I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
201
6
,
p
p
.
2
8
3
6
~
2
8
4
5
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
2
8
4
8
2836
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
N
ew
Lo
ss
less
Co
m
pr
ess
io
n Metho
d
u
sing
Cyclic
Re
v
ersible Lo
w
Co
ntras
t
M
a
ppin
g
(
CRLCM
)
H
endra
M
e
s
ra
1
,
H
a
nd
a
y
a
ni
T
j
a
nd
ra
s
a
2
,
Cha
s
t
ine F
a
t
ich
a
h
3
1
De
p
a
rtme
n
t
o
f
M
a
th
e
m
a
ti
c
s,
Ha
s
a
n
u
d
d
in
Un
iv
e
rsity
,
M
a
k
a
ss
a
r,
In
d
o
n
e
sia
2
,3
De
p
a
rtm
e
n
t
o
f
In
f
o
r
m
a
ti
c
s,
S
e
p
u
lu
h
No
p
e
m
b
e
r
In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
,
S
u
ra
b
a
y
a
,
In
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Au
g
03
,
2
0
1
6
R
ev
i
s
ed
No
v
0
4
,
2
0
1
6
A
cc
ep
ted
No
v
1
8
,
2
0
1
6
In
g
e
n
e
ra
l
,
th
e
c
o
m
p
re
ss
io
n
m
e
th
o
d
is
d
e
v
e
lo
p
e
d
to
re
d
u
c
e
th
e
re
d
u
n
d
a
n
c
y
o
f
d
a
ta
.
T
h
is
stu
d
y
u
se
s
a
d
iff
e
r
e
n
t
a
p
p
ro
a
c
h
t
o
e
m
b
e
d
so
m
e
b
it
s
o
f
d
a
tu
m
in
im
a
g
e
d
a
ta
in
to
o
th
e
r
d
a
tu
m
u
sin
g
a
Re
v
e
rsib
le
L
o
w
Co
n
tras
t
M
a
p
p
in
g
(
RL
CM
)
tran
sf
o
r
m
a
ti
o
n
.
Be
sid
e
s
u
sin
g
th
e
RL
CM
f
o
r
e
m
b
e
d
d
in
g
,
th
is
m
e
th
o
d
a
lso
a
p
p
li
e
s
th
e
p
r
o
p
e
rti
e
s
o
f
R
L
CM
to
c
o
m
p
re
ss
th
e
d
a
tu
m
b
e
f
o
re
it
is
e
m
b
e
d
d
e
d
.
In
it
s
a
lg
o
rit
h
m
,
th
e
p
ro
p
o
se
d
m
e
th
o
d
e
n
g
a
g
e
s
Qu
e
u
e
a
n
d
Re
c
u
rsiv
e
In
d
e
x
in
g
.
T
h
e
a
lg
o
rit
h
m
e
n
c
o
d
e
s
th
e
d
a
ta
i
n
a
c
y
c
li
c
m
a
n
n
e
r.
In
c
o
n
tras
t
to
RL
CM
,
th
e
p
ro
p
o
se
d
m
e
th
o
d
is
a
c
o
d
in
g
m
e
th
o
d
a
s
Hu
ffm
a
n
c
o
d
in
g
.
T
h
is
re
se
a
rc
h
u
se
s
p
u
b
l
icly
a
v
a
il
a
b
le
i
m
a
g
e
d
a
ta
to
e
x
a
m
in
e
th
e
p
ro
p
o
se
d
m
e
th
o
d
.
F
o
r
a
ll
tes
ti
n
g
i
m
a
g
e
s,
th
e
p
ro
p
o
se
d
m
e
th
o
d
h
a
s
h
ig
h
e
r
c
o
m
p
re
ss
io
n
ra
ti
o
t
h
a
n
t
h
e
Hu
f
fm
a
n
c
o
d
i
n
g
.
K
ey
w
o
r
d
:
C
y
cl
ic
m
a
n
n
er
L
o
s
s
less
co
m
p
r
e
s
s
io
n
Qu
e
u
e
R
ec
u
r
s
iv
e
i
n
d
ex
i
n
g
R
L
C
M
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Hen
d
r
a
Me
s
r
a,
Dep
ar
te
m
en
t o
f
Ma
th
e
m
atic
s
,
Hasan
u
d
d
in
U
n
i
v
er
s
it
y
,
J
alan
P
er
in
tis
Ke
m
er
d
ek
aa
n
K
M
1
0
,
T
am
alan
r
ea
,
Ma
k
ass
ar
-
9
0
2
4
5
,
I
n
d
o
n
esia
E
m
ail:
h
en
d
r
a
@
u
n
h
as.a
c.
id
1.
I
NT
RO
D
UCT
I
O
N
Data
co
m
p
r
ess
io
n
i
s
a
m
et
h
o
d
to
r
ed
u
ce
th
e
s
ize
o
f
d
a
ta
in
o
r
d
er
to
s
av
e
s
to
r
ag
e
s
p
ac
e
an
d
b
an
d
w
id
t
h
u
s
ag
e
o
n
th
e
I
n
ter
n
et.
T
h
e
d
ev
elo
p
m
e
n
t
o
f
co
m
p
r
ess
io
n
m
et
h
o
d
is
b
ased
o
n
th
e
f
ac
t
th
a
t
th
er
e
ar
e
a
lo
t
o
f
r
e
d
u
n
d
an
cie
s
o
n
d
ata.
T
h
e
r
ed
u
n
d
an
c
y
ca
n
b
e:
S
p
a
t
ia
l
r
ed
u
n
d
a
n
cy
,
co
r
r
elatio
n
b
e
t
w
ee
n
n
ei
g
h
b
o
r
in
g
p
ix
el
v
al
u
es
i
n
ca
s
e
o
f
g
r
e
y
s
c
ale
i
m
ag
e
;
S
p
ec
tr
a
l
r
ed
u
n
d
a
n
c
y
,
co
r
r
elatio
n
o
f
co
lo
r
p
lan
es
o
r
s
p
ec
tr
al
b
an
d
s
in
a
co
lo
r
im
a
g
e;
Temp
o
r
a
l
r
ed
u
n
d
a
n
cy
,
co
r
r
elatio
n
b
etw
ee
n
i
m
ag
e
s
eq
u
e
n
ce
s
i
n
ad
j
ac
en
t
v
i
d
eo
f
r
a
m
es;
C
o
d
in
g
r
ed
u
n
d
a
n
cy
,
u
tili
za
tio
n
t
h
e
p
r
o
b
ab
ilit
y
d
i
s
tr
ib
u
tio
n
as
s
o
ci
ated
w
i
th
th
e
o
cc
u
r
r
en
ce
o
f
th
e
s
y
m
b
o
ls
;
an
d
P
s
yc
h
o
visu
a
l
r
ed
u
n
d
a
n
cy
,
h
u
m
an
v
is
io
n
d
o
es
n
o
t
r
esp
o
n
d
w
it
h
eq
u
al
s
e
n
s
iti
v
it
y
to
a
ll
v
i
s
u
al
i
n
f
o
r
m
atio
n
[
1
]
.
T
h
ese
d
if
f
er
en
ce
s
ca
u
s
e
d
i
f
f
er
en
t
ap
p
r
o
ac
h
es
in
th
e
co
m
p
r
ess
io
n
m
et
h
o
d
.
T
h
e
Hu
f
f
m
an
an
d
A
r
it
h
m
eti
c
co
d
in
g
ar
e
d
ev
elo
p
ed
t
o
r
e
d
u
ce
th
e
r
ed
u
n
d
an
c
y
co
d
in
g
u
s
i
n
g
s
ta
tis
t
ical
m
o
d
el
[
2
]
.
T
h
e
J
P
E
G
-
L
S
[
3
]
an
d
C
AL
I
C
[
4
]
ar
e
co
m
p
r
ess
io
n
m
et
h
o
d
s
b
ased
o
n
th
e
r
elatio
n
o
f
n
ei
g
h
b
o
r
h
o
o
d
p
ix
els.
T
h
er
ef
o
r
e,
b
o
th
m
eth
o
d
s
r
ed
u
ce
th
e
s
p
atial
r
ed
u
n
d
an
c
y
o
n
an
i
m
a
g
e.
T
h
e
J
P
E
G
co
m
p
r
ess
io
n
,
a
lo
s
s
y
i
m
ag
e
co
m
p
r
ess
io
n
,
i
s
d
ev
elo
p
ed
b
y
o
p
ti
m
izi
n
g
t
h
e
p
s
y
ch
o
-
v
i
s
u
al
r
ed
u
n
d
an
c
y
in
f
r
eq
u
e
n
c
y
d
o
m
ai
n
.
C
o
m
p
r
ess
io
n
m
e
th
o
d
s
ar
e
d
ev
elo
p
ed
u
s
in
g
d
if
f
er
e
n
t
ap
p
r
o
ac
h
es
.
T
h
er
e
ar
e
f
o
u
r
m
o
d
els
th
at
co
m
m
o
n
l
y
u
s
ed
i
n
co
m
p
r
ess
io
n
m
et
h
o
d
s
[
5
]
:
a.
P
h
y
s
ical
m
o
d
el:
th
e
m
o
d
el
is
o
b
tain
ed
b
ased
o
n
d
ata
g
e
n
er
atio
n
p
r
o
ce
s
s
es
an
d
e
m
p
ir
ical
o
b
s
er
v
atio
n
o
f
th
e
s
tat
is
tic
s
o
f
t
h
e
d
ata.
b.
P
r
o
b
ab
ilit
y
m
o
d
el:
b
ased
o
n
p
r
o
b
ab
ilit
y
t
h
eo
r
y
to
d
escr
ib
e
th
e
d
ata
c.
Ma
r
k
o
v
m
o
d
el:
b
ased
o
n
Ma
r
k
o
v
c
h
ain
t
h
eo
r
y
to
m
o
d
el
t
h
e
d
ata
d.
C
o
m
p
o
s
ite
m
o
d
el:
u
s
in
g
co
m
b
in
atio
n
o
f
s
e
v
er
al
m
o
d
els i
n
a
m
et
h
o
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
N
ew Lo
s
s
les
s
C
o
mp
r
e
s
s
io
n
M
eth
o
d
Usi
n
g
C
R
LC
M
(
Hen
d
r
a
Mes
r
a
)
2837
P
h
y
s
ical
m
o
d
el
co
m
p
r
es
s
io
n
i
s
co
m
m
o
n
l
y
f
o
u
n
d
i
n
s
p
ee
c
h
co
m
p
r
es
s
io
n
.
T
h
e
m
o
d
el
u
s
in
g
a
s
p
ee
c
h
g
en
er
ato
r
m
o
d
el
s
u
ch
as
L
in
ea
r
P
r
ed
ictio
n
C
o
d
in
g
(
L
P
C
)
m
o
d
el
to
e
n
co
d
in
g
o
r
ig
i
n
al
s
p
ee
ch
a
n
d
u
s
i
n
g
a
s
y
n
t
h
esizer
to
d
ec
o
d
e
th
e
s
p
ee
ch
[
6
]
.
T
h
e
co
m
p
r
ess
io
n
m
eth
o
d
s
u
ch
as
H
u
f
f
m
a
n
an
d
A
r
it
h
m
etic
e
n
co
d
in
g
ar
e
d
ev
elo
p
ed
u
s
i
n
g
P
r
o
b
ab
ilit
y
m
o
d
el.
T
h
e
R
u
n
-
L
en
g
t
h
-
E
n
co
d
in
g
(
R
L
E
)
is
a
n
e
x
a
m
p
le
o
f
co
m
p
r
es
s
io
n
m
et
h
o
d
u
s
i
n
g
Ma
r
k
o
v
m
o
d
el.
S
o
m
e
c
o
m
p
le
x
co
m
p
r
e
s
s
io
n
m
e
th
o
d
s
u
c
h
as
B
u
r
r
o
w
-
W
h
ee
ler
C
o
m
p
r
ess
io
n
A
l
g
o
r
ith
m
(
B
W
C
A
)
an
d
L
e
m
p
el
-
Z
i
v
Ma
r
k
o
v
ch
ai
n
A
l
g
o
r
ith
m
(
L
Z
M
A)
ar
e
ex
a
m
p
les o
f
C
o
m
p
o
s
ite
m
o
d
el
s
.
R
ec
en
t
l
y
,
s
o
m
e
r
esear
c
h
es
in
lo
s
s
less
co
m
p
r
ess
io
n
m
et
h
o
d
s
co
m
m
o
n
l
y
ai
m
to
o
p
ti
m
iz
e
ex
is
ti
n
g
c
o
m
p
r
es
s
io
n
m
et
h
o
d
f
o
r
s
p
ec
if
ic
d
ata
t
y
p
e
[7
-
18]
o
r
to
i
m
p
r
o
v
e
th
e
ex
i
s
ti
n
g
co
m
p
r
ess
io
n
m
eth
o
d
b
y
tr
an
s
f
o
r
m
i
n
g
d
ata
to
o
th
er
f
o
r
m
b
ef
o
r
e
co
m
p
r
ess
io
n
p
r
o
ce
s
s
o
r
b
y
co
m
b
in
i
n
g
s
e
v
er
al
co
m
p
r
ess
io
n
m
et
h
o
d
[
1
9
-
22]
.
On
e
o
f
n
o
v
el
r
esear
c
h
es
i
n
co
m
p
r
e
s
s
io
n
m
e
th
o
d
is
A
s
y
m
m
e
tr
ic
Nu
m
er
ical
S
y
s
te
m
(
A
NS)
[
2
3
-
24]
.
T
h
e
m
et
h
o
d
u
t
ilizes a
f
i
n
ite
s
tate
au
to
m
atio
n
an
d
a
p
r
o
b
a
b
ilit
y
m
o
d
el
i
n
its
alg
o
r
ith
m
.
A
n
e
w
ap
p
r
o
ac
h
co
m
p
r
es
s
io
n
m
et
h
o
d
d
ev
elo
p
ed
in
[
2
5
]
d
id
n
o
t
r
ed
u
ce
r
ed
u
n
d
a
n
c
y
i
n
d
ata
b
u
t
e
m
b
ed
d
in
g
s
o
m
e
p
ar
ts
o
f
d
ata
to
o
th
er
p
a
r
ts
u
s
es
r
ev
er
s
i
b
le
w
ater
m
ar
k
i
n
g
tec
h
n
iq
u
e.
T
h
e
s
tu
d
y
ap
p
lied
R
ev
er
s
ib
le
C
o
n
tr
ast
Ma
p
p
in
g
(
R
C
M)
tr
an
s
f
o
r
m
[
2
6
]
as
th
e
b
ase
o
f
th
e
alg
o
r
it
h
m
.
T
h
e
o
t
h
er
r
esear
ch
o
n
th
i
s
f
ield
i
s
a
co
m
p
r
e
s
s
io
n
m
eth
o
d
u
s
in
g
R
ev
er
s
ib
le
L
o
w
C
o
n
tr
a
s
t
Ma
p
p
in
g
(
R
L
C
M)
[
2
7
]
.
B
o
th
m
et
h
o
d
s
d
iv
id
e
an
i
m
ag
e
a
s
b
lo
ck
s
o
f
d
ata.
T
h
e
b
lo
ck
s
ar
e
cr
ea
ted
b
y
d
iv
id
in
g
t
h
e
i
m
ag
e
a
s
a
s
q
u
ar
e
o
f
8
×8
,
1
6
×
1
6
,
o
r
3
2
×3
2
p
ix
els.
T
h
e
b
lo
ck
s
ar
e
g
r
o
u
p
ed
to
h
o
s
t
b
lo
ck
s
an
d
w
ater
m
ar
k
b
lo
ck
s
.
T
h
e
w
a
ter
m
ar
k
b
lo
ck
s
ar
e
e
m
b
ed
d
ed
in
to
th
e
h
o
s
t
b
lo
ck
s
in
o
r
d
er
to
r
ed
u
ce
t
h
e
n
u
m
b
er
o
f
b
lo
ck
s
.
T
h
e
co
m
p
r
ess
io
n
s
ch
e
m
e
is
s
h
o
w
n
in
Fig
u
r
e
1
.
Fig
u
r
e
1
.
T
h
e
C
o
m
p
r
es
s
io
n
Sc
h
e
m
e
o
f
R
C
M
an
d
R
L
C
M
[
2
7
]
On
th
e
co
m
p
r
ess
io
n
s
c
h
e
m
e,
t
h
e
p
ix
els
o
n
a
b
lo
ck
d
iv
id
e
in
t
o
p
air
s
(
x
,
y
)
b
u
t
o
n
ly
p
ix
el
y
i
s
u
s
ed
f
o
r
e
m
b
ed
d
in
g
d
ata,
t
h
er
ef
o
r
e
th
e
ca
p
ac
it
y
o
f
b
lo
ck
s
w
as
n
o
t
o
p
ti
m
al.
Si
n
ce
t
h
e
alg
o
r
it
h
m
s
ti
ll
ap
p
lied
th
e
b
asic
alg
o
r
ith
m
s
u
c
h
as
in
th
e
r
e
v
er
s
ib
le
w
ater
m
ar
k
i
n
g
m
et
h
o
d
.
T
h
is
s
t
u
d
y
d
ev
e
lo
p
s
a
n
e
w
co
m
p
r
ess
io
n
m
et
h
o
d
b
y
u
tili
zi
n
g
th
e
R
L
C
M
an
d
its
p
r
o
p
er
ties
.
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
p
tim
izes
all
p
ix
el
s
f
o
r
em
b
ed
d
i
n
g
d
ata
an
d
d
o
es
n
o
t
d
iv
id
e
th
e
i
m
a
g
e
a
s
b
lo
ck
s
b
u
t
p
r
o
ce
s
s
es
t
h
e
co
m
p
r
ess
io
n
o
n
p
air
s
o
f
p
ix
el
s
d
ir
ec
tl
y
.
T
h
er
ef
o
r
e,
th
e
m
et
h
o
d
ca
n
b
e
ap
p
lied
o
n
l
y
t
o
o
n
e
-
d
i
m
e
n
s
io
n
o
f
d
ata.
S
in
c
e
th
e
p
r
o
p
o
s
ed
m
eth
o
d
i
s
a
n
en
co
d
in
g
m
et
h
o
d
a
s
Hu
f
f
m
a
n
co
d
in
g
,
th
e
m
eth
o
d
c
an
b
e
u
s
ed
f
o
r
a
co
d
in
g
s
tep
in
a
co
m
p
le
x
co
m
p
r
ess
io
n
m
e
th
o
d
.
2.
RE
V
E
RS
I
B
L
E
L
O
W
CO
NT
RAST
M
AP
P
I
NG
T
h
e
R
L
C
M
i
s
a
s
i
m
p
le
m
ap
p
in
g
f
u
n
ctio
n
f
o
r
tr
a
n
s
f
o
r
m
i
n
g
a
p
o
s
itiv
e
in
te
g
er
i
n
to
a
n
o
th
er
p
o
s
itiv
e
in
te
g
er
n
u
m
b
er
in
a
d
o
m
ai
n
D
[
2
8
]
.
T
h
e
f
u
n
ctio
n
is
d
ef
i
n
ed
b
y
:
2
3
y
x
x'
an
d
2
3
'
x
y
y
(
1
)
T
h
e
in
v
er
s
e
f
u
n
ctio
n
is
d
ef
i
n
e
d
b
y
:
4
'
'
3
y
x
x
an
d
4
'
'
3
x
y
y
(
2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
8
3
6
–
2
8
4
5
2838
T
h
e
p
air
(
x,
y
)
D
,
if
it
s
atis
f
ie
s
th
e
co
n
d
itio
n
L
y
x
2
/
)
3
(
0
an
d
L
x
y
2
/
)
3
(
0
,
w
h
er
e
L
is
2
5
5
in
g
r
a
y
s
ca
le
i
m
ag
e
d
o
m
ai
n
.
T
h
e
R
L
C
M
h
a
s
a
p
r
o
p
er
ty
,
th
at
is
if
(
x,
y
)
D
t
h
en
t
h
e
v
a
lu
e
s
o
f
x’
an
d
y’
ar
e
al
w
a
y
s
an
e
v
en
o
r
o
d
d
p
air
.
T
h
e
p
r
o
p
er
ty
w
as
e
x
p
lo
ited
as
r
ev
er
s
ib
le
w
a
ter
m
ar
k
in
g
m
eth
o
d
in
[
2
8
]
an
d
as
lo
s
s
les
s
i
m
ag
e
co
m
p
r
es
s
io
n
in
[
2
7
]
.
I
n
b
o
th
r
esear
c
h
es,
t
h
e
e
m
b
ed
d
in
g
b
it
o
f
w
ater
m
ar
k
w
as
p
er
f
o
r
m
ed
i
n
th
e
L
ea
s
t
Sig
n
i
f
ica
n
t
B
its
(
L
SB
)
o
f
y’
,
w
h
er
ea
s
t
h
e
L
SB
o
f
x’
b
ec
a
m
e
a
co
n
tr
o
l
b
it
f
o
r
ex
tr
ac
ti
n
g
p
r
o
ce
s
s
.
Ho
w
ev
er
,
s
o
m
e
p
air
s
(
x’
,
y’
)
ca
n
n
o
t
e
x
tr
ac
t
w
it
h
co
r
r
ec
t
r
es
u
lt
s
w
h
en
th
e
p
air
s
w
er
e
i
n
t
h
e
m
ar
g
in
d
o
m
a
in
o
f
D
,
t
h
at
i
s
0
2
/
)
3
(
y
x
,
L
y
x
2
/
)
3
(
,
0
2
/
)
3
(
x
y
,
o
r
L
x
y
2
/
)
3
(
.
T
h
e
ch
an
g
i
n
g
o
f
th
e
L
SB
o
f
y’
ca
n
lead
to
(
x,
y
)
D
.
T
h
er
ef
o
r
e,
th
e
R
L
C
M
w
ater
m
ar
k
in
g
al
g
o
r
ith
m
i
n
tr
o
d
u
ce
d
a
n
e
w
y
v
al
u
e
to
en
s
u
r
e
t
h
at
al
t
h
o
u
g
h
th
e
L
SB
o
f
y’
is
c
h
an
g
ed
,
th
e
p
air
(
x
,
y
)
is
s
till
in
D
.
T
h
e
n
e
w
v
al
u
e
o
f
y
is
co
m
p
u
ted
b
y
eq
u
atio
n
[
2
7
]
:
)
,
(
m
a
x
a
r
g
1
0
m
a
x
y
x
y
x
y
y
(
3
)
w
h
er
e
y
0
is
th
e
y
v
a
lu
e
a
f
ter
it
s
L
SB
is
c
h
an
g
ed
to
“
0
”
an
d
y
1
is
th
e
y
v
al
u
e
af
ter
its
L
SB
is
ch
an
g
ed
to
“
1
”.
T
h
e
y
m
ax
is
th
e
y
0
o
r
y
1
w
h
ic
h
ca
u
s
e
s
th
e
d
if
f
er
e
n
ce
w
ith
x
b
ec
o
m
e
s
m
a
x
i
m
u
m
i
n
a
n
ab
s
o
lu
te
v
al
u
e.
T
h
er
eb
y
,
if
(
x
,
y
m
ax
)
D
,
alth
o
u
g
h
t
h
e
L
SB
o
f
y’
v
alu
e
i
s
ch
a
n
g
ed
to
“0
”
o
r
“
1
”
th
e
in
v
er
s
e
tr
an
s
f
o
r
m
is
s
till
i
n
(
x,
y
)
D
.
B
ased
o
n
t
h
e
w
ater
m
ar
k
e
m
b
ed
d
in
g
al
g
o
r
ith
m
in
[
2
8
]
,
th
er
e
ar
e
th
r
ee
p
o
s
s
ib
le
v
alu
e
s
o
f
p
air
s
(
x
,
y
)
s
u
c
h
as
s
h
o
w
n
in
Fi
g
u
r
e
2
.
T
h
e
e
m
b
ed
d
ab
le
p
air
s
ar
e
all
p
air
s
o
n
A
r
e
g
io
n
.
I
t
ca
n
b
e
u
s
ed
to
e
m
b
ed
a
b
it
o
f
w
ater
m
ar
k
.
All
p
air
s
o
n
B
r
eg
io
n
ar
e
t
h
e
c
h
an
g
ea
b
le
p
air
s
.
T
h
e
p
air
s
ca
n
n
o
t
b
e
u
s
ed
f
o
r
e
m
b
ed
d
in
g
w
ater
m
ar
k
,
b
u
t
th
e
p
air
s
m
u
s
t
b
e
tr
an
s
f
o
r
m
ed
u
s
i
n
g
(
1
)
.
A
n
d
th
e
n
o
n
-
e
m
b
ed
d
ab
le
p
air
s
ar
e
o
n
C
r
eg
io
n
.
T
h
e
p
air
s
o
n
th
is
r
e
g
io
n
ca
n
n
o
t
b
e
tr
an
s
f
o
r
m
ed
b
y
(
1
)
th
er
ef
o
r
e
th
e
L
SB
o
f
y
m
u
s
t b
e
s
a
v
ed
f
o
r
r
ec
o
v
er
y
p
r
o
ce
s
s
.
Fig
u
r
e
2
.
T
h
e
C
lass
i
f
icatio
n
P
air
s
(
x
,
y
)
in
R
L
C
M
Alg
o
r
it
h
m
[
2
8
]
T
h
is
r
esear
ch
w
i
ll
ap
p
l
y
ad
d
itio
n
al
p
r
o
p
er
ties
o
f
R
L
C
M.
I
f
a
p
air
o
n
B
r
eg
io
n
an
d
it
i
s
tr
an
s
f
o
r
m
ed
b
y
(
1
)
th
e
n
t
h
e
r
esu
lt is
a
p
air
o
n
C
r
eg
io
n
.
T
h
e
p
air
ca
n
n
o
t b
e
u
s
ed
f
o
r
e
m
b
ed
d
in
g
,
t
h
u
s
b
o
th
o
f
x
a
n
d
y
ar
e
a
n
o
d
d
o
r
ev
en
p
air
.
C
o
n
s
eq
u
e
n
t
l
y
,
t
h
e
av
er
a
g
e
v
al
u
e
o
f
th
e
p
air
is
an
i
n
te
g
er
n
u
m
b
er
.
T
h
is
p
r
o
p
er
ty
w
il
l
b
e
ex
p
lo
ited
in
t
h
is
s
t
u
d
y
to
e
n
c
o
d
e
th
e
p
air
w
it
h
f
e
w
er
b
its
t
h
an
its
o
r
ig
i
n
al.
T
h
e
p
r
o
p
er
t
y
is
d
e
s
cr
ib
ed
in
th
e
f
o
llo
w
in
g
p
r
o
p
er
ties
:
P
r
o
p
erty 1
:
I
f
D
y
x
)
'
,
'
(
ma
x
an
d
L
y
x
'
'
th
e
n
)
'
,
'
m
i
n
(
y
x
t
ca
n
b
e
en
co
d
ed
in
)
1
2
/
)
'
'
(
(
l
o
g
2
y
x
k
b
its
.
P
r
o
p
erty 2
:
I
f
D
y
x
)
'
,
'
(
ma
x
an
d
L
y
x
'
'
th
en
)
'
,
'
m
a
x
(
y
x
L
t
ca
n
b
e
en
co
d
ed
in
2
/
)
'
'
(
l
o
g
2
y
x
L
k
b
its
.
3.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
is
s
tu
d
y
d
e
v
elo
p
s
a
n
e
w
ap
p
r
o
ac
h
f
o
r
a
lo
s
s
less
co
m
p
r
ess
io
n
m
et
h
o
d
b
y
u
s
in
g
R
L
C
M
th
at
i
m
p
le
m
en
ted
i
n
a
d
if
f
er
e
n
t
w
a
y
f
r
o
m
t
h
e
p
r
ev
io
u
s
r
esea
r
ch
in
[
2
7
]
.
T
h
e
p
r
o
p
o
s
ed
s
ch
e
m
e
is
s
h
o
w
n
in
Fig
u
r
e
3
.
T
h
e
p
r
o
p
o
s
ed
m
eth
o
d
u
s
es a
ll d
atu
m
f
o
r
e
m
b
ed
d
in
g
an
d
c
o
m
p
r
e
s
s
es
its
u
s
in
g
t
h
e
R
L
C
M
p
r
o
p
er
ties
.
T
h
e
m
eth
o
d
ad
o
p
ts
th
e
co
n
ce
p
t
o
f
Qu
e
u
e
i
n
t
h
e
al
g
o
r
ith
m
as
a
te
m
p
o
r
ar
y
s
to
r
ag
e
f
o
r
th
e
co
m
p
r
ess
io
n
r
esu
lt.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
N
ew Lo
s
s
les
s
C
o
mp
r
e
s
s
io
n
M
eth
o
d
Usi
n
g
C
R
LC
M
(
Hen
d
r
a
Mes
r
a
)
2839
B
esid
es,
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
u
tili
ze
s
R
ec
u
r
s
i
v
e
I
n
d
e
x
i
n
g
in
it
s
al
g
o
r
ith
m
.
A
Qu
e
u
e
i
s
a
L
i
s
t
w
i
th
First
I
n
First
O
u
t
(
FIFO)
d
ata
s
tr
u
ctu
r
e
w
h
er
e
th
e
i
n
s
er
t
io
n
an
d
d
ele
tio
n
o
p
er
atio
n
s
ar
e
ca
r
r
ied
o
u
t
at
th
e
r
ea
r
en
d
an
d
th
e
f
r
o
n
t
en
d
o
f
th
e
li
s
t
r
esp
ec
tiv
el
y
[
2
9
]
.
T
h
e
in
s
er
tio
n
o
p
er
a
tio
n
is
ca
lled
en
q
u
e
u
e
an
d
th
e
d
eletio
n
o
p
er
atio
n
is
ca
lled
d
eq
u
eu
e.
R
ec
u
r
s
iv
e
I
n
d
ex
i
n
g
i
s
a
m
et
h
o
d
to
en
co
d
e
d
ata
w
it
h
li
m
it
s
y
m
b
o
ls
.
L
et
a
s
et
o
f
s
y
m
b
o
l
s
}
,
,
,
,
{
2
1
0
K
b
b
b
b
w
it
h
K
+1
s
y
m
b
o
l
s
.
A
n
u
m
b
e
r
R
mK
n
w
h
er
e
n
an
d
R
=
n
m
o
d
(
K
+1
)
ca
n
b
e
en
co
d
ed
u
s
in
g
s
y
m
b
o
ls
i
n
in
a
s
eq
u
e
n
ce
o
f
*
as d
ef
in
ed
b
y
[
3
0
]
:
*
:
T
h
u
s
:
R
m
K
K
K
K
b
b
b
b
b
n
t
i
m
e
s
)
(
T
h
is
m
et
h
o
d
is
v
er
y
w
ell
u
s
ed
to
en
co
d
e
a
s
et
o
f
}
,
,
,
,
{
2
1
0
m
a
a
a
a
,
w
h
er
e
a
i
ar
e
g
en
er
all
y
s
m
aller
t
h
a
n
th
e
K
+1
.
T
h
u
s
,
i
f
a
i
<
K
+
1
t
h
e
n
a
i
is
e
n
co
d
ed
u
s
in
g
a
s
y
m
b
o
l
w
ith
)
1
(
l
o
g
2
K
b
its
.
W
h
er
ea
s
,
if
a
i
≥
K
+
1
th
en
a
i
is
e
n
co
d
ed
u
s
i
n
g
(
m
+1
)
)
1
(
l
o
g
2
K
b
its
.
Fig
u
r
e
3
.
T
h
e
C
o
m
p
r
es
s
io
n
P
r
o
ce
s
s
3
.
1
.
E
nco
din
g
M
et
ho
d
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
p
er
f
o
r
m
s
th
e
e
n
co
d
in
g
p
r
o
ce
s
s
i
n
a
c
y
clic
m
a
n
n
er
as
s
h
o
w
n
in
Fi
g
u
r
e
4
.
T
h
e
s
a
m
e
b
its
ar
e
d
eq
u
eu
ed
f
r
o
m
th
e
Qu
eu
e
to
e
m
b
ed
to
a
p
a
ir
(
x
,
y
)
b
y
tr
an
s
f
o
r
m
i
n
g
t
h
e
p
air
u
s
in
g
R
L
C
M
s
ev
er
al
ti
m
es
(
iter
atio
n
s
)
u
n
ti
l
th
e
tr
an
s
f
o
r
m
ed
p
air
(
x’
,
y’
)
is
in
r
eg
io
n
C
o
n
Fi
g
u
r
e
2
.
T
h
e
n
u
m
b
er
o
f
b
its
e
m
b
ed
d
ed
in
a
p
air
is
th
e
e
m
b
ed
d
in
g
ca
p
ac
it
y
o
f
th
e
p
air
.
B
ased
o
n
th
e
R
L
C
M
p
r
o
p
er
ties
,
th
e
av
er
a
g
e
(
h
)
o
f
x’
an
d
y’
is
an
in
teg
er
v
al
u
e,
t
h
er
ef
o
r
e
th
e
av
er
a
g
e
ca
n
b
e
u
s
ed
as
x
o
n
t
h
e
n
ex
t
c
y
c
le.
T
h
e
v
al
u
e
o
f
x’
(
l
)
is
en
co
d
ed
u
s
in
g
t
h
e
p
r
o
p
er
ties
1
o
r
2
o
f
R
L
C
M
b
ef
o
r
e
it
is
en
q
u
e
u
ed
to
th
e
Q
u
eu
e.
I
n
th
is
r
esear
ch
,
t
h
e
iter
atio
n
n
u
m
b
er
(
i
)
i
s
tr
a
n
s
f
o
r
m
ed
b
y
ca
lc
u
lati
n
g
it
s
d
i
f
f
er
en
ce
(
d
)
to
a
p
r
ed
ictio
n
v
a
lu
e
(
p
)
b
ef
o
r
e
t
h
e
n
u
m
b
er
is
e
n
co
d
ed
u
s
i
n
g
r
ec
u
r
s
iv
e
i
n
d
ex
i
n
g
.
F
u
r
th
er
m
o
r
e
,
th
e
en
co
d
ed
b
its
ar
e
e
n
q
u
e
u
ed
in
to
t
h
e
Q
u
eu
e.
I
f
th
e
p
air
(
x
,
y
)
is
o
r
ig
in
all
y
i
n
r
eg
io
n
C
th
e
n
t
h
e
r
e
m
ain
d
er
(
r
)
o
f
2
y
x
m
u
s
t
b
e
en
q
u
eu
ed
to
th
e
Qu
eu
e.
T
h
e
o
r
d
er
o
f
en
q
u
e
u
in
g
p
r
o
ce
s
s
is
d
escr
ib
ed
in
Fig
u
r
e
4
.
T
h
e
d
etail
o
f
en
co
d
in
g
m
eth
o
d
is
d
esc
r
ib
ed
as f
o
llo
w
s
:
Fig
u
r
e
4
.
E
n
co
d
in
g
A
l
g
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
8
3
6
–
2
8
4
5
2840
1)
A
t
th
e
f
ir
s
t
s
tep
,
th
e
f
ir
s
t d
at
u
m
i
s
co
n
v
er
ted
i
n
to
b
its
a
n
d
t
h
en
p
u
t
it i
n
a
q
u
e
u
e
b
y
en
q
u
eu
e
o
p
er
atio
n
.
T
h
e
s
ec
o
n
d
(
x
)
an
d
th
ir
d
d
atu
m
(
y
)
ar
e
u
s
ed
f
o
r
e
m
b
ed
d
in
g
d
ata.
2)
E
m
b
ed
s
o
m
e
b
its
f
r
o
m
t
h
e
q
u
e
u
e
to
p
air
(
x
,
y
)
u
s
in
g
t
h
e
f
o
llo
w
i
n
g
alg
o
r
it
h
m
:
a.
C
alcu
late
th
e
v
al
u
e
o
f
y
m
ax
u
s
i
n
g
(
3
)
.
b.
Set
i
=
0
.
c.
I
f
(
x
,
y
m
ax
)
D
1.
C
alcu
late
th
e
v
al
u
e
o
f
x’
an
d
y’
u
s
i
n
g
(
1
)
.
2.
C
alcu
late
th
e
y’
m
ax
o
f
x’
a
n
d
y’
u
s
i
n
g
(
3
)
.
3.
Set
i
=
i
+
1
;
4.
I
f
(
x’
,
y’
m
ax
)
D
a)
d
eq
u
eu
e
a
b
it (
m
)
f
r
o
m
th
e
q
u
eu
e.
b)
Set L
SB
(
y’
)
=
m
.
5
.
Set
x
=
x’
an
d
y
=
y’
.
6
.
I
f
(
x
,
y
m
ax
)
D
th
e
n
r
ep
ea
t st
ep
(
i)
to
(
v
)
.
d.
I
f
(
x
,
y
m
ax
)
D
1
.
I
f
i
=
0
th
en
r
= (
x
+
y
)
m
o
d
2
.
2
.
I
f
i
>
0
th
en
r
=
.
e.
Set
x’
= x
an
d
y’
= y
.
T
h
e
alg
o
r
ith
m
r
es
u
lt
s
t
h
r
ee
v
al
u
es:
x’
,
y’
,
an
d
th
e
iter
atio
n
n
u
m
b
er
(
i
)
.
3)
B
ased
o
n
t
h
e
p
r
o
p
er
ties
1
a
n
d
2
o
f
R
L
C
M,
tr
a
n
s
f
o
r
m
t
h
e
x’
a
n
d
y’
to
l
a
n
d
h
u
s
i
n
g
(
4
)
an
d
(
5
)
r
esp
ec
tiv
el
y
.
)
'
'
(
2
if
1
2
)
'
'
(
2
if
2
y
x
t
t
y
x
t
t
l
(
4
)
L
y
x
y
x
L
y
x
y
x
h
'
'
if
2
/
)
'
'
(
'
'
if
2
/
)
'
'
(
(
5
)
4)
C
o
m
p
r
ess
th
e
l
v
a
lu
e
u
s
in
g
t
h
e
p
r
o
p
er
ties
o
f
R
L
C
M
a
n
d
th
en
en
q
u
eu
e
it
to
t
h
e
q
u
e
u
e.
I
f
t
h
er
e
is
t
h
e
r
e
m
a
in
d
er
(
r
)
,
en
q
u
e
u
e
it to
o
.
5)
C
alcu
late
th
e
p
r
ed
ictio
n
(
p
)
v
a
lu
e
o
f
i
u
s
i
n
g
(
6
).
0
if
0
a
n
d
if
0
a
n
d
if
0
l
o
g
1
/
l
o
g
2
2
s
s
z
s
s
z
s
s
z
s
z
p
(
6
)
w
h
er
e
s
=
m
in
(
h
,
L
-
h
)
an
d
z
is
th
e
r
ig
h
t n
e
ig
h
b
o
r
o
f
y
.
T
h
e
iter
atio
n
n
u
m
b
er
o
f
n
eig
h
b
o
r
in
g
d
atu
m
co
m
m
o
n
l
y
ali
k
e
alth
o
u
g
h
th
e
e
m
b
ed
d
ed
d
ata
is
d
if
f
er
e
n
t.
T
h
er
ef
o
r
e,
th
e
v
al
u
e
o
f
i
ca
n
b
e
p
r
ed
icted
.
C
alcu
late
th
e
d
if
f
er
e
n
ce
(
d
)
o
f
i
an
d
p
u
s
i
n
g
(
7
)
.
An
d
th
e
n
en
co
d
e
th
e
v
al
u
e
u
s
i
n
g
r
ec
u
r
s
i
v
e
in
d
e
x
in
g
,
t
h
en
e
n
q
u
e
u
e
th
e
v
alu
e
i
n
to
t
h
e
q
u
eu
e.
p
i
p
i
p
i
p
i
d
if
)
(
2
if
1
2
(
7
)
6)
T
r
an
s
f
o
r
m
h
u
s
i
n
g
h
=
h
-
1
m
o
d
(
L
+1
)
in
o
r
d
e
r
th
at
th
e
d
if
f
er
en
ce
to
th
e
z
v
al
u
e
b
ec
o
m
e
s
s
m
aller
.
7)
C
o
n
ti
n
u
e
t
h
e
p
r
o
ce
s
s
to
t
h
e
n
e
x
t
c
y
cle
b
y
u
s
i
n
g
(
h
,
z
)
as
(
x
,
y
)
th
e
n
r
ep
ea
t
th
e
s
tep
2
to
7
u
n
til
a
ll
d
atu
m
i
s
p
r
o
ce
s
s
ed
.
8)
On
th
e
la
s
t
d
atu
m
,
th
e
iter
at
io
n
n
u
m
b
er
(
i
)
is
d
ir
ec
tl
y
en
co
d
ed
u
s
in
g
r
ec
u
r
s
iv
e
i
n
d
ex
i
n
g
b
ef
o
r
e
it
en
q
u
e
u
e
in
to
th
e
q
u
e
u
e.
T
h
e
last
h
v
al
u
e
is
also
en
co
d
ed
in
eig
h
t b
its
an
d
th
e
n
en
q
u
e
u
e
to
th
e
q
u
eu
e
.
9)
T
h
e
r
em
ai
n
i
n
g
b
it
s
o
n
th
e
q
u
e
u
e
at
th
e
la
s
t c
y
cle
ar
e
t
h
e
co
m
p
r
e
s
s
io
n
r
esu
l
t o
f
t
h
is
m
et
h
o
d
.
3
.
2
.
Dec
o
din
g
Alg
o
rit
h
m
T
h
e
r
esu
lt
o
f
e
n
co
d
in
g
p
r
o
ce
s
s
is
all
r
e
m
ain
in
g
b
its
i
n
t
h
e
q
u
eu
e.
T
o
ex
tr
ac
t
th
e
o
r
ig
i
n
al
d
ata
f
r
o
m
th
e
q
u
e
u
e,
th
e
p
o
s
itio
n
o
f
th
e
f
r
o
n
t
an
d
r
ea
r
en
d
o
f
th
e
q
u
eu
e
m
u
s
t
b
e
ex
ch
a
n
g
ed
.
T
h
e
d
ec
o
d
in
g
p
r
o
ce
s
s
is
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
N
ew Lo
s
s
les
s
C
o
mp
r
e
s
s
io
n
M
eth
o
d
Usi
n
g
C
R
LC
M
(
Hen
d
r
a
Mes
r
a
)
2841
in
v
er
s
e
s
tep
o
f
th
e
en
co
d
in
g
.
T
h
u
s
,
th
e
d
ec
o
d
in
g
p
r
o
ce
s
s
ex
tr
ac
ts
t
h
e
o
r
ig
in
al
d
ata
f
r
o
m
th
e
last
to
th
e
f
ir
s
t
d
atu
m
.
B
ased
o
n
Fi
g
u
r
e
5
,
th
e
d
ec
o
d
in
g
alg
o
r
it
h
m
i
s
d
escr
ib
ed
as f
o
llo
w
s
:
Fig
u
r
e
5
.
Dec
o
d
in
g
A
l
g
o
r
ith
m
1)
Deq
u
eu
e
th
e
eig
h
t
b
its
o
f
t
h
e
v
alu
e
h
f
r
o
m
t
h
e
q
u
eu
e.
A
t
th
e
n
e
x
t
c
y
cle,
t
h
is
v
a
lu
e
is
o
b
tain
ed
f
r
o
m
t
h
e
v
alu
e
o
f
x
.
2)
T
r
an
s
f
o
r
m
th
e
v
al
u
e
h
u
s
i
n
g
h
=
h
+1
m
o
d
(
L
+1
)
.
3)
A
t
t
h
e
f
ir
s
t
c
y
cle,
d
eq
u
eu
e
th
e
iter
atio
n
n
u
m
b
er
(
i
)
d
ir
ec
tly
.
A
t
th
e
n
e
x
t
c
y
c
le,
th
e
i
v
al
u
e
is
ca
lcu
lated
u
s
i
n
g
(
8
)
.
0
2
m
o
d
if
1
2
m
o
d
if
2
2
1
d
p
d
p
i
d
d
(
8
)
T
h
e
d
v
al
u
e
i
s
d
eq
u
e
u
ed
f
r
o
m
th
e
q
u
eu
e
an
d
th
e
p
v
a
lu
e
is
c
alcu
lated
u
s
i
n
g
(
1
5
)
o
n
t
h
e
h
v
alu
e
a
n
d
t
h
e
y
v
alu
e
f
r
o
m
p
r
ev
io
u
s
c
y
cle.
T
h
e
n
u
m
b
er
o
f
b
its
is
d
eq
u
e
u
ed
d
ep
en
d
in
g
o
n
th
e
r
ec
u
r
s
i
v
e
in
d
e
x
in
g
r
u
les.
4)
I
f
i
=
0
th
en
d
eq
u
e
u
e
a
b
it
o
f
r
e
m
ai
n
d
er
(
r
)
.
On
th
i
s
co
n
d
itio
n
,
t
h
e
v
al
u
e
o
f
h
is
i
n
f
lu
en
ce
d
b
y
t
h
e
r
o
u
n
d
in
g
o
p
er
atio
n
in
(
5
)
.
T
o
r
esto
r
e
th
e
o
r
i
g
in
a
l
v
a
lu
e
o
f
x’
an
d
y’
,
t
h
e
n
e
w
H
v
al
u
e
m
u
s
t
b
e
ca
lcu
la
ted
u
s
i
n
g
(
9
)
.
0
i
if
0
a
n
d
if
0
a
n
d
if
2
2
2
2
2
i
h
i
h
h
r
h
r
h
H
L
L
(
9
)
5)
Deq
u
eu
e
t
h
e
v
al
u
e
o
f
l
.
T
h
e
n
u
m
b
er
o
f
b
its
ar
e
d
eq
u
eu
ed
b
a
s
ed
o
n
th
e
R
L
C
M
p
r
o
p
er
ties
o
n
v
al
u
e
o
f
h
.
6)
C
alcu
late
th
e
v
al
u
e
o
f
t
u
s
i
n
g
(
1
0
).
1
2
m
o
d
if
0
2
m
o
d
if
2
1
2
2
l
l
t
i
L
l
(
1
0
)
7)
C
alcu
late
th
e
v
al
u
e
o
f
x’
an
d
y’
b
ased
o
n
th
e
v
alu
e
o
f
t
an
d
h
,
th
er
e
ar
e
f
o
u
r
p
o
s
s
ib
ilit
ie
s
f
o
r
th
e
v
al
u
es:
a.
I
f
2
L
h
an
d
l
is
ev
e
n
n
u
m
b
er
,
th
e
n
x’
= t
an
d
y’
=H
-
t
.
b.
I
f
2
L
h
an
d
l
is
o
d
d
n
u
m
b
er
,
t
h
en
x
’
=H
-
t
an
d
y’
= t
.
c.
I
f
2
L
h
an
d
l
is
ev
e
n
n
u
m
b
er
,
th
e
n
x’
=L
-
t
an
d
y’
= H
-
L
+ t
.
d.
I
f
2
L
h
an
d
l
is
o
d
d
n
u
m
b
er
,
t
h
en
x
’
=H
-
L +
t
an
d
y’
= L
-
t
.
8)
I
f
i
>
0
th
en
e
x
tr
ac
t th
e
e
m
b
ed
d
ed
b
its
f
r
o
m
p
air
(
x’
,
y’
)
u
s
in
g
th
e
f
o
llo
w
i
n
g
al
g
o
r
ith
m
:
a.
w
=
ar
r
ay
(
)
;
b.
C
alcu
late
y’
m
a
x
u
s
in
g
(
3
)
c.
I
f
(
x’
,
y’
m
ax
)
D
t
h
en
1
.
ca
lcu
late
x
an
d
y
u
s
i
n
g
(
2
)
2
.
x’
= x
,
y
’
= y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
8
3
6
–
2
8
4
5
2842
d.
I
f
(
x’
,
y’
m
ax
)
D
t
h
en
1.
w
[
]
=
L
SB
(
y’
)
2.
L
SB
(
y’
)
=
L
SB
(
x’
)
3.
C
alcu
la
te
x
an
d
y
u
s
i
n
g
(
2
)
4.
x’
= x
,
y’
=
y
e.
R
ep
ea
t step
s
(
b
)
to
(
d
)
in
i
ti
m
es.
T
h
is
alg
o
r
ith
m
e
x
tr
ac
t
s
th
e
e
m
b
ed
d
ed
b
its
(
w
)
in
th
e
p
air
(
x’
,
y’
)
an
d
r
esto
r
e
th
e
o
r
ig
in
al
v
alu
e
(
x
,
y
)
.
T
h
e
y
v
alu
e
is
a
d
atu
m
f
r
o
m
t
h
e
o
r
ig
in
al
d
ata.
T
h
e
x
v
alu
e
is
u
s
ed
as
h
in
t
h
e
n
e
x
t c
y
cle.
9)
T
h
e
last
s
tep
o
n
a
c
y
cle
is
to
e
n
q
u
e
u
e
w
i
n
to
th
e
q
u
e
u
e.
10)
Re
p
ea
t step
2
to
9
as a
n
e
w
c
y
cle
to
ex
tr
ac
t a
ll o
f
th
e
y
v
al
u
e
s
.
4.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
T
h
is
r
esear
ch
ap
p
lies
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
n
i
m
a
g
es
w
h
ich
w
er
e
u
s
ed
i
n
[
2
5
]
an
d
[
2
7
]
to
co
m
p
ar
e
th
e
t
h
r
ee
m
et
h
o
d
s
.
T
h
e
test
i
n
g
i
m
a
g
es
a
r
e
g
r
a
y
s
ca
le
i
m
ag
es
w
it
h
s
ize
o
f
5
1
2
×5
1
2
as
s
h
o
w
n
i
n
F
ig
u
r
e
6
.
T
o
ap
p
ly
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
i
n
i
m
a
g
es
d
ata,
all
p
i
x
el
s
i
n
t
h
e
i
m
a
g
e
i
s
li
n
ea
r
ized
b
y
s
ca
n
n
i
n
g
t
h
e
i
m
a
g
e
u
s
i
n
g
s
n
a
k
e
-
lik
e
r
o
w
m
aj
o
r
s
ca
n
p
ath
.
P
er
f
o
r
m
an
ce
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
m
ea
s
u
r
ed
u
s
i
n
g
th
e
C
o
m
p
r
es
s
io
n
R
atio
(
C
R
)
t
h
at
is
t
h
e
r
atio
o
f
o
r
ig
in
al
d
ata
s
ize
to
t
h
e
s
ize
o
f
th
e
co
m
p
r
ess
ed
d
ata
[
3
1
]
.
L
e
n
a
B
ab
o
o
n
P
ep
p
e
r
s
T
if
f
an
y
B
o
at
X
-
r
a
y
Fig
u
r
e
6
.
T
esti
n
g
I
m
a
g
es
[
2
7
]
T
ab
le
1
.
T
h
e
Co
m
p
ar
is
o
n
o
f
C
o
m
p
r
es
s
io
n
R
atio
f
o
r
th
e
P
r
o
p
o
s
ed
M
eth
o
d
an
d
Hu
f
f
m
a
n
C
o
d
in
g
No
I
mag
e
s
C
o
mp
r
e
ssi
o
n
r
a
t
i
o
H
u
f
f
man
C
o
d
i
n
g
P
r
o
p
o
se
d
M
e
t
h
o
d
1
L
e
n
a
1
.
0
7
8
1
.
3
8
3
2
B
a
b
o
o
n
1
.
0
9
0
1
.
1
1
7
3
P
e
p
p
e
r
s
1
.
0
5
4
1
.
3
4
7
4
T
i
f
f
a
n
y
1
.
1
5
1
1
.
3
2
2
5
B
o
a
t
1
.
1
1
4
1
.
3
0
8
6
X
-
r
a
y
1
.
0
3
1
1
.
6
4
0
A
v
e
r
a
g
e
1
.
0
8
6
1
.
3
5
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
N
ew Lo
s
s
les
s
C
o
mp
r
e
s
s
io
n
M
eth
o
d
Usi
n
g
C
R
LC
M
(
Hen
d
r
a
Mes
r
a
)
2843
T
h
is
r
esear
ch
u
s
e
s
K=
3
i
n
th
e
r
ec
u
r
s
i
v
e
i
n
d
ex
i
n
g
.
T
h
e
s
elec
tio
n
o
f
K
is
b
ased
o
n
f
r
eq
u
en
c
y
d
is
tr
ib
u
tio
n
o
f
th
e
d
i
f
f
er
en
ce
(
d
)
o
f
iter
atio
n
n
u
m
b
er
(
i
)
an
d
its
p
r
ed
ictio
n
s
(
p
)
in
(
7
)
.
A
s
e
x
a
m
p
le,
th
e
f
r
eq
u
en
c
y
d
is
tr
ib
u
tio
n
o
f
t
h
e
d
if
f
er
e
n
ce
v
al
u
e
o
n
L
e
n
a
i
m
a
g
e
is
s
h
o
w
n
o
n
Fi
g
u
r
e
7
.
T
h
e
f
r
eq
u
en
c
y
o
f
-
1
,
0
,
an
d
1
v
al
u
es
ar
e
h
i
g
h
er
th
a
n
o
th
er
s
.
T
h
e
v
al
u
e
o
f
=
3
m
a
k
es
th
e
en
co
d
in
g
i
n
R
ec
u
r
s
iv
e
I
n
d
ex
i
n
g
u
s
in
g
t
w
o
b
its
o
r
its
m
u
ltip
les.
T
h
e
test
in
g
r
es
u
lt
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
s
h
o
w
n
o
n
T
ab
le
1
.
T
h
e
tab
le
also
s
h
o
w
s
th
e
co
m
p
r
es
s
io
n
r
es
u
lt
o
f
p
r
o
p
o
s
ed
m
et
h
o
d
an
d
i
ts
co
m
p
ar
is
o
n
w
it
h
th
e
H
u
f
f
m
a
n
e
n
co
d
in
g
.
Fig
u
r
e
8
s
h
o
w
s
t
h
e
co
m
p
ar
is
o
n
o
f
t
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
w
it
h
t
h
e
Hu
f
f
m
an
,
t
h
e
R
C
M,
an
d
t
h
e
R
L
C
M
co
m
p
r
ess
io
n
m
et
h
o
d
.
T
h
e
f
i
g
u
r
e
s
h
o
w
s
t
h
at
t
h
e
p
r
o
p
o
s
ed
m
eth
o
d
r
es
u
lt
s
i
n
h
ig
h
er
co
m
p
r
e
s
s
io
n
r
atio
o
n
all
test
in
g
i
m
ag
e
s
e
x
ce
p
t
i
n
t
h
e
B
ab
o
o
n
im
a
g
e.
Fig
u
r
e
7
.
His
to
g
r
a
m
o
f
t
h
e
Dif
f
er
en
ce
o
f
I
ter
atio
n
Nu
m
b
er
an
d
its
P
r
ed
ictio
n
o
n
L
e
n
a
I
m
a
g
e
Fig
u
r
e
8
.
T
h
e
C
o
m
p
ar
is
o
n
o
f
t
h
e
Hu
f
f
m
an
,
T
h
e
R
C
M,
T
h
e
R
L
C
M
a
n
d
th
e
P
r
o
p
o
s
ed
Me
t
h
o
d
T
h
e
u
s
e
o
f
t
h
e
p
r
o
p
er
ties
1
an
d
2
as
a
co
m
p
r
ess
io
n
m
et
h
o
d
in
th
e
p
r
o
p
o
s
ed
m
e
th
o
d
i
s
an
al
y
ze
d
s
ep
ar
atel
y
i
n
t
h
i
s
r
esear
ch
.
T
h
e
ef
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
er
ties
i
n
co
m
p
r
es
s
in
g
al
l
p
ix
e
ls
i
s
s
h
o
w
n
i
n
T
ab
le
2
.
T
h
e
tab
le
s
h
o
w
s
t
h
at
t
h
e
i
m
a
g
es
o
f
L
e
n
a,
B
ab
o
o
n
,
P
e
p
p
e
r
s
,
an
d
B
o
at
h
av
e
co
m
p
r
e
s
s
io
n
r
esu
lts
al
m
o
s
t
th
e
s
a
m
e
b
ec
a
u
s
e
o
f
t
h
e
a
v
er
ag
e
o
f
p
ix
el
v
al
u
es
ar
o
u
n
d
t
h
e
v
a
lu
e
L
/2
.
T
h
e
p
r
o
p
er
ties
o
f
R
L
C
M
h
a
v
e
s
m
aller
co
m
p
r
es
s
io
n
r
e
s
u
l
t
o
n
th
e
i
m
a
g
es
o
f
T
if
f
an
y
a
n
d
X
-
r
a
y
t
h
a
n
o
th
er
s
b
ec
au
s
e
t
h
eir
a
v
er
ag
e
p
ix
el
i
n
ten
s
it
ie
s
ar
e
a
w
a
y
f
r
o
m
t
h
e
L
/2
v
a
lu
e.
A
cc
o
r
d
in
g
to
t
h
e
p
r
o
p
er
ties
o
f
R
L
C
M,
i
f
t
h
e
v
alu
e
o
f
h
i
s
s
m
al
l
th
e
n
t
h
e
v
alu
e
o
f
l
is
en
co
d
ed
u
s
i
n
g
f
e
w
er
b
its
.
B
esid
es
an
al
y
z
in
g
th
e
e
f
f
ec
ti
v
en
e
s
s
o
f
t
h
e
p
r
o
p
er
ties
o
f
R
L
C
M,
t
h
is
r
esear
ch
al
s
o
an
al
y
ze
s
t
h
e
e
m
b
ed
d
in
g
ca
p
ac
it
y
o
f
all
p
ix
els
in
an
i
m
a
g
e.
T
h
e
i
m
ag
e
s
o
f
L
e
n
a,
P
ep
p
er
s
,
B
o
at,
an
d
X
-
r
ay
h
av
e
n
ea
r
l
y
t
h
e
s
a
m
e
o
f
co
m
p
r
e
s
s
io
n
r
es
u
lt
s
an
d
h
i
g
h
er
d
ata
e
m
b
ed
d
in
g
ca
p
ac
it
y
th
a
n
th
e
i
m
a
g
es
o
f
B
ab
o
o
n
an
d
T
if
f
a
n
y
.
B
ab
o
o
n
im
ag
e
h
as
s
m
all
o
f
d
ata
em
b
ed
d
in
g
ca
p
ac
it
y
b
ec
au
s
e
th
e
co
n
tr
ast
is
h
i
g
h
er
th
a
n
th
e
o
th
er
s
.
W
h
er
ea
s
T
if
f
an
y
i
m
ag
e
h
as
t
h
e
av
er
a
g
e
p
ix
el
v
al
u
es
a
w
a
y
f
r
o
m
L
/2
v
alu
e.
I
n
t
h
i
s
m
et
h
o
d
,
th
e
p
air
w
it
h
v
a
lu
e
ab
o
u
t
L
/2
h
as
h
ig
h
er
d
ata
e
m
b
ed
d
in
g
ca
p
ac
it
y
th
a
n
th
e
o
t
h
er
p
o
s
itio
n
s
.
A
lt
h
o
u
g
h
th
e
X
-
r
a
y
i
m
ag
e
al
s
o
h
as
t
h
e
av
er
ag
e
a
w
a
y
f
r
o
m
L
/2
v
al
u
e,
b
u
t it
h
a
s
co
n
tr
ast lo
w
er
th
a
n
t
h
e
o
th
er
s
.
T
ab
le
2
also
s
h
o
w
s
t
h
e
n
u
m
b
er
o
f
b
y
te
s
ar
e
n
ee
d
ed
f
o
r
en
co
d
in
g
t
h
e
iter
atio
n
n
u
m
b
er
u
s
in
g
r
ec
u
r
s
iv
e
i
n
d
ex
i
n
g
f
o
r
all
test
in
g
i
m
ag
e
s
.
T
h
is
tab
le
d
escr
ib
es
th
at
th
e
p
r
o
p
o
s
ed
m
eth
o
d
tak
es
ab
o
u
t
5
0
%
o
f
th
e
co
m
p
r
ess
io
n
r
esu
lt
s
ize
to
s
av
e
th
e
v
al
u
es.
I
t
is
ca
u
s
ed
b
y
,
t
h
e
iter
atio
n
n
u
m
b
er
o
f
a
p
air
u
s
u
all
y
ab
o
u
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
8
3
6
–
2
8
4
5
2844
0
-
7
,
b
u
t
th
e
v
a
lu
e
ca
n
b
e
v
er
y
b
ig
w
h
e
n
th
e
v
a
lu
e
s
o
f
x
an
d
y
ar
e
s
i
m
ilar
a
n
d
t
h
e
e
m
b
ed
d
ed
b
its
i
s
s
i
m
ilar
to
L
SB
o
f
y
.
Fo
r
ex
a
m
p
le,
th
e
d
if
f
er
e
n
ce
v
al
u
e
o
f
a
p
air
an
d
its
p
r
ed
ictio
n
ca
n
ac
h
iev
e
2
1
s
u
ch
as
s
h
o
w
n
i
n
Fig
u
r
e
7
.
B
y
u
s
i
n
g
r
ec
u
r
s
i
v
e
in
d
ex
i
n
g
w
it
h
K
=
3
,
th
e
v
al
u
e
is
e
n
co
d
ed
u
s
i
n
g
3
0
b
its
.
C
o
m
p
r
e
s
s
io
n
r
es
u
lt
o
f
th
is
m
et
h
o
d
is
clo
s
er
to
th
e
s
u
m
m
i
n
g
r
esu
l
t
o
f
th
e
b
y
te
r
e
s
id
u
al
af
ter
e
m
b
ed
d
in
g
p
r
o
ce
s
s
an
d
th
e
s
p
ac
e
to
s
to
r
e
th
e
iter
atio
n
n
u
m
b
er
.
T
ab
le
2
.
T
h
e
A
n
al
y
s
is
R
e
s
u
lt
o
f
th
e
C
o
m
p
r
ess
io
n
A
l
g
o
r
ith
m
Step
s
No
I
mag
e
s
O
r
i
g
i
n
a
l
D
a
t
a
(
b
y
t
e
s)
A
v
e
r
a
g
e
s
C
o
mp
r
e
ssi
o
n
R
e
su
l
t
b
y
R
L
C
M
P
r
o
p
e
r
t
i
e
s
(
b
y
t
e
s)
T
o
t
a
l
Emb
e
d
d
i
n
g
C
a
p
a
c
i
t
y
(
b
y
t
e
s)
R
e
si
d
u
a
l
a
f
t
e
r
Emb
e
d
d
i
n
g
P
r
o
c
e
ss
(
b
y
t
e
)
S
p
a
c
e
f
o
r
t
h
e
I
t
e
r
a
t
i
o
n
N
u
mb
e
r
(
b
y
t
e
s)
C
o
mp
r
e
ssi
o
n
R
e
su
l
t
(
b
y
t
e
)
1
L
e
n
a
2
6
2
1
4
4
1
2
3
.
9
8
2
2
1
6
7
6
1
2
9
2
4
6
9
2
4
9
7
9
7
0
3
3
1
8
9
5
0
1
2
B
a
b
o
o
n
2
6
2
1
4
4
1
2
8
.
7
5
2
2
6
6
2
0
9
4
2
5
7
1
3
2
3
8
6
1
0
2
2
6
6
2
3
4
6
5
3
3
P
e
p
p
e
r
s
2
6
2
1
4
4
1
1
1
.
7
7
2
1
7
9
5
8
1
2
3
5
5
0
9
4
7
6
5
9
9
9
4
6
1
9
4
6
2
3
4
T
i
f
f
a
n
y
2
6
2
1
4
4
2
0
2
.
4
5
1
8
8
8
5
2
9
1
2
9
7
9
9
0
0
7
9
9
2
9
2
1
9
8
2
9
8
5
B
o
a
t
2
6
2
1
4
4
1
2
9
.
4
5
2
2
2
9
8
8
1
2
3
0
8
9
1
0
0
0
6
9
1
0
0
4
3
1
2
0
0
4
9
2
6
X
-
r
a
y
2
6
2
1
4
4
9
9
.
4
2
1
9
0
5
7
3
1
2
5
6
9
9
6
5
0
0
1
9
4
7
4
9
1
5
9
8
3
3
5.
CO
NCLU
SI
O
N
T
h
e
p
r
o
p
o
s
ed
m
et
h
o
d
is
d
e
v
elo
p
ed
to
o
p
tim
ize
t
h
e
d
ata
em
b
ed
d
in
g
ca
p
ac
it
y
o
f
th
e
R
L
C
M
co
m
p
r
es
s
io
n
m
et
h
o
d
b
y
u
s
i
n
g
all
p
ix
el
p
air
s
f
o
r
e
m
b
ed
d
in
g
d
ata.
B
esid
es,
th
is
m
et
h
o
d
u
s
es
th
e
o
t
h
er
R
L
C
M
p
r
o
p
er
ties
to
en
co
d
e
d
atu
m
u
s
in
g
a
f
e
w
er
n
u
m
b
er
o
f
b
its
.
I
n
co
n
tr
a
s
t
to
R
L
C
M
co
m
p
r
ess
io
n
m
eth
o
d
,
t
h
e
C
R
L
C
M
is
a
n
en
co
d
in
g
m
eth
o
d
th
er
ef
o
r
e
it c
an
b
e
u
s
ed
as a
co
d
in
g
s
tep
i
n
o
th
er
co
m
p
r
ess
i
o
n
m
et
h
o
d
.
T
h
e
m
eth
o
d
u
s
e
s
t
w
o
-
s
tep
c
o
d
in
g
to
e
n
co
d
in
g
a
d
at
u
m
,
th
at
is
th
e
R
L
C
M
p
r
o
p
er
ties
an
d
t
h
e
R
ec
u
r
s
iv
e
i
n
d
ex
i
n
g
t
h
er
ef
o
r
e
th
e
co
m
p
r
ess
io
n
r
atio
o
f
t
h
i
s
m
et
h
o
d
is
h
ig
h
er
th
a
n
H
u
f
f
m
an
co
d
in
g
.
T
h
e
m
et
h
o
d
h
a
s
al
s
o
h
i
g
h
er
co
m
p
r
ess
io
n
r
atio
th
a
n
t
h
e
R
C
M
an
d
t
h
e
R
L
C
M
co
m
p
r
es
s
io
n
m
et
h
o
d
s
.
I
n
th
is
r
esear
ch
,
s
p
ac
e
f
o
r
s
av
i
n
g
t
h
e
iter
atio
n
n
u
m
b
er
b
r
in
g
s
ab
o
u
t
5
0
%
o
f
co
m
p
r
es
s
io
n
r
esu
lt.
B
y
ch
a
n
g
in
g
t
h
e
m
et
h
o
d
f
o
r
co
d
in
g
th
e
iter
atio
n
n
u
m
b
er
,
it is
e
x
p
ec
ted
th
at
t
h
e
co
m
p
r
ess
io
n
r
atio
is
in
cr
ea
s
ed
.
RE
F
E
R
E
NC
E
S
[1
]
S
.
Ra
o
a
n
d
P
.
Bh
a
t,
“
Ev
a
lu
a
ti
o
n
o
f
lo
ss
les
s
c
o
m
p
re
ss
io
n
tec
h
n
iq
u
e
s
”
,
in
Co
mm
u
n
ic
a
ti
o
n
s
a
n
d
S
i
g
n
a
l
Pro
c
e
ss
in
g
(
ICCS
P),
2
0
1
5
I
n
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
,
2
0
1
5
,
p
p
.
1
6
5
5
–
1
6
5
9
.
[2
]
D.
S
a
lo
m
o
n
,
Da
ta
c
o
mp
re
ss
io
n
:
t
h
e
c
o
mp
lete
re
fer
e
n
c
e
,
F
o
u
rth
Ed
i
ti
o
n
.
S
p
rin
g
e
r
S
c
ien
c
e
&
Bu
si
n
e
ss
M
e
d
ia,
2
0
0
7
.
[3
]
M
.
J.
W
e
in
b
e
rg
e
r,
G
.
S
e
ro
u
ss
i,
a
n
d
G
.
S
a
p
iro
,
“
F
ro
m
L
OCO
-
I
to
th
e
J
P
EG
-
L
S
sta
n
d
a
rd
”
,
in
1
9
9
9
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
Ima
g
e
Pro
c
e
ss
in
g
,
1
9
9
9
.
ICIP
9
9
.
Pro
c
e
e
d
in
g
s
,
1
9
9
9
,
v
o
l.
4
,
p
p
.
6
8
–
7
2
v
o
l.
4
.
[4
]
X
.
W
u
a
n
d
N.
M
e
m
o
n
,
“
CAL
IC
-
a
c
o
n
tex
t
b
a
se
d
a
d
a
p
ti
v
e
lo
ss
les
s
im
a
g
e
c
o
d
e
c
”
,
in
Aco
u
stics
,
S
p
e
e
c
h
,
a
n
d
S
ig
n
a
l
Pro
c
e
ss
in
g
,
1
9
9
6
.
ICAS
S
P
-
9
6
.
C
o
n
fer
e
n
c
e
Pro
c
e
e
d
in
g
s,
1
9
9
6
I
EE
E
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
,
1
9
9
6
,
v
o
l.
4
,
p
p
.
1
8
9
0
–
1
8
9
3
.
[5
]
I.
M
.
P
u
,
Fu
n
d
a
me
n
ta
l
Da
t
a
Co
m
p
re
ss
io
n
.
B
u
tt
e
rw
o
rth
-
He
in
e
m
a
n
n
,
2
0
0
5
.
[6
]
L
.
S
u
n
,
I.
H.
M
k
w
a
w
a
,
E.
Ja
m
m
e
h
,
a
n
d
E
.
If
e
a
c
h
o
r,
“
S
p
e
e
c
h
Co
m
p
re
ss
io
n
”
,
in
G
u
id
e
t
o
Vo
ice
a
n
d
Vi
d
e
o
o
v
e
r
IP
,
S
p
rin
g
e
r
L
o
n
d
o
n
,
2
0
1
3
,
p
p
.
1
7
–
5
1
.
[7
]
D.
A
d
jero
h
,
Y.
Z
h
a
n
g
,
A
.
M
u
k
h
e
rjee
,
M
.
P
o
w
e
ll
,
a
n
d
T
.
Be
ll
,
“
DN
A
se
q
u
e
n
c
e
c
o
m
p
re
ss
io
n
u
sin
g
th
e
Bu
rro
w
s
-
W
h
e
e
ler
T
ra
n
sf
o
r
m
”
,
in
Bi
o
in
fo
r
ma
ti
c
s
Co
n
fer
e
n
c
e
,
2
0
0
2
.
Pro
c
e
e
d
in
g
s.
IEE
E
Co
m
p
u
ter
S
o
c
iety
,
2
0
0
2
,
p
p
.
3
0
3
–
3
1
3
.
[8
]
S
.
K.
M
u
k
h
o
p
a
d
h
y
a
y
,
S
.
M
it
ra
,
a
n
d
M
.
M
it
ra
,
“
A
lo
ss
les
s
ECG
d
a
ta
c
o
m
p
re
ss
io
n
tec
h
n
iq
u
e
u
si
n
g
A
S
CII
c
h
a
ra
c
ter
e
n
c
o
d
i
n
g
”
,
Co
mp
u
t.
E
lec
tr.
En
g
.
,
v
o
l.
3
7
,
n
o
.
4
,
p
p
.
4
8
6
–
4
9
7
,
Ju
l.
2
0
1
1
.
[9
]
T
.
G
.
S
h
irsa
t
a
n
d
V
.
K.
Ba
irag
i,
“
L
o
ss
les
s
m
e
d
ica
l
i
m
a
g
e
c
o
m
p
re
s
sio
n
b
y
in
teg
e
r
w
a
v
e
let
a
n
d
p
re
d
ictiv
e
c
o
d
in
g
”
,
IS
RN
Bi
o
me
d
.
E
n
g
.
,
v
o
l
.
2
0
1
3
,
2
0
1
3
.
[1
0
]
K.
Ka
lajd
z
ic,
S
.
H.
A
li
,
a
n
d
A.
P
a
tel,
“
Ra
p
i
d
lo
ss
les
s
c
o
m
p
re
ss
io
n
o
f
sh
o
rt
tex
t
m
e
ss
a
g
e
s
”
,
Co
mp
u
t
.
S
t
a
n
d
.
In
ter
fa
c
e
s
,
v
o
l.
3
7
,
p
p
.
5
3
–
5
9
,
Ja
n
.
2
0
1
5
.
[1
1
]
G
.
Ca
m
p
o
b
e
ll
o
,
O.
G
io
rd
a
n
o
,
A
.
S
e
g
re
to
,
a
n
d
S
.
S
e
rr
a
n
o
,
“
C
o
m
p
a
r
iso
n
o
f
lo
c
a
l
lo
ss
les
s co
m
p
re
ss
io
n
a
lg
o
rit
h
m
s
f
o
r
W
irele
ss
S
e
n
so
r
Ne
t
w
o
rk
s”
,
J
.
Ne
tw.
Co
mp
u
t.
Ap
p
l.
,
v
o
l.
4
7
,
p
p
.
2
3
–
3
1
,
Ja
n
.
2
0
1
5
.
[1
2
]
D.
V
e
n
u
g
o
p
a
l,
S
.
M
o
h
a
n
,
a
n
d
S
.
Ra
ja,
“
A
n
e
ff
icie
n
t
b
lo
c
k
b
a
se
d
lo
ss
les
s
c
o
m
p
re
ss
io
n
o
f
m
e
d
ica
l
im
a
g
e
s
”
,
Op
t.
-
I
n
t.
J
.
L
ig
h
t
E
lec
tro
n
O
p
t.
,
v
o
l.
1
2
7
,
n
o
.
2
,
p
p
.
7
5
4
–
7
5
8
,
Ja
n
.
2
0
1
6
.
[1
3
]
M
.
Ch
ło
p
k
o
w
sk
i
a
n
d
R.
W
a
l
k
o
wia
k
,
“
A
g
e
n
e
r
a
l
p
u
rp
o
se
lo
ss
les
s
d
a
ta
c
o
m
p
re
s
sio
n
m
e
th
o
d
f
o
r
G
P
U”
,
J
.
Pa
ra
ll
e
l
Distrib
.
Co
m
p
u
t
.
,
v
o
l
.
7
5
,
p
p
.
4
0
–
5
2
,
Ja
n
.
2
0
1
5
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
N
ew Lo
s
s
les
s
C
o
mp
r
e
s
s
io
n
M
eth
o
d
Usi
n
g
C
R
LC
M
(
Hen
d
r
a
Mes
r
a
)
2845
[1
4
]
B.
Žalik
a
n
d
N.
L
u
k
a
č
,
“
Ch
a
in
c
o
d
e
l
o
ss
les
s
c
o
m
p
re
ss
io
n
u
si
n
g
m
o
v
e
-
to
-
f
ro
n
t
tran
sf
o
rm
a
n
d
a
d
a
p
ti
v
e
ru
n
-
len
g
th
e
n
c
o
d
i
n
g
”
,
S
ig
n
a
l
Pro
c
e
ss
.
Ima
g
e
Co
mm
u
n
.
,
v
o
l
.
2
9
,
n
o
.
1
,
p
p
.
9
6
–
1
0
6
,
Ja
n
.
2
0
1
4
.
[1
5
]
M
.
Ise
n
b
u
rg
,
P
.
L
in
d
str
o
m
,
a
n
d
J.
S
n
o
e
y
in
k
,
“
L
o
ss
les
s
c
o
m
p
re
ss
io
n
o
f
p
re
d
icte
d
f
lo
a
ti
n
g
-
p
o
in
t
g
e
o
m
e
tr
y
”
,
Co
mp
u
t
.
-
Ai
d
e
d
De
s.
,
v
o
l
.
3
7
,
n
o
.
8
,
p
p
.
8
6
9
–
8
7
7
,
J
u
l.
2
0
0
5
.
[1
6
]
P
.
P
ra
v
e
e
n
a
,
“
Im
p
le
m
e
n
tatio
n
o
f
L
OCO
-
I
L
o
ss
les
s
I
m
a
g
e
Co
m
p
re
ss
io
n
A
lg
o
rit
h
m
f
o
r
De
e
p
S
p
a
c
e
A
p
p
li
c
a
ti
o
n
s”
,
In
t.
J
.
Rec
o
n
fi
g
u
r
a
b
le E
m
b
e
d
.
S
y
st.
IJ
RE
S
,
v
o
l.
3
,
n
o
.
1
,
p
p
.
2
5
–
3
0
,
M
a
r.
2
0
1
4
.
[1
7
]
M
.
F
.
Uk
rit
a
n
d
G
.
R.
S
u
re
sh
,
“
S
u
p
e
r
-
S
p
a
ti
a
l
S
tru
c
t
u
re
P
re
d
icti
o
n
C
o
m
p
re
ss
io
n
o
f
M
e
d
ica
l”
,
In
d
o
n
e
s.
J
.
El
e
c
tr.
En
g
.
In
fo
rm
.
IJ
EE
I
,
v
o
l.
4
,
n
o
.
2
,
Ju
n
.
2
0
1
6
.
[1
8
]
Z.
Hu
il
a
i,
“
A
Co
m
p
lete
L
a
tt
ice
Lo
ss
les
s
Co
m
p
re
ss
io
n
S
to
ra
g
e
M
o
d
e
l”
,
In
d
o
n
e
s.
J
.
El
e
c
tr.
En
g
.
Co
mp
u
t.
S
c
i
.
,
v
o
l.
1
2
,
n
o
.
8
,
p
p
.
6
3
3
2
–
6
3
3
7
,
A
u
g
.
2
0
1
4
.
[1
9
]
E.
S
y
a
h
ru
l,
“
L
o
ss
les
s
a
n
d
n
e
a
rly
-
lo
ss
les
s
i
m
a
g
e
c
o
m
p
re
ss
io
n
b
a
se
d
o
n
c
o
m
b
in
a
to
r
ial
tran
sf
o
rm
s
”
,
Un
iv
e
rsité
d
e
Bo
u
rg
o
g
n
e
,
2
0
1
1
.
[2
0
]
A
.
A
lara
b
e
y
y
a
t
e
t
a
l.
,
“
L
o
ss
les
s I
m
a
g
e
Co
m
p
re
ss
io
n
T
e
c
h
n
iq
u
e
Us
in
g
Co
m
b
in
a
ti
o
n
M
e
th
o
d
s”
,
J
.
S
o
ft
w.
En
g
.
A
p
p
l
.
,
v
o
l.
5
,
n
o
.
1
0
,
p
.
7
5
2
,
2
0
1
2
.
[2
1
]
M
.
Eff
ro
s,
“
P
P
M
p
e
rf
o
rm
a
n
c
e
w
it
h
B
W
T
c
o
m
p
lex
it
y
:
A
n
e
w
m
e
th
o
d
f
o
r
lo
ss
les
s
d
a
ta
c
o
m
p
re
ss
io
n
”
,
in
Da
t
a
Co
mp
re
ss
io
n
C
o
n
fer
e
n
c
e
,
2
0
0
0
.
Pro
c
e
e
d
in
g
s.
DCC 2
0
0
0
,
2
0
0
0
,
p
p
.
2
0
3
–
2
1
2
.
[2
2
]
J.
A
b
e
l,
“
I
m
p
ro
v
e
m
e
n
ts
to
th
e
Bu
rro
w
s
-
W
h
e
e
ler
c
o
m
p
re
ss
io
n
a
lg
o
rit
h
m
:
Af
ter
B
WT
sta
g
e
s
”
,
ACM
T
ra
n
s
Co
mp
u
t
.
S
y
st.
,
2
0
0
3
.
[2
3
]
J.
Du
d
a
,
“
A
s
y
m
m
e
tri
c
n
u
m
e
ra
l
s
y
ste
m
s”
,
ArXi
v
Pre
p
r.
ArXi
v
0
9
0
2
0
2
7
1
,
2
0
0
9
.
[2
4
]
J.
Du
d
a
,
“
A
s
y
m
m
e
tri
c
n
u
m
e
ra
l
s
y
ste
m
s:
e
n
tro
p
y
c
o
d
in
g
c
o
m
b
in
i
n
g
sp
e
e
d
o
f
Hu
f
fm
a
n
c
o
d
i
n
g
w
it
h
c
o
m
p
re
ss
io
n
ra
te o
f
a
rit
h
m
e
ti
c
c
o
d
in
g
”
,
ArXi
v
Pre
p
r.
ArXi
v
1
3
1
1
2
5
4
0
,
2
0
1
3
.
[2
5
]
H.
M
e
sra
,
H.
T
jan
d
ra
sa
,
a
n
d
C.
F
a
ti
c
h
a
h
,
“
A
n
e
w
a
p
p
ro
a
c
h
f
o
r
lo
ss
les
s
i
m
a
g
e
c
o
m
p
re
s
sio
n
u
si
n
g
Re
v
e
r
sib
le
Co
n
tras
t
M
a
p
p
i
n
g
(RCM
)”
,
p
re
se
n
ted
a
t
th
e
In
tern
a
t
io
n
a
l
Co
n
f
e
re
n
c
e
o
f
In
f
o
rm
a
ti
o
n
,
Co
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
lo
g
y
a
n
d
S
y
ste
m
(ICT
S
),
2
0
1
4
,
2
0
1
4
,
p
p
.
7
1
–
7
6
.
[2
6
]
D.
Co
lt
u
c
a
n
d
J.
-
M
.
Ch
a
ss
e
ry
,
“
V
e
ry
f
a
st
w
a
ter
m
a
rk
in
g
b
y
re
v
e
rsib
le
c
o
n
tras
t
m
a
p
p
in
g
”
,
S
ig
n
a
l
Pro
c
e
ss
.
L
e
tt
.
IEE
E
,
v
o
l.
1
4
,
n
o
.
4
,
p
p
.
2
5
5
–
2
5
8
,
2
0
0
7
.
[2
7
]
He
n
d
ra
M
e
sra
,
Ha
n
d
a
y
a
n
i
T
j
a
n
d
ra
sa
,
a
n
d
Ch
a
stin
e
F
a
ti
c
h
a
h
,
“
L
o
ss
les
s
I
m
a
g
e
Co
m
p
re
ss
io
n
M
e
th
o
d
Us
in
g
Re
v
e
rsib
le L
o
w
Co
n
stra
st M
a
p
p
i
n
g
(RL
CM
)”
,
J
AT
IT
J
.
,
v
o
l
.
8
6
,
n
o
.
1
,
2
0
1
6
.
[2
8
]
He
n
d
ra
,
“
Re
v
e
rsib
le W
a
ter
m
a
rk
i
n
g
Us
in
g
In
teg
e
r
T
ra
n
s
f
o
rm
”
,
T
h
e
sis,
Un
iv
e
rsitas
G
a
d
jah
M
a
d
a
,
2
0
0
8
.
[2
9
]
M.
H.
A
lsu
w
a
i
y
e
l,
Al
g
o
rit
h
ms
:
De
sig
n
T
e
c
h
n
i
q
u
e
s a
n
d
An
a
lys
is
.
W
o
rld
S
c
ien
ti
f
ic,
1
9
9
9
.
[3
0
]
K.
S
a
y
o
o
d
a
n
d
S
.
Na
,
“
Re
c
u
rsiv
e
ly
in
d
e
x
e
d
q
u
a
n
ti
z
a
ti
o
n
o
f
m
e
m
o
r
y
l
e
ss
so
u
rc
e
s”
,
In
f.
T
h
e
o
ry
IEE
E
T
ra
n
s.
On
,
v
o
l.
3
8
,
n
o
.
5
,
p
p
.
1
6
0
2
–
1
6
0
9
,
1
9
9
2
.
[3
1
]
S
.
S
a
h
n
i,
B.
C.
V
e
m
u
ri,
F
.
Ch
e
n
,
C.
Ka
p
o
o
r,
C.
L
e
o
n
a
rd
,
a
n
d
J.
F
it
z
sim
m
o
n
s,
“
S
tate
o
f
th
e
a
rt
lo
ss
les
s
im
a
g
e
c
o
m
p
re
ss
io
n
a
lg
o
rit
h
m
s
”
,
in
IEE
E
Pro
c
e
e
d
in
g
s
o
f
t
h
e
In
ter
n
a
t
io
n
a
l
Co
n
fer
e
n
c
e
o
n
Ima
g
e
Pro
c
e
ss
in
g
,
1
9
9
7
,
p
p
.
948
–
9
5
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.