
it
y
.
d.
A
co
s
t
e
f
f
ec
ti
v
e
m
ec
h
a
n
i
s
m
is
n
ee
d
ed
to
b
e
b
u
i
ld
,
an
d
it
s
h
o
u
ld
o
f
f
er
p
r
iv
ac
y
f
o
r
h
u
g
e
u
n
s
tr
u
ct
u
r
ed
d
ata.
e.
T
h
e
ef
f
ec
ti
v
e
n
ess
o
f
th
e
m
ec
h
an
is
m
is
n
ee
d
ed
to
tall
y
w
it
h
t
h
e
ex
i
s
ti
n
g
w
o
r
k
.
4
CO
NCLU
SI
O
N
T
h
is
s
u
r
v
e
y
p
ap
er
g
i
v
es
th
e
b
etter
id
ea
o
f
r
eq
u
ir
ed
attr
ib
u
te
s
to
m
an
a
g
e
t
h
e
h
u
g
e
u
n
s
t
r
u
ct
u
r
ed
g
r
ap
h
d
atab
ase.
T
h
is
p
ap
er
g
iv
es
th
e
d
if
f
er
e
n
t
t
y
p
e
s
g
r
ap
h
d
atab
as
e
lik
e
Neo
4
j
,
DE
X,
an
d
T
itan
,
etc.
T
h
e
s
u
r
v
e
y
o
f
r
ec
en
t
w
o
r
k
to
w
ar
d
s
g
r
ap
h
d
ata
is
co
llected
s
t
u
d
ied
an
d
r
ep
r
esen
ted
in
v
ar
io
u
s
s
ec
tio
n
s
li
k
e
Data
s
to
r
e
ef
f
icien
c
y
,
Data
b
ase
I
n
d
e
x
in
g
Me
th
o
d
,
Gr
ap
h
I
n
d
ex
in
g
Me
t
h
o
d
,
Su
b
-
g
r
ap
h
m
atc
h
i
n
g
m
et
h
o
d
,
Se
m
an
tic
an
d
s
o
cial
n
et
w
o
r
k
i
n
g
g
r
ap
h
d
atab
ase.
Fro
m
th
e
ab
o
v
e
ex
i
s
ti
n
g
r
esear
ch
s
u
r
v
e
y
,
a
r
esear
ch
g
ap
is
d
ef
in
ed
,
an
d
f
lo
w
i
n
g
l
y
t
h
e
r
esear
ch
id
ea
s
f
o
r
im
p
r
o
v
i
n
g
t
h
e
g
r
ap
h
d
atab
ase
ar
e
p
r
esen
ted
.
RE
F
E
R
E
NC
E
S
[1
]
Nirw
a
n
s
y
a
h
,
F
e
rd
y
,
a
n
d
S
u
h
a
rji
t
o
S
u
h
a
rji
t
o
,
"
H
y
b
rid
Disk
Dri
v
e
C
o
n
f
ig
u
ra
ti
o
n
o
n
Da
tab
a
se
S
e
rv
e
r
V
irt
u
a
li
z
a
ti
o
n
,
"
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
2
.
3
(
2
0
1
6
):
7
2
0
-
7
2
8
.
[2
]
Is
m
a
e
e
l,
S
a
la
m
,
Ay
m
a
n
A
l
-
Kh
a
z
ra
ji
,
a
n
d
Ka
ra
m
a
A
l
-
d
e
li
m
i,
"
F
u
z
z
y
In
f
o
r
m
a
ti
o
n
M
o
d
e
li
n
g
in
a
Da
tab
a
se
S
y
ste
m
,
"
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
Art
if
icia
l
In
telli
g
e
n
c
e
(
IJ
-
AI)
6
.
1
(
2
0
1
7
):
1
-
7.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
S
u
r
ve
y
o
n
Gra
p
h
Da
ta
b
a
s
e
Ma
n
a
g
eme
n
t
Tech
n
i
q
u
es fo
r
Hu
g
e
Un
s
tr
u
ctu
r
ed
Da
ta
(
P
a
til N
.
S
.
)
1147
[3
]
L
a
d
a
y
,
R
a
v
ie
Ku
rn
ia,
He
r
u
S
u
k
o
c
o
,
a
n
d
Ya
n
i
Nu
rh
a
d
ry
a
n
i,
"
D
istri
b
u
te
d
S
y
ste
m
a
n
d
M
u
lt
im
a
s
ter
Re
p
li
c
a
ti
o
n
M
o
d
e
l
o
n
Re
li
a
b
il
it
y
Op
ti
m
a
ti
o
n
Da
tab
a
se
,
"
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
E
n
g
in
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
1
3
.
3
(
2
0
1
5
):
5
2
9
-
5
3
6
.
[4
]
B.
A
.
S
u
tri
sn
a
,
W
.
K.
Ra
h
m
a
tS
a
leh
a
n
d
A
.
A
.
G
o
z
a
li
,
"
Imp
lem
e
n
ta
ti
o
n
o
f
GRAC
a
lg
o
rith
m
(
Gr
a
p
h
A
lg
o
rith
m
Clu
ste
rin
g
)
in
g
r
a
p
h
d
a
ta
b
a
se
c
o
mp
re
ss
io
n
,
"
I
n
f
o
rm
a
ti
o
n
a
n
d
C
o
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
l
o
g
y
(ICo
ICT
),
2
0
1
5
3
rd
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
Nu
s
a
Du
a
,
2
0
1
5
,
p
p
.
3
9
1
-
3
9
5
.
[5
]
Ba
n
se
l,
H.
G
o
n
z
á
lez
-
V
é
lez
a
n
d
A
.
E.
Ch
is,
"
Clo
u
d
-
B
a
se
d
No
S
QL
Da
ta
M
ig
ra
ti
o
n
,
"
2
0
1
6
2
4
th
Eu
r
o
m
icro
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
P
a
ra
ll
e
l,
Distrib
u
ted
,
a
n
d
Ne
tw
o
rk
-
Ba
se
d
P
ro
c
e
ss
in
g
(
P
D
P
),
He
ra
k
li
o
n
,
2
0
1
6
,
p
p
.
2
2
4
-
2
3
1
.
[6
]
B.
Ly
u
,
L
.
Qin
,
X
.
L
in
,
L
.
Ch
a
n
g
a
n
d
J.
X
.
Y
u
,
"
S
c
a
la
b
le
su
p
e
rg
ra
p
h
se
a
rc
h
i
n
l
a
rg
e
g
ra
p
h
d
a
ta
b
a
s
e
s,"
2
0
1
6
IE
E
E
3
2
n
d
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Da
ta
En
g
in
e
e
rin
g
(ICDE),
He
lsin
k
i,
2
0
1
6
,
p
p
.
1
5
7
-
1
6
8
.
[7
]
Y.
Ch
e
n
a
n
d
Y.
Ch
e
n
,
"
De
c
o
mp
o
sin
g
DAGs
in
t
o
sp
a
n
n
i
n
g
tre
e
s:
A
n
e
w
wa
y
to
c
o
mp
re
ss
tra
n
siti
v
e
c
lo
su
re
s,"
2
0
1
1
IEE
E
2
7
th
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Da
ta E
n
g
in
e
e
ri
n
g
,
Ha
n
n
o
v
e
r,
2
0
1
1
,
p
p
.
1
0
0
7
-
1
0
1
8
.
[8
]
D.
W
.
W
il
li
a
m
s,
J.
Hu
a
n
a
n
d
W
.
W
a
n
g
,
"
Gr
a
p
h
Da
t
a
b
a
se
In
d
e
x
in
g
Us
in
g
S
tru
c
t
u
re
d
Gr
a
p
h
De
c
o
m
p
o
siti
o
n
,
"
2
0
0
7
IEE
E
2
3
rd
In
tern
a
t
io
n
a
l
Co
n
f
e
re
n
c
e
o
n
Da
ta E
n
g
in
e
e
ri
n
g
,
Ista
n
b
u
l,
2
0
0
7
,
p
p
.
9
7
6
-
9
8
5
.
[9
]
L
u
o
,
A
.
Zh
e
n
g
,
J.
T
a
n
g
a
n
d
H.
Z
h
a
o
,
"
L
a
rg
e
-
S
c
a
le
Gr
a
p
h
D
a
ta
b
a
se
In
d
e
x
in
g
B
a
s
e
d
o
n
T
-
mix
tu
re
M
o
d
e
l
a
n
d
ICA
,
"
Im
a
g
e
a
n
d
G
r
a
p
h
ics
,
2
0
0
7
.
ICIG
2
0
0
7
.
F
o
u
rth
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
r
e
n
c
e
o
n
,
S
ich
u
a
n
,
2
0
0
7
,
p
p
.
8
1
5
-
8
2
0
.
[1
0
]
Yu
a
n
,
P
.
M
it
ra
,
H.
Yu
a
n
d
C
.
L
.
G
il
e
s,
"
Iter
a
ti
v
e
Gr
a
p
h
Fea
tu
r
e
M
in
in
g
f
o
r
Gr
a
p
h
I
n
d
e
x
in
g
,
"
2
0
1
2
IEE
E
2
8
t
h
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
Da
ta
En
g
in
e
e
rin
g
,
W
a
sh
in
g
to
n
,
DC,
2
0
1
2
,
p
p
.
1
9
8
-
2
0
9
.
[1
1
]
Y.
Be
i,
Z.
L
in
,
C.
Zh
a
o
a
n
d
X
.
Zh
u
,
"
HBa
se
S
y
ste
m
-
Ba
se
d
Dist
rib
u
ted
Fr
a
me
wo
rk
fo
r
S
e
a
rc
h
i
n
g
L
a
rg
e
Gr
a
p
h
Da
ta
b
a
se
s,"
S
o
f
tw
a
re
En
g
in
e
e
r
in
g
,
A
rti
f
icia
l
In
telli
g
e
n
c
e
,
Ne
tw
o
rk
in
g
a
n
d
P
a
ra
ll
e
l/
Dist
rib
u
t
e
d
Co
m
p
u
ti
n
g
(S
NP
D)
,
2
0
1
3
1
4
t
h
A
CIS
In
tern
a
t
io
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
H
o
n
o
lu
l
u
,
H
I,
2
0
1
3
,
p
p
.
1
5
1
-
1
5
6
.
[1
2
]
M
.
G
o
ld
b
e
rg
,
J.
G
re
e
n
m
a
n
,
B.
G
u
tt
in
g
,
M
.
M
a
g
d
o
n
-
Ism
a
il
,
J.
S
c
h
w
a
rtz
a
n
d
W
.
W
a
ll
a
c
e
,
"
Gr
a
p
h
se
a
rc
h
b
e
y
o
n
d
tex
t:
Rela
ti
o
n
a
l
se
a
rc
h
e
s
in
se
m
a
n
ti
c
h
y
p
e
rli
n
k
e
d
d
a
t
a
,
"
I
n
telli
g
e
n
c
e
a
n
d
S
e
c
u
rit
y
In
f
o
r
m
a
ti
c
s
(I
S
I),
2
0
1
2
IEE
E
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
A
rli
n
g
to
n
,
V
A
,
2
0
1
2
,
p
p
.
1
5
3
-
1
5
5
.
[1
3
]
S
.
S
.
Do
n
g
o
ra
n
,
W
.
K.
Ra
h
m
a
t
S
a
leh
a
n
d
A
.
A
.
G
o
z
a
li
,
"
An
a
lys
is
a
n
d
im
p
lem
e
n
ta
t
io
n
o
f
g
r
a
p
h
in
d
e
x
in
g
fo
r
g
ra
p
h
d
a
t
a
b
a
se
u
sin
g
Gr
a
p
h
Gr
e
p
a
l
g
o
rith
m,
"
In
f
o
rm
a
ti
o
n
a
n
d
C
o
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
lo
g
y
(ICo
ICT
),
2
0
1
5
3
r
d
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
Nu
s
a
Du
a
,
2
0
1
5
,
p
p
.
5
9
-
6
4
.
[1
4
]
J.
M
.
Ka
n
g
,
H.
Ba
n
n
a
z
a
d
e
h
a
n
d
A
.
L
e
o
n
-
G
a
r
c
ia,
"
S
DIG
ra
p
h
:
Gr
a
p
h
-
b
a
se
d
ma
n
a
g
e
me
n
t
fo
r
c
o
n
v
e
rg
e
d
h
e
ter
o
g
e
n
e
o
u
s
re
so
u
rc
e
s
in
S
D
I,
"
2
0
1
6
IEE
E
Ne
tS
o
f
t
Co
n
f
e
re
n
c
e
a
n
d
W
o
rk
sh
o
p
s
(Ne
tS
o
f
t),
S
e
o
u
l,
2
0
1
6
,
p
p
.
8
8
-
9
2
.
[1
5
]
R.
G
iu
g
n
o
a
n
d
D.
S
h
a
sh
a
,
"
Gr
a
p
h
Gr
e
p
:
A
fa
st
a
n
d
u
n
ive
rs
a
l
me
th
o
d
fo
r
q
u
e
ry
in
g
g
ra
p
h
s,
"
P
a
tt
e
rn
Re
c
o
g
n
it
io
n
,
2
0
0
2
.
P
ro
c
e
e
d
i
n
g
s.
1
6
th
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
2
0
0
2
,
p
p
.
1
1
2
-
1
1
5
v
o
l
.
2
.
[1
6
]
M
.
Brö
c
h
e
ler,
A
.
P
u
g
li
e
se
a
n
d
V
.
S
.
S
u
b
ra
h
m
a
n
ian
,
"
CO
S
I:
Cl
o
u
d
Or
ien
ted
S
u
b
g
ra
p
h
I
d
e
n
ti
fi
c
a
ti
o
n
i
n
M
a
ss
ive
S
o
c
ia
l
Ne
two
rk
s,"
A
d
v
a
n
c
e
s
in
S
o
c
ial
Ne
tw
o
rk
s
A
n
a
l
y
sis
a
n
d
M
in
in
g
(A
S
ON
A
M
),
2
0
1
0
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
O
d
e
n
se
,
2
0
1
0
,
p
p
.
2
4
8
-
2
5
5
.
[1
7
]
M
.
Bro
c
h
e
ler,
A
.
P
u
g
li
e
se
a
n
d
V.
S
.
S
u
b
ra
h
m
a
n
ian
,
"
Pr
o
b
a
b
il
isti
c
S
u
b
g
ra
p
h
M
a
tch
i
n
g
o
n
Hu
g
e
S
o
c
ia
l
Ne
two
rk
s,
"
A
d
v
a
n
c
e
s
in
S
o
c
ial
Ne
tw
o
rk
s
An
a
ly
sis
a
n
d
M
in
i
n
g
(A
S
ON
A
M
),
2
0
1
1
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
Ka
o
h
siu
n
g
,
2
0
1
1
,
p
p
.
2
7
1
-
2
7
8
.
[1
8
]
M
.
Brö
c
h
e
ler,
A
.
P
u
g
li
e
se
a
n
d
V
.
S
.
S
u
b
ra
h
m
a
n
ian
,
"
A
b
u
d
g
e
t
-
b
a
s
e
d
a
lg
o
rith
m
fo
r
e
ff
icie
n
t
su
b
g
r
a
p
h
ma
tch
in
g
o
n
Hu
g
e
Ne
two
rk
s,"
Da
ta
En
g
in
e
e
rin
g
W
o
rk
sh
o
p
s
(ICDEW
)
,
2
0
1
1
IEE
E
2
7
th
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
Ha
n
n
o
v
e
r,
2
0
1
1
,
p
p
.
9
4
-
9
9
.
[1
9
]
L
.
Ho
n
g
,
L
.
Zo
u
,
X
.
L
ian
a
n
d
P
.
S
.
Yu
,
"
S
u
b
g
ra
p
h
M
a
tch
in
g
w
it
h
S
e
t
S
im
il
a
rit
y
in
a
L
a
r
g
e
G
ra
p
h
Da
tab
a
se
,
"
in
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Kn
o
wled
g
e
a
n
d
Da
t
a
E
n
g
in
e
e
rin
g
,
v
o
l.
2
7
,
n
o
.
9
,
p
p
.
2
5
0
7
-
2
5
2
1
,
S
e
p
t.
1
2
0
1
5
.
[2
0
]
Ho
k
sz
a
a
n
d
J.
Je
lí
n
e
k
,
"
Us
in
g
Ne
o
4
j
fo
r M
in
i
n
g
Pro
tei
n
Gr
a
p
h
s: A
Ca
se
S
tu
d
y
,
"
2
0
1
5
2
6
t
h
In
tern
a
ti
o
n
a
l
W
o
rk
sh
o
p
o
n
Da
tab
a
se
a
n
d
Ex
p
e
rt
S
y
ste
m
s
A
p
p
li
c
a
ti
o
n
s (DE
X
A
),
V
a
len
c
ia,
2
0
1
5
,
p
p
.
2
3
0
-
2
3
4
.
[2
1
]
P
.
Kiv
ik
a
n
g
a
s
a
n
d
M
.
Ish
izu
k
a
,
"
Imp
ro
v
in
g
S
e
ma
n
ti
c
Qu
e
rie
s
b
y
Util
izin
g
UNL
O
n
to
l
o
g
y
a
n
d
a
Gr
a
p
h
Da
ta
b
a
se
,
"
S
e
m
a
n
ti
c
Co
m
p
u
ti
n
g
(ICS
C),
2
0
1
2
IEE
E
S
ix
th
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
P
a
lerm
o
,
2
0
1
2
,
p
p
.
8
3
-
8
6
.
[2
2
]
P
.
Ka
lm
e
g
h
a
n
d
S
.
B.
Na
v
a
th
e
,
"
G
ra
p
h
Da
tab
a
se
De
si
g
n
Ch
a
ll
e
n
g
e
s
Us
in
g
HP
C
P
latf
o
rm
s,"
Hi
g
h
P
e
rf
o
rm
a
n
c
e
Co
m
p
u
ti
n
g
,
Ne
tw
o
rk
in
g
,
S
to
ra
g
e
a
n
d
A
n
a
l
y
sis
(S
CC),
2
0
1
2
S
C
Co
m
p
a
n
io
n
:
S
a
lt
L
a
k
e
C
it
y
,
U
T
,
2
0
1
2
,
p
p
.
1
3
0
6
-
1
3
0
9
.
[2
3
]
H.
Ira
wa
n
a
n
d
A
.
S
.
P
rih
a
tm
a
n
to
,
"
Imp
lem
e
n
t
a
ti
o
n
o
f
g
r
a
p
h
d
a
ta
b
a
se
fo
r
Op
e
n
Co
g
a
rtif
icia
l
g
e
n
e
ra
l
in
tell
ig
e
n
c
e
fra
me
wo
rk
u
sin
g
Ne
o
4
j,
"
2
0
1
5
4
t
h
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
In
t
e
ra
c
ti
v
e
Dig
it
a
l
M
e
d
ia (ICIDM
),
Ba
n
d
u
n
g
,
2
0
1
5
,
p
p
.
1
-
6.
[2
4
]
M
.
G
ra
v
e
s,
E.
R.
Be
r
g
e
m
a
n
a
n
d
C.
B.
L
a
w
r
e
n
c
e
,
"
G
r
a
p
h
d
a
tab
a
se
s
y
ste
m
s,"
in
IEE
E
En
g
in
e
e
rin
g
in
M
e
d
icin
e
a
n
d
Bi
o
lo
g
y
M
a
g
a
zin
e
,
v
o
l.
1
4
,
n
o
.
6
,
p
p
.
7
3
7
-
7
4
5
,
N
o
v
/De
c
1
9
9
5
.
[2
5
]
S
.
d
.
Ce
sa
re
,
D.
Ju
ric
a
n
d
M
.
Ly
c
e
tt
,
"
Au
t
o
ma
ted
T
a
x
o
n
o
my
Extra
c
ti
o
n
fro
m
S
e
ma
n
ti
c
Bu
sin
e
ss
P
ro
c
e
ss
M
o
d
e
ls,
"
2
0
1
6
4
9
t
h
Ha
w
a
ii
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
y
ste
m
S
c
ien
c
e
s (H
ICS
S
),
Ko
lo
a
,
HI,
2
0
1
6
,
p
p
.
4
3
9
4
-
4
4
0
3
.
[2
6
]
M
o
ra
ri
e
t
a
l.
,
"
S
c
a
li
n
g
S
e
m
a
n
ti
c
G
r
a
p
h
Da
tab
a
se
s
in
S
ize
a
n
d
P
e
rf
o
rm
a
n
c
e
,
"
in
IEE
E
M
icr
o
,
v
o
l.
3
4
,
n
o
.
4
,
p
p
.
1
6
-
2
6
,
Ju
ly
-
A
u
g
.
2
0
1
4
.
[2
7
]
D.
W
.
Ward
a
n
i
a
n
d
J.
Kiin
g
,
"
S
e
ma
n
ti
c
ma
p
p
i
n
g
re
la
t
io
n
a
l
t
o
g
r
a
p
h
mo
d
e
l,
"
C
o
m
p
u
ter,
Co
n
tro
l,
I
n
f
o
rm
a
ti
c
s
a
n
d
Its
A
p
p
li
c
a
ti
o
n
s (IC
3
INA
),
2
0
1
4
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
Ba
n
d
u
n
g
,
2
0
1
4
,
p
p
.
1
6
0
-
1
6
5
.
[2
8
]
T
.
D.
P
.
C.
D.
S
o
u
z
a
,
C.
E
.
Ro
th
e
n
b
e
rg
,
M
.
A
.
S
.
S
a
n
to
s
a
n
d
L
.
B.
D.
P
a
u
la,
"
T
o
wa
r
d
s
S
e
ma
n
ti
c
Ne
two
rk
M
o
d
e
ls
v
ia
Gr
a
p
h
Da
t
a
b
a
se
s
fo
r
S
DN
A
p
p
li
c
a
ti
o
n
s,"
2
0
1
5
F
o
u
rt
h
E
u
ro
p
e
a
n
W
o
rk
sh
o
p
o
n
S
o
f
tw
a
r
e
De
f
i
n
e
d
Ne
tw
o
rk
s,
Bil
b
a
o
,
2
0
1
5
,
p
p
.
4
9
-
5
4
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
1
1
4
0
–
1149
1148
[2
9
]
Ha
y
a
k
a
wa
a
n
d
H.
Nis
h
iy
a
m
a
,
"
Ef
fi
c
ien
t
Qu
e
ry
Pro
c
e
ss
in
g
o
f
S
e
ma
n
ti
c
Da
t
a
Us
i
n
g
Gr
a
p
h
Co
n
tra
c
ti
o
n
o
n
RDBM
S
,
"
S
ig
n
a
l
-
Im
a
g
e
Tec
h
n
o
l
o
g
y
&
In
tern
e
t
-
Ba
se
d
S
y
ste
m
s
(S
IT
IS
),
2
0
1
3
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
r
e
n
c
e
o
n
,
Ky
o
to
,
2
0
1
3
,
p
p
.
9
5
8
-
9
6
5
.
[3
0
]
P
.
Be
d
n
a
r,
M
.
S
a
rn
o
v
sk
y
a
n
d
V
.
De
m
k
o
,
"
RDF
v
s.
No
S
QL
d
a
ta
b
a
se
s
fo
r
th
e
se
ma
n
ti
c
we
b
a
p
p
li
c
a
t
io
n
s,
"
A
p
p
li
e
d
M
a
c
h
in
e
In
telli
g
e
n
c
e
a
n
d
In
f
o
r
m
a
ti
c
s
(S
A
M
I),
2
0
1
4
IEE
E
1
2
t
h
In
tern
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
,
He
rl'
a
n
y
,
2
0
1
4
,
p
p
.
3
6
1
-
3
6
4
.
[3
1
]
T
.
D.
R.
Ha
rtl
e
y
,
U.
Ca
tal
y
u
re
k
,
F
.
O
z
g
u
n
e
r,
A
.
Yo
o
,
S
.
Ko
h
n
a
n
d
K.
He
n
d
e
rso
n
,
"
M
S
S
G:
A
Fra
me
wo
rk
fo
r
M
a
ss
ive
-
S
c
a
le
S
e
ma
n
ti
c
Gr
a
p
h
s,
"
2
0
0
6
IE
EE
In
ter
n
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Clu
ste
r
Co
m
p
u
ti
n
g
,
B
a
rc
e
lo
n
a
,
2
0
0
6
,
p
p
.
1
-
10.
[3
2
]
P
.
Ca
v
o
to
,
V
.
Ca
rd
o
so
,
R.
V
.
L
e
b
b
e
a
n
d
A
.
S
a
n
tan
c
h
è
,
"
Fi
s
h
Gr
a
p
h
:
A
Ne
tw
o
rk
-
Dr
ive
n
Da
ta
A
n
a
l
y
sis,"
e
-
S
c
ien
c
e
(e
-
S
c
ien
c
e
),
2
0
1
5
IE
EE
1
1
t
h
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
M
u
n
ich
,
2
0
1
5
,
p
p
.
1
7
7
-
1
8
6
.
[3
3
]
G
.
C
a
ld
a
ro
la,
A
.
P
ica
riello
a
n
d
A
.
M
.
Rin
a
ld
i,
"
B
ig
g
r
a
p
h
-
b
a
se
d
Da
ta
v
isu
a
li
za
ti
o
n
e
x
p
e
rie
n
c
e
s: T
h
e
W
o
rd
Ne
t
c
a
se
stu
d
y
,
"
2
0
1
5
7
th
I
n
tern
a
t
i
o
n
a
l
Jo
i
n
t
Co
n
f
e
re
n
c
e
o
n
Kn
o
w
led
g
e
Dis
c
o
v
e
r
y
,
Kn
o
w
led
g
e
En
g
in
e
e
rin
g
a
n
d
Kn
o
w
led
g
e
M
a
n
a
g
e
m
e
n
t
(IC3
K),
L
isb
o
n
,
P
o
r
tu
g
a
l,
2
0
1
5
,
p
p
.
1
0
4
-
1
1
5
.
[3
4
]
K.
L
a
m
h
a
d
d
a
b
a
n
d
K.
E
lb
a
a
m
ra
n
i,
"
M
o
d
e
l
d
riv
e
n
re
v
e
rs
e
e
n
g
in
e
e
rin
g
:
Gr
a
p
h
mo
d
e
li
n
g
fo
r
mo
b
i
les
p
la
t
fo
rm
s,"
2
0
1
5
1
5
th
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
In
tell
ig
e
n
t
S
y
ste
m
s
De
si
g
n
a
n
d
A
p
p
li
c
a
ti
o
n
s
(IS
DA
),
M
a
rra
k
e
c
h
,
2
0
1
5
,
p
p
.
3
9
2
-
3
9
7
.
[3
5
]
M
.
L
e
id
a
a
n
d
A
.
Ch
u
,
"
Distrib
u
t
e
d
S
PA
RQL
Qu
e
ry
An
swe
rin
g
o
v
e
r
RDF
Da
ta
S
tre
a
ms
,
"
2
0
1
3
IE
EE
In
tern
a
ti
o
n
a
l
Co
n
g
re
ss
o
n
Big
Da
ta,
S
a
n
ta Cl
a
r
a
,
CA
,
2
0
1
3
,
p
p
.
3
6
9
-
3
7
8
.
[3
6
]
R.
M
o
r
d
in
y
i,
P
.
S
c
h
i
n
d
ler
a
n
d
S
.
Bif
f
l,
"
Eva
lu
a
ti
o
n
o
f
No
S
QL
g
ra
p
h
d
a
ta
b
a
se
s
fo
r
q
u
e
ry
in
g
a
n
d
v
e
rs
io
n
i
n
g
o
f
e
n
g
in
e
e
rin
g
d
a
ta
in
mu
l
ti
-
d
isc
i
p
li
n
a
ry
e
n
g
i
n
e
e
rin
g
e
n
v
iro
n
me
n
ts
,
"
2
0
1
5
IEE
E
2
0
t
h
Co
n
f
e
re
n
c
e
o
n
Em
e
r
g
in
g
T
e
c
h
n
o
lo
g
ies
&
F
a
c
to
ry
A
u
to
m
a
t
io
n
(
ET
F
A
),
L
u
x
e
m
b
o
u
rg
,
2
0
1
5
,
p
p
.
1
-
8.
[3
7
]
A
.
Ba
lb
o
n
i,
M
.
M
a
rc
h
e
tt
i,
M
.
Co
laja
n
n
i
a
n
d
A
.
M
e
leg
a
ri,
"
S
u
p
p
o
r
ti
n
g
se
n
se
-
ma
k
in
g
a
n
d
d
e
c
isi
o
n
-
ma
k
in
g
th
r
o
u
g
h
ti
me
e
v
o
lu
ti
o
n
a
n
a
lys
is
o
f
o
p
e
n
so
u
rc
e
s,"
Cy
b
e
r
Co
n
f
li
c
t:
A
r
c
h
it
e
c
tu
re
s
in
Cy
b
e
rsp
a
c
e
(C
y
Co
n
),
2
0
1
5
7
t
h
I
n
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
T
a
ll
i
n
n
,
2
0
1
5
,
p
p
.
1
8
5
-
2
0
2
.
[3
8
]
J.
W
u
a
n
d
L
.
Ch
e
n
,
"
A
Fa
st
Fr
e
q
u
e
n
t
S
u
b
g
r
a
p
h
M
in
i
n
g
Al
g
o
rit
h
m,"
Y
o
u
n
g
Co
m
p
u
ter
S
c
ien
ti
sts,
2
0
0
8
.
ICYC
S
2
0
0
8
.
T
h
e
9
th
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
f
o
r,
Hu
n
a
n
,
2
0
0
8
,
p
p
.
8
2
-
8
7
.
[3
9
]
B.
Jo
h
n
,
V
.
T
h
a
v
a
v
e
l,
J.
Ja
y
a
k
u
m
a
r,
A
.
M
u
th
u
k
u
m
a
r
a
n
d
K.
J.
P
o
o
rn
a
se
lv
a
n
,
"
E
n
h
a
n
c
e
d
lea
rn
e
r
c
e
n
ter
e
d
p
e
d
a
g
o
g
ica
l
str
a
teg
y
:
Pro
mo
ti
n
g
S
T
EM
wit
h
u
n
d
e
rr
e
p
re
se
n
ted
p
o
p
u
l
a
ti
o
n
s,
"
In
teg
ra
ted
S
T
EM
Ed
u
c
a
ti
o
n
Co
n
f
e
re
n
c
e
(IS
EC),
2
0
1
4
IEE
E
,
P
ri
n
c
e
to
n
,
NJ
,
2
0
1
4
,
p
p
.
1
-
4.
[4
0
]
Zi
ji
a
n
Xu
a
n
d
Jie
b
o
L
u
o
,
"
F
a
c
e
Rec
o
g
n
it
i
o
n
b
y
Exp
re
ss
io
n
-
Dr
ive
n
S
k
e
tch
Gr
a
p
h
M
a
tch
i
n
g
,
"
1
8
t
h
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
P
a
tt
e
rn
Re
c
o
g
n
it
io
n
(IC
P
R'
0
6
),
Ho
n
g
Ko
n
g
,
2
0
0
6
,
p
p
.
1
1
1
9
-
1
1
2
2
.
[4
1
]
D.
F
ig
u
e
ira
a
n
d
L
.
L
ib
k
in
,
"
Pa
t
h
L
o
g
ics
fo
r
Q
u
e
ry
in
g
Gr
a
p
h
s:
C
o
mb
in
i
n
g
Exp
re
ss
ive
n
e
ss
a
n
d
Ef
fi
c
ie
n
c
y
,
"
L
o
g
ic
i
n
Co
m
p
u
ter S
c
ien
c
e
(L
ICS
),
2
0
1
5
3
0
t
h
A
n
n
u
a
l
A
CM
/IE
EE
S
y
m
p
o
siu
m
o
n
,
Ky
o
to
,
2
0
1
5
,
p
p
.
3
2
9
-
3
4
0
.
[4
2
]
M
.
Da
y
a
ra
th
n
a
a
n
d
T
.
S
u
z
u
m
u
r
a
,
"
T
o
wa
rd
s
S
c
a
l
a
b
le
Distri
b
u
ted
Gr
a
p
h
D
a
ta
b
a
se
E
n
g
i
n
e
f
o
r
Hy
b
rid
Clo
u
d
s,
"
Da
ta
-
In
ten
siv
e
Co
m
p
u
ti
n
g
in
t
h
e
Clo
u
d
s
(Da
taCl
o
u
d
),
2
0
1
4
5
th
In
tern
a
ti
o
n
a
l
W
o
rk
sh
o
p
o
n
,
Ne
w
Orle
a
n
s,
LA
,
2
0
1
4
,
p
p
.
1
-
8.
[4
3
]
R.
S
o
u
ss
i,
M
.
A
.
A
u
f
a
u
re
a
n
d
H.
Ba
a
z
a
o
u
i,
"
T
o
wa
r
d
s
S
o
c
ia
l
Ne
two
rk
Extra
c
ti
o
n
Us
in
g
a
Gr
a
p
h
Da
ta
b
a
se
,
"
A
d
v
a
n
c
e
s
in
Da
tab
a
se
s
Kn
o
w
led
g
e
a
n
d
Da
ta
A
p
p
li
c
a
ti
o
n
s
(DBK
DA
),
2
0
1
0
S
e
c
o
n
d
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
,
M
e
n
u
ires
,
2
0
1
0
,
p
p
.
2
8
-
34.
[4
4
]
Ka
y
T
h
i
Ya
r
a
n
d
Kh
in
M
a
r
L
a
r
T
u
n
,
"
S
e
a
rc
h
in
g
Per
so
n
n
e
l
Rela
t
io
n
sh
ip
fro
m
M
y
a
n
ma
r
c
e
n
su
s
d
a
ta
u
sin
g
Gr
a
p
h
d
a
t
a
b
a
se
a
n
d
De
d
u
c
t
ive
Rea
s
o
n
i
n
g
p
ro
l
o
g
ru
les
,
"
2
0
1
6
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
C
o
m
p
u
ter
Co
m
m
u
n
ica
ti
o
n
a
n
d
In
f
o
rm
a
ti
c
s (ICCCI),
Co
im
b
a
to
re
,
2
0
1
6
,
p
p
.
1
-
7.
[4
5
]
D.
J.
M
ir
a
n
d
R.
N.
W
rig
h
t,
"
A
Diff
e
re
n
ti
a
ll
y
Priv
a
te
Gr
a
p
h
Esti
ma
to
r,
"
2
0
0
9
I
EE
E
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Da
ta M
in
i
n
g
W
o
rk
sh
o
p
s,
M
iam
i,
F
L
,
2
0
0
9
,
p
p
.
1
2
2
-
1
2
9
.
[4
6
]
S
.
S
h
riv
a
sta
v
a
a
n
d
S
.
N.
P
a
l,
"
G
ra
p
h
M
in
in
g
Fra
me
wo
rk
fo
r
Fi
n
d
in
g
a
n
d
Vi
s
u
a
li
zi
n
g
S
u
b
stru
c
t
u
re
s
Us
in
g
Gr
a
p
h
Da
ta
b
a
se
,
"
S
o
c
ial
Ne
tw
o
rk
A
n
a
l
y
sis
a
n
d
M
in
in
g
,
2
0
0
9
.
A
S
ON
AM
'
0
9
.
In
tern
a
t
io
n
a
l
Co
n
f
e
re
n
c
e
o
n
A
d
v
a
n
c
e
s
in
,
A
th
e
n
s,
2
0
0
9
,
p
p
.
3
7
9
-
3
8
0
.
B
I
O
G
RAP
I
E
S O
F
AU
T
H
O
RS
Pa
til
N
S
,
w
o
rk
in
g
a
s
A
s
sista
n
t
P
r
o
f
e
ss
o
r
De
p
a
rt
m
e
n
t
o
f
In
f
o
r
m
a
ti
o
n
S
c
ien
c
e
,
BIET
,
Da
v
a
n
g
e
re
.
M
y
te
a
c
h
in
g
e
x
p
e
rien
c
e
is
7
y
rs
a
re
a
o
f
in
tere
st
D
a
tab
a
se
m
a
n
a
g
e
m
e
n
t
s
y
ste
m
,
Da
ta
m
in
in
g
,
G
ra
p
h
Da
ta
m
in
in
g
,
Big
Da
ta.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
S
u
r
ve
y
o
n
Gra
p
h
Da
ta
b
a
s
e
Ma
n
a
g
eme
n
t
Tech
n
i
q
u
es fo
r
Hu
g
e
Un
s
tr
u
ctu
r
ed
Da
ta
(
P
a
til N
.
S
.
)
1149
Dr
K
ira
n
P,
w
o
rk
in
g
a
s
A
ss
o
c
i
a
te
P
ro
f
e
ss
o
r
De
p
a
rtme
n
t
Co
m
p
u
ter
sc
ien
c
e
,
R.
N.
S
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
Ba
n
g
a
lo
re
.
H
is
tea
c
h
in
g
e
x
p
e
rien
c
e
1
2
y
rs
A
r
e
a
o
f
in
tere
st
Cry
p
to
g
ra
p
h
y
,
Ra
n
d
o
m
iza
ti
o
n
m
e
th
o
d
s
&
A
n
o
n
y
m
iz
a
ti
o
n
m
e
th
o
d
s
in
g
e
n
e
ra
li
z
a
ti
o
n
,
In
d
e
x
in
g
tec
h
n
iq
u
e
s
a
n
d
D
e
sig
n
p
a
tt
e
rn
s.
He
h
a
s p
u
b
li
sh
e
d
1
2
p
a
p
e
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.