Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 5
,
O
c
tob
e
r
201
6, p
p
. 2
080
~208
7
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
5.1
149
4
2
080
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
DPFC P
erf
ormance with the Com
p
aris
on of P
I
and
ANN Controll
er
D
.
Na
ra
simha
Ra
o
1
,
T.
Sure
ndra
2
, S
.
Ta
ra K
a
ly
an
i
2
1
Departm
e
nt
of
Ele
c
tri
cal
and
E
l
ectron
i
cs
,
K L
Univers
i
t
y
Gun
t
ur
, Indi
a
2
Department of
Electrical and
El
ectron
i
cs, JNTU H
y
der
a
bad
,
India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received J
u
n
9, 2016
Rev
i
sed
Au
g
19
, 20
16
Accepte
d
Se
p 4, 2016
Modern power sy
stems demand the active
contro
l of power flow and for this
purpose Power flow contro
lling
devi
ces
(PFCDs) are r
e
quir
e
d.
Distribute
d
FACTS Controller (DPFC) is a part o
f
FACT
S fa
mily
. DPFC offe
rs e
qual
control
abi
lit
y s
a
m
e
as
UP
F
C
,
com
p
ris
i
ng the
adjus
t
m
e
nt of
t
h
e int
e
rna
l
angle
of th
e m
a
c
h
ine
and bus vo
l
t
age
inc
l
udes
lin
e im
pedan
c
e
.
In
addition
to
UPFC a new device
evolv
e
d kn
own as DPFC in which common DC link is
eliminated that enables
the
exclusiv
e working b
e
tween
the two
conver
t
ers
which are shunt and the series. The Di
stributed-F
ACTS (D-
FAC
T
S) idea is
adopt in
th
e ser
i
es conv
erter
sc
hem
e
. Th
e r
e
pl
acem
ent
of th
e
high rat
i
ng
three ph
ase series convert
er
with the multip
le low r
a
ting s
i
ngle ph
ase
converters results in cost reduction
and increases reliability
g
r
eatly
. Th
e
useful power transfer between th
e two converters which are shunt and series
through common dc link
in UPFC where as in
DPFC in this the requir
e
d
power is transf
erred in
the
tra
n
sm
ission line with thre
e t
i
m
e
s of natur
a
l
fundamental frequency
.
Where
as in th
e
new d
e
v
i
ce no need of
large voltag
e
s
e
parat
i
on be
tween
the
lin
e an
d P
F
C
De
vice
is no requ
irement of h
i
gh
voltag
e
isolatio
n between becaus
e D-FACTS conver
t
ers wh
ich
are 1-
ᴓ
floating device with
respect
to the
gr
ound. A
c
cordingly
,
In
this
paper we
bring out the DPFC performance diff
eren
ces with
diff
erent
contro
l
techn
i
ques
whic
h are P
I
and Arti
fici
al
Neural Network Controller
s
and bring
with conclusion
that ANN is a better
control strategy
compared to PI.
Keyword:
A
NN
Cu
rren
t con
t
ro
l
DPFC
FACTS
PFC
Sym
m
et
ri
cal
com
pone
nt
UPFC
VSC
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
D. Nar
a
sim
h
a
Rao,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
cs E
n
gi
nee
r
i
n
g,
K L Un
iv
ersity,
Gu
nt
u
r
,
I
ndi
a
Em
a
il: n
a
rasi
mh
arao
@k
lun
i
versity.in
1.
INTRODUCTION
The i
n
c
r
easi
n
g
rep
u
t
a
t
i
on i
n
u
s
i
ng re
ne
wabl
e ener
gy
so
urc
e
s
m
a
ke i
t
poss
i
bl
e t
o
co
nt
rol
a hu
ge s
u
m
of e
n
e
r
gy that
enables t
h
e e
n
e
r
gy
plan
for
quick s
w
itch
bet
w
een the
rene
wable e
n
ergy s
o
urces a
n
d the
stand-
b
y
power g
e
neratio
n [1
]. This d
e
m
a
n
d
s
t
h
e av
ailab
ility
o
f
stand
-
b
y
p
o
wer wh
en
ev
er ren
e
wab
l
e energ
y
is
una
bl
e t
o
s
u
p
p
l
y
t
h
e l
o
ad
.
There
f
ore
t
h
e
need
f
o
r
po
we
r fl
ow
sc
hem
e
m
e
t
hods i
s
i
n
creased
. T
h
e
s
y
st
em
p
a
ram
e
ters lik
e in
ternal ang
l
e and
vo
ltag
e
mag
n
itu
d
e
ar
e
ad
ju
sted
in
order to
con
t
ro
l th
e activ
e
po
wer.
The
PFCD is a co
mp
on
en
t th
at
m
o
d
i
fies syste
m
p
a
ram
e
ters to
co
ntrol the active power [2
]. The UPFC is th
e
m
o
st
po
we
rf
ul
PFC
D, a
b
l
e
t
o
al
t
e
r sy
st
em
para
m
e
t
e
rs l
i
k
e bu
s im
pedance
,
i
n
t
e
r
n
al
an
gl
e,
and
b
u
s v
o
l
t
a
g
e
. The
ope
rat
i
n
g p
r
i
n
c
i
pl
e of
de
vi
ce UPFC
i
s
e
x
ecu
t
e
d by
t
h
e se
ri
es con
v
e
r
t
e
r cas
t
i
ng a v
o
l
t
a
ge,
wi
t
h
spe
c
i
f
i
e
d
pha
s
e
an
g
l
e, m
a
g
n
itud
e
, in
lin
e
with th
e p
o
wer lin
e [3
]. The
DPFC resem
b
les th
e UPFC in
indep
e
nd
en
t adj
u
st
m
e
n
t
o
f
th
e lin
e im
p
e
d
a
n
c
e, sam
e
co
n
t
ro
l cap
a
b
ility, in
tern
al ang
l
e and th
e
bus vo
ltag
e
. In
DPFC th
e DC
vo
ltag
e
fluctuations
are elim
inated which c
o
nnects
the s
h
unt a
n
d se
ries converters
back to
bac
k
i
n
UP
FC [
4
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
UPFC
Pe
rf
or
ma
nce w
i
t
h
t
h
e
C
o
m
p
ari
s
o
n
o
f
PI
an
d
AN
N
C
ont
r
o
l
l
e
r (
D
.
N
a
rasi
mh
a
Ra
o)
2
081
Fi
gu
re 1
sh
o
w
s con
f
i
g
ur
at
i
o
n
of
DPFC
c
o
n
s
i
s
t
i
ng o
f
pa
ral
l
el and series
connected c
onverters as in
case o
f
U
PFC
.
Each c
o
nve
rt
er wi
t
h
i
n
t
h
e
DPFC
i
s
i
nde
p
e
nde
nt
havi
ng
i
t
s
ow
n
DC
ca
paci
t
o
r
t
h
at
pr
ovi
des
req
u
i
r
e
d
DC
vol
t
a
ge
. Ot
her
t
h
an pa
ral
l
e
l
and se
ri
es c
ont
rol
l
e
rs
, DP
FC
need
s an
fre
que
ncy
el
i
m
i
n
at
or
co
nn
ected parallel to
o
n
e sid
e
o
f
lin
e an
d on
o
t
h
e
r sid
e
of
lin
e th
ere is a Y-
∆
tran
sfo
r
m
e
r.
There
are
two
major adva
ntages
of DPFC c
o
m
p
ared t
o
UP
FC:
1
.
Low
vo
ltag
e
iso
l
atio
n and
t
h
e series co
nv
erter’s low co
mp
on
en
t rating
cau
s
es l
o
w cost
an
d
2
.
Th
e red
und
an
cy of t
h
e series conv
erters cau
s
es
h
i
gh
reliab
ility
Fi
gu
re
1.
Di
st
ri
but
e
d
po
we
r fl
ow
co
nt
r
o
l
l
e
r
2.
DPFC PRINCIPLE
Th
e tran
sm
issi
o
n
lin
e is t
h
e
co
mm
o
n
co
nnectio
n
b
e
tween
th
e AC
supp
ly to
th
e p
a
rallel an
d
t
h
e
seri
es co
nt
rol
l
e
rs t
h
r
o
u
g
h
w
h
i
c
h real
po
we
r i
s
t
r
ansfe
rre
d. I
n
Fo
uri
e
r anal
y
s
i
s
t
h
e non si
nus
oi
dal
cur
r
e
n
t
and
v
o
ltag
e
is
g
i
v
e
n
b
y
th
e add
itio
n of si
n
u
so
i
d
al fun
c
tion
s
in differen
t
freq
u
e
n
c
ies
with
d
i
fferen
t am
p
litu
des [5
].
The act
i
v
e
p
o
w
er t
h
at
res
u
l
t
s
fr
om
non
si
n
u
soi
d
al
cu
rre
nt
and
v
o
l
t
a
ge i
s
defi
ned a
s
t
h
e
pr
o
duct
of
vol
t
a
ge
an
d cu
rre
nt
.
T
h
e real
po
we
r
ca
n be
e
x
p
r
esse
d
as
i
n
equat
i
o
n (
1
)
∑
cos
∅
(
1
)
whe
r
e
Ii
=current
V
i
= vol
t
a
ge
i
th
= ha
rm
onic fre
quency
∅
= phase
angle
betwee
n the
ha
rm
onic curre
n
ts and
voltages.
Fro
m
th
e abov
e equ
a
tio
n it is ob
serv
ed
at d
i
fferen
t harm
o
n
i
c
frequen
c
ies o
f
activ
e po
wer
is
insulated from
each
othe
r a
n
d the
real
power at
other
ha
rm
onic freque
n
cy is not a
f
fec
t
ed by t
h
e
volt
a
ge
or
current. T
h
e
real powe
r is i
nde
pe
nde
nt at
differe
n
t frequ
en
cies;
t
h
is
co
nv
erter withou
t
AC
power so
urce
gene
rat
i
n
g act
i
v
e po
we
r at
one
harm
oni
c
freq
u
e
n
cy
t
o
abso
rb t
h
e s
a
m
e
powe
r
t
h
at
ot
her com
pone
nt
freq
u
e
n
c
y [6
],[7
]. Fo
llowing th
e sam
e
ap
p
r
o
a
ch
in
DPFC, activ
e po
wer can
b
e
ab
so
rb
ed
b
y
th
e
p
a
rallel
con
v
e
r
t
e
r f
r
om
sou
r
ce at
su
pp
l
y
freq
u
ency
a
nd i
n
sert
e
d
i
n
t
o
t
h
e sy
st
em
at ot
her
fre
q
u
en
cy
com
ponent
.
Thi
s
h
a
rm
o
n
i
c co
mp
on
en
t of curren
t fl
o
w
s throu
g
h
t
h
e
po
wer lin
e. Based
on
th
e
q
u
a
n
tity o
f
real
po
wer
req
u
i
red
by
t
h
e sy
st
em
at
t
h
e fu
ndam
e
nt
al
fre
que
ncy
,
t
h
e v
o
l
t
a
ge i
s
gene
rat
e
d
by
t
h
e DP
FC
seri
es con
v
e
r
t
e
rs a
t
t
h
e
harm
oni
c f
r
e
q
uency
t
h
u
s
a
b
sor
b
i
n
g t
h
e
po
wer
f
r
om
t
h
e
l
i
n
e sen
d
by
t
h
e
ot
he
r c
o
n
v
e
rt
er .
H
e
r
e a l
o
ssl
ess
con
v
e
r
t
e
r i
s
assum
e
d, so t
h
at
act
i
v
e po
wer
gene
rat
e
d at
f
u
n
d
am
ent
a
l
com
ponent
fr
eq
u
e
ncy
and t
h
e po
we
r
ab
so
rb
ed
fro
m
th
e h
a
rm
o
n
i
c freq
u
e
n
c
y are
assu
m
e
d
as equ
a
l. Th
e h
i
g
h
-p
ass
filter o
f
t
h
e DPFC allows the
passa
ge o
f
t
h
e fu
n
d
am
ent
a
l
com
pone
nt
s, bl
ocki
ng t
h
e
har
m
oni
c freque
n
c
y
co
m
pone
nt
s
,
by
t
h
at
sho
w
i
ng t
h
e
h
a
rm
o
n
i
c co
mp
on
en
ts to
h
a
ve a retu
rn
p
a
t
h
. Th
e h
a
rm
o
n
i
c cu
rren
t is circu
l
ated
throu
g
h
h
i
g
h
-p
ass
filters,
seri
es an
d pa
r
a
l
l
e
l
conve
rt
er
s and t
h
e
gr
o
u
n
d
.
Fo
r t
h
e e
x
chan
ge
of t
h
e
real
po
we
r i
n
t
h
e DPFC
t
h
e
t
h
i
r
d
harm
oni
c
fre
q
u
ency
com
p
o
n
e
nt
i
s
i
d
ent
i
f
i
e
d
d
u
e t
o
i
t
s
uni
que
c
h
aract
er
of
t
h
e
f
r
eq
uency
3
r
d
har
m
oni
c
com
pone
nt
s. I
n
a 3-
ᴓ
system
, the fundam
e
ntal and
3rd m
u
ltiple co
m
pone
nt com
b
ined
inject current int
o
the
gri
d
.”
The
zer
o-se
q
u
ence
har
m
oni
cs i
s
n
o
t
al
l
o
wed
by
Y
–
t
r
ans
f
orm
e
rs,
whi
c
h a
r
e
usef
ul
t
o
m
i
t
i
g
at
e reduc
e
v
o
ltag
e
lev
e
l deficien
cy in
po
wer system
.
Th
erefo
r
e, t
h
ere is n
o
requ
iremen
t o
f
ex
cess filter to
rest
o
f
th
e
net
w
or
k
fo
r m
i
t
i
g
at
i
ng t
h
e
har
m
oni
c l
eakage
[8]
,
[9]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
208
0
–
20
87
2
082
2.
1.
D
P
FC
co
nt
rol p
r
in
c
i
p
l
e
Fig
u
re
2
sh
ows th
e three types o
f
con
t
ro
llers th
at co
n
t
ro
l
th
e m
u
ltip
le
co
nv
erters; th
ey are m
a
in
cont
rol
,
se
ri
es cont
r
o
l
an
d shu
n
t
co
nt
r
o
l
.
The pa
ram
e
t
e
r
s
of seri
es an
d par
a
l
l
e
l
cont
rol
are m
a
i
n
t
a
ined
b
y
them
selves, they are als
o
call
e
d as
local c
ontrollers. At
t
h
e
syste
m
level the central
control c
ontrols t
h
e
DPFC
fu
nct
i
o
ns.
Fi
gu
re 2.
B
l
oc
k Di
ag
ram
of DPFC
wi
t
h
C
o
nt
r
o
l
l
e
r
2.
1.
1.
Central Contr
o
l
The f
o
rem
o
st
fu
nct
i
o
n of t
h
e
m
a
i
n
cont
rol
com
m
onl
y kn
ow
n as cent
r
al
cont
r
o
l
l
e
r i
s
t
o
ge
nerat
e
refe
rence si
gn
als for c
o
ntroll
ed co
n
v
erters
of the
DP
FC.
These are
ge
nerated at the s
y
ste
m
freque
ncy. The
central control gives re
fere
nc
e signal of current and vo
ltages for both the
controlle
rs in
accorda
n
ce wit
h
the
sy
st
em
requi
re
m
e
nt
[1
0]
. At
t
h
e sy
st
em
l
e
vel
,
t
h
e cent
r
al
c
ont
rol
i
s
depe
n
d
ent
o
n
t
h
e
fu
nct
i
onal
o
p
erat
i
on
o
f
th
e DPFC, th
ey are
d
a
m
p
ou
t power oscillatio
n
s
at
l
o
w
freq
u
e
n
c
y, power-fl
o
w
con
t
ro
l an
d asymmetrical
com
pone
nt
s ba
l
a
nci
n
g
.
2.
1.
2.
Series Control
Series co
n
t
ro
l
is presen
t i
n
all th
e sing
le ph
ase co
nv
erter circu
its. Th
e co
n
t
ro
ller i
s
to
fix
the
capaci
t
o
r
DC
vol
t
a
ge
o
f
co
n
v
ert
e
r
wi
t
h
t
h
e
hel
p
of
3r
d h
a
rm
oni
c vol
t
a
ge o
r
cu
rre
nt
s.
It
i
n
ject
s
vol
t
a
ge at
su
pp
ly f
r
e
qu
ency ap
p
r
ov
ed
by th
e
m
a
in
con
t
rol [5]
.
I
n
D
P
FC series con
v
e
rt
er control, the m
a
j
o
r con
t
ro
l lo
op
i
s
t
h
e t
h
i
r
d
ha
r
m
oni
c freq
u
e
n
cy
cont
rol
.
F
o
r
DC
vol
t
a
ge c
o
nt
r
o
l
p
h
as
or
co
nt
r
o
l
p
r
i
n
ci
pl
e
i
s
ap
pl
i
e
d [
6
]
,
[
7
]
.
2.
1.
3.
Shun
t Contr
o
l
It
i
n
ject
s a fi
x
e
d p
o
we
r w
h
i
c
h com
b
i
n
at
i
o
n
of f
u
ndam
e
nt
al
and t
h
i
r
d ha
rm
oni
c com
ponent
c
u
r
r
en
t
in
to
tran
sm
issi
o
n
lin
e i
n
o
r
d
e
r to
tran
sm
it
th
e real po
we
r fo
r series conv
erters is th
e m
a
i
n
obj
ectiv
e
o
f
sh
un
t
cont
rol
.
At
t
h
e
fu
ndam
e
nt
al
freq
u
e
n
cy
of t
h
e 3r
d ha
rm
oni
c cur
r
ent
a
nd
b
u
s v
o
l
t
a
ge a
r
e l
o
cke
d
. T
h
e m
o
t
t
o
o
f
sh
un
t co
nv
erter is to ex
ch
ang
e
requ
ired
reactiv
e po
wer t
o
g
r
id and
also
m
a
in
tain
in
g
fix
e
d
DC
cap
acito
r
vol
t
a
ge
.
3.
CONTROLLER DE
SIGN
3.
1.
PI Controller
design
Th
e tran
sfer fun
c
tio
n fo
r PI co
n
t
ro
ller is d
e
fin
e
d
as:
(2
)
The
pr
o
p
o
r
t
i
o
n
a
l
gai
n
i
s
de
ri
ved
usi
n
g K
P
=
2.
ξ
.
ω
n.C th
at d
e
term
in
es th
e d
y
n
a
m
i
c resp
on
se
of t
h
e
DC-side v
o
ltag
e
con
t
ro
l. Similarly,
th
e in
teg
r
al g
a
in
is d
e
ri
v
e
d
u
s
ing
K
I
=C
ω
n
2
calc
u
latin
g
settlin
g
ti
m
e
[1
1]
,[
1
2
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
UPFC
Pe
rf
or
ma
nce w
i
t
h
t
h
e
C
o
m
p
ari
s
o
n
o
f
PI
an
d
AN
N
C
ont
r
o
l
l
e
r (
D
.
N
a
rasi
mh
a
Ra
o)
2
083
3.
2.
AN
N c
o
n
t
roll
er o
f
DC
v
o
lt
a
g
e
AN
N i
s
part
of
t
h
e fam
i
ly
of
st
at
i
s
t
i
cal
l
earn
i
ng m
e
t
hods i
n
spi
r
e
d
by
bi
ol
o
g
i
cal
ner
v
ou
s s
y
st
em
and
are
used
t
o
e
s
t
i
m
at
e and a
p
pr
oxi
m
a
t
e
funct
i
ons
t
h
at
de
pen
d
s
onl
y
o
n
a l
a
rge
n
u
m
b
er o
f
i
n
p
u
t
s
.
ANN is an interconnection
of neurons
whi
c
h send
m
e
ssa
ges to each ot
her.
The connections have
num
eri
cal
wei
ght
s t
h
at
can
b
e
t
uned
base
d on e
xpe
ri
ence
Thi
s
pa
per
dra
w
s at
t
e
nt
i
on
o
n
t
h
e m
u
l
t
i
l
a
yer feed
fo
rwa
r
d A
N
N
whi
c
h t
h
at
of t
h
e
no
n l
i
n
ea
r
m
u
lt
i
v
ari
a
bl
e f
unct
i
o
n
rep
r
es
ent
a
t
i
on.
T
h
e
AN
N i
s
use
d
f
o
r t
h
e
mapping between the
differe
n
ce of
refe
renc
e DC and C
h
a
nge
d
Val
u
e
of
DC
o
n
DC
si
d
e
of se
ri
es c
o
n
v
ert
e
r
fo
r
pr
o
p
er
o
p
er
at
i
ng c
o
n
d
u
ct
i
o
n
an
d
o
p
t
i
m
a
l co
nt
r
o
l
l
e
r p
a
ra
m
e
t
e
r [1
3]
,[
14]
numHiddenNeurons = 20;
% Adjust as desired
net = newfit(inputs,targets,numHiddenNeurons);
net.divideParam.trainRatio = 70/100;
% Adjust as desired
net.divideParam.valRatio = 15/100;
% Adjust as desired
net.divideParam.testRatio = 15/100;
% Adjust as desired
% Train and Apply Network
[net,tr] = train(net,inputs,targets);
outputs = sim(net,inputs);
% Plot
plotperf(tr)
plotfit(net,inputs,targets)
plotregression(targets,outputs)
Table 1.
Meas
ure
d
Values
of conve
r
ter
Sy
m
bol Descr
i
ption
Value
V
sh
,
ma
x
M
a
xim
u
m
voltage
by
shunt conver
t
er
50 Volt
I
sh
,
ma
x
M
a
xim
u
m
cur
r
ent
by
shunt conver
t
er
10 Am
p
V
,
dc
DC sour
ce Voltage
20 Volt
I
sh
,
ref
,
3
Har
m
onic
ref
e
renc
e curr
ent value b
y
parall
el
3 A
m
p
f
sw
par
a
llel and Ser
i
es
Conver
t
er
Switching fr
equency
6 kHz
V
se
,
ma
x
Ser
i
es Conver
t
er
M
a
xim
u
m
Voltages
7 Volt
I
se
,
ma
x
Ser
i
es Conver
t
er Injected M
a
xim
u
m
Cur
r
e
nt
15 Am
p
Tabl
e
2. M
odel
pa
ram
e
t
e
rs
4.
SIMULATION RESULTS
To
sim
u
late th
e ANN or PI co
n
t
ro
lled
DPFC, a
m
o
d
e
l in
Mat lab
/
Si
m
u
li
n
k
is
d
e
v
e
l
o
p
e
d
.
Sim
u
lation
workou
t is tak
e
n
ou
t to
ch
eck
th
e wo
rk
ing
p
e
rform
a
n
ce o
f
DPFC in
a tran
sm
issio
n
syste
m
. A si
m
u
lat
i
o
n
i
s
carri
ed
o
u
t
by
a sim
p
l
e
t
w
o b
u
s sy
st
em
. Energy
t
r
a
n
sfe
r
be
t
w
een t
h
e t
w
o
bus
es i
s
o
b
t
a
i
n
ed by
gi
vi
n
g
a
pha
se
di
ffe
re
nce wi
t
h
i
n
t
h
e t
w
o b
u
ses.
DPFC
c
o
nsi
s
t
s
of
one
p
a
ral
l
e
l
conve
rt
er an
d 6 1
-
ᴓ
series cont
roller
s
. The
parallel facts device is a 1-
ᴓ
conve
r
ter plac
ed bet
w
een
ne
utral point of
Δ
-Y t
r
a
n
sf
orm
e
r an
d ne
ut
ral
,
and i
s
gi
ve
n by
co
nst
a
nt
DC
su
ppl
y
.
Tran
sm
i
ssi
on sy
st
em
wi
t
h
a vol
t
a
ge
of 3
8
0
V
an
d 5
0
H
z
are consi
d
ere
d
f
o
r
si
m
u
latio
n
.
4.
1.
DPF
C
usin
g
P
I
In
Figure 4
PI con
t
ro
ller inj
ects vo
ltag
e
to
series
conv
erter, vo
ltag
e
s
an
d
cu
rren
ts at th
e Delta-
t
r
ans
f
o
r
m
e
r are sh
ow
n i
n
Fi
gu
re
8. Fi
gu
re
5 an
d
6 s
h
o
w
t
h
e
fu
n
d
am
ent
a
l
com
pone
nt
s o
f
seri
es i
n
ject
e
d
vol
t
a
ge a
n
d l
i
n
e cu
rre
nt
res
p
ect
i
v
el
y
.
I
n
F
i
gu
re 4 i
n
ject
e
d
v
o
l
t
a
ge t
h
r
o
ug
h c
ont
rol
l
e
r
i
s
of P
W
M
ge
nerat
e
d
sha
p
e c
onsi
s
t
i
n
g
of
t
w
o f
r
e
que
ncy
com
p
o
n
ent
s
.
para
m
e
t
e
r Abbreviation
Quantity
V
s
Voltage at sending end bus
220 V
V
r
Voltage at receiving end bus
220 V
θ
Angle between the two buses
1
o
L
I
nductance of a line
6
m
H
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
208
0
–
20
87
2
084
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
45
0.
5
-7
-6
-5
-4
-3
-2
-1
0
1
2
3
T
i
m
e
i
n
Se
c
P
o
w
e
r
i
n
W
a
tt
Ac
ti
v
e
a
n
d
R
e
a
c
ti
v
e
Po
w
e
r
0
0.
0
5
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-3
-2
-1
0
1
2
3
Ti
m
e
i
n
S
e
c
v
o
l
t
ag
e and
Cur
r
ent
V
o
l
t
a
ge a
nd Cu
rrent
at
Del
t
a
S
i
de
Perform
a
n
ce o
f
th
e con
t
ro
ller is
analyzed
by the Fast Fourier T
r
an
s
f
orm
FFT s
h
ow
n i
n
Fi
g
u
re
9
t
o
11
f
u
ndam
e
nt
al
vol
t
a
ge i
n
ject
ed
due
t
o
PI
t
h
ro
u
g
h
seri
es
co
nve
rt
er i
s
al
so
anal
y
zed
by
us
i
ng a
t
o
ol
F
F
T.
The
per
f
o
r
m
a
nce o
f
c
o
n
v
ert
e
r
vo
l
t
a
ge i
s
anal
y
z
ed
by
a t
ool
FFT s
h
ow
n i
n
Fi
g
u
re
9
t
o
11
t
h
i
s
t
ool
a
c
t
u
al
l
y
avai
l
a
bl
e i
n
m
a
t
l
a
b u
s
ed
t
o
c
h
eck t
h
e
val
u
e
o
f
f
u
ndam
e
nt
al
com
pone
nt
o
f
vol
t
a
ge
i
n
ject
e
d
by
t
h
e c
o
nve
rt
ers.
Fi
g
u
r
e
4.
Seri
es c
o
n
v
e
r
t
e
r I
n
ject
ed
v
o
l
t
a
ge
Fi
gu
re
5.
F
u
n
d
a
m
ent
a
l
com
ponent
o
f
se
ri
es i
n
ject
e
d
V
o
l
t
a
g
e
Fi
g
u
r
e
6.
F
u
n
d
am
ent
a
l
co
m
ponent
of
l
i
n
e cu
rre
nt
Fi
g
u
re
7
.
Act
i
v
e a
n
d R
e
act
i
v
e p
o
we
r
Fig
u
re
8
.
Delta sid
e
tran
sformer cu
rren
ts and vo
ltag
e
s
Figure
9. T
H
D a
n
alysis – IR
EC
Figure
10.
TH
D a
n
alysis
–
Voltage
Figure
11.
TH
D a
n
alysis
– C
u
r
r
ent
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-5
-4
-3
-2
-1
0
1
2
3
4
5
Ti
m
e
i
n
S
e
c
in
j
e
c
t
e
d
v
o
lt
a
g
e
i
n
V
o
lt
s
I
n
j
e
c
t
e
d
v
o
l
t
a
g
e
by
s
e
ri
es
c
o
nv
er
t
e
r
0
0.
05
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-8
-6
-4
-2
0
2
4
6
Ti
m
e
i
n
S
e
c
L
i
ne c
u
r
r
ent
i
n
A
m
ps
f
undam
ent
al
c
o
m
p
onent
of
l
i
ne c
u
rr
ent
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
3
5
0.
4
0.
45
0.
5
-5
-4
-3
-2
-1
0
1
2
3
4
5
Ti
m
e
i
n
S
e
c
in
je
c
t
e
d
v
o
lta
g
e
i
n
V
o
l
t
s
f
und
am
en
t
a
l
c
o
m
p
one
nt
of
s
e
r
i
es
i
n
j
e
c
t
e
d
v
o
l
t
age
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
UPFC
Pe
rf
or
ma
nce w
i
t
h
t
h
e
C
o
m
p
ari
s
o
n
o
f
PI
an
d
AN
N
C
ont
r
o
l
l
e
r (
D
.
N
a
rasi
mh
a
Ra
o)
2
085
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-3
-2
-1
0
1
2
3
Ti
m
e
i
n
S
e
c
V
o
l
t
age A
n
d C
u
rrent
at
D
e
l
t
a
S
i
de
4.
2.
DPF
C
usin
g
AN
N
In Figu
re
1
2
ANN con
t
ro
ller
in
j
ects
vo
ltag
e
to
se
ries c
o
nverter,
voltages
and curre
nts at
the
Delta-
t
r
ans
f
o
r
m
e
r are sho
w
n i
n
Fi
gu
re 1
5
. Fi
gu
r
e
13 an
d 1
4
sho
w
th
e
fund
amen
tal co
m
p
on
ents
of series
injected
vol
t
a
ge a
n
d l
i
n
e cur
r
ent
res
p
e
c
t
i
v
el
y
.
In Fi
g
u
re
12 i
n
ject
e
d
vol
t
a
ges t
h
r
o
u
gh c
o
nt
rol
l
e
r i
s
of P
W
M
ge
n
e
rat
e
d
sha
p
e con
s
i
s
t
i
ng of t
w
o fr
eq
u
e
ncy
com
pone
nt
s. Per
f
o
r
m
a
nce of t
h
e co
nt
r
o
l
l
e
r i
s
anal
y
zed by
t
h
e Fast
Fou
r
i
e
r
Tr
ansfo
r
m
FFT sh
ow
n in Fi
g
u
r
e
16
t
o
1
8
fu
nd
am
en
tal
vo
l
t
a
ge i
n
ject
ed
due
t
o
A
N
N
t
h
rough series
conve
rter
i
s
al
so anal
y
zed by
usi
ng
a t
ool
FFT. S
i
m
u
l
a
t
i
on resu
l
t
s
show t
h
at
t
h
e AN
N co
nt
r
o
l
l
e
r of
fer
s
bet
t
e
r
perform
a
nces than the
PI, as
s
h
own in Ta
ble
3.
Fi
gure
12.
V
o
ltage injecte
d
by seri
es
contr
o
ller
Figure
13
. I
n
ject
e
d
vol
t
a
ge by
seri
es
c
o
n
v
e
r
t
e
r
Figure
14. Li
ne curre
nt
Figure
15.
V
o
ltage a
n
d
cur
r
ent at t
h
e
delta side
Figure
16. Real a
n
d Re
active powe
r
Figure
17. T
H
D
analysis-
V
oltage
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-5
-4
-3
-2
-1
0
1
2
3
4
5
Ti
m
e
i
n
S
e
c
V
o
lt
a
g
e
in
v
o
l
t
V
o
l
t
a
ge i
n
j
e
c
t
e
d
B
y
s
e
ri
es
c
o
nv
ert
e
r by
S
M
C M
e
t
h
o
d
0
0.
05
0.
1
0.
15
0.
2
0.
2
5
0.
3
0.
35
0.
4
0.
45
0.
5
-8
-6
-4
-2
0
2
4
6
8
Ti
m
e
i
n
S
e
c
C
u
r
r
ent
I
n
A
m
ps
Li
ne C
u
r
r
ent
0
0.
05
0.
1
0.
15
0.
2
0.
25
0.
3
0.
35
0.
4
0.
45
0.
5
-6
-5
-4
-3
-2
-1
0
1
2
3
Ti
m
e
i
n
S
e
c
P
o
w
e
r
i
n
W
a
tts
Ac
ti
v
e
R
e
a
c
ti
v
e
Po
w
e
r
s
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
3
5
0.
4
0.
4
5
0.
5
-4
-3
-2
-1
0
1
2
3
4
Ti
m
e
i
n
S
e
c
V
o
lt
a
g
e
in
V
o
lt
I
n
j
e
c
t
ed
V
o
l
t
a
ge
B
y
S
e
r
e
i
s
C
o
nv
er
t
e
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
208
0
–
20
87
2
086
Figu
re
1
8
. T
H
D a
n
aly
s
is- IR
EC
Table 3. Performance
com
p
arison
PI
ANN
Series inject
Volta
ge (Ist
And 3
rd
)
Co
m
ponent
78.
9%
78%
Fundam
e
ntal injected
voltage
14%
13%
L
i
ne Cur
r
e
nt
12.
96%
11%
Current at
receving end
7.68%
7.1%
5.
CO
NCL
USI
O
N
Tw
o PI an
d A
NN c
ont
rol
st
r
a
t
e
gi
es wi
t
h
D
PFC
were
co
nsid
er in
th
is wo
rk
. Th
ese contro
llers are
u
s
ed
in ord
e
r to
co
n
t
i
n
uou
s ch
ang
e
b
a
sed
on
co
nd
ition
th
e DC
vo
ltag
e
o
f
th
e series conv
erter an
d enhan
c
i
ng
t
h
e dy
nam
i
cal
per
f
o
r
m
a
nces. Seve
ral
co
ndi
t
i
ons i
s
bee
n
t
a
k
e
n i
n
acc
ou
nt
i
n
o
r
de
r t
o
s
h
o
w
t
h
at
TH
D i
n
seri
es
i
n
ject
e
d
v
o
l
t
a
g
e
. The si
m
u
l
a
ti
on i
s
d
one
us
i
ng M
A
T
L
AB
/
S
IM
UL
IN
K.
The res
u
l
t
s
o
b
t
ai
ned by
si
m
u
l
a
t
i
on
sh
ow t
h
at th
e
ANN con
t
ro
ller
o
f
fers b
e
tter
p
e
rform
a
n
ces th
an th
e
PI.
REFERE
NC
ES
[1]
Y. H. Song and A. Johns, “Flexibl
e ac
Transmission Sy
stems (FACTS),”
IEE Power and Energy Series
, vol. 30
.
London, U
.
K., I
n
stitution
of
Electri
cal
Eng
i
neers
,
1999
.
[2]
N. G. Hingor
ani and
L. G
y
ug
y
i
,
“Unde
rstanding
FACTS: Concep
ts and
Techno
lo
g
y
of
Flex
ible AC Transmission
S
y
stems,” New
York, IEEE Pres
s, 2000.
[3]
L. G
y
ug
yi
,
et al.
, “The unified
power flowcontr
o
ller:An
ewa
ppro
ach to power transmission contr
o
l,”
IE
EE T
r
ans.
Power Del
.
, vol/issue: 10(2), pp.
1085– 1097, 199
5.
[4]
D. N. Rao
and
V. Sarith
a, “
P
ower S
y
stem
Osc
illa
tion Dam
p
in
g Using New Facts Devi
ce,
”
IJ
EC
E
, vol/issue: 5(
2)
,
2015.
[5]
M
.
D. Deepak
,
et al.
, “
A
dis
t
rib
u
ted s
t
a
tic s
e
rie
s
com
p
ens
a
tor s
y
s
t
em
for r
eal
izi
ng act
ive power
flow control
o
n
existing
power
li
nes,”
IEEE Trans. Power
Del.
, v
o
l/issue: 2
2
(1), p
p
. 642–649
, 200
7.
[6]
A. A. Ed
ris, “Proposed term
s an
d defin
itions
for
flexibl
e
ac trans
m
ission
sy
st
em
(facts),”
I
EEE
T
r
ans. Power De
l.
,
vol/issue: 12(4), pp.
1848–1853
, 1997.
[7]
K. K. Sen, “SSSC-static s
y
n
c
hro
nous series co
mpensator:
Theory
, modeling
,
and
application,”
IE
EE T
r
ans. Powe
r
Del.
, vol/issue: 1
3
(1), pp
. 241–24
6, 1998
.
[8]
Y. Zhihui,
et al.
,
“
U
tilizing d
i
stri
buted power f
l
o
w
controll
er (dp
f
c) for power os
cill
ation
dam
p
in
g,” in
Proc. IEEE
Power En
ergy S
o
c. G
e
n.
Mee
t
.
(
PES)
, pp. 1–5, 2
009.
[9]
Y. Zhihui,
et
al
., “Dpfc contro
l during shunt converter f
a
ilu
re,” in
Proc. IEEE Energy Con
v
ers. Congr. Exp
o
.
(
E
CCE)
, pp. 272
7–2732, 2009
.
[10]
D. Divan and H
.
Johal, “Distrib
ut
ed facts—A new concep
t for r
ealizing gr
id po
wer flow contro
l,”
in
P
r
oc.
IE
EE
36th Pow
e
r Electron.
Spec. Conf. (
PESC)
, pp. 8–1
4, 2005
.
[11]
Y. Sozer
and D. A. Torr
ey
, “Modeling
and
c
ontr
o
l of ut
ili
t
y
in
te
ract
ive
invert
ers,
”
IEEE Trans. Power Electron.
,
vol/issue:
24(11)
, pp
. 2475–2483
, 2009.
[12]
L. Huber
,
et al.
, “Review and stability
an
aly
s
is
of pll-based
interleav
ing con
t
rol
of dcm/ccm bou
ndar
y
boost pfc
converters,”
IEEE Trans. Power
Electron.
, vol/issue: 24(8)
, pp
. 19
92–1999, 2009
.
[13]
M. Mohaddes,
et al.
, “Stead
y
state fr
equen
c
y
r
e
sponse of statco
m,”
IE
EE T
r
ans. Pow
e
r Del
.
, vo
l/issue: 16
(1), p
p
.
18–23, 2001
.
[14]
D. K. M
i
s
h
ra, “
E
ffic
i
ent a
l
gori
t
h
m
for load forecas
ting in e
l
e
c
tri
cal power s
y
s
t
e
m
us
ing artificia
l neural ne
twork
,
”
International jou
r
nal of
latest
res
e
arch in
science
and technology
, pp.
254-258
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
UPFC
Pe
rf
or
ma
nce w
i
t
h
t
h
e
C
o
m
p
ari
s
o
n
o
f
PI
an
d
AN
N
C
ont
r
o
l
l
e
r (
D
.
N
a
rasi
mh
a
Ra
o)
2
087
BIOGRAP
HI
ES OF
AUTH
ORS
D.Naras
i
m
h
a Ra
o working as
as
s
o
cia
t
e P
r
ofes
s
o
r
in KLU Univers
i
ty
Guntur Completed B.Tech
in EEE
and Masters in P
o
wer El
ectron
i
cs and in
dustrial Driv
es a
nd P
r
esentl
y P
u
rsuing P
h
D In
J
N
TU H
y
derab
a
d and
m
y
r
e
s
e
a
r
ch ar
ea
ar
e F
A
CTS
Controll
ers
,
P
o
wer El
ec
tro
n
ics
Dr T S
u
rendra R
ece
ived B.
Te
ch i
n
Ele
c
tri
cal
and
Ele
c
troni
cs
Engi
neering
.
He re
ce
ived th
e P
h
.D.
degree from Jawaharlal Nehru t
echnolog
ical university
(JNTU)
Hy
d
e
rabad in 2008. He is
currently
a Director in vision Lighting and Ener
g
y
India Pvt Limited and Visiting Professor in
University
.He h
a
s published/pr
esented number
of
techni
ca
l r
e
search p
a
pers
in Nationa
l &
Interna
tiona
l Journals. Her r
e
search
inter
e
st
s
includ
e F
acts
Controllers
, P
o
wer ele
c
troni
cs
industrial driv
es
and En
erg
y
s
y
stems
Dr S.Tara Kal
y
ani rec
e
iv
ed th
e B.Eng. degr
ee
in Electrical
an
d Electronics Engineer
ing from
Osmania Univer
sity
, H
y
der
a
bad
in 1995. She rece
ived
the Ph.D.
degree from Jawaharlal Nehru
techno
logical un
iversity
(JNTU)
H
y
der
a
bad
in 2
008.she is curr
ently
a Professor & Head
in th
e
Dept.of Electr
ical
and Electronics
Engi
ne
er
i
n
g
f
r
o
m JNT
U
Hy
de
r
a
b
a
d.
Sh
e
ha
s
published/pr
esen
ted number of tec
hnical r
e
sear
ch papers in Nati
onal & Intern
ational Journals.
Her research in
terests includ
e Facts Controllers,
Power electron
i
cs industrial drives and Energ
y
s
y
ste
m
s
Evaluation Warning : The document was created with Spire.PDF for Python.