Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 5
,
O
c
tob
e
r
201
5, p
p
. 1
062
~107
4
I
S
SN
: 208
8-8
7
0
8
1
062
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Rem
o
te Control
of Mobil
e
Ro
bot using the Virtual Reality
Ibari Ben
a
ou
meur*,
Ahme
d-foitih
Z
o
ubir*,
an
d H
a
ni
fi Elhachimi
Amar
Red
a
**
Laborator
y
of
Power S
y
stems, Solar
Energ
y
and
Automation
L.E.P.E.S.A. Univer
sity
of
Scien
ces and
Technolo
g
y
of
Oran,
USTO/MB.
Oran,
Algeria
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 20, 2015
Rev
i
sed
Jun
26,
201
5
Accepte
d
J
u
l 13, 2015
In this pap
e
r w
e
present
the
si
m
u
la
tion and
manipulation of
teleop
eration
s
y
stem for remote con
t
rol of mobile
robot usin
g the Virtu
a
l R
eality
(VR)
.
The obje
c
tiv
e of
this work is to
allow
the oper
a
tor to control and
supervise a
unicy
cle ty
p
e
mobile robot. In th
is re
search we fo
llowed three way
s
: Th
e use
of articulated
ro
botic mobile on
the We
b, the design of remote environment
for the experim
e
ntation using the network for the mobile robot and the
architecture of control is propos
ed to
f
acilitate th
e pilo
ting
of th
e
robot.
This
work proposes a hardware and so
ftware arch
itectur
e based on
communication
and information
technolog
ie
s to
control the vir
t
ual robot to
improve the co
ntrol towards th
e remote
robot. A path plannin
g
method is
integr
ated to the
rem
o
te control s
y
st
em
. Results show the real possibiliti
es
offered b
y
th
is manipulatio
n, in
order to
follow a trajector
y
of the robot an
d
to cr
eat
e
appli
c
ations with
a
di
stance
ac
cess to
fac
ili
ties
throu
gh networks
like
the
Int
e
rnet
and wire
less.
Keyword:
Mo
b
ile Robo
t
Pat
h
Pl
a
nni
ng
Teleo
p
e
ration
Virtu
a
l Reality
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Iba
r
i
B
e
na
o
u
m
e
ur
Lab
o
rato
ry
of Po
wer Sy
stem
s,
S
o
lar
E
n
e
r
gy
and
A
u
tom
a
tion
L
.
E.P
.
E.
S.
A
Un
i
v
ersity of scien
ces an
d
tech
no
log
y
o
f
Oran
USTO/MB
El Mn
aou
a
r
,
B
P
150
5, Bir
El
D
j
i
r
,
O
r
an
, A
l
ger
i
a 310
00
Pho
n
e
+213
(0
) 41
5
6
03
29
Em
a
il ib
ar
i b@yaho
o.fr
1.
INTRODUCTION
No
wa
day
s
, t
h
e
t
ech
nol
ogy
of
t
h
e
rem
o
t
e
co
nt
r
o
l
has
e
vol
v
e
d c
o
n
s
i
d
e
r
abl
y
beca
use i
t
m
u
st
re
sp
o
n
d
to the increasi
ng
need to th
e
rem
o
t
e
cont
rol
vari
o
u
s de
vi
ce
s desi
g
n
ed f
o
r
use i
n
speci
al
i
zed or
gene
ral
pu
bl
i
c
ap
p
lication
s
. In
th
is ways,
we can
d
e
si
g
n
effectiv
e systems for teleo
p
e
rat
i
o
n
ab
le to
contro
l co
m
p
lex
ro
bo
tic
d
e
v
i
ces
b
y
u
s
i
n
g
th
e n
e
w
tech
n
i
q
u
e
s o
f
v
i
rt
u
a
l
reality
and
au
g
m
en
ted
reality.
Ro
bo
tics teleo
p
e
ration
syste
m
s are wid
e
ly u
s
ed
in
: in
du
stry, science, m
e
d
i
cin
e
, ed
u
cation
,
entertainm
ent and m
ilitary applicatio
ns [1]. Succes
sful applications of
rem
o
tely controled m
obile robots in
di
ffe
re
nt
envi
r
onm
ent
s
are p
r
esent
e
d i
n
[
2
,
3, 4]
. The t
e
l
e
po
rt
at
i
on
of
m
obi
l
e
robot
s
i
s
cl
assi
fi
ed i
n
t
h
ree
categ
or
ies: exp
l
or
atio
n ro
v
e
r
s
,
Un
m
a
n
n
e
d G
r
ou
nd
V
e
h
i
cles (
UGV
)
an
d d
a
ng
erou
s
d
u
t
y [5
]. Exp
l
o
r
ati
on
ro
ver
s
are ro
b
o
ts desig
n
e
d
to
rem
o
tely
perform
scien
ce ta
sks [6]. UGVs
are used for t
a
sks re
qui
ring rem
o
te
n
a
v
i
g
a
tio
n
su
ch
as reconn
aissan
ce or su
rv
eil
l
an
ce [7
]. Dang
erou
s du
ty rob
o
t
s work
in
co
nd
itio
ns wh
ich
h
a
v
e
ext
r
em
el
y
grave
dan
g
e
r
s
[8
,
9,
1
0
]
.
The
m
o
st
ely
used
m
e
t
hod
f
o
r
r
o
bot
m
obi
l
e
t
e
l
e
ope
rat
i
o
n i
s
t
h
e
di
rect
interface: the
ope
rator
direct
s the ro
bot with hand-c
ontrollers
and watc
hing vide
o from
cam
eras
[11, 12]. A
new c
o
nt
rol
st
r
a
t
e
gy
fo
r cam
era vi
ew
p
o
i
n
t
p
o
si
t
i
oni
ng i
n
t
e
l
e
ope
rat
i
on
of
m
obi
l
e
robot
s
i
s
prese
n
t
e
d i
n
[1
3]
,
t
h
e p
r
op
ose
d
m
e
t
hod e
n
s
u
re
s t
h
at
al
l
i
m
port
a
nt
poi
nt
s f
o
r
t
h
e rem
o
t
e
co
nt
r
o
l
are i
n
cl
u
d
ed
i
n
t
h
en
vi
d
e
o f
e
e
d
,
t
h
i
s
m
e
t
hod
wa
s i
m
pl
em
ent
e
d
and
t
e
st
ed i
n
t
e
l
e
ope
rat
i
o
n
ex
peri
m
e
nt
s wi
t
h
a m
obi
l
e
ro
b
o
t
.
In con
t
rast
to
d
i
rect in
terfaces, th
e
v
i
rtu
a
l
reality
p
r
ov
id
es an ex
tern
al
p
e
rsp
ectiv
e
wh
ich
allows the
o
p
e
rator to driv
e/p
ilo
t th
e v
e
h
i
cle fro
m
th
e ou
tsid
e.
VR t
ech
no
log
y
[14, 15
] h
a
s b
e
en u
s
ed
in
i
n
du
strial
com
p
anies as
well, es
pecially in te
lerobotic virt
ual
design a
n
d m
achin
ing sim
u
lation
syste
m
becaus
e
they
o
f
fer lower operatin
g costs than
t
h
e real situatio
n
[16
,
1
7
,
1
8
,
1
9
]
. Vi
rtu
a
l reality en
v
i
ron
m
en
t h
a
s l
o
ng
b
e
en
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
106
2
–
10
74
1
063
ado
p
t
e
d as an
effect
i
v
e way
t
o
addre
ss t
i
m
e del
a
y
prob
l
e
m
s
i
n
robot
t
e
l
e
operat
i
o
n s
y
st
em
[20]
, an
d can
su
rm
o
u
n
t
th
e i
n
fl
u
e
n
c
e of time d
e
lay in
signal tran
sm
issio
n
b
y
p
r
ed
ictiv
e
d
i
sp
lay [21
]
.
In t
e
rm
of su
p
e
rvi
s
ory
c
ont
r
o
l
,
I
n
[
22]
C
o
ope
r et
al
.
des
c
ri
be
d h
o
w
ea
r
t
h-
based
o
p
e
r
a
t
ors
use
d
t
h
e
R
ove
r C
o
nt
r
o
l
W
o
r
k
st
at
i
on t
o
co
nt
r
o
l
t
h
e
So
jo
u
r
ne
r r
o
ve
r o
n
M
a
rs
. N
g
uy
en et
al
. [
2
3]
desc
ri
be
d s
e
veral
virtual
reality base
d interfac
es for e
xpl
orat
ion, t
h
is
vi
rtua
l reality based interface c
oncisely displays
m
a
ny
d
a
ta sets: stereo
-v
ision
b
a
sed
terrain
, d
i
g
ital elev
atio
n m
a
p
,
an
d sim
u
lated
d
e
scen
t im
ag
es.
There a
r
e m
a
ny researc
h
articles e
m
phasizing the
im
p
o
r
tan
ce of VR
ap
p
lication
at th
e rem
o
t
e
cont
rol
.
An a
p
pr
oac
h
t
o
desi
gni
ng a Vi
rt
ua
l
R
obot
f
o
r c
o
nt
r
o
l
sy
st
em
d
e
si
gn i
s
p
r
ese
n
t
e
d i
n
[
2
4]
, r
o
b
o
t
i
c
Si
m
u
latio
n
Env
i
ro
n
m
en
t is i
n
tro
d
u
c
ed
fo
r testin
g
and
v
i
su
alizatio
n
of ro
bo
tic alg
o
rithm
s
, b
u
t
th
e tes
tin
g
on
an
r
e
al ro
bo
t is m
u
ch
lo
ng
er an
d ted
i
ou
s
pr
ocess [2
5
]
.
I
n
t
h
e desi
g
n
,
asse
m
b
ly
and m
a
nufact
uri
n
g a
r
ea
, t
h
er
e
has
been
a l
o
t
of
resea
r
ch
a
nd
de
vel
o
pm
ent
an
d a
n
u
m
b
ers o
f
s
o
ft
war
e
t
ool
s
ha
ve b
een
devel
ope
d
i
n
t
h
i
s
fi
el
d. Li
an
g et
al
.[2
6
]
devel
o
p
e
d an
app
r
op
r
i
ate
m
e
th
o
d
o
l
og
y w
ith
op
en
a
r
chitecture for real-tim
e
m
onitoring
and
rem
o
t
e
cont
r
o
l
of net
w
o
r
ke
d m
obi
l
e
Rob
o
t
an
d a ne
w ena
b
l
i
ng t
e
c
h
n
o
l
o
gy
t
o
b
r
i
ng t
r
a
d
i
t
i
onal
ro
b
o
t
i
c
to
o
l
s on
-lin
e
with
co
m
b
in
ed
m
o
n
ito
rin
g
and
con
t
ro
l cap
ab
ility
is p
r
esented
to
m
a
n
i
p
u
l
ate th
e wh
eeled
m
o
b
ile
r
obo
t d
a
ta an
d to
carr
y
ou
t a v
a
r
i
ety of
asse
m
b
ly f
u
n
c
tion
s
.
A
d
i
stribu
ted
p
l
atform
th
at allo
ws th
e sp
ecial
gr
o
up
o
f
u
s
er t
o
c
ont
r
o
l
a
ga
d
g
et
(
p
o
ssi
bl
y
a
ro
b
o
t
)
t
h
ro
u
g
h
i
n
t
e
rnet
as
a m
e
di
um
i
s
prese
n
t
e
d i
n
[
2
7]
, a
fuzzy
lo
g
i
c con
t
r
o
ller
is
u
s
ed
t
o
con
t
ro
l th
e ro
bo
t
s
m
o
tio
n
along a
p
r
ed
ef
i
n
ed
path
w
ith
th
e
n
e
cessar
y
m
a
n
i
p
u
l
atio
n
o
f
th
e
n
o
rm
al
co
urse.
In
[28
]
th
e p
o
s
ition
o
f
ro
bo
t b
y
m
ean
s o
f
bo
th
force an
d
v
i
su
al feed
b
a
ck
s is con
t
ro
lled
,
a fo
rce feedb
a
ck
jo
ystick
is u
s
ed
to
d
e
liv
er co
llisio
n
d
e
tails to
o
p
e
rat
o
r
h
a
nd
and
driv
e 2
-
DOF slav
e
ro
bo
t in
Virtu
a
l Reality env
i
ro
n
m
en
t.
In t
h
e t
e
rm
fo
l
l
o
wi
n
g
a
pat
h
m
a
ny
m
e
t
hod
s are
devel
ope
d [
2
9,
30]
,
Th
ese ap
pr
oac
h
s
are are
n
o
t
tested
in
th
e re
m
o
te co
n
t
ro
l
with
real im
p
l
e
m
en
tatio
n
.
Follo
wing
th
ese
id
eas,
we are
d
e
v
e
l
o
p
i
n
g
a
syste
m
b
a
sed
o
n
v
i
rt
u
a
l en
v
i
ron
m
en
ts, in
tend
ed
to facilitate th
e tele
o
p
e
retion
o
f
a
u
n
i
cycle m
o
b
ile ro
bo
t. Th
is syste
m
has
not
hi
g
h
-c
ost
ha
rd
wa
re r
e
qui
rem
e
nt
. A t
e
l
e
-ro
b
o
t
i
c
sy
st
em
basi
cal
ly
consi
s
t
s
of t
h
ree m
a
i
n
part
s:
t
h
e
rem
o
t
e
rob
o
t
,
t
h
e com
m
uni
cat
i
on net
w
o
r
k
and t
h
e u
s
er
i
n
terface [3
1
]
.
We use a un
icycle
m
o
b
ile for th
e
rem
o
t
e
rob
o
t
,
t
h
e TC
P/
IP
(Tra
nsm
i
ssi
on C
o
nt
r
o
l
Pr
ot
oc
ol
/
I
nt
e
r
net
Prot
ocol
) and
wi
rel
e
ss f
o
r t
h
e
com
m
uni
cat
i
on net
w
o
r
k a
nd
t
h
e VR
en
vi
r
o
nm
ent
for t
h
e
user
in
terface. Th
e obj
ectiv
e
o
f
th
is work
is
to
allo
w
a u
s
er to teleop
erate a
un
icycle
m
o
b
ile th
ro
ugh
an
in
t
u
itiv
e
h
u
m
an
-m
ac
h
i
n
e
i
n
terface
u
s
ing
v
i
rtu
a
l
reality as
to
o
l
assistan
ce th
e
p
e
rcep
tion
o
f
t
h
e
d
i
stan
t site, th
e In
tern
et
n
e
two
r
k as a tran
sm
is
sio
n
supp
ort an
d the
wireless network bet
w
een the
server a
nd the robot. In this
wo
rk the inte
rface provide
tools to m
a
ke a
task
easier and m
echanism
s
for the operat
or a
n
d
the robot t
o
e
x
chan
ge i
n
f
o
rm
at
i
on at
di
f
f
ere
n
t
l
e
vel
s
of
det
a
i
l
or
ab
straction
and to
v
e
ri
fy th
e ro
bo
t in
Virtu
a
l
Reality
an
d
the wireless rem
o
te con
t
ro
l. An ad
d
ition
a
l ob
jectiv
e
i
s
t
o
i
n
t
e
grat
e
a pat
h
pl
an
ni
n
g
m
e
t
hod t
o
t
h
e rem
o
t
e
con
t
rol
sy
st
em
,
t
h
e
m
e
t
hod i
s
t
e
st
ed i
n
real
un
i
c
y
c
l
e
ro
b
o
t
m
obi
l
e
. The
rest
o
f
t
h
i
s
pa
per i
s
or
ga
n
i
zed as f
o
l
l
o
ws
:
In sect
i
o
n
2,
soft
ware
desi
g
n
a
nd
A
r
chi
t
e
c
t
ure
of
th
e system
is d
e
scrib
e
d
with
t
h
e
d
i
fferen
t
mo
du
les co
nstitu
tin
g
o
u
r system
. Th
e h
a
rdware arch
itectu
r
e
o
f
t
h
e
tele-rob
o
tic sy
ste
m
is p
r
esen
t
e
d
in
sectio
n
3
.
Th
e e
f
f
ectiv
eness of
th
e
p
r
opo
sed
fo
llow
i
ng a tr
aj
ect
o
r
y meth
od
of
t
h
e
ro
b
o
t
i
s
veri
fi
e
d
a
n
d
p
r
esent
e
d
i
n
sect
i
o
n
4
.
Fi
nal
l
y
, s
ect
i
on
4 c
ont
ai
ns s
o
m
e
concl
udi
ng
rem
a
rks.
2.
SOFTW
ARE
DESIG
N
A
N
D
AR
CHITE
C
TU
RE
The s
o
ft
ware
archi
t
ect
u
r
e o
f
t
h
e p
r
op
ose
d
st
at
i
on i
s
bas
e
d
on m
o
d
u
l
e
s, com
m
uni
cat
i
ng
bet
w
ee
n
th
em
u
s
in
g
th
e requ
est m
e
ssa
g
e
. To
gu
aran
t
ee th
e op
erator safety, th
e ro
bo
t con
t
ro
l is ach
i
ev
ed
ou
t remo
tely
vi
a net
w
o
r
k c
o
m
m
uni
cat
i
ons
so t
h
e cl
i
e
nt
se
rve
r
co
n
n
ec
t
i
o
n i
s
est
a
bl
i
s
he
d usi
n
g dat
a
f
r
a
m
e
s t
r
ansm
it
ted vi
a
i
n
st
ant
net
w
o
r
k c
o
m
m
uni
cat
ions
p
r
ot
oc
ol
s.
The al
g
o
r
i
t
h
m
prese
n
t
e
d
i
n
t
h
e Fi
g
u
re
1 i
s
u
s
ed
fo
r v
e
ri
fy
t
h
e i
p
(I
nt
er
net
Pr
ot
o
c
ol
) a
d
dress
an
d t
h
e
p
o
r
t
o
f
t
h
e ser
v
er
cl
i
e
nt
con
n
ect
i
o
n.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Remo
te Con
t
rol o
f
Mo
b
ile Rob
o
t
u
s
i
n
g
th
e Virtu
a
l
Rea
lity (Iba
ri Bena
oumeu
r)
1
064
Fig
u
re 1
.
Th
e Serv
er/Clien
t
co
nn
ection
2.
1. T
h
e Ser
v
e
r
St
ati
o
n
The c
o
m
m
unication TCP/
IP
m
odule allows
the
user
t
o
c
o
ntrol the
robot
wh
ile letting
downloa
d
t
h
e
gra
p
hi
c i
n
t
e
r
f
a
ce an
d t
o
sen
d
or
de
rs, a
n
d t
h
e
W
i
rel
e
ss
Net
w
o
r
k
P
r
ot
ocol
i
s
use
d
t
o
c
o
nnect
i
n
g t
h
e
m
obi
l
e
robo
t with
th
e sev
e
r station
as see in
Fig
u
re 2
,
th
e serv
er i
s
targeted m
a
inly for
battery-powe
r
ed a
ppli
cations
wh
ere l
o
w d
a
ta rate, l
o
w co
st,
an
d lon
g
b
a
ttery life are m
a
in
requ
irem
en
ts.
To
fo
llow th
e
ev
alu
a
tion
o
f
v
i
rtu
a
l rob
o
t
we u
s
e a VR
en
v
i
ron
m
en
t t
o
gu
aran
tee
op
erab
ility an
d
safety. Th
e
v
i
rt
u
a
l Reality Mo
d
e
lin
g
Langu
ag
e (VRML) is
a file fo
rm
at for d
e
scrib
i
n
g
in
t
e
ractiv
e 3D obj
ects
(The
Vi
rt
ual
R
o
b
o
t
3d M
o
del
)
,
havi
ng
t
h
e c
h
aract
er
o
f
bei
n
g
si
m
p
l
e
t
o
use, o
p
e
n
a
nd i
n
t
e
ract
i
v
e w
h
i
c
h m
a
ke
it a p
o
w
erfu
l to
o
l
fo
r setting
u
p
th
e
Web-b
a
sed
-
sim
u
latin
g syste
m
s
[3
2, 3
3
, 34
]. Its h
a
s a stro
ng
ab
ility fo
r
gra
p
hi
cs
di
s
p
l
a
y
and
go
o
d
W
e
b ru
n
n
i
n
g. To
vi
s
u
al
i
ze
t
o
re
al
m
ovi
n
g
of
t
h
e ro
b
o
t
wi
t
h
a
vi
s
u
al
fee
d
b
ack, a
ca
m
e
ra is adde
d.
The
Ser
v
er
St
a
t
i
on i
s
c
o
m
pos
ed
of
p
r
i
n
ci
pal
pr
ocesses
as se
e i
n
Fi
gu
re
2 :
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
106
2
–
10
74
1
065
Fi
gu
re
2.
The
s
o
ft
ware a
r
c
h
i
t
ect
ure
of
t
h
e
sy
st
em
2.
1.
1. T
h
e F
o
r
w
ard Ki
ne
ma
ti
cs o
f
the
M
o
bi
l
e
Ro
bo
t
In t
h
i
s
w
o
rk
w
e
use a
m
odel
f
o
r t
h
e
uni
cy
cl
e
t
y
pe m
obi
l
e
ro
bot
as
see i
n
Fi
gu
re
3.
The
co
nfi
g
u
r
at
i
o
n
of t
h
e robot mobile in the
works
p
ace ca
n
be c
o
m
p
letely defi
ned by t
h
ree pa
ram
e
ters x, y a
n
d
.
L
is th
e
distance betwe
e
n
wheels.
i
s
th
e ang
u
l
ar velo
city o
f
th
e ro
bo
t aro
und
the In
stan
tan
e
o
u
s Cen
t
er of Rotation
(ICR). Resp
ect
iv
ely
v
r
and
v
l
are v
e
l
o
cities o
f
th
e ri
g
h
t
an
d
left wh
eel, and
r
,
l
are an
gu
lar velo
cities o
f
th
e
right and left
wheel.
r
i
s
w
h
eel
ra
di
us.
F
r
om
t
h
e Fi
gu
re
3,
t
h
e l
i
n
ear
vel
o
ci
t
y
v
i
s
gi
ven
by
:
Fig
u
re
3
.
Parameters o
f
th
e
un
icycle-lik
e mo
b
ile
robo
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Remo
te Con
t
rol o
f
Mo
b
ile Rob
o
t
u
s
i
n
g
th
e Virtu
a
l
Rea
lity (Iba
ri Bena
oumeu
r)
1
066
2
2
(1
)
And
t
h
e an
gu
lar
v
e
lo
city o
f
the ro
bo
t is
g
i
v
e
n
b
y
:
(2
)
Thi
s
ki
nem
a
t
i
c
m
odel
can
be
descri
bed
by
t
h
e f
o
l
l
o
wi
ng
eq
uat
i
o
n
s
[
3
5]
:
cos
s
i
n
(3
)
Th
e
no
nho
lon
o
mic co
n
s
trai
n
t
th
at th
e
d
r
i
v
ing wh
eels
p
u
rely ro
ll an
d do
no
t
slip
m
u
st b
e
resp
ected, th
e rob
o
t
can
no
t m
o
v
e
i
n
lateral
d
i
rectio
n to
its
wh
eels, wh
ich
is:
sin
cos
0
(
4
)
2.
1.
2. Fol
l
o
w
i
ng a
T
r
ajec
t
o
ry of
the
R
o
b
o
t
Fo
r
p
a
th
fo
ll
o
w
i
n
g, effecti
v
e alg
o
rith
m
is p
r
opo
sed
fo
r
tr
aj
ector
y tr
ack
i
ng t
h
e
g
o
al
po
si
t
i
on
x
*(
t
)
y
*(
t
), t
h
e rob
o
t
try to
m
a
in
tain
a certain
d
i
stan
ce
d
*
, t
h
e error
b
e
tween
rob
o
t
p
o
s
itio
n
and
go
al positio
n
can
b
e
calcu
lated
as fo
llo
ws:
∗
∗
(
5
)
we
use
pr
o
p
o
r
t
i
onal
i
n
t
e
gral
(
P
I)
co
nt
r
o
l
l
e
r t
o
c
ont
rol
t
h
e
ro
bot
’s
vel
o
ci
t
y
∗
(
6
)
and the a
n
gle
*
can
be e
x
pres
sed as
follows:
∗
t
a
n
∗
∗
(7
)
The pat
h
pl
a
n
n
i
ng m
odel
of t
h
e r
o
b
o
t
i
s
sh
o
w
n i
n
Fi
g
u
re
4
,
i
n
t
h
i
s
m
odel
,
t
h
e ki
nem
a
t
i
c
m
odel
of a uni
cy
cl
e
typ
e
rob
o
t
is used
to
tu
rn
th
e
steerin
g
wh
eel.
and
v
are t
h
e i
nput
s o
f
t
h
e
ro
b
o
t
and t
h
e o
u
t
p
ut
is th
e c
u
rren
t
tu
rn
ing
an
g
l
e
of th
e ro
bo
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
106
2
–
10
74
1
067
Fi
gu
re
4.
F
o
l
l
o
wi
n
g
a t
r
aject
o
r
y
m
odel
of
t
h
e
r
o
b
o
t
2.1.3. T
h
e Inverse Kinem
a
ti
cs
o
f
the R
o
bo
t Mo
bile
Th
e
po
sitio
n of th
e cen
t
er
o
f
m
a
ss in
resp
ect to
turn
an
g
l
es of each on
e
of t
h
e
robo
t’s wh
eels i
s
d
e
term
in
ed
wit
h
th
e d
i
rect k
i
ne
m
a
tic
m
o
d
e
l, th
e d
i
rect
k
i
n
e
matic
m
o
d
e
l o
f
th
e m
o
b
ile ro
bo
t is ex
pressed
as:
s
i
n
2
s
i
n
2
s
i
n
2
s
i
n
2
2
(8
)
The inverse
ki
nem
a
t
i
cs is to
determ
ine the angular
velocit
y
of each
whee
l, give
n the position and the
o
r
ien
t
atio
n
of t
h
e m
o
b
ile ro
bot. Th
e inv
e
rse
k
i
n
e
m
a
tics can
b
e
written
fo
rm
as fo
llo
ws [3
6
]
.
2
2
2
2
(9
)
2.
1.
4. Du
al
PI
D Co
ntr
o
l
The
PI
D C
ont
r
o
l
bl
oc
k s
h
o
u
l
d
be
use
d
t
o
c
ont
rol
t
h
e s
p
ee
d t
w
o
w
h
eel
s
of
t
h
e
di
f
f
ere
n
t
i
a
l
l
y
dri
v
e
n
v
e
h
i
cle
robo
t wh
ich
are driven
b
y
two separate DC m
o
to
rs,
Find
ing
ou
t
th
e valu
es
o
f
th
ese g
a
i
n
s
requ
ires a
certain PID c
o
ntroller desi
gn proce
d
ure by
taking t
h
e tra
n
sfer
function
of each m
o
tor
unde
r c
onsi
d
era
tion.
Sev
e
ral m
e
th
od
s are av
ailab
l
e in
literatu
re
for PID con
t
ro
ller d
e
sign
,
fo
r ex
am
p
l
e Zieg
ler-Nicho
l
s t
u
n
i
n
g
rul
e
s,
O
p
t
i
m
i
z
at
i
on
by
Pe
rf
o
r
m
a
nce In
de
x
R
e
duct
i
o
n
(I
T
A
E)
,
ro
ot
l
o
c
u
s an
d
fre
q
u
enc
y
-res
p
o
n
se m
e
t
h
o
d
s
[37, 38] etc.
The i
n
p
u
t
s
o
f
dual
PI
D C
o
nt
rol
are t
w
o act
uat
i
ng er
r
o
r si
gnal
s
1
and
2
, whi
c
h can be
gene
rat
e
d
by
th
e two
su
mmin
g
jun
c
tio
ns wh
ich
co
m
p
are th
e d
e
sired
an
d
actu
a
l (feed
b
a
ck) ang
u
l
ar v
e
lo
cities o
f
th
e two
wheel
s
h
aft
s
of
t
h
e r
o
b
o
t
.
T
h
e
out
put
s
(P
ul
se
W
i
dt
h M
o
dul
a
t
i
on)
P
W
M
1 a
nd
P
W
M
2 are
t
w
o c
ont
rol
si
gnal
s
for two
sep
a
rately o
p
e
rating
PMDC (P
erm
a
n
e
n
t
Mag
n
e
t
DC) m
o
to
rs as sho
w
i
n
Fi
g
u
re 5
.
So
m
e
in
tellig
en
t
m
e
thods
for P
o
sition Control
of DC
M
o
tor t
h
at can be
a
d
ded in th
is syste
m
are propose
d in [39].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Remo
te Con
t
rol o
f
Mo
b
ile Rob
o
t
u
s
i
n
g
th
e Virtu
a
l
Rea
lity (Iba
ri Bena
oumeu
r)
1
068
3.
THE HARDWAR
E ARCHITEC
TUR
E
OF THE
TELE-
R
O
BOTIC
SY
STE
M
The st
at
i
o
n
of
R
e
m
o
t
e
cont
ro
l
i
s
com
posed
of
t
w
o
pri
n
ci
pa
l
part
s:
An a
p
pl
i
cat
i
o
n
devel
ope
d
on
a st
at
i
on co
n
n
e
c
t
e
d t
o
t
h
e
ro
b
o
t
cal
l
e
d A
ppl
i
cat
i
on Se
rve
r
whi
c
h i
s
use
d
as
interm
ediary between the client and the robot, it refl
ects
the received
instructions
of the serve
r
int
o
u
n
d
e
rstand
ab
le in
stru
ctio
ns
by th
e rob
o
t
.
Fi
gu
re
5.
C
o
nt
r
o
l
o
f
DC
m
o
t
o
r
s
App
l
ets co
nstitu
tin
g
th
e client u
s
in
g
b
y
th
e o
p
e
rator and
will b
e
th
e to
ol fo
r th
e tele-op
e
ration
of robo
t
cal
l
e
d A
ppl
i
c
a
t
i
on C
l
i
e
nt
. T
h
ree t
y
pe
s o
f
dat
a
fl
ows a
r
e co
nsi
d
ere
d
:
Hi
g
h
-l
e
v
el
c
o
m
m
a
nds,
vi
s
u
al
feed
bac
k
dat
a
and
real
-t
i
m
e m
o
ti
on c
ont
rol
dat
a
.
The role of the
Serve
r
is to recei
ve the data com
i
ng from
the client
websi
t
e and to trans
m
it the
m
to
t
h
e r
o
bot
s t
o
re
al
i
ze preci
se t
a
sk
usi
n
g t
h
e
W
i
rel
e
ss Net
w
o
r
ki
n
g
P
r
ot
oc
ol
a
s
see i
n
Fi
g
u
r
e
6.
Fi
gu
re 6.
The
Tel
e
-r
ob
ot
i
c
sy
st
em
We
use i
n
this
project a cam
e
r
a Pi
xeLINK
PL-B762F, The
ca
m
e
ra specifi
cations a
r
e:
R
e
sol
u
t
i
o
n:
7
5
2
48
0.
Sens
or
t
y
pe:
C
M
OS.
FPS at
full res
o
lution: 60
Interface: Fi
re
wire.
The e
x
perim
e
ntal study
was
realized usi
n
g a
PC
wit
h
th
e follo
wing
m
a
teri
al co
nfigu
r
ati
on
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
106
2
–
10
74
1
069
In
tel Core
2
Qu
ad @ 2.4GHz.
4GB
R
A
M
.
Et
her
n
et
Net
w
or
k
De
vi
ce :
R
TL8
10
1E
Fam
i
l
y
PC
I-E
Fast
Et
her
n
et
N
I
C
.
W
i
r
e
less N
e
two
r
k
D
e
v
i
ce
:
Realtek
RTL8187
B W
i
r
e
less 80
2.11g
5
4
M
bps.
Th
e system
o
f
th
e rem
o
te contro
l allows a
h
i
g
h
d
e
g
r
ee of
real-ti
m
e in
teractio
n
with
a
ro
botic syst
e
m
u
s
ing
VR env
i
ron
m
en
t to
guaran
t
ee
o
p
e
rabilit
y an
d
safety
. In
t
h
is work
, a
d
e
sign
o
f
two-wh
eeled
m
o
b
i
l
e
ro
b
o
t
co
nt
r
o
l
l
e
d
by
PC
t
h
r
o
u
g
h
wi
rel
e
ss se
ns
or
net
w
o
r
k
i
s
s
u
g
g
est
e
d.
3.
1.
Descri
p
t
i
o
n o
f
T
h
e
Two-Wheeled Mobile
Robot
The
devel
ope
d
a uni
cy
cl
e t
y
pe
m
obi
l
e
ro
b
o
t
i
s
pr
od
uce
d
w
i
t
h
a fo
rm
squ
a
re as see i
n
Fi
gu
re
7 wi
t
h
t
w
o
dri
v
i
n
g
w
h
eel
s o
n
t
h
e sa
m
e
axi
s
, an
d a
whe
e
l
o
f
i
n
sa
ne t
h
e
bac
k
. T
h
e w
e
i
g
ht
i
s
an i
m
port
a
nt
f
a
ct
or
fo
r
o
u
r app
licatio
n b
ecau
s
e it
p
l
ays th
e ro
le
o
f
a resistiv
e t
o
rq
ue fo
r t
h
e two
m
o
tors.
Fi
gu
re
7.
The
Uni
c
y
c
l
e
M
o
bi
l
e
R
o
b
o
t
Th
e
robo
t is co
n
t
ro
lled b
y
t
w
o DC
m
o
to
rs,
o
n
e
for eac
h
wheel,
whe
r
e on
board l
o
gic calculates
refe
rence
whe
e
l
speeds an
d
by
t
h
e use o
f
si
gnal
s
obt
ai
ned
fr
om
encode
rs. T
h
e f
r
a
m
e havi
ng
fol
l
owi
n
g
di
m
e
nsi
ons
i
n
Tabl
e 1.
Tabl
e
1. T
h
e
di
m
e
nsi
ons
o
f
t
h
e m
obi
l
e
ro
bot
Radius of the whe
e
l (
c
m
)
7.
5
The distance betw
een wheels (c
m
)
3
2
T
h
e total weight
(
kg)
1.
650
The m
obile robot
specifications a
r
e:
Tw
o (
0
2)
DC
M
o
t
o
rs
2
5
1
R
P
M
w
/
E
nc
ode
r
1
2
V
.
2
A
Du
al M
o
tor Con
t
ro
ller.
A
r
d
u
i
no
“U
no” (
R
ev 3)
.
Ard
u
i
no
W
i
-Fi Sh
ield allo
ws an Ard
u
i
n
o
b
o
a
rd
to connect to
th
e Serv
er u
s
i
n
g th
e
8
0
2
.
11
wireless
specification (W
i
F
i).
4.
RESULT A
N
D
AN
ALY
S
IS
We pr
esent
n
o
w
, ex
peri
m
e
nt
al
resul
t
s
, t
h
e expe
ri
m
e
nt
al
syst
em
of t
e
l
e
-cont
r
o
l
has bee
n
prese
n
t
e
d;
i
t
i
s
abo
u
t
a sy
stem
of t
e
l
e
-ope
rat
i
on
wh
ose d
e
si
gn a
nd i
m
plem
ent
a
t
i
on are
based
on t
h
e t
echni
que
s of
v
i
rt
ual
reality an
d
o
n
th
e exp
l
o
itatio
n
of techn
i
cal co
mm
u
n
i
cati
o
n
n
e
twork
s
.
Th
e rem
o
te co
n
t
ro
l syste
m
a
llo
ws a
h
u
m
an
o
p
e
rator to su
p
e
rv
ise
an
d co
mman
d
th
e
robo
t
v
i
a th
e
In
tern
et
network
s
an
d
W
i
reless
Netwo
r
k
i
ng
Prot
oc
ol
. T
h
e
st
at
i
o
n
was
devel
ope
d
at
Lab
o
rat
o
ry
of
Po
we
r Sy
st
e
m
s, Sol
a
r E
n
ergy
a
n
d
A
u
t
o
m
a
ti
on
L.E.P
.
E.
S.
A,
U
n
i
v
e
r
si
t
y
of
sci
e
nces a
n
d t
ech
nol
ogy
o
f
Ora
n
, O
r
a
n
,
Al
ge
ri
a.
The c
o
m
puter
is connecte
d
t
o
a
n
Inte
rnet
networ
k
vi
a
a
n
Et
her
n
et
net
w
or
k
i
n
t
e
rface
. The ro
b
o
t
i
s
wi
rel
e
ssl
y
co
n
n
ect
ed
t
o
i
t
s
s
e
rve
r
PC
wi
t
h
Ar
dui
n
o
W
i
-Fi
Shi
e
l
d
m
odul
e, t
h
ese
m
odul
es can
com
m
uni
cat
e
poi
nt
t
o
p
o
i
n
t
,
fr
om
one
poi
nt
t
o
a
PC
,
or
i
n
a m
e
sh net
w
or
k.
The
r
o
l
e
o
f
Ar
dui
n
o
W
i
-Fi
Shi
e
l
d
i
s
t
o
t
r
ansm
i
t
dat
a
t
o
t
h
e sy
st
em
s usi
n
g t
h
e
W
i
rel
e
ss
net
w
or
k
pr
ot
oc
ol
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Remo
te Con
t
rol o
f
Mo
b
ile Rob
o
t
u
s
i
n
g
th
e Virtu
a
l
Rea
lity (Iba
ri Bena
oumeu
r)
1
070
4.1. Description
of the Hum
a
n/
R
o
bot
Tele-R
obot
ic Int
erfa
c
e
In
or
de
r f
o
r r
o
bot
t
e
l
e
-
o
p
e
rat
i
on t
o
per
f
o
r
m
wel
l
,
th
e
h
u
m
an
-robo
t in
terface m
u
st be as efficient a
nd
as capable as
pos
sible. T
h
e interface
provi
d
es tools to pe
rceive the
remo
te environm
ent, to m
a
ke decisions
,
and t
o
ge
nerat
e
com
m
a
nds. T
h
e o
p
erat
or i
s
i
n
a rem
o
t
e
web
s
ite with
a
m
a
ch
in
e conn
ected
to
th
e In
tern
et, Th
e
devel
ope
d
i
n
te
rface graphic prov
ides
the
followi
ng feat
ures
:
1. The
co
nt
r
o
l
of
r
o
b
o
t
.
2
.
Th
e An
im
at
i
o
n of
t
h
e
V
i
r
t
ual r
obo
t.
3.
The
cha
n
ge
of
p
o
i
n
t
vi
ew
o
f
t
h
e
scene
.
A 3D
v
i
rtual m
o
d
e
l si
m
u
lati
n
g
t
h
e
rem
o
te
syste
m
ro
bo
t a
llo
ws
v
i
ewing
in
real tim
e th
e
realizatio
n
o
f
its task
(Figure
8). Figure 9 s
h
ow t
h
e hum
a
n/
robot tele-robotic interface
, the role of t
h
is inte
rface is to ena
b
le the
excha
n
ge of
inform
ation
Fi
gu
re
8.
The
3D
m
odel
o
f
t
h
e r
o
b
o
t
with the se
rve
r
and to follow the
evol
ution
of
robots in the works
p
a
ce. This interface provi
des
all the
n
ecessary to
o
l
s to
en
sure th
e co
n
t
ro
l of th
e re
m
o
te ro
bo
t and
to
sup
e
rv
ise th
e
m
o
b
ile robo
t with
a co
n
s
o
l
e for
th
e fo
llowing
t
h
e m
o
v
e
m
e
n
t
o
f
th
e
robo
t in
its real a
nd vi
rtual works
p
ac
e, these res
u
lts show, as it
m
i
ght be
expecte
d
, that it is
m
o
re effectiv
e to c
o
ntrol the robot
by exploitin
g the control interface
rathe
r
tha
n
co
n
t
ro
lling
th
e
robo
t m
a
n
u
a
lly
.
Fi
gu
re
9.
The
3D
m
odel
o
f
t
h
e r
o
b
o
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
106
2
–
10
74
1
071
(a) C
o
m
p
ariso
n
betwee
n
refe
rence
and
real trajectory (l
ine)
(b
) T
h
e
ori
e
nt
a
t
i
on
o
f
t
h
e
r
o
bot
(c) Th
e
lin
ear v
e
lo
city
v
of
t
h
e
r
obo
t
Fig
u
re 10
. Fo
ll
o
w
i
n
g
a
lin
e
(a) C
o
m
p
ariso
n
betwee
n
refe
rence
and
real trajectory
(Path
)
(b
) T
h
e
ori
e
nt
a
t
i
on
o
f
t
h
e
r
o
bot
(c) Th
e
lin
ear v
e
lo
city
v
of
t
h
e
r
obo
t
Figure 11. Foll
owi
n
g
a
Pat
h
4.
2. R
o
b
o
t
T
r
ajec
tor
y
We p
r
ese
n
t
n
o
w
, e
xpe
ri
m
e
ntal
resul
t
s
an
d
a det
a
i
l
e
d eval
uat
i
on
o
f
di
f
f
e
r
ent
t
r
a
j
ect
o
r
i
e
s, an
d we
co
m
p
ared
th
e referen
ce and
real traj
ecto
r
ies in
th
e x
-
y p
l
an
e. Th
e
robo
t p
o
s
ition
s
are
measu
r
ed
v
i
a a ca
m
e
ra
Pi
xeLI
N
K
PL
-
B
76
2F
wh
ose
fram
e
rat
e
i
s
60 i
m
ages per s
econ
d
. T
h
e c
o
nt
r
o
l
i
s
sent
t
o
t
h
e ro
b
o
t
vi
a w
i
rel
e
ss
co
mm
u
n
i
catio
n
.
In
t
h
e Figure 1
0
(a), th
e task
for a m
o
b
ile robo
t is to
fo
llo
w a lin
e on
th
e
p
l
an
e
(x
,y).
W
e
carried
o
u
t
t
h
e exp
e
rim
e
n
t
with
th
e i
n
itial po
se
P
0
(
x
,
y
,
)
= (
0
;
4;
28:
64
), t
h
e
ro
b
o
t
st
a
r
t
s
at
t
h
e
ori
g
i
n
but
catches up to,
and
follows t
h
e
m
ovi
n
g
g
o
al
.
The o
r
i
e
nt
at
i
o
n
and the linear vel
o
city
v
of the
robot are give
n
in Figu
res 1
0
(b
) an
d 10 (c
)
,
respectively
.
It can be ob
se
rve
d
that
and
v
are stabilized
when the
robot
follo
ws t
h
e
ref
e
rence
tra
j
ecto
r
y
.
Inst
ea
d of a st
rai
g
ht
l
i
n
e we m
i
ght
wi
sh t
o
fol
l
o
w a pat
h
t
h
at
i
s
defi
ned m
o
re genera
l
l
y
as som
e
lo
cu
s on
t
h
e
x
-
y p
l
an
e. Th
e
resu
lts are illu
strated
i
n
Fi
g
u
res 11
(a), 11(b)
an
d 11(c). Th
e orien
t
atio
n
vari
e
s
bet
w
ee
n
0.
8
ra
d/
s t
o
0
.
8
ra
d/
s
.
T
h
e l
i
n
ea
r
ve
l
o
ci
t
y
dem
a
nd
pi
cks
u
p
sm
oot
hl
y
an
d c
o
nve
r
g
es t
o
a
st
eady
st
ate
val
u
e at
t
h
e
de
si
red f
o
l
l
o
wi
n
g
di
st
an
ce, we
notice that the
translation
of
th
e two
traj
ect
ories h
a
s
roug
h
l
y th
e
sam
e
aspect except. T
h
e
res
u
lts prov
ed
t
h
e effecti
v
en
ess
o
f
th
is system
.
Fin
a
lly, th
is ev
alu
a
tion
d
e
termin
es
the m
o
st im
portant pe
rform
a
nce
criterion
which is the
accuracy.
4.3. Discussi
on
Thi
s
w
o
rk
, a t
e
l
e
ope
rat
i
on
s
y
st
em
i
s
devel
ope
d
usi
n
g R
V
en
vi
r
o
nm
ent
.
The m
a
jor i
ssue
of
o
u
r
appl
i
cat
i
o
n i
s
e
n
su
ri
n
g
t
h
e
re
m
o
t
e
cont
rol
o
f
t
h
e
m
obi
l
e
r
o
bot
an
d i
n
t
e
g
r
a
t
i
ng a
pat
h
pl
a
nni
ng
m
e
t
hod i
n
t
h
i
s
syste
m
.
In Ta
bl
e
2,
w
e
com
p
are di
f
f
e
rent
e
x
i
s
t
i
ng
reasearc
h
resul
t
s, pre
v
i
o
us
p
u
b
l
i
s
he
d pa
pe
rs
on
rem
o
t
e
cont
rol
use
d
t
h
e VR
a
p
pl
i
cat
i
on wi
t
h
a hy
bri
d
arc
h
i
t
ect
u
r
e o
f
Web
b
r
o
w
ser/
se
rve
r
a
n
d cl
i
e
nt
/
s
er
ver
[2
6]
,
th
ese app
r
o
a
chs are no
t tested
with
a
p
a
th
p
l
ann
i
ng
m
e
th
o
d
s
. So
m
e
au
t
h
ors were in
terested
in
sim
u
latio
n
envi
ro
nm
ent
for t
e
st
i
n
g of
r
o
b
o
t
i
c
al
go
ri
t
h
m
s
wi
t
hout
t
h
e use real
im
pl
em
ent
a
t
i
on, si
m
u
lt
aneou
s
f
o
r
ce and
v
i
sion
feedb
a
ck
to
op
erate t
h
e rob
o
t
after co
llisio
n
is
ad
d
e
d
i
n
[2
8
]
,
th
is research
fails to
p
r
esen
t
real
im
ple
m
entatio
n cases
.
Evaluation Warning : The document was created with Spire.PDF for Python.