Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
4, No. 6, Decem
ber
2014, pp. 944~
951
I
S
SN
: 208
8-8
7
0
8
9
44
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Devel
o
pi
ng Ad
aptive Cruise Cont
rol B
a
s
e
d on Fuzzy L
ogi
c
Using Hardware Simulation
No
or Ch
ol
i
s
B
a
sj
aru
ddi
n
*,**
, Kuspri
ya
nto*, D
i
din Sa
ef
udin*
*, Ilha
m
Khrisna
N
u
g
r
aha*
*
*
School of Electrical Eng
i
neerin
g and In
formatic
s, Bandung
Institute of
Technolo
g
y
, Bandung
, In
donesia
** Departmen
t
o
f
Electr
i
cal
Engineering
,
B
a
ndun
g State Poly
tech
nic, Bandung
, In
donesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 22, 2014
Rev
i
sed
O
c
t 25
, 20
14
Accepted Nov 17, 2014
Ride comfort on
the highway
of
ten interrupted b
e
cause driv
ers need to ad
just
the veh
i
cle speed. Safe d
i
stance
between
v
e
hicles should be main
tain
ed is th
e
m
a
in reason. Th
e situat
ion of m
onot
onous and high speed will i
n
crease
the
risk of accidents
on highway
. A
device is requir
e
d b
y
th
e driv
er to adjust the
vehicle speed
d
u
ring the
long d
i
stance
(cruis
e)
driving on high
way
without
neglecting
the
safety
aspects
.
The d
e
vice is
known as Adaptive Cru
i
se
Control (ACC). The ACC is a subsy
s
tem of Advanced Driver Assistance
S
y
stems (ADAS
s) that serves
to assist
the driver during cruise driving.
The
working principl
e of the ACC is the vehi
cle spe
e
d set autom
a
t
i
c
a
ll
y so tha
t
the dis
t
an
ce to
the vehi
cle
in front rem
a
ins
s
a
fe. This
pap
e
r pres
ents
th
e
development of
fuzzy
logi
c controller for ACC.
The
fuzzy
inference
method
used in
this stu
d
y
is Mam
d
ani.
The
result
fro
m
hardware si
m
u
lation
tha
t
using remote
control
car
shows that
t
h
e fuzzy l
ogic
c
o
nt
rol
l
er c
a
n
work
accord
ing to
th
e
des
i
gn.
Keyword:
Ad
ap
tiv
e cru
i
se con
t
ro
l
adva
nce
d
dri
v
e
r
assi
st
ance
syste
m
Fuzzy logic
Safe distance
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
No
or
C
h
ol
i
s
B
a
sjar
u
ddi
n
D
e
p
a
r
t
m
e
n
t
o
f
Electr
i
cal En
g
i
n
eer
i
n
g, Bandun
g State Po
lytech
n
i
c
Jl.
Geg
e
rk
along
Hilir, Ds.
Ci
warug
a
Ko
tak
Po
s 12
34
Bandu
ng
40
012
, In
do
n
e
sia
Em
a
il: n
o
o
rcho
lis@po
l
b
a
n
.
ac.id
1.
INTRODUCTION
On t
h
e hi
g
h
w
a
y
t
h
e vehi
cl
e m
ove at
rel
a
t
i
v
el
y
const
a
nt
s
p
eed.
A sy
st
em
has bee
n
devel
ope
d t
o
assi
st
th
e
d
r
iv
er i
n
m
a
in
tain
ing
sp
eed
in
o
r
d
e
r to co
n
s
tan
t
.
Th
e
syste
m
is known
as the c
r
uise c
ont
rol system
(CCS)
or spee
d control system
[1].
This sy
stem
can
reduce t
h
e
driver'
s
fatigue i
n
ad
ju
sting
t
h
e sp
eed
of th
e veh
i
cle
d
u
r
i
ng
t
h
e long d
i
stan
ce (
c
r
u
ise)
d
r
iv
i
n
g.
CCS work
s b
y
u
s
ing
th
e princip
l
e o
f
au
t
o
matic co
n
t
ro
l syste
m
o
n
thro
ttle p
o
sitio
n
settin
g
[2
], [3
]
.
Dri
v
er n
e
ed
to
p
u
s
h
a bu
tto
n
wh
en
it will ac
tiv
ate th
e
CCS
o
n
a certain
speed
.Wh
e
n
th
e
CCS is act
iv
ated
th
en
th
e v
e
h
i
cle will ru
n
at th
e desired
sp
eed
with
ou
t th
e dr
iv
er n
e
ed
ing
t
o
adju
st th
e gas o
r
b
r
ak
e p
e
d
a
l.Th
e
weakn
e
ss
o
f
C
C
S was no
t ab
le to
au
to
m
a
tica
lly red
u
ce sp
ee
d when a da
ngerous situation such as a ve
hi
cle in
fr
ont
o
f
hi
m
sudde
nl
y
sl
o
w
s d
o
w
n
or
st
o
p
.
Ad
ap
tiv
e Cru
i
se Con
t
ro
l (ACC) is a
system
th
at
is a com
b
in
atio
n
of
CCS and
co
llisio
n avo
i
d
a
n
ce
sy
st
em
[4]
.
Th
e AC
C
was
kn
ow
n
by
seve
ra
l
ot
her
nam
e
s
suc
h
as Act
i
v
e
C
r
ui
se C
o
nt
r
o
l
(B
M
W
),
Di
st
ro
ni
c
ACC (Merced
es), and
th
e In
tellig
en
t Cru
i
se
Co
n
t
ro
l
(Nissan
)
.
One
of the m
a
in causes
of traffic accide
nts
on hi
ghway was
too
close a
distance of vehicle with
anot
her
ve
hi
cl
e on t
h
e f
r
o
n
t
hi
m
(
fo
llo
win
g
too
clo
s
ely
) [
5
].
Th
e
fo
ll
o
w
ing
too
closely
is also known as
Ass
u
re
d C
l
ear
Di
st
ance
A
h
e
a
d (
A
C
D
A
)
.
A
refi
nem
e
nt
of
th
e CCS i
n
to th
e
ACC is ex
p
ected
to redu
ce th
e
weakness
of C
C
S especially
whe
n
a
ve
hicle
fo
llo
wing
too
clo
s
ely
.
In
add
itio
n
to
main
tain
in
g
speed
, ACC was also
d
e
sign
ed
to
p
r
ev
en
t
rear-en
d
co
llision
cau
s
ed
d
u
e
t
o
f
o
l
l
o
w
i
ng t
o
o c
l
osel
y
. On
t
h
e
fo
llowing
too
clo
s
ely situ
atio
n
th
e
d
i
stance
betwee
n
vehicl
es m
o
re close t
h
an a
safe
d
i
stan
ce.
Th
is situ
ation
cau
ses th
e
driv
er can fail t
o
con
t
ro
l th
e veh
i
cle to
avo
i
d
co
llisio
n when
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 4, No. 6, D
ecem
ber 2014
:
944 – 951
9
45
v
e
h
i
cle in
front su
dd
en
ly slo
w
s down
or st
o
p
.Adj
u
s
tm
en
t th
e sp
eed
an
d d
i
stan
ce
o
f
a
v
e
h
i
cle an
d
t
h
e ab
ility
t
o
av
oi
d
t
h
e
da
nge
r t
h
at
m
a
de t
h
e
AC
C
co
ul
d
ul
t
i
m
a
t
e
ly
im
pr
o
v
e
dri
v
e
r
c
o
m
f
ort
.
Al
g
o
ri
t
h
m
s
and sens
ors a
r
e t
w
o as
pect
s of
conce
r
n t
o
AC
C
researche
r
s.
B
o
t
h
aspect
s a
r
e im
port
a
nt
fo
r t
h
e
real
i
zat
i
on
o
f
t
h
e
rel
i
a
bl
e AC
C
.
T
h
e
researc
h
o
f
de
vel
o
pi
n
g
al
go
r
i
t
h
m
,
am
ong
o
t
hers,
pe
rf
o
r
m
e
d
by
[
6
],
[7
],
and
[8].
W
h
ile th
e
r
e
sear
ch th
at to
dev
e
lop
th
e sen
s
o
r
is don
e
b
y
[9
],
[10
]
,
an
d [11
]
.
Som
e
vehi
cl
es t
h
at
have bee
n
eq
ui
p
p
e
d
wi
t
h
AC
C
i
n
cl
u
d
e
t
h
e B
M
W
5 and
6 seri
es, t
h
e A
udi
A
8
,
and t
h
e Le
x
u
s
LS 4
3
0
. Se
ns
o
r
s o
n
t
h
e AC
C
whi
c
h i
s
cu
rre
nt
l
y
m
ount
e
d
o
n
a
vehi
cl
e are
rada
r
dan l
i
d
a
r
[
12]
.
The cam
era can al
so
be
use
d
as a sens
o
r
i
n
t
h
e AC
C
as
de
vel
o
ped
by
[1
3
]
, [1
4]
, a
nd
[
1
5]
. T
h
e de
vel
o
pm
ent
of
i
n
t
e
r
-
ve
hi
cl
e com
m
uni
cat
i
on s
u
c
h
as
V
A
N
ET al
so
al
l
o
ws
de
vel
o
ped
f
o
r
t
h
e real
i
zat
i
o
n
of
t
h
e
AC
C
[
1
6]
.
In
ad
d
ition
to
h
a
v
e
b
e
en
in
st
alled
in
a v
a
riety o
f
v
e
h
i
cles,
th
e ACC is also
u
s
ed
fo
r t
h
e realizatio
n
o
f
the driverless
c
a
r are
planne
d
to be m
a
rketed around t
h
e y
ear 2
0
20
by
t
h
e
vari
ous
ca
r manufacturers
such as
BMW
,
N
i
ssan, To
yo
ta,
Fo
rd
,
an
d Mer
c
ed
es.
2.
R
E
SEARC
H M
ETHOD
The worki
ng
pri
n
ciple of the ACC is the vehicle'
s sp
eed
con
t
ro
l au
tomatical
ly
to
main
tain
safe
di
st
ance.
Th
ere
f
o
r
e i
t
t
a
kes
a s
e
ns
or t
o
det
ect
spee
d a
n
d
di
st
a
n
ce
of
ve
hi
cl
e i
n
fr
ont
o
f
hi
m
.
In
t
h
e
fol
l
owi
n
g
di
scus
si
o
n
of
t
h
e
nam
i
ng us
ed e
g
o
v
e
hi
l
ce
(EV
)
t
o
nam
e
the
vehi
cl
e e
q
ui
ppe
d
wi
t
h
t
h
e
AC
C
a
n
d
l
eadi
n
g vehi
cl
e (LV
)
fo
r ve
hi
cl
e
i
n
fr
ont
o
f
E
V
on
t
h
e sam
e
l
a
ne.
2.
1. C
o
ntr
o
l
S
y
ste
m
of A
C
C
B
l
ock di
ag
ram
o
f
AC
C
ca
n b
e
seen
i
n
Fi
g
u
r
e
1 [
1
7]
. C
ont
r
o
l
l
e
rs at
t
h
e AC
C
consi
s
t
s
of
t
w
o l
e
vel
s
,
nam
e
ly
l
o
w-l
e
vel
co
nt
r
o
l
l
e
r a
nd
hi
g
h
-
l
e
vel
c
ont
rol
l
e
r.
Lo
w-lev
e
l con
t
ro
ller in
th
e form
o
f
clo
s
ed-loo
p con
t
ro
l
sy
st
em
s wi
t
h
i
n
p
u
t
an
d
o
u
t
put
spee
d.
Th
e desi
re
d
spee
d i
s
t
h
e re
sul
t
o
f
pr
ocessi
n
g
fr
om
a hi
g
h
-
l
evel
co
n
t
ro
ller. Th
e sen
s
o
r
u
s
ed
in lo
w-lev
e
l con
t
ro
ller is
the
speed se
nsors
on EV.
While t
h
e actuators us
e
d
are
th
e br
ak
e an
d gas p
e
d
a
ls.
Fi
gu
re
1.
B
l
oc
k
di
ag
ram
of t
h
e AC
C
The m
a
i
n
co
n
cern
i
n
t
h
i
s
st
udy
i
s
t
h
e
dev
e
l
opi
n
g
a
hi
g
h
-
l
e
vel
co
nt
r
o
l
l
e
r al
g
o
ri
t
h
m
ba
sed
on
f
u
zzy
logic. On the
high-level controller th
ere ar
e t
w
o com
m
on con
f
i
g
urat
i
o
ns
b
e
i
ng u
s
ed as c
a
n be see
n
i
n
Fi
gu
re
2
an
d Figur
e
3
.
Fi
gu
re
2.
Hi
g
h
-
l
evel
co
nt
r
o
l
l
e
r
o
f
t
h
e
AC
C
us
i
ng
s
i
n
g
l
e
in
p
u
t
Fi
gu
re
3.
Hi
gh
-l
evel
c
ont
rol
l
e
r
of t
h
e
AC
C
u
s
ingd
oub
le inp
u
t
s
At a h
i
gh
-lev
el co
n
t
ro
lleru
sing
sing
le in
pu
t, t
h
e d
e
si
red
sp
eed
is th
e resu
lt o
f
p
r
o
cessing
th
e d
i
stan
ce
betwee
n EV a
nd L
V
. T
h
is configuration has a weakne
ss
due to exces
s
i
ve in bra
k
ing and accelerating. The
secon
d
con
f
i
gur
atio
n u
s
es two in
pu
t
whic
h a
r
e distance
and
spee
d.
Spee
d
v
a
ri
abl
e
s c
o
m
m
onl
y
use
d
a
r
e s
p
eed
of EV, s
p
ee
d
of L
V
, a
n
d
relative s
p
eed bet
w
een E
V
a
n
d L
V
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Developing A
d
aptive Cr
uise
Contr
o
l B
a
sed
on
F
u
zzy Logic
Using Har
d
ware Simulation
(
N
oor C
hol
i
s
B
)
94
6
2.
2. A
C
C
Al
g
o
ri
thm
B
a
se
d on Fuz
z
y
L
ogi
c
B
l
ock di
a
g
ram
of a hi
g
h
-l
e
v
e
l
cont
r
o
l
l
e
r o
n
t
h
i
s
st
udy
can
be seen i
n
Fi
g
u
re
4
[1
8]
. I
n
p
u
t
s
of
fuzzy
logiccontrol are the
distance
and c
h
ange
of distance
bet
w
een E
V
a
n
d L
V
are
obtaine
d
from
the distance
sens
or.
F
uz
zy
i
n
fe
rence
en
gi
n
e
i
s
use
d
i
n
t
h
i
ssy
st
em
i
s
M
a
m
d
an
i. Th
e
ou
tpu
t
of
h
i
gh
-l
ev
el con
t
ro
ller is the
d
e
sired
sp
eed
.
Th
is sp
eed
v
a
lu
e
will b
e
t
h
e set p
o
i
n
t
fo
r low-lev
e
l con
t
ro
l
l
er.
Fi
gu
re
4.
B
l
oc
k
di
ag
ram
of a
hi
g
h
-l
e
v
el
co
nt
rol
l
e
r
base
d
o
n
f
u
zzy
l
o
gi
c
The m
e
m
b
ersh
i
p
f
unct
i
o
n
of
in
pu
tsar
e show
n
i
n
Figur
e
5
an
d Fi
gu
re
6
. M
e
m
b
ershi
p
f
u
nct
i
on
o
f
di
st
ance i
n
p
u
t
was
di
vi
de
d i
n
t
o
t
h
ree
re
gi
ons
whi
c
h
we
re
near
, m
e
di
um
, and
far.
W
h
i
l
e
t
h
e m
e
m
b
ershi
p
fu
nct
i
o
n
of c
h
a
nge
o
f
di
st
ance
i
n
p
u
t
was
di
vi
ded
i
n
t
o
t
h
ree
r
e
gi
o
n
s
w
h
i
c
h
were
sm
all
,
m
e
di
um
, and
bi
g.
Fi
gu
re
5.
M
e
m
b
ers
h
i
p
f
u
nct
i
o
n
of
di
st
ance
Fi
gu
re
6.
M
e
m
b
ers
h
i
p
f
u
nct
i
o
n
of
cha
n
ge
of
distance
Fi
gu
re
7 sh
o
w
s t
h
e m
e
m
b
ershi
p
fu
nct
i
o
n o
f
out
put
was
di
vi
de
d i
n
t
o
t
h
re
e regi
ons
w
h
i
c
h we
re sl
o
w
,
m
e
di
um
, and fast
. As o
u
t
p
ut
vari
a
b
l
e
are t
h
e val
u
es o
f
P
W
M
i
ndi
cat
i
ng t
h
e desi
re
d spe
e
d
.T
he f
u
zzy
ru
l
e
base
was
use
d
ca
n
b
e
seen
i
n
Ta
bl
e
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 4, No. 6, D
ecem
ber 2014
:
944 – 951
9
47
Fi
gu
re
7.
M
e
m
b
ers
h
i
p
f
u
nct
i
o
n
of
o
u
t
p
ut
Tabl
e 1. Fuzzy
r
u
l
e
base
Change of dista
n
ce
s
m
all m
e
diu
m
big
Distance
near
slow
slow
slow
m
e
diu
m
m
e
diu
m
m
e
diu
m
slow
fa
r
fa
st
fa
st
m
e
diu
m
The
gr
ap
h
of
i
n
p
u
t
an
d
o
u
t
p
u
t
rel
a
t
i
ons
hi
p
c
a
n
be
see
n
i
n
F
i
gure
8
.
T
h
e vi
ew
of
t
h
e
R
u
l
e
Vi
ew
er at
l
o
w
,
medi
um
,
an
d f
a
st
s
p
eed
ca
n
b
e
seen
i
n
Figure 9
-
Figure
11
. In
F
i
gu
re
9
it can be seen that
whe
n
the
dista
n
ce
betwee
n E
V
a
n
d L
V
ne
ar
a
n
d change of distance
is
small
then the spee
d is
lo
w
.
EV
will slo
w
do
wn
so
t
h
at th
e safed
i
stan
ce can
b
e
im
p
r
ov
ed
.
When th
e
di
st
ance
bet
w
e
e
n E
V
a
n
d L
V
i
s
fa
r eno
ugh
(
medi
um
) a
n
d c
h
anges
of
distance is als
o
med
i
um
t
h
en the
speed
of
EV
i
s
me
diu
m
so
the EV
will b
e
lo
cated at a safe d
i
stan
ce, see
Fi
gure
1
0
.
I
n
Figure
11
it can
b
e
seen
th
at th
e sp
eed
o
f
th
e EV will be h
i
gh
wh
en
t
h
e
d
i
stan
ce to
LV is m
u
ch
g
r
eater th
an
t
h
e safe
d
i
stan
ce. In
th
is con
d
iti
o
n
, th
e EV
will try to
app
r
o
a
ch
th
e LV to a safe
d
i
stan
ce all
o
wed
.
Fi
gu
re
8.
G
r
ap
h
ofi
n
p
u
t
a
n
d
o
u
t
p
ut
rel
a
t
i
o
ns
hi
p
Fi
gu
re
9.
Vi
e
w
o
f
t
h
e
R
u
le
Viewer at low s
p
eed
Figure
10.
Vie
w
of t
h
e R
u
le
Viewe
r
at m
e
dium
speed
Figure 11. Vie
w
of
t
h
e
R
u
le Viewe
r
at
fa
st spee
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Developing A
d
aptive Cr
uise
Contr
o
l B
a
sed
on
F
u
zzy Logic
Using Har
d
ware Simulation
(
N
oor C
hol
i
s
B
)
94
8
2.
3. Har
d
w
a
re
Si
mul
a
ti
on
Ha
rd
w
a
re si
mu
la
tion
w
a
s
b
u
ilt u
s
in
g th
e remo
te con
t
ro
l ca
r
a
s
sho
w
n in
Figure 12
an
d
Figure
13
[
1
4]
. O
n
t
h
e
har
d
ware
si
m
u
l
a
t
i
o
n i
n
t
h
i
s
st
udy
use
d
a
n
ul
t
r
as
oni
c
sens
o
r
t
h
at
i
s
m
ount
e
d
o
n
th
e
f
r
on
t side of
th
e car. The sen
s
or
s
w
a
s
u
s
ed
to
m
easure distances
L
V
from
EV. T
h
e
low-level
of
control
on
t
h
i
s
st
udy
i
s
si
m
p
l
i
f
i
e
d wi
t
h
ope
n l
o
o
p
sp
eed c
ont
rol
sy
s
t
em
based
o
n
P
u
l
s
e
W
i
dt
h
M
o
dul
at
i
o
n
(P
W
M
).
Fi
gu
re 1
2
. Fr
o
n
t
vi
e
w
of
ha
rd
ware
si
m
u
l
a
t
o
r
Fig
u
r
e
13
. Top v
i
ew of
h
a
rdwar
e
sim
u
lato
r
R
e
m
o
t
e
cont
r
o
l
car i
s
c
ont
r
o
l
l
ed by
usi
n
g t
h
e
Ar
dui
no
U
n
o
R
3
.
T
h
i
s
m
i
croc
ont
r
o
l
l
e
r
sy
st
em
base
d
on
A
T
m
e
ga 3
2
8
an
d
can
be
equi
ppe
d
wi
t
h
f
u
zzy
l
o
gi
c l
i
b
r
a
ry
f
u
n
c
t
i
ons
.
The l
i
b
rary
f
u
nct
i
o
n
s
use M
i
n-M
a
x
Ma
m
d
ani m
e
th
od for fuzzy logic infere
nce s
y
ste
m
and the
center
of area
for de
fuzzi
fication [19].
Im
port
a
nt
dat
a
du
ri
n
g
t
h
e
t
e
s
t
i
ng
was st
o
r
e
d
i
n
Secure Digital
(SD) me
m
o
ry
card via
Ardui
no
shi
e
l
d
.T
he dat
a
we
re
t
h
e
n
pr
o
cessed wi
t
h
so
f
t
ware
t
o
get
a gra
p
h of
t
h
e
sy
st
em
perf
orm
a
nce.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
On
t
h
is hard
ware sim
u
latio
n
th
e sensor lin
earity is
v
e
ry im
p
o
r
tan
t
. Th
e
testin
g
of sen
s
o
r
lin
earity is
do
ne
by
ru
n
n
i
n
g E
V
t
o
a
n
ob
j
ect
. The
t
e
st
re
sul
t
s
can
be
se
en i
n
Figure
14
.
Fi
gu
re 1
4
. Sen
s
or
Li
nea
r
i
t
y
AC
C
al
g
o
ri
t
h
m
t
e
st
i
ng pe
rf
o
r
m
e
d by
t
h
e
fol
l
owi
n
g t
w
o
sce
n
ari
o
s:
1.
In
f
r
o
n
t
of
EV
gi
ve
n
ob
ject
i
s
not
a
car
t
h
at
c
h
an
ge
d t
h
e
di
st
ance
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 4, No. 6, D
ecem
ber 2014
:
944 – 951
9
49
2.
EV
m
oves be
h
i
nd LV
Th
e first test scen
ari
o
h
a
s th
e o
b
j
ectiv
e to
see th
e
effect o
f
d
i
stan
ce on
EV’s sp
eed
settin
g. Th
e test
results ca
n
be s
een in Figure
15.
Figure
15.
AC
C test data wit
h
a
object
non-car
The test re
sult
s showed t
h
at
the ACC al
gorith
m
respond
well to a
n
y change
in t
h
e di
stance.
Any
ch
ang
e
in
th
e distan
ce will b
e
fo
llowed
b
y
a ch
ang
e
of
EV’s sp
eed. Throug
h
th
is way a safe d
i
stan
ce wi
th
th
e
LV can be m
a
intained.
If the
distance is too close (le
ss than the safe distance)
then t
h
e spee
d is reduce
d
.
Othe
rwise
t
h
e spee
d
E
V
gain if
the distan
ce
is greater t
h
an the sa
fe
distanc
e
.
On
t
h
e testin
g
safe d
i
stan
ce set to
40 cm
, therefore i
f
the
distance is
less than
40 cm
then the s
p
ee
d
will b
e
redu
ced
.
Oth
e
rwise if a d
i
stan
ce
o
f
ov
er 40
cm
th
en th
e sp
eed
will b
e
in
creased
.
The
second te
st scena
r
io ha
s
th
e
obj
ective to
i
n
v
e
stig
ate th
e
per
f
o
r
m
a
nce o
f
t
h
e
AC
C
u
nde
r
co
nd
itio
ns similar to
reality. Sp
eed
o
f
LV was ch
a
n
g
e
d b
y
a em
b
e
d
d
ed
so
ft
warein
th
e m
i
cro
c
o
n
t
ro
ller
syste
m
. The te
st res
u
lts can
be seen in
Figu
re 16
.
Th
e test resu
lt
s sh
owed
th
at
if th
e d
i
stan
ce is
m
o
re th
an
safe
d
i
stan
ce, th
en
sp
eed
o
f
EV was
in
creased
.
Th
e
testin
g
also sho
w
s th
at t
h
e safe
d
i
stan
ce
o
f
40
cm
is
m
a
in
tai
n
ed during
th
e
si
m
u
latio
n
.
Fi
gu
re
1
6
.
AC
C
t
est
dat
a
wi
t
h
spee
d
of
L
V
c
h
an
gea
b
l
e
4.
CO
NCL
USI
O
N
The results of the
study
showed
that the
ACC hi
gh-level controlle
r based on
fuzzy logiccan
work
well. Im
p
r
ov
emen
ts n
eed
to
b
e
m
a
d
e
o
n
the in
pu
t o
r
th
e
o
u
t
p
u
t
m
e
m
b
ersh
ip
fun
c
tion
in
ord
e
r to
g
e
t o
p
tim
al
per
f
o
r
m
a
nce. I
n
ad
di
t
i
on i
t
n
eeds t
o
be fi
xe
d so t
h
at
t
h
e vehicle'
s
direction following
t
h
e ve
hicle in front of
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Developing A
d
aptive Cr
uise
Contr
o
l B
a
sed
on
F
u
zzy Logic
Using Har
d
ware Simulation
(
N
oor C
hol
i
s
B
)
95
0
him
so that te
sting ca
n be
m
o
re accurate.The c
o
ntroller
also nee
d
t
o
be de
velope
d
by a
ddi
ng spe
e
d as
the
in
pu
tso ob
tain
ed
b
e
tter co
n
t
ro
l
p
e
rfo
r
m
a
n
ce.
REFERE
NC
ES
[1]
Wieringa R. D
e
sign Methods for Reactive S
y
s
t
ems: Yourdon,
St
atemate,
and the UML. 1st ed. C
ox T, ed
itor. S
a
n
Francisco: Elsev
i
er; 2003.
[2]
Nice K. HowStuffworks:
How Cruise
Control S
y
stems Work. [Online]
.; 2014. Available fr
om:
http://auto
.
howstuffworks.c
om/cr
u
ise-contro
l.htm
.
[3]
Lie
K. Cru
i
se C
ontrol S
y
s
t
em
in
Vehic
l
e
.
Mic
h
ig
an: C
a
lvin
Coll
e
g
e.
[4]
Ja
gtma
n iHM,
Wie
r
sma
dE.
Driving with Adaptive Cruise Control in the Real W
o
rld.
16th ICTC
T workshop, De
lft
University
of
Technolog
y
.
Delf
;
[5]
_____________. Traffic Safety Bulletin. [O
nline]
.; 2014. Available from:
http://www.statepatrol.
ohio.gov
/doc/ACDA_2013.pdf.
[6]
Moon S, iMoon I, K
y
ongsu Yi. Design, tun
i
ng, and ev
alu
a
tio
n
of a fu
ll-r
a
nge adaptive cruise control s
y
stem
.
Control Engin
e
ering Practice
. 20
09; 17: p. 442–4
55.
[7]
Naus GJL, J. Pl
oeg , M. J.
G
.
V
a
n
d
e
M
o
l
e
n
g
r
a
f
t
,
W
.
P
.
M
.
H
.
H
e
e
m
e
l
s, M. Stein
buch. De
sign an
d implementatio
n
of parameterized adaptive
crui
se control:An explicit mode
l p
r
edic
tive
contro
l appro
ach.
Co
ntrol Engin
eering
Practi
ce
. 2010;
18: p. 882–892.
[8]
Ferrara A, Vecchio C.
Cruise
control with co
llision av
o
i
dance for cars via sliding modes.
I
E
EE International
Conference on
C
ontrol Applicat
ions. Munich
. 20
06; p. 2808-281
3.
[9]
Abou-Jaoude R. ACC Radar
Sensor Techno
log
y
, Test Requ
irements, and
Test Solutions.
IEEE Transactions
on
Intell
igen
t Transportation S
y
stem
s
. 2003 September; 4(3)
: p
.
115-
121.
[10]
Möbus R, Baotic M, Morar
i
M.
Multi-Obj
ect
Ad
aptiv
e Cruise Co
ntrol.
Daimler C
h
r
y
sler
. D
e
nver
.
2003;
[11]
Heerle
in J, Mor
gott S, Ferst
l
C.
Laser diodes for sensi
ng applications: adaptive
cruise control and
more.
Photonics
in th
e Automobile. Genev
a
. 2005
;
[12]
Jenness JW, Ler
n
er ND, Mazor
S, Osbe
rg JS, C.Tefft B
.
Use of
Advanced
In-Vehicle Technolog
y
B
y
Young
and
Older Early
Ad
opter: Survey
Results on Adaptive Cru
i
se
C
ontrol S
y
s
t
ems. Final R
e
port.
Washington, D
C
:
USDOT/National Highway
Traff
i
c
Safety
Administration; 2008.
[13]
Stein GP, Mano O, Shashua A.
Vision-based ACC with a Sing
le Came
ra: Bou
nds on Range and Range Rate
Accur
a
c
y
.
IEEE Intelligen
t
Vehicles
S
y
mposium. Columbus,
OH,
USA. 2003; p. 1
20-125.
[14]
Sey
f
f
a
rth T.
Design and Analys
is of an Image-
based ACC Co
ntroller.
50
th IEEE Confer
ence
on Decision
an
d
Control
and Eu
r
opean Con
t
rol Conference (CDC
-ECC). Orlando, FL, USA. 2011
; p. 8068-8075.
[15]
Zhu S, Gu M, Liu J. Moving
Vehicl
e Det
ect
ion and Tr
acki
ng Algorithm in Traffic Video
.
TE
LKOMNIKA
Indonesian Jour
nal of El
ectrical Engineering
. 20
13 June; 11(6
)
: 3
053-3059.
[16]
Godbole V. Intellig
ent Driver
Mobilit
y
Model
and Tra
ffic Pat
t
ern Generation
base
d Optim
ization of Reactiv
e
Protocols for Vehicu
lar Ad-hoc Networks.
International Journ
a
l of Informa
tio
n and Network Security (
I
JINS)
.
2013 June; 2(3
)
.
[17]
Gudhe A. Adaptiv
e Cruise Control : Algorithms a
nd Sy
stem Issues.; Sept
ember. Available fr
om:
http://www.
cse.
iitb.ac.
in/~
erts/car/ documents/present
ations/ashish -stage1.
pdf.
[18]
Nugraha IK. Hardware Simulation of Adaptive Cruise
Control Sy
stem Based on Fu
zzy
Logic Using Remote
Control C
a
r. Fin
a
l Project. B
a
nd
ung:
Bandung
State Poly
technic;
2014.
[19]
Msc.Marvin
L,
Alves A. Github
. [Onlin
e]
.; 2014
. Availab
l
e f
r
om: https:
//github.com/zerokol/eFLL.
[20]
Hamzah MI, Ab
dall
TY. Mobile
Robot Navigatio
n using Fuzzy
Logic and
Wavelet Network.
In
ter
national Journal
of Robo
tics and
Automation
(
I
JRA)
. 2014 September; 3(3)
.
[21]
J
i
ao Y. Em
erg
e
nc
y Vehic
l
e o
r
i
e
nted
Traff
i
c P
r
iorit
y
Co
n
t
rol S
t
rateg
y
at Intersection in Cong
ested Urban Area.
TELKOMNIKA Indonesian Journ
a
l
of Electrical
Engineering
. 20
14 May
;
12(5
)
.
BIOGRAP
HI
ES OF
AUTH
ORS
Noor Cholis Basjaruddin, r
e
ceived his B.S.
an
d M.S. degrees in Electr
i
cal En
gineer
ing from
Bandung Institu
t of Technolog
y
at Bandung,
Indonesiain April 1992 and October 2002
,
res
p
ect
ivel
y.
He
is
th
e s
t
uden
t
o
f
P
h
.D degr
ee
in
Electr
i
cal
Engineering
of Scho
ol of
Electr
ical
Engineering an
d Inform
atics,
Bandung Institu
te
of Technolo
g
y
at Bandung, Indonesia. His
research
interests are in Advanced Driv
er Assistance Sy
stems
(ADAS
s),
Intelligent
Transporta
tion S
y
stem
(ITS)
, Fa
ult To
ler
a
nce
S
y
stem Design, H
u
mman
Error, and Dependab
l
e
Sy
s
t
e
m
.
Email: noorcholis@polban.ac.id
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE Vol. 4, No. 6, D
ecem
ber 2014
:
944 – 951
9
51
Kuspri
y
a
nto
,
receiv
e
d his B.S. degree in
El
ectri
cal
Engineer
ing from
Bandung Institut of
Techno
log
y
in 1
974, and his M.S. and Ph.D. de
grees in Automatic S
y
stemfrom University
o
f
Science and Technolog
y
Lille
(USTL) at Fr
ance in 1979 and
1981, respectively
.
Professor
Kuspriy
a
nto
was
the v
i
ce ch
airm
an of Indon
esian
Control S
y
stem
s Society
(
I
CSS) (during 1996
-
1998). He
is chairman of Computer Eng
i
ner
i
ng
R
e
search
GroupSchool of
Electr
i
cal Eng
i
neering
and Inform
atics,
Bandung Institut
e
of Technolog
y
(2006-2010, 201
4-now). His research in
terests
are in R
e
a
l
Tim
e
S
y
stem
, Fau
lt
Toler
a
nce
S
y
stem Design, Dependable
S
y
s
t
em, and
Computer
Archite
cture
.
E
m
ail:
kuspri
y
a
n
t
o
@
y
ahoo
.com
Didin Saefudin
,
received h
i
s B.S
.
degr
ee
in El
ec
tri
c
al
E
n
gi
ne
e
r
i
n
g fro
m Jenderal
Achmad Yani
University
, B
a
n
dung, Indonesia in 1998 and
M.S.
degree in
Electrical
Eng
i
neer
ing from
Bandung Institu
t of T
echno
log
y
at B
a
ndung, In
donesia
in 2011
. His research
i
n
terests
are
in
Instrumentation
S
y
stem, Embedded
S
y
stem
Des
i
g
n
, and
F
u
zz
y
Lo
gic Con
t
rol.
Em
ail:
s
aedi
e
n
@
gm
ail.com
.
Ilham Khrisna Nugraha, receiv
ed hisdiploma
in Electrical
En
gineer
ing from Bandung State
Poly
technic, Bandung, Indonesia in
August 201
4. His r
e
sear
ch interests
are in
Microcontro
ller
S
y
s
t
em
, Con
t
rol
S
y
s
t
em
,
and F
u
z
z
y
Log
i
c
Contro
l. Em
ail:
i
l
hamkhrisna@
y
mail.com
Evaluation Warning : The document was created with Spire.PDF for Python.