I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
6
1
4
~
2
6
2
6
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
5
.
p
p
2
6
1
4
-
2
626
2614
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
A Mix
ed Bina
ry
-
Rea
l NS
G
A II
Al
g
o
rith
m
Ensu
ring
B
o
th
Accuracy
and In
t
erpret
a
bili
ty o
f
a
Neuro
-
F
u
zz
y
Con
troller
F
a
o
uzi Ti
t
el
1
,
K
ha
led B
ela
rbi
2
1
De
p
a
rtme
n
t
o
f
El
e
c
tro
n
ics
,
F
a
c
u
l
ty
o
f
sc
ien
c
e
o
f
th
e
tec
h
n
o
lo
g
y
,
Un
iv
e
rsity
o
f
F
rè
re
s
M
e
n
to
u
ri
C
o
n
s
tan
ti
n
e
,
A
lg
e
ria
2
De
p
a
rtme
n
t
o
f
E.
E.
A
,
Eco
le Na
ti
o
n
a
le
P
o
ly
tec
h
n
iq
u
e
d
e
C
o
n
sta
n
ti
n
e
,
A
lg
e
ria
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
1
,
2
0
1
7
R
ev
i
s
ed
Mar
13
,
2
0
1
7
A
cc
ep
ted
Ma
y
2
6
,
2
0
1
7
In
th
is
w
o
rk
,
a
Ne
u
ro
-
F
u
z
z
y
Co
n
tro
ll
e
r
n
e
tw
o
rk
,
c
a
ll
e
d
NFC
th
a
t
i
m
p
le
m
e
n
ts
a
M
a
m
d
a
n
i
f
u
z
z
y
in
f
e
re
n
c
e
s
y
ste
m
is
p
ro
p
o
se
d
.
T
h
is
n
e
tw
o
rk
in
c
lu
d
e
s
n
e
u
ro
n
s
a
b
le
to
p
e
rf
o
rm
f
u
n
d
a
m
e
n
tal
f
u
z
z
y
o
p
e
ra
ti
o
n
s.
C
o
n
n
e
c
ti
o
n
s
b
e
tw
e
e
n
n
e
u
ro
n
s
a
re
w
e
ig
h
ted
th
ro
u
g
h
b
in
a
r
y
a
n
d
re
a
l
w
e
ig
h
ts.
T
h
e
n
a
m
i
x
e
d
b
i
n
a
ry
-
re
a
l
N
o
n
d
o
m
in
a
ted
S
o
rti
n
g
G
e
n
e
ti
c
A
lg
o
rit
h
m
II
(NS
GA
II)
i
s
u
se
d
to
p
e
rf
o
r
m
b
o
th
a
c
c
u
ra
c
y
a
n
d
in
ter
p
re
tab
il
it
y
o
f
th
e
NFC
b
y
m
in
im
izin
g
t
w
o
o
b
jec
ti
v
e
f
u
n
c
ti
o
n
s;
o
n
e
o
b
jec
ti
v
e
re
lat
e
s
to
th
e
n
u
m
b
e
r
o
f
ru
les
,
f
o
r
c
o
m
p
a
c
tn
e
ss
,
w
h
il
e
th
e
se
c
o
n
d
is
th
e
m
e
a
n
sq
u
a
re
e
rro
r,
f
o
r
a
c
c
u
ra
c
y
.
In
or
d
e
r
t
o
p
re
se
rv
e
in
terp
re
tab
il
it
y
o
f
f
u
z
z
y
ru
les
d
u
rin
g
t
h
e
o
p
ti
m
iza
ti
o
n
p
ro
c
e
ss
,
so
m
e
c
o
n
stra
in
ts
a
re
imp
o
se
d
.
T
h
e
a
p
p
r
o
a
c
h
is
tes
ted
o
n
tw
o
c
o
n
tro
l
e
x
a
m
p
les
:
a
sin
g
le
in
p
u
t
sin
g
le
o
u
tp
u
t
(S
IS
O)
sy
ste
m
a
n
d
a
m
u
lt
iv
a
riab
le (M
IM
O) s
y
ste
m
.
K
ey
w
o
r
d
:
Fu
zz
y
in
f
er
en
ce
s
y
s
te
m
Mu
ltio
b
j
ec
tiv
e
o
p
ti
m
izatio
n
Neu
r
o
-
f
u
zz
y
c
o
n
tr
o
ller
NSG
A
I
I
P
ar
eto
o
p
tim
al
s
o
lu
tio
n
s
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Fao
u
zi
T
itel
,
Dep
ar
t
m
en
t o
f
E
lectr
o
n
ics,
Fa
cu
lt
y
o
f
s
cie
n
ce
o
f
t
h
e
tech
n
o
l
o
g
y
,
Un
i
v
er
s
it
y
o
f
f
r
èr
es M
E
NT
OURI
C
o
n
s
ta
n
ti
n
e,
R
o
u
te
d
e
A
in
el
B
e
y
,
C
o
n
s
tan
t
in
e,
25000,
A
lg
er
ia
E
m
ail:
f
_
titel
@
y
a
h
o
o
.
f
r
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
u
b
iq
u
ito
u
s
tr
ad
e
-
o
f
f
b
et
wee
n
s
y
s
te
m
ac
c
u
r
ac
y
a
n
d
co
m
p
lex
it
y
is
p
ar
t
icu
lar
l
y
i
m
p
o
r
tan
t
i
n
f
u
zz
y
s
y
s
te
m
s
[
1
]
-
[
3
]
.
C
o
m
p
lex
it
y
,
r
elate
d
to
th
e
in
ter
p
r
etab
ilit
y
o
f
t
h
e
f
u
zz
y
s
y
s
te
m
,
is
d
eter
m
in
ed
b
y
t
h
e
co
m
p
ac
t
n
es
s
,
co
n
s
id
er
ed
th
r
o
u
g
h
t
h
e
n
u
m
b
er
o
f
r
u
les
i
n
t
h
e
r
u
le
b
ase,
th
e
n
u
m
b
er
o
f
in
p
u
t
v
ar
iab
les
i
n
v
o
lv
ed
in
ea
ch
r
u
le
an
d
d
is
t
in
g
u
is
h
a
b
ilit
y
o
f
t
h
e
f
u
zz
y
s
e
ts
[
1
]
.
Nu
m
er
o
u
s
ap
p
r
o
ac
h
es
h
av
e
b
ee
n
s
u
g
g
ested
f
o
r
d
ea
lin
g
w
it
h
th
is
p
r
o
b
lem
a
n
d
to
in
cr
ea
s
e
th
e
in
ter
p
r
etab
ilit
y
o
f
f
u
zz
y
s
y
s
te
m
s
.
T
h
ese
ap
p
r
o
ac
h
es
ar
e
m
ai
n
l
y
b
ased
o
n
a
s
u
itab
le
s
tr
u
ctu
r
e
o
f
t
h
e
f
u
zz
y
s
y
s
te
m
(
e.
g
.
a
h
y
b
r
id
s
tr
u
ct
u
r
e)
[
4
]
-
[
1
0
]
o
r
o
n
t
h
e
u
s
e
o
f
s
p
ec
i
fic
tr
ain
i
n
g
al
g
o
r
ith
m
(
e.
g
.
m
e
th
o
d
s
in
th
e
f
ield
o
f
m
u
ltio
b
j
ec
tiv
e
o
p
ti
m
izat
io
n
o
r
ev
o
lu
ti
o
n
ar
y
o
p
ti
m
izatio
n
)
[
1
1
]
-
[
1
7
]
.
I
n
th
is
w
o
r
k
,
a
Neu
r
o
-
Fu
zz
y
co
n
tr
o
ller
(
NFC
)
is
ad
o
p
t
ed
f
o
r
im
p
le
m
en
t
in
g
a
Ma
m
d
an
i
f
u
zz
y
in
f
er
en
ce
s
y
s
te
m
(
F
I
S),
t
h
e
ai
m
o
f
o
u
r
m
et
h
o
d
is
n
o
t
o
n
l
y
t
o
ac
h
iev
e
ap
p
r
o
p
r
iate
ac
cu
r
ac
y
o
f
th
e
co
n
tr
o
ller
,
b
u
t
also
to
en
s
u
r
e
t
h
e
p
o
s
s
ib
ilit
y
o
f
in
ter
p
r
etab
ilit
y
o
f
t
h
e
k
n
o
w
led
g
e
w
it
h
in
it.
So
,
i
n
o
r
d
er
to
g
u
ar
a
n
t
y
co
m
p
lete
n
e
s
s
o
f
f
u
zz
y
p
ar
titi
o
n
s
,
a
s
p
ec
ial
p
ar
titi
o
n
i
n
g
u
s
in
g
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
i
s
ad
o
p
ted
.
T
h
en
,
a
n
i
m
p
r
o
v
ed
m
u
ltio
b
j
ec
tiv
e
P
ar
eto
b
ased
g
e
n
etic
alg
o
r
ith
m
ca
lled
Mi
x
ed
B
in
ar
y
-
R
e
al
No
n
d
o
m
in
ated
So
r
tin
g
Ge
n
etic
A
l
g
o
r
ith
m
I
I
(
NSG
A
I
I
)
is
u
s
ed
f
o
r
b
o
th
p
ar
a
m
eter
an
d
s
tr
u
ct
u
r
e
o
p
ti
m
i
za
tio
n
o
f
th
e
NF
C
.
T
w
o
o
b
j
ec
tiv
es
ar
e
in
v
o
lv
ed
i
n
t
h
e
o
p
ti
m
izatio
n
p
r
o
ce
s
s
:
e
x
tr
ac
t
a
r
ed
u
ce
d
n
u
m
b
er
o
f
r
u
les
in
th
e
r
u
le
b
ase
an
d
r
ed
u
ce
t
h
e
m
ea
n
s
q
u
ar
e
er
r
o
r
.
T
h
is
p
ap
er
is
o
r
g
an
ize
d
as
f
o
llo
w
s
.
I
n
s
ec
tio
n
I
I
,
a
NFC
s
tr
u
c
tu
r
e
i
s
in
tr
o
d
u
ce
d
.
T
h
e
m
u
l
tio
b
j
ec
tiv
e
alg
o
r
it
h
m
s
o
l
u
tio
n
p
r
o
ce
d
u
r
e
is
p
r
esen
ted
i
n
s
ec
tio
n
I
I
I
.
Sectio
n
I
V
p
r
esen
ts
th
e
ap
p
licatio
n
to
t
w
o
ex
a
m
p
l
es:
T
h
e
co
n
tr
o
l
o
f
th
e
p
o
le
an
d
ca
r
t
s
y
s
te
m
an
d
co
n
tr
o
l
o
f
a
h
elico
p
ter
s
i
m
u
lato
r
m
o
d
el.
Fi
n
all
y
,
s
ec
t
io
n
V
g
iv
e
s
th
e
co
n
cl
u
s
io
n
o
f
t
h
is
p
ap
er
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mi
xe
d
B
in
a
r
y
-
R
ea
l NS
GA
I
I
A
lg
o
r
ith
m
E
n
s
u
r
in
g
b
o
th
A
cc
u
r
a
cy
a
n
d
I
n
terp
r
eta
b
ilit
y
…
(
F
a
o
u
z
i Titel
)
2615
2.
ST
RUC
T
UR
E
O
F
T
H
E
N
E
URO
F
U
Z
Z
Y
CO
NT
RO
L
L
E
R
T
h
is
s
ec
tio
n
p
r
ese
n
ts
a
Neu
r
o
-
F
u
zz
y
C
o
n
tr
o
ller
n
et
w
o
r
k
,
c
alled
NFC
t
h
at
i
m
p
le
m
en
ts
a
Ma
m
d
an
i
FIS.
A
s
ch
e
m
atic
d
iag
r
a
m
o
f
t
h
e
p
r
o
p
o
s
ed
NFC
s
tr
u
c
tu
r
e
is
s
h
o
w
n
i
n
Fig
u
r
e
1
.
Fo
r
th
e
s
i
m
p
licit
y
o
f
p
r
esen
tatio
n
,
NFC
w
it
h
a
n
y
n
u
m
b
er
o
f
i
n
p
u
t
s
b
u
t
o
n
l
y
o
n
e
o
u
tp
u
t
i
s
d
ev
e
lo
p
ed
.
T
h
e
NFC
s
y
s
te
m
co
n
s
is
t
s
o
f
f
i
v
e
la
y
er
s
:
a
n
i
n
p
u
t
la
y
er
,
a
m
e
m
b
er
s
h
ip
(
f
u
zz
i
f
icatio
n
)
lay
er
,
A
N
D
la
y
er
,
OR
la
y
er
an
d
a
d
ef
f
u
zi
f
icatio
n
la
y
er
.
Nex
t
w
e
s
h
all
i
n
d
icate
t
h
e
s
i
g
n
a
l p
r
o
p
ag
atio
n
an
d
o
p
er
atio
n
f
u
n
ct
io
n
s
o
f
th
e
n
o
d
es i
n
ea
ch
la
y
er
.
Fig
u
r
e
1
.
Stru
ctu
r
e
o
f
t
h
e
p
r
o
p
o
s
ed
NFC
Fig
u
r
e
2
.
T
r
ian
g
u
lar
s
y
m
m
etr
i
c
p
ar
titi
o
n
in
g
o
f
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e
w
i
th
t
h
r
ee
f
u
zz
y
s
u
b
s
et
s
L
a
y
er
1
(
in
p
u
t
la
y
er
)
:
T
h
e
n
o
d
es
in
th
is
la
y
er
ar
e
in
p
u
t
n
o
d
es
w
it
h
cr
is
p
in
p
u
t
,
=
1
…
,
th
e
y
ar
e
tr
an
s
m
is
s
io
n
n
o
d
es,
th
e
y
o
n
l
y
tr
an
s
m
it i
n
p
u
t
v
al
u
es to
th
e
n
e
x
t la
y
er
.
=
(
1
)
L
a
y
er
2
(
f
u
zz
i
f
icatio
n
la
y
er
)
:
No
d
es
at
th
is
la
y
er
co
m
p
u
te
t
h
e
v
al
u
e
o
f
th
e
m
e
m
b
er
s
h
ip
f
u
n
ct
io
n
o
f
in
p
u
t
s
v
i
.
A
ll
n
o
d
es
co
n
n
ec
te
d
to
th
e
s
a
m
e
i
n
p
u
t
n
o
d
e
h
av
e
th
e
s
a
m
e
w
ei
g
h
t
L
i
co
r
r
esp
o
n
d
in
g
to
t
h
e
ce
n
tr
a
l
p
ar
t
o
f
th
e
u
n
iv
er
s
e
o
f
d
is
co
u
r
s
e
o
f
in
p
u
t
v
ar
iab
les.
I
n
o
r
d
er
to
g
u
ar
an
t
y
co
m
p
lete
n
es
s
an
d
d
i
s
tin
g
u
is
h
ab
ilit
y
o
f
f
u
zz
y
p
ar
titi
o
n
s
,
a
tr
ian
g
u
la
r
s
y
m
m
etr
ic
p
ar
titi
o
n
i
n
g
is
u
s
ed
as
s
h
o
w
n
i
n
Fi
g
u
r
e
2
.
T
h
e
o
u
tp
u
t
o
f
n
o
d
e
(
i,j
)
is
g
i
v
e
n
b
y
:
μ
A
ij
(
v
i
)
=
{
v
i
(
N
i
−
1
L
i
⁄
)
+
(
N
i
−
1
2
⁄
)
−
j
+
2
,
if
a
ij
−
1
<
v
i
<
a
ij
−
v
i
(
N
i
−
1
L
i
⁄
)
−
(
N
i
−
1
2
⁄
)
+
j
,
if
a
ij
<
v
i
<
a
ij
+
1
1
,
v
i
<
a
i1
ou
v
i
>
a
iNi
(
2
)
W
ith
f
u
zz
y
s
u
b
s
et
s
,
=
1
,
.
.
.
,
;
=
1
,
.
.
.
,
,
th
e
n
u
m
b
er
o
f
f
u
zz
y
s
ets
ass
o
ciat
ed
w
it
h
v
ar
iab
le
i
,
an
d
th
e
s
u
m
m
its
o
f
th
e
f
u
zz
y
s
et
s
ar
e
g
iv
e
n
b
y
:
=
(
−
(
1
2
⁄
)
+
(
(
−
1
)
(
−
1
)
)
)
⁄
,
ℎ
=
1
,
…
,
=
1
,
…
,
(
3
)
L
a
y
er
3
(
A
ND
la
y
er
)
:
E
ac
h
n
o
d
e
o
f
th
is
la
y
er
r
ep
r
esen
ts
a
f
u
zz
y
r
u
le.
T
h
e
f
o
llo
w
in
g
A
ND
o
p
er
atio
n
is
ap
p
lied
to
ea
ch
r
u
le
n
o
d
e:
=
1
1
(
1
)
.
2
2
(
2
)
…
(
)
,
=
1
…
,
=
1
…
,
=
1
…
∏
=
1
(
4
)
L
a
y
er
4
(
OR
lay
er
)
:
I
n
th
i
s
la
y
er
,
r
u
les
w
it
h
th
e
s
a
m
e
co
n
s
e
q
u
en
ce
ar
e
in
teg
r
ated
th
r
o
u
g
h
th
e
f
u
zz
y
OR
o
p
er
atio
n
w
h
ic
h
is
i
m
p
le
m
en
ted
b
y
:
=
1
−
∏
(
1
−
)
,
=
1
,
…
,
=
1
(
5
)
W
h
er
e
ar
e
th
e
b
in
ar
y
w
ei
g
h
t
s
ass
o
ciate
d
w
it
h
n
o
d
e
k
o
f
t
h
e
A
ND
la
y
er
an
d
n
o
d
e
l
o
f
t
h
e
OR
la
y
er
,
nu
m
b
er
o
f
n
o
d
es
in
th
e
AND
la
y
er
an
d
th
e
n
u
m
b
e
r
o
f
f
u
zz
y
s
et
s
as
s
o
ciate
d
w
it
h
t
h
e
o
u
tp
u
t
A
N
D
L
ay
e
r
X
n
X
1
I
n
p
u
t
L
ay
e
r
F
u
z
z
if
ic
at
i
on
OR
La
y
er
y
W
i
j
m
i
D
e
f
f
u
z
if
ic
at
i
on
L
1
L
n
0
1
A
i
1
A
i
2
A
i
3
v
i
μ(v
i
)
a
i1
a
i2
a
i3
L
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
:
2
6
1
4
–
2
6
2
6
2616
v
ar
iab
le.
Sin
ce
o
n
e
r
u
le
h
a
s
o
n
l
y
o
n
e
co
n
s
eq
u
e
n
ce
,
W
kl
m
u
s
t b
e
b
in
ar
y
:
∈
{
0
,
1
}
∀
,
(
6
)
L
a
y
er
5
(
d
ef
f
u
zi
f
ac
atio
n
la
y
er
)
:
n
o
d
e
at
t
h
is
la
y
er
r
ea
lize
s
th
e
d
e
f
f
u
zi
f
icat
io
n
o
p
er
atio
n
u
s
in
g
t
h
e
ce
n
ter
o
f
g
r
a
v
it
y
r
u
le
=
∑
=
1
∑
=
1
⁄
(
7
)
W
h
er
e
ar
e
r
ea
l
w
ei
g
h
ts
co
r
r
esp
o
n
d
in
g
to
th
e
ce
n
ter
s
o
f
t
h
e
tr
ian
g
u
lar
f
u
zz
y
s
ets
o
f
t
h
e
o
u
tp
u
t
v
ar
iab
le
an
d
ca
n
b
e
ex
p
r
ess
ed
b
y
:
=
(
−
1
2
+
−
1
−
1
)
,
=
1
,
…
,
(
8
)
W
h
er
e
is
th
e
ce
n
tr
al
p
ar
t
w
id
t
h
o
f
t
h
e
o
u
tp
u
t
v
ar
iab
le
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e.
3.
SO
L
U
T
I
O
N
US
I
N
G
M
UL
T
I
O
B
J
E
CT
I
V
E
A
L
G
O
RI
T
H
M
3
.
1
.
P
r
o
ble
m
def
i
nitio
n
T
h
e
p
r
ev
io
u
s
s
ec
tio
n
d
escr
ib
e
s
a
s
tr
u
ct
u
r
e
o
f
a
NF
C
t
h
at
i
m
p
le
m
en
t
s
a
Ma
m
d
a
n
i
f
u
zz
y
i
n
f
er
e
n
ce
s
y
s
te
m
.
A
m
u
l
ti
in
p
u
t
o
n
e
o
u
tp
u
t
Ma
m
d
a
n
i
s
y
s
te
m
is
co
m
p
o
s
ed
o
f
r
u
le
s
w
ith
f
u
z
z
y
co
n
s
eq
u
e
n
ce
s
.
A
1
j
1
,
A
2
j
2
,
…
,
A
n
j
n
an
d
ar
e
r
esp
ec
tiv
el
y
f
u
zz
y
s
e
t
s
ass
o
ciate
d
w
i
th
t
h
e
f
u
zz
y
i
n
p
u
t
v
ar
iab
les
an
d
th
e
f
u
zz
y
o
u
tp
u
t
v
ar
iab
le.
∈
{
0
,
1
}
ar
e
b
in
ar
y
weig
h
ts
t
h
at
m
o
d
el
t
h
e
co
n
s
eq
u
en
ce
o
f
a
r
u
le
s
u
c
h
t
h
at
=
1
if
r
u
le
i h
as c
o
n
s
eq
u
e
n
ce
an
d
0
o
th
er
w
is
e.
Mo
r
eo
v
er
if
t
h
e
g
r
a
n
u
lar
it
y
o
f
th
e
o
u
tp
u
t
f
u
zz
y
v
ar
iab
le
i
s
M
th
e
n
i
f
=
0
f
o
r
=
1
…
,
r
u
le
i
h
av
e
n
o
co
n
s
eq
u
e
n
ce
an
d
is
n
o
t
in
clu
d
ed
in
th
e
r
u
le
b
ase.
T
h
e
m
a
x
i
m
u
m
p
o
s
s
ib
le
n
u
m
b
er
o
f
r
u
les
is
g
i
v
e
n
b
y
all
co
m
b
in
atio
n
s
o
f
a
n
tece
d
en
t
v
ar
iab
les f
u
zz
y
s
ets a
n
d
is
:
=
1
×
2
×
…
×
×
…
(
9
)
W
ith
,
=
1
…
,
th
e
n
u
m
b
er
o
f
f
u
zz
y
s
et
s
ass
o
ciate
d
w
it
h
in
p
u
t
v
ar
iab
le
.
Sin
ce
r
u
le
i
h
av
e
at
m
o
s
t o
n
e
co
n
s
eq
u
e
n
ce
,
w
e
h
a
v
e
th
e
co
n
s
tr
ai
n
ts
:
∑
≤
1
=
1
(
1
0
)
T
h
e
to
tal
n
u
m
b
er
o
f
r
u
les is
t
h
u
s
:
=
∑
∑
=
1
=
1
(
1
1
)
T
h
e
d
eg
r
ee
s
o
f
f
r
ee
d
o
m
o
f
s
u
ch
a
s
y
s
te
m
ar
e
th
e
n
u
m
b
er
o
f
f
u
zz
y
s
et
s
f
o
r
ea
ch
f
u
zz
y
v
a
r
iab
le
,
th
e
b
in
ar
y
v
ar
iab
les
d
ef
in
i
n
g
th
e
r
u
les
an
d
th
e
r
ea
l
p
ar
am
et
er
s
an
d
o
f
th
e
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
i
n
p
u
t a
n
d
o
u
tp
u
t
v
ar
iab
les r
esp
ec
tiv
el
y
.
T
h
e
m
o
s
t
g
e
n
er
al
m
o
d
ellin
g
p
r
o
b
lem
ca
n
b
e
e
x
p
r
ess
ed
as
f
i
n
d
in
g
all
t
h
ese
p
ar
a
m
eter
s
i
n
o
r
d
er
to
ac
h
iev
e
a
ce
r
tai
n
d
eg
r
ee
o
f
ac
cu
r
ac
y
an
d
a
co
m
p
ac
t
r
u
le
b
ase.
T
h
is
is
f
o
r
m
u
late
d
as
t
w
o
o
b
j
ec
tiv
e
o
p
ti
m
izatio
n
p
r
o
b
le
m
s
:
Fin
d
,
=
1
…
,
,
,
an
d
s
o
th
at
(
(
1
=
1
∑
(
(
)
)
2
=
1
)
,
(
2
=
∑
∑
=
1
=
1
)
)
(
12
)
W
ith
(
)
is
th
e
er
r
o
r
at
t,
an
d
T
is
th
e
ti
m
e
h
o
r
izo
n
.
C
lear
l
y
it
is
p
o
s
s
ib
le
to
s
o
lv
e
th
is
m
o
n
o
lit
h
ic
p
r
o
b
lem
as
a
w
h
o
le.
Ho
w
e
v
er
th
is
s
o
l
u
tio
n
p
r
o
ce
d
u
r
e
m
a
y
lac
k
f
lex
ib
ilit
y
a
n
d
m
a
y
n
o
t
b
e
d
esira
b
le
at
least
f
o
r
tw
o
r
ea
s
o
n
s
.
First,
it
lead
s
to
a
q
u
ite
co
m
p
li
ca
ted
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mi
xe
d
B
in
a
r
y
-
R
ea
l NS
GA
I
I
A
lg
o
r
ith
m
E
n
s
u
r
in
g
b
o
th
A
cc
u
r
a
cy
a
n
d
I
n
terp
r
eta
b
ilit
y
…
(
F
a
o
u
z
i Titel
)
2617
s
o
lu
tio
n
p
r
o
ce
d
u
r
e
in
ter
m
s
o
f
d
i
m
e
n
s
io
n
alit
y
a
n
d
d
ata
s
tr
u
ctu
r
e.
Seco
n
d
an
d
m
o
r
e
i
m
p
o
r
tan
tl
y
,
i
t
leav
e
s
n
o
d
esig
n
alter
n
ati
v
e
s
f
o
r
th
e
d
e
cisi
o
n
m
ak
er
.
T
h
e
p
r
o
b
lem
is
th
u
s
r
ec
ast
as
f
in
d
i
n
g
th
e
r
ea
l
p
ar
am
eter
s
,
an
d
th
e
b
in
ar
y
w
ei
g
h
t
s
.
3
.
2
.
A
m
i
x
ed
bi
na
ry
-
re
a
l N
SG
A
I
I
m
u
lt
io
bje
ct
iv
e
a
lg
o
rit
h
m
Mu
ltio
b
j
ec
tiv
e
alg
o
r
it
h
m
s
ar
e
b
ased
o
n
th
e
co
n
ce
p
ts
o
f
P
ar
eto
o
p
tim
ali
t
y
w
h
ic
h
is
d
e
f
in
e
d
in
ter
m
s
o
f
d
o
m
in
a
n
ce
.
Gi
v
en
a
m
i
n
i
m
i
za
tio
n
p
r
o
b
lem
w
i
th
v
ec
to
r
-
v
a
lu
ed
o
b
j
ec
tiv
e
f
u
n
ctio
n
:
(
)
=
(
1
(
)
,
2
(
)
,
…
,
(
)
)
(1
3
)
1
is
s
aid
to
d
o
m
i
n
ate
2
if
f
:
{
(
1
)
≤
(
2
)
,
∀
∈
1
,
…
,
∃
∈
1
,
…
,
,
(
1
)
<
(
2
)
(1
4
)
T
h
e
m
u
l
tio
b
j
ec
tiv
e
p
r
o
b
lem
is
s
ta
ted
as
a
m
u
ltio
b
j
ec
tiv
e
o
p
ti
m
izatio
n
s
tate
m
e
n
t,
i
n
w
h
ic
h
,
t
h
e
o
p
tim
izatio
n
i
m
p
lies
to
f
i
n
d
a
s
et
o
f
n
o
n
-
d
o
m
in
ated
s
o
l
u
tio
n
s
to
ap
p
r
o
x
im
ate
t
h
e
P
ar
eto
f
r
o
n
t,
w
h
er
e
all
th
e
s
o
lu
ti
o
n
s
ar
e
P
ar
eto
-
o
p
ti
m
al.
I
n
t
h
is
s
t
u
d
y
,
t
h
e
NSG
A
-
I
I
alg
o
r
ith
m
w
it
h
ce
r
tai
n
m
o
d
i
f
icat
io
n
s
is
ap
p
lied
to
s
ettle
th
e
m
u
ltio
b
j
ec
tiv
e
p
r
o
b
lem
s
et
i
n
th
e
p
r
ev
io
u
s
s
ec
t
io
n
.
NSG
A
-
I
I
[
1
8
]
alg
o
r
ith
m
i
s
an
i
m
p
r
o
v
ed
v
er
s
io
n
o
f
n
o
d
o
m
i
n
ated
s
o
r
tin
g
g
en
et
ic
al
g
o
r
ith
m
(
NS
G
A
)
w
h
ic
h
u
s
es
a
f
a
s
t
n
o
n
-
d
o
m
i
n
ated
s
o
r
ti
n
g
p
r
o
ce
d
u
r
e
an
d
a
n
elitis
t p
r
eser
v
i
n
g
ap
p
r
o
ac
h
an
d
h
as n
o
n
ic
h
i
n
g
o
p
er
ato
r
p
a
r
a
m
eter
s
.
A
t
f
ir
s
t,
t
h
e
p
o
p
u
latio
n
is
i
n
it
ialized
as
u
s
u
al,
an
d
th
e
n
it
i
s
s
o
r
ted
b
ased
o
n
a
f
ast
n
o
n
-
d
o
m
i
n
ated
s
o
r
tin
g
to
r
an
k
th
e
p
o
p
u
l
atio
n
f
r
o
n
ts
.
I
n
t
h
i
s
p
r
o
ce
d
u
r
e,
tw
o
en
titi
e
s
ar
e
ca
lcu
lated
f
o
r
ea
ch
in
d
iv
id
u
al
(
)
;
th
e
d
o
m
i
n
atio
n
co
u
n
t
(
)
w
h
ic
h
i
n
d
i
ca
tes
th
e
n
u
m
b
er
o
f
i
n
d
iv
id
u
a
ls
th
at
d
o
m
in
ate
th
e
i
n
d
iv
id
u
a
l
(
)
an
d
th
e
s
et
o
f
in
d
i
v
id
u
a
ls
(
)
th
at
th
e
i
n
d
i
v
id
u
al
(
)
d
o
m
i
n
ate
s
.
On
ce
th
e
n
o
n
-
d
o
m
i
n
ated
s
o
r
t
is
co
m
p
lete,
a
p
ar
am
eter
ca
l
led
cr
o
w
d
i
n
g
d
is
ta
n
ce
is
ca
lc
u
lated
f
o
r
ea
ch
i
n
d
iv
id
u
al,
a
n
d
t
h
en
to
u
r
n
a
m
e
n
t
s
elec
tio
n
w
it
h
cr
o
w
ed
co
m
p
ar
i
s
o
n
o
p
er
ato
r
is
m
ad
e
b
et
w
ee
n
t
w
o
in
d
iv
id
u
als
r
an
d
o
m
l
y
s
elec
ted
f
r
o
m
p
ar
en
t
p
o
p
u
latio
n
.
T
h
e
in
d
iv
id
u
al
w
it
h
lo
w
er
f
r
o
n
t
n
u
m
b
er
is
s
elec
ted
if
th
e
t
w
o
i
n
d
iv
id
u
als
co
m
e
f
r
o
m
d
i
f
f
er
en
t
f
r
o
n
ts
.
T
h
e
in
d
iv
i
d
u
al
w
i
th
h
ig
h
er
cr
o
w
d
in
g
d
is
tan
ce
is
s
e
lecte
d
i
f
th
e
t
w
o
in
d
i
v
id
u
al
s
ar
e
f
r
o
m
t
h
e
s
a
m
e
f
r
o
n
t.
T
h
en
,
a
n
e
w
o
f
f
s
p
r
i
n
g
p
o
p
u
la
tio
n
is
g
e
n
er
ated
u
s
i
n
g
th
e
m
o
d
if
ied
g
en
etic
o
p
er
ato
r
s
:
m
i
x
ed
b
in
ar
y
-
r
ea
l
cr
o
s
s
o
v
er
a
n
d
m
u
tatio
n
.
Fin
a
ll
y
,
th
e
co
m
b
i
n
ed
p
o
p
u
la
tio
n
f
o
r
m
ed
b
y
t
h
e
o
f
f
s
p
r
in
g
p
o
p
u
latio
n
a
n
d
t
h
e
p
ar
en
t
p
o
p
u
latio
n
is
s
o
r
ted
ac
co
r
d
in
g
to
n
o
n
-
d
o
m
i
n
atio
n
.
H
er
e,
elitis
m
is
e
n
s
u
r
ed
b
ec
au
s
e
all
p
r
ev
io
u
s
an
d
cu
r
r
en
t
in
d
i
v
id
u
al
s
ar
e
in
cl
u
d
ed
in
th
e
n
e
w
p
o
p
u
latio
n
a
n
d
o
n
l
y
th
e
b
est
in
d
i
v
id
u
a
ls
ar
e
s
elec
ted
as
t
h
e
n
e
w
p
ar
en
t p
o
p
u
latio
n
.
3.
2
.
1.
T
he
po
pu
la
t
io
n ind
iv
i
du
a
l
E
ac
h
in
d
i
v
id
u
al
i
n
th
e
p
o
p
u
la
tio
n
is
co
m
p
o
s
ed
o
f
t
w
o
p
ar
ts
:
th
e
f
ir
s
t
co
n
tai
n
s
t
h
e
r
ea
l
p
ar
a
m
eter
s
o
f
th
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
ass
o
ciate
d
w
it
h
th
e
in
p
u
t
an
d
o
u
tp
u
t
f
u
zz
y
v
ar
iab
les;
th
e
s
ec
o
n
d
co
n
tain
s
th
e
b
in
ar
y
w
ei
g
h
ts
W
ik
t
h
at
m
o
d
el
th
e
r
u
l
e
co
n
s
eq
u
e
n
ce
:
W
h
er
e
th
e
s
u
b
-
c
h
ai
n
:
/
1
2
3
…
/
,
∈
{
0
,
1
}
d
ef
in
e
s
th
e
co
n
s
eq
u
e
n
ce
o
f
r
u
le
i
a
n
d
w
il
l
b
e
ca
lled
a
co
n
s
eq
u
en
ce
s
u
b
-
c
h
ain
in
th
e
s
eq
u
el.
As
m
e
n
tio
n
ed
ab
o
v
e,
co
n
s
tr
ain
t (
1
0
)
,
o
n
l
y
o
n
e
b
in
ar
y
w
e
ig
h
t
in
a
g
i
v
en
co
n
s
eq
u
e
n
ce
s
u
b
-
c
h
ain
ca
n
b
e
eq
u
al
to
o
n
e
an
d
if
all
b
in
ar
y
w
ei
g
h
ts
ar
e
ze
r
o
th
en
t
h
e
ass
o
ciate
d
r
u
le
h
a
s
n
o
co
n
s
eq
u
e
n
ce
a
n
d
i
s
n
o
t
i
n
cl
u
d
ed
in
t
h
e
r
u
le
b
ase
.
T
h
e
len
g
t
h
o
f
co
n
s
eq
u
en
ce
s
u
b
-
c
h
ai
n
is
eq
u
al
to
M,
th
e
g
r
an
u
lar
it
y
o
f
th
e
o
u
tp
u
t
v
ar
iab
le
an
d
t
h
e
to
tal
n
u
m
b
er
o
f
b
in
ar
y
w
eig
h
t
s
is
g
i
v
e
n
by
×
,
th
e
n
u
m
b
er
o
f
p
o
s
s
ib
le
r
u
les
d
ef
i
n
ed
ab
o
v
e.
Mo
r
eo
v
er
,
w
h
e
n
u
s
in
g
b
in
ar
y
r
ep
r
esen
ta
tio
n
o
f
t
h
e
r
u
les,
t
h
er
e
is
n
o
n
ee
d
to
alter
t
h
e
b
asic
d
e
f
i
n
itio
n
s
o
f
t
h
e
g
e
n
etic
o
p
er
ato
r
s
.
I
n
t
h
is
w
o
r
k
,
t
h
e
m
e
m
b
e
r
s
h
ip
f
u
n
ctio
n
s
ar
e
is
o
s
ce
les
tr
ian
g
le
s
u
n
if
o
r
m
l
y
d
is
tr
ib
u
ted
i
n
t
h
e
u
n
iv
er
s
e
o
f
d
is
co
u
r
s
e
as
s
h
o
w
n
in
Fi
g
u
r
e
2
.
T
h
u
s
,
f
o
r
ea
c
h
f
u
zz
y
v
ar
iab
le
w
e
n
ee
d
o
n
l
y
t
o
d
eter
m
in
e
t
h
e
ce
n
tr
al
p
ar
t
o
f
t
h
e
u
n
i
v
er
s
e
o
f
d
i
s
co
u
r
s
e
to
d
ed
u
ce
th
e
u
n
i
f
o
r
m
d
is
tr
ib
u
tio
n
o
f
all
f
u
zz
y
s
et
s
i
n
t
h
e
u
n
i
v
er
s
e
o
f
d
is
co
u
r
s
e.
T
h
is
m
o
d
elli
n
g
w
ill
r
ed
u
ce
c
o
n
s
id
er
ab
ly
t
h
e
len
g
t
h
1
…
11
12
13
…
1
…
1
2
3
…
C
o
n
s
eq
u
en
ce
s
u
b
-
c
h
a
in
s
Th
e
s
ec
o
n
d
P
a
r
t
P
a
r
a
mete
r
s
o
f th
e
mem
b
ers
h
ip
fu
n
ctio
n
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
:
2
6
1
4
–
2
6
2
6
2618
o
f
th
e
i
n
d
iv
id
u
al.
3.
2
.
2.
M
ix
ed
bin
a
ry
-
re
a
l c
r
o
s
s
o
v
er
A
t
w
o
p
o
in
t
cr
o
s
s
o
v
er
i
s
u
s
ed
:
th
e
f
ir
s
t
p
o
in
t
f
all
s
w
it
h
i
n
t
h
e
f
ir
s
t
p
ar
t
o
f
t
h
e
in
d
i
v
i
d
u
al
(
r
ea
l
cr
o
s
s
o
v
er
)
an
d
th
e
s
ec
o
n
d
p
o
in
t
w
it
h
i
n
th
e
s
ec
o
n
d
p
ar
t (
b
in
ar
y
cr
o
s
s
o
v
er
)
.
1
.
R
ea
l
cr
o
s
s
o
v
er
:
p
ar
a
m
eter
s
o
f
t
h
e
f
ir
s
t
p
ar
t
o
f
t
h
e
i
n
d
iv
i
d
u
al
ar
e
r
ea
ll
y
co
d
ed
an
d
an
ex
ten
d
ed
in
ter
m
ed
iate
cr
o
s
s
o
v
er
[
1
9
]
is
u
s
ed
,
th
u
s
t
w
o
o
f
f
s
p
r
in
g
(
1
2
)
ar
e
b
u
ilt
f
r
o
m
t
w
o
p
ar
en
ts
1
an
d
2
as
th
e
f
o
llo
w
i
n
g
:
1
=
1
+
1
(
2
−
1
)
(
1
5
)
2
=
2
+
2
(
1
−
2
)
(
1
6
)
W
h
er
e
is
a
r
an
d
o
m
l
y
c
h
o
s
e
n
v
alu
e
i
n
t
h
e
in
ter
v
al
[
−
0
.
25
,
1
.
25
]
.
T
h
is
cr
o
s
s
o
v
er
is
p
er
f
o
r
m
ed
f
o
r
ea
ch
p
ar
am
eter
o
f
t
h
e
f
ir
s
t p
a
r
t o
f
th
e
in
d
i
v
id
u
a
l.
2
.
B
in
ar
y
cr
o
s
s
o
v
er
:
I
n
o
r
d
er
to
h
an
d
l
e
co
n
s
tr
ain
t
s
(
1
0
)
,
cr
o
s
s
o
v
er
in
th
e
s
ec
o
n
d
p
ar
t
o
f
th
e
in
d
iv
id
u
al
is
al
ter
ed
as f
o
llo
w
s
:
T
h
u
s
,
an
e
x
ch
a
n
g
e
o
f
co
n
s
eq
u
en
ce
s
u
b
-
c
h
ain
s
co
r
r
esp
o
n
d
in
g
to
th
e
cr
o
s
s
o
v
er
p
o
in
t i
s
p
er
f
o
r
m
ed
.
3.
2
.
3.
M
ix
ed
bin
a
ry
-
re
a
l
m
uta
t
io
n
A
n
o
n
-
u
n
i
f
o
r
m
m
u
tatio
n
o
p
er
at
o
r
[
1
9
]
is
ap
p
lied
o
n
th
e
f
ir
s
t
p
ar
t
o
f
th
e
in
d
iv
id
u
al.
I
f
m
u
t
atio
n
f
all
s
in
t
h
e
s
ec
o
n
d
p
ar
t,
as
u
s
u
al,
a
o
n
e
i
s
m
u
ta
ted
to
a
ze
r
o
an
d
a
ze
r
o
is
m
u
tated
to
o
n
e.
Ho
w
e
v
er
i
n
t
h
is
latte
r
ca
s
e,
co
n
s
tr
ain
t
(
1
0
)
m
a
y
b
e
v
io
lated
an
d
w
e
m
a
y
h
a
v
e
t
wo
o
n
e’
s
in
t
h
e
s
a
m
e
co
n
s
eq
u
e
n
ce
s
u
b
-
c
h
ain
,
t
h
e
ass
o
ciate
d
r
u
le
w
ill
h
a
v
e
t
w
o
co
n
s
eq
u
e
n
ce
s
.
I
n
o
r
d
er
to
k
ee
p
(
1
0
)
s
atis
f
ied
,
if
t
h
er
e
ar
e
t
w
o
o
n
e’
s
in
t
h
e
s
a
m
e
co
n
s
eq
u
e
n
ce
s
u
b
-
c
h
ai
n
,
th
e
b
it
th
at
w
as o
n
e
b
e
f
o
r
e
m
u
tatio
n
is
s
et
to
ze
r
o
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mi
xe
d
B
in
a
r
y
-
R
ea
l NS
GA
I
I
A
lg
o
r
ith
m
E
n
s
u
r
in
g
b
o
th
A
cc
u
r
a
cy
a
n
d
I
n
terp
r
eta
b
ilit
y
…
(
F
a
o
u
z
i Titel
)
2619
4.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
T
w
o
ap
p
licati
o
n
ex
a
m
p
les
ar
e
p
r
esen
ted
:
a
co
n
tr
o
ller
d
esig
n
f
o
r
th
e
p
o
le
an
d
ca
r
t
s
y
s
t
e
m
an
d
a
m
u
lti
v
ar
iab
le
d
ec
en
tr
alize
d
co
n
tr
o
ller
f
o
r
a
h
elico
p
ter
s
i
m
u
la
to
r
m
o
d
el.
4
.
1
.
T
he
co
ntr
o
l o
f
t
he
po
le
a
nd
ca
rt
s
y
s
t
e
m
T
h
e
co
n
tr
o
l
o
b
j
ec
tiv
e
is
to
b
alan
ce
t
h
e
p
o
le
b
y
ap
p
l
y
in
g
a
f
o
r
ce
o
n
th
e
b
as
is
o
f
th
e
ca
r
t.
A
lt
h
o
u
g
h
s
i
m
p
le
i
n
n
at
u
r
e,
it
p
r
esen
ts
s
o
m
e
n
ice
f
ea
t
u
r
es
f
o
r
co
n
tr
o
ll
er
b
en
ch
m
ar
k
in
g
:
it
is
h
i
g
h
l
y
n
o
n
li
n
ea
r
w
h
e
n
f
ar
f
r
o
m
t
h
e
v
er
tical
eq
u
i
lib
r
iu
m
an
d
is
s
en
s
iti
v
e
to
p
ar
am
e
ter
s
v
ar
iatio
n
a
s
in
it
ial
co
n
d
itio
n
s
,
p
o
le
len
g
th
a
n
d
m
as
s
.
T
h
e
d
y
n
a
m
ical
n
o
n
li
n
ea
r
m
o
d
el
is
g
i
v
en
b
y
:
̈
=
+
(
−
−
̇
2
+
)
(
4
3
−
2
+
)
(
17
)
T
h
e
NFC
h
a
s
t
w
o
in
p
u
ts
,
t
h
e
p
o
le
an
g
le
θ
(
t
)
an
d
its
v
ar
iatio
n
∆
θ
(
t
)
an
d
th
e
o
u
tp
u
t
is
t
h
e
f
o
r
ce
F
to
b
e
ap
p
lied
to
th
e
ca
r
t.
T
h
r
ee
s
y
m
m
etr
ic
tr
ian
g
u
lar
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
s
(
NE
G
A
T
I
VE
(
N)
,
Z
E
R
O
(
Z
)
an
d
P
OSI
T
I
VE
(
P
)
)
ar
e
u
s
ed
f
o
r
b
o
th
in
p
u
ts
a
n
d
o
u
tp
u
t.
So
in
itial
l
y
,
t
h
er
e
ar
e
s
i
x
n
o
d
es
i
n
th
e
f
u
z
zi
f
icatio
n
la
y
er
,
n
i
n
e
n
o
d
es
in
th
e
AND
la
y
er
an
d
t
h
r
ee
n
o
d
es
i
n
t
h
e
O
R
la
y
er
(
F
ig
u
r
e
1
)
.
T
h
e
g
o
al
o
f
t
h
e
m
ix
ed
b
i
n
ar
y
-
r
ea
l N
SG
A
I
I
is
to
f
in
d
o
p
ti
m
a
l v
alu
e
s
o
f
(
1
,
2
)
,
an
d
s
u
c
h
th
at
:
(
(
1
=
∑
|
(
)
|
500
=
1
+
10
−
2
|
(
−
1
)
|
+
|
(
)
|
)
,
(
2
=
∑
∑
3
=
1
9
=
1
)
)
(
18
)
T
h
is
p
r
o
b
lem
is
r
ec
ast a
s
a
m
a
x
i
m
izatio
n
p
r
o
b
le
m
:
(
1
=
10
5
1
+
20
1
,
2
=
10
1
+
2
)
(
19
)
T
h
e
co
s
t
1
is
o
b
tain
ed
f
r
o
m
a
cl
o
s
ed
lo
o
p
s
im
u
latio
n
w
i
th
a
n
o
m
in
al
m
o
d
el
h
a
v
i
n
g
a
p
o
le
w
ith
m
as
s
=
0
.
1
an
d
a
len
g
t
h
=
1
an
d
a
ca
r
t
w
it
h
m
as
s
=
1
.
T
h
e
in
itial
co
n
d
i
tio
n
s
ar
e:
(
0
)
=
20
̇
(
0
)
=
0
/
.
T
h
er
e
ar
e
3
0
p
ar
am
eter
s
ev
o
lv
ed
i
n
t
h
e
o
p
ti
m
izat
io
n
p
r
o
b
lem
w
h
ic
h
u
s
es
t
h
e
f
o
llo
w
in
g
v
al
u
es
:
m
a
x
i
m
u
m
g
en
er
atio
n
=1
0
0
,
p
o
p
u
latio
n
s
i
ze
=1
0
0
,
cr
o
s
s
o
v
er
p
r
o
b
ab
ilit
y
=0
.
8
an
d
m
u
tatio
n
p
r
o
b
a
b
ilit
y
=0
.
0
3
.
Fig
u
r
e
4
s
h
o
w
s
t
h
e
w
h
o
le
s
et
o
f
s
o
lu
tio
n
s
o
b
tain
ed
at
t
h
e
la
s
t
g
e
n
er
atio
n
.
T
h
e
e
x
tr
ac
ted
s
o
lu
tio
n
s
o
n
th
e
P
ar
eto
f
r
o
n
t
co
r
r
esp
o
n
d
to
th
e
b
es
t
i
n
d
iv
id
u
al
h
av
i
n
g
t
h
e
f
it
n
es
s
v
al
u
es
:
1
=
1
,
783
2
=
1
,
667
.
T
h
e
o
p
tim
a
l v
al
u
es o
f
th
e
r
ea
l p
ar
am
eter
s
ar
e:
1
=
23
,
0666
,
2
=
74
,
9882
,
=
606
,
9333
.
An
d
th
e
o
p
ti
m
al
b
i
n
ar
y
w
eig
h
ts
=
[
000
100
000
100
010
000
010
001
000
]
C
o
r
r
esp
o
n
d
in
g
to
a
NFC
w
i
th
a
r
ed
u
ce
d
s
tr
u
c
tu
r
e
co
n
tain
in
g
f
i
v
e
n
o
d
es
i
n
t
h
e
f
u
zz
if
icatio
n
la
y
er
,
f
iv
e
n
o
d
es
in
th
e
AND
la
y
er
an
d
th
r
ee
n
o
d
es i
n
th
e
O
R
la
y
er
as illu
s
tr
ated
in
Fi
g
u
r
e
3
.
T
ab
le
1
.
Fu
zz
y
r
u
les i
n
ter
p
r
ete
d
b
y
t
h
e
Neu
r
o
-
f
u
zz
y
co
n
tr
o
ller
T
h
e
k
n
o
w
led
g
e
ac
c
u
m
u
la
ted
w
it
h
i
n
t
h
e
s
tr
u
ctu
r
e
o
f
th
e
o
b
t
ain
ed
NF
C
is
i
n
ter
p
r
eted
as M
a
m
d
an
i
FIS
w
it
h
th
e
f
i
v
e
r
ed
u
ce
d
f
u
zz
y
r
u
les
g
i
v
e
n
i
n
tab
le
1
.
T
h
e
Ne
u
r
o
-
f
u
zz
y
co
n
tr
o
ller
w
as
test
e
d
f
o
r
r
o
b
u
s
tn
e
s
s
in
s
itu
a
tio
n
s
d
if
f
er
en
t
f
r
o
m
t
h
e
n
o
m
i
n
al
o
n
e.
T
h
e
r
esu
lts
ar
e
s
h
o
w
n
i
n
Fig
u
r
e
s
5
a
n
d
6
,
th
e
co
n
tr
o
ller
w
a
s
p
ar
ticu
lar
l
y
s
en
s
iti
v
e
to
t
h
e
p
o
le
len
g
th
w
it
h
s
u
cc
es
s
f
o
r
0
.
25
≤
≤
1
.
5
(
Fig
u
r
es
9
a
n
d
1
0
)
,
to
th
e
p
o
le
m
as
s
w
it
h
s
u
cc
es
s
f
o
r
0
.
05
≤
≤
0
.
7
(
Fig
u
r
es
11
an
d
1
2
)
an
d
to
th
e
in
itia
l
co
n
d
itio
n
s
w
it
h
s
u
cc
es
s
f
o
r
10°
<
(
0
)
<
60°
(
Fig
u
r
e
s
7
an
d
8
).
θ
(t)
Δ
θ (
t)
N
Z
P
N
N
Z
Z
N
Z
P
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
:
2
6
1
4
–
2
6
2
6
2620
Fig
u
r
e
3
.
Stru
ct
u
r
e
o
f
th
e
o
p
ti
m
ized
NF
C
Fig
u
r
e
4
.
Dis
tr
ib
u
t
io
n
o
f
t
h
e
p
o
p
u
latio
n
o
f
t
h
e
last
g
en
er
atio
n
Fig
u
r
e
5
.
Var
iatio
n
o
f
th
e
p
o
le
an
g
le
f
r
o
m
T
h
e
in
i
tial
co
n
d
itio
n
(
2
0
0
,
0
0
/s
)
Fig
u
r
e
6
.
Var
iatio
n
o
f
th
e
a
n
g
u
lar
v
elo
cit
y
f
r
o
m
th
e
in
itial c
o
n
d
itio
n
(
2
0
0
,
0
0
/s
)
Fig
u
r
e
7
.
Var
iatio
n
o
f
th
e
p
o
le
an
g
le
f
o
r
d
if
f
er
e
n
t
in
itial c
o
n
d
itio
n
s
Fig
u
r
e
8
.
Var
iatio
n
o
f
th
e
a
n
g
u
lar
v
elo
cit
y
f
o
r
d
if
f
er
e
n
t i
n
itial c
o
n
d
itio
n
s
Fig
u
r
e
9
.
Var
iatio
n
o
f
th
e
p
o
le
an
g
le
f
o
r
d
if
f
er
e
n
t
p
o
le
len
g
t
h
s
Fig
u
r
e
1
0
.
Var
iatio
n
o
f
th
e
a
n
g
u
lar
v
elo
cit
y
f
o
r
d
if
f
er
e
n
t p
o
le
len
g
th
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mi
xe
d
B
in
a
r
y
-
R
ea
l NS
GA
I
I
A
lg
o
r
ith
m
E
n
s
u
r
in
g
b
o
th
A
cc
u
r
a
cy
a
n
d
I
n
terp
r
eta
b
ilit
y
…
(
F
a
o
u
z
i Titel
)
2621
Fig
u
r
e
11
.
Var
iatio
n
o
f
th
e
p
o
le
an
g
le
f
o
r
d
if
f
er
e
n
t p
o
le
m
as
s
Fig
u
r
e
12
.
Var
iatio
n
o
f
th
e
a
n
g
u
lar
v
elo
cit
y
f
o
r
d
if
f
er
en
t
p
o
le
m
a
s
s
4
.
2
.
Co
ntr
o
l o
f
a
helico
pte
r
s
i
m
ula
t
o
r
m
o
de
l
T
h
e
h
elico
p
ter
s
i
m
u
la
to
r
to
b
e
co
n
tr
o
lled
is
th
e
C
E
1
5
0
lab
o
r
ato
r
y
h
e
lico
p
ter
m
ad
e
b
y
H
u
m
u
s
o
f
t
L
td
[
2
0
]
.
T
h
e
lab
o
r
ato
r
y
h
elico
p
ter
s
et
-
u
p
co
m
p
r
is
e
s
a
b
o
d
y
ca
r
r
y
in
g
t
w
o
DC
m
o
to
r
s
w
h
ic
h
d
r
iv
e
th
e
p
r
o
p
eller
s
.
T
h
e
h
elico
p
ter
b
o
d
y
h
as
t
w
o
d
eg
r
ee
s
o
f
f
r
ee
d
o
m
;
th
e
elev
a
tio
n
an
g
le
φ,
i.e
.
th
e
an
g
le
b
et
w
ee
n
th
e
v
er
t
ical
ax
is
an
d
th
e
lo
n
g
it
u
d
in
a
l
a
x
is
o
f
t
h
e
h
elico
p
ter
b
o
d
y
a
n
d
t
h
e
az
i
m
u
t
h
a
n
g
le
ψ,
i.e
.
t
h
e
a
n
g
l
e
in
t
h
e
h
o
r
izo
n
tal
p
lan
e
b
et
w
ee
n
t
h
e
lo
n
g
it
u
d
in
a
l a
x
is
o
f
t
h
e
h
elico
p
ter
b
o
d
y
a
n
d
its
ze
r
o
p
o
s
itio
n
.
Th
e
v
o
ltag
e
d
r
iv
i
n
g
t
h
e
m
ai
n
m
o
to
r
u
1
a
n
d
t
h
e
v
o
lta
g
e
d
r
iv
i
n
g
t
h
e
tai
l
m
o
to
r
u
2
a
f
f
ec
t
b
o
th
t
h
e
elev
atio
n
an
g
le
a
n
d
th
e
az
i
m
u
th
;
t
h
er
ef
o
r
e
w
e
ca
n
s
a
y
t
h
at
th
e
m
e
n
tio
n
ed
i
n
ter
ac
tio
n
s
m
a
k
e
th
e
s
y
s
te
m
m
u
lti
v
ar
iab
le.
T
h
e
h
elico
p
ter
m
o
d
el
ca
n
b
e
r
ep
r
esen
ted
as
a
n
o
n
-
li
n
ea
r
m
u
lti
-
v
ar
iab
le
(
MI
MO
)
s
y
s
te
m
w
i
th
in
p
u
t
s
u
1
a
n
d
u
2
a
n
d
t
w
o
o
u
tp
u
ts
φ
an
d
ψ.
Fig
u
r
e
1
3
.
Helico
p
ter
co
n
f
ig
u
r
atio
n
T
h
e
m
at
h
e
m
atica
l
m
o
d
el
o
f
th
e
h
elico
p
ter
s
i
m
u
lato
r
is
g
iv
e
n
b
y
t
h
e
f
o
llo
w
i
n
g
d
if
f
er
en
t
ial
e
q
u
atio
n
s
:
̇
1
=
2
̇
2
=
−
8
,
764
2
1
−
3
,
4325
4
1
1
−
0
,
4211
2
+
0
,
0035
5
2
+
46
,
35
6
2
+
0
,
8076
5
6
+
0
,
0259
5
+
2
,
9749
6
̇
3
=
4
̇
4
=
−
2
,
1401
4
+
31
,
8841
8
2
+
14
,
2029
8
+
21
,
7150
9
−
1
,
4010
1
̇
5
=
−
6
,
6667
5
−
2
,
7778
6
+
2
1
̇
6
=
4
5
̇
7
=
−
8
7
−
4
8
+
2
2
̇
8
=
4
7
̇
9
=
−
1
,
3333
9
+
0
,
0625
1
W
h
er
e
1
=
ψ
,
2
=
̇
,
3
=
,
4
=
̇
u2
u1
Ψ
Φ
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
:
2
6
1
4
–
2
6
2
6
2622
T
h
e
co
n
tr
o
l
o
b
j
ec
tiv
e
is
to
s
tab
ilize
th
e
h
elico
p
ter
b
o
d
y
ar
o
u
n
d
a
s
et
p
o
in
t
r
ef
er
en
ce
(
φ
r
,
ψ
r
)
.
Fo
r
th
is
,
a
d
ec
e
n
tr
alize
d
co
n
tr
o
l
te
ch
n
iq
u
e
is
ad
o
p
ted
b
y
u
s
i
n
g
t
w
o
Ne
u
r
o
-
f
u
zz
y
co
n
tr
o
ller
s
;
o
n
e
f
o
r
t
h
e
ele
v
atio
n
an
g
le
a
n
d
th
e
o
t
h
er
f
o
r
th
e
az
i
m
u
th
.
E
ac
h
Neu
r
o
-
f
u
zz
y
co
n
tr
o
ller
h
as
t
w
o
in
p
u
ts
er
r
o
r
e
(
k
)
an
d
ch
an
g
e
in
er
r
o
r
Δ
e
(
k
)
a
n
d
o
n
e
o
u
tp
u
t
(
)
.
T
h
r
ee
s
y
m
m
etr
ic
tr
ian
g
u
lar
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
s
(
Ne
g
ati
v
e
(
N)
,
Z
er
o
(
Z
)
an
d
P
o
s
itiv
e
(
P
)
)
ar
e
u
s
ed
f
o
r
b
o
th
in
p
u
ts
an
d
o
u
tp
u
ts
.
T
h
e
g
o
al
o
f
th
e
m
ix
ed
b
in
ar
y
-
r
ea
l
NSG
A
I
I
is
to
f
in
d
o
p
ti
m
al
v
alu
e
s
o
f
t
h
e
r
ea
l
w
id
t
h
s
o
f
t
h
e
ce
n
tr
al
p
ar
t
o
f
t
h
e
u
n
iv
er
s
e
o
f
d
is
co
u
r
s
e
o
f
th
e
i
n
p
u
t
v
ar
iab
les
an
d
o
u
tp
u
t
v
ar
iab
les
f
o
r
b
o
th
co
n
tr
o
ller
s
:
1
,
1
,
1
,
2
,
2
,
2
an
d
to
ex
tr
ac
t
an
o
p
ti
m
al
s
t
r
u
ctu
r
e
co
r
r
esp
o
n
d
in
g
to
a
r
ed
u
ce
d
s
et
o
f
f
u
zz
y
r
u
les
f
o
r
b
o
th
co
n
tr
o
ller
s
d
escr
ib
ed
b
y
t
h
e
b
in
ar
y
w
e
i
g
h
t
s
1
2
r
esp
ec
tiv
el
y
,
s
o
6
0
p
ar
am
eter
s
ar
e
ev
o
lv
ed
in
t
h
e
o
p
ti
m
izatio
n
p
r
o
b
lem
w
h
ic
h
u
s
es t
h
e
f
o
ll
o
w
i
n
g
v
al
u
es:
P
o
p
u
latio
n
s
ize=
1
0
0
,
m
a
x
i
m
u
m
g
en
er
atio
n
s
=1
0
0
,
cr
o
s
s
o
v
er
P
r
o
b
a
b
ilit
y
=0
.
8
,
m
u
tatio
n
p
r
o
b
a
b
ilit
y
=0
.
0
1
.
T
h
e
m
i
n
i
m
izatio
n
p
r
o
b
lem
i
s
g
iv
e
n
b
y
:
M
in
(
J
1
=
∑
|
e
1
(
k
)
|
N
k
=
1
+
|
e
2
(
k
)
|
,
J
2
=
∑
∑
W
ij
1
+
∑
∑
W
ij
2
3
j
=
1
9
i
=
1
3
j
=
1
9
i
=
1
)
(
20
)
W
h
er
e:
(
k
)
=
ψ
r
(
k
)
−
ψ
(
k
)
a
n
d
e
2
(
k
)
=
φ
r
(
k
)
−
φ
(
k
)
T
h
is
p
r
o
b
lem
is
r
ec
ast a
s
a
m
a
x
i
m
izatio
n
p
r
o
b
le
m
:
M
a
x
(
f
1
=
10
6
1
+
20J
1
,
f
2
=
10
1
+
J
2
)
(
21
)
T
est
s
i
m
u
latio
n
s
w
er
e
ca
r
r
ied
f
o
r
t
h
e
s
et
p
o
in
t
r
e
f
er
en
ce
s
=
1
=
1
w
it
h
3
0
s
ec
o
n
d
s
a
s
ti
m
e
s
i
m
u
lat
io
n
.
T
h
e
p
o
p
u
latio
n
o
f
t
h
e
last
g
e
n
er
atio
n
is
p
lo
tted
in
Fig
u
r
e
1
4
w
h
ic
h
s
h
o
w
s
clea
r
l
y
t
h
e
o
b
tain
ed
f
r
o
n
t a
f
ter
1
0
0
g
en
er
atio
n
s
.
T
h
e
ex
tr
ac
ted
s
o
lu
t
io
n
s
in
th
e
f
r
o
n
t a
r
e
as
f
o
llo
w
s
:
T
h
e
o
p
tim
al
r
ea
l p
ar
a
m
eter
s
ar
e:
L
e1
=
9
.
0989
,
L
Δ
e1
=
2
.
1647
,
L
u1
=
5
.
9648
,
L
e2
=
7
.
4927
,
L
Δ
e2
=
1
.
1852
,
L
u2
=
3
.
3399
An
d
th
e
o
p
ti
m
a
l b
in
ar
y
w
e
ig
h
t
s
ar
e:
1
=
[
001
100
001
010
0
10
010
001
100
010
]
2
=
[
000
000
010
100
010
00
0
100
001
001
]
T
h
e
k
n
o
w
led
g
e
ac
cu
m
u
lated
w
it
h
i
n
th
e
s
tr
u
ct
u
r
e
o
f
th
e
t
w
o
o
b
tain
ed
NFC
i
s
in
ter
p
r
eted
as
Ma
m
d
an
i
FIS
w
it
h
th
e
f
o
llo
w
i
n
g
f
u
zz
y
r
u
les
(
tab
le
2
an
d
3
)
:
T
a
b
le
2
.
Fu
zz
y
r
u
le
s
i
n
te
r
p
r
eted
b
y
t
h
e
T
ab
le
3
.
Fu
zz
y
r
u
les i
n
ter
p
r
eted
b
y
th
e
f
ir
s
t N
eu
r
o
-
f
u
zz
y
co
n
tr
o
ller
s
ec
o
n
d
Neu
r
o
-
f
u
z
z
y
co
n
tr
o
ller
Fig
u
r
e
1
5
an
d
Fi
g
u
r
e
1
6
s
h
o
w
r
esp
ec
tiv
el
y
t
h
e
az
i
m
u
t
h
an
g
l
e
an
d
t
h
e
ele
v
atio
n
an
g
le
,
w
e
n
o
tice
t
h
a
t
b
o
th
o
u
tp
u
ts
r
ea
c
h
th
e
r
e
f
er
en
ce
s
(
ψ
r
=
1
a
n
d
φ
r
=
1
)
v
er
y
s
m
o
o
th
l
y
a
n
d
in
l
ess
th
a
n
5
s
ec
o
n
d
s
w
h
ile
t
h
e
e
1
(t)
Δe
1
(t)
NE
ZE
PO
NE
PO
ZE
PO
ZE
NE
ZE
NE
PO
PO
ZE
ZE
e
2
(t)
Δe
2
(t)
NE
ZE
PO
NE
NE
NE
ZE
ZE
PO
PO
ZE
PO
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
A
Mi
xe
d
B
in
a
r
y
-
R
ea
l NS
GA
I
I
A
lg
o
r
ith
m
E
n
s
u
r
in
g
b
o
th
A
cc
u
r
a
cy
a
n
d
I
n
terp
r
eta
b
ilit
y
…
(
F
a
o
u
z
i Titel
)
2623
elev
atio
n
an
g
le
p
r
ese
n
ts
a
n
o
v
er
s
h
o
o
t
o
f
ab
o
u
t
1
0
%.
C
o
n
tr
o
l
s
i
g
n
al
o
u
tp
u
t
s
o
f
th
e
t
w
o
NF
C
ar
e
ill
u
s
tr
ated
i
n
Fig
u
r
e
17
an
d
Fig
u
r
e
18
.
T
h
ese
o
b
tain
ed
NFC
s
w
er
e
test
ed
f
o
r
a
ch
an
g
e
i
n
az
i
m
u
t
h
an
d
elev
atio
n
a
n
g
le
s
et
p
o
in
t
r
ef
er
en
ce
s
.
O
n
t
h
e
o
n
e
h
an
d
,
f
i
g
u
r
es
1
9
,
2
0
,
2
1
a
n
d
2
2
s
h
o
w
t
h
e
s
i
m
u
latio
n
r
esu
lt
s
w
h
e
n
ψ
r
=
1
a
n
d
φ
r
=
0
,
it
ca
n
b
e
s
ee
t
h
at
t
h
e
v
ar
ia
tio
n
o
f
t
h
e
az
i
m
u
th
i
s
v
er
y
s
m
o
o
t
h
a
n
d
th
e
d
is
t
u
r
b
an
ce
i
n
th
e
elev
atio
n
an
g
le
i
s
q
u
ic
k
l
y
eli
m
i
n
ated
.
On
th
e
o
t
h
er
h
a
n
d
,
f
ig
u
r
es
.
2
3
,
2
4
,
2
5
an
d
26
s
h
o
w
t
h
e
s
i
m
u
latio
n
r
esu
lt
s
w
h
e
n
ψ
r
=
0
a
n
d
φ
r
=
1
,
w
e
o
b
s
er
v
e
th
a
t
th
e
v
ar
iatio
n
o
f
t
h
e
elev
atio
n
an
g
le
d
o
es
n
o
t
d
is
tu
r
b
th
e
az
i
m
u
th
a
n
g
le.
Fig
u
r
e
14
.
Dis
tr
ib
u
tio
n
o
f
th
e
p
o
p
u
latio
n
o
f
th
e
las
t g
e
n
er
atio
n
Fig
u
r
e
15
.
A
zi
m
u
t
h
a
n
g
le
(
s
e
t p
o
in
t
r
ef
er
en
ce
s
:
=
1
=
1
)
Fig
u
r
e
16
.
E
lev
atio
n
an
g
le
(
=
1
=
1
)
Fig
u
r
e
17
.
C
o
n
tr
o
l sig
n
al
U
1
(
=
1
=
1
)
Evaluation Warning : The document was created with Spire.PDF for Python.