Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 4
,
A
ugu
st
2015
, pp
. 79
8
~
80
9
I
S
SN
: 208
8-8
7
0
8
7
98
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Control Analysis of Stand-
Alone Wind Power Supply System
with Three Phase PWM Voltage
S
o
urce In
vert
er and Boos
t
Converter
Tin Z
a
r Khai
ng,
Lwin Z
a
Kyin
Department o
f
Electrical Power
Engineer
ing, Mandalay
Technolo
g
ical University
Mandalay
,
M
y
anmar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 2, 2015
Rev
i
sed
May 15
, 20
15
Accepte
d
J
u
n 2, 2015
Wind power supply
s
y
stem is
an effectiv
e,
envir
onmentally
f
r
iendly
power
source for hous
ehold and o
t
her
applicat
ions. A
ccording
to th
e
wind speed
changes
in var
i
ation th
e outpu
t
power
of wind
generator is no
t stable an
d
constant. Th
is paper proposes the va
riable speed stand-
alone
wind power
supply
s
y
s
t
em th
at in
clud
es Permanent M
a
gnet S
y
nchronous Generator, three
phase diode r
ectifier, DC
-DC boo
st converter, b
a
tter
y
energ
y
stor
age s
y
stem,
and voltage source
inverter.
DC-DC boos
t converter con
t
r
o
ls to ex
tract
m
a
xim
u
m power from
the availabl
e wind power. Bat
t
er
y en
er
g
y
s
t
orag
e
s
y
stem through bidirectional converter
is to supply
th
e load
when wind
power is shortage. To g
e
t th
e
desired outpu
t v
o
ltag
e
and freq
u
ency
at the
load
side, the voltag
e
source invert
er with
the sinusoidal p
u
lse width
modulation (SPWM) control technique
has chos
en. Th
e harmonics generated
from
the VSI are filter
e
d with sim
p
le pa
ssive LC filters. Sim
u
lation results
of output voltages and
curren
t
s, the
total har
m
onic distortion
(THD) ar
e
presented
using
MATLAB/Simu
link.
Keyword:
DC-DC Boo
s
t
Co
nv
erter
Diod
e Rectifier
LC Filter
Perm
anent Magnet
Pu
lse Wid
t
h
M
o
du
latio
n
Syn
c
hro
nou
s G
e
n
e
r
a
tor
Vol
t
a
ge
S
o
u
r
c
e
I
nve
rt
er
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Tin
Za
r Khai
ng,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Po
w
e
r E
ngi
neeri
n
g, Mandalay Te
chno
log
i
cal Univ
ersity
Man
d
a
lay, My
an
m
a
r
.
Em
a
il: t
i
n
zak
hain
g
.
ep@g
m
a
il
.co
m
1.
INTRODUCTION
R
e
newa
bl
e en
ergy
s
o
u
r
ces i
n
cl
u
d
i
n
g wi
nd
po
wer
of
fer
a feasi
b
l
e
sol
u
t
i
on t
o
di
st
ri
but
e
d
p
o
w
e
r
g
e
n
e
ration
fo
r iso
l
ated
co
mm
u
n
ities wh
ere u
tility g
r
id
s
are no
t av
ailab
l
e. In
su
ch
cases, stand
-
alon
e wi
n
d
energy systems can be
consi
d
ere
d
as
an effective
way to provid
e
continuous
powe
r t
o
electrical loa
d
s.
For
isolated
places located fa
r
from
a utility grid, one
practical appro
ach t
o
self-sufficient power ge
ne
ration
in
vo
lv
es u
s
i
n
g
a w
i
nd
t
u
rb
in
e
w
ith
stan
d-
alon
e system
[
1
].
Mo
d
e
rn wi
n
d
tu
rb
in
e system
s
u
s
e th
ree ph
ase AC
g
e
n
e
rators as fo
llows:
•
Sq
ui
rrel
-
C
a
g
e
r
o
t
o
r
I
n
duct
i
on
Ge
ne
rat
o
r
•
W
o
u
n
d
-
R
o
t
o
r
I
n
duct
i
o
n Ge
nerat
o
r
• Doub
ly-Fed
In
du
ction
Gen
e
rato
r
•
Syn
c
hro
nou
s Gen
e
rator with
ex
tern
al
fiel
d
ex
citatio
n
•
Perm
anent
M
a
gnet
Sy
nc
hr
o
n
o
u
s
Ge
nerat
o
r
.
No
rm
al
ly
, t
h
er
e are t
w
o
ope
r
a
t
i
ng m
odes
o
f
wi
n
d
t
u
r
b
i
n
e
gene
rat
o
rs
sy
st
em
such
as
fi
x
e
d s
p
ee
d a
n
d
vari
a
b
l
e
s
p
eed
ope
rat
i
n
g m
o
d
e
s.
Vari
a
b
l
e
s
p
eed
wi
n
d
e
n
e
r
g
y
sy
st
em
s have
seve
ral
a
dva
nt
ages c
o
m
p
ared
wi
t
h
fi
xe
d spee
d
w
i
nd e
n
er
gy
sy
st
em
s such as
y
i
el
di
ng m
a
xim
u
m
powe
r
out
put
,
de
vel
o
pi
n
g
l
o
w am
ount
of
mechanical stress, im
proving effici
ency
an
d po
we
r qual
i
t
y
[2]
.
As
wi
n
d
s
p
ee
d
i
s
n
o
t
co
nst
a
nt
,
gen
e
rat
o
r
out
put
i
s
fl
uct
u
at
ed. I
n
o
r
de
r t
o
achi
e
ve t
h
e st
abl
e
power at the load side un
d
e
r the co
nd
itio
n
that th
e
g
e
n
e
rator ou
tpu
t
po
wer is v
a
riab
le, it is n
ecessary to
u
s
e a
co
n
t
ro
ller to
get th
e stab
le o
u
tp
u
t
produ
ced
b
y
the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
79
8
–
80
9
7
99
wind
turb
in
e
g
e
n
e
rator.
The reliab
ility o
f
th
e v
a
ri
ab
le
sp
eed
wind
en
erg
y
systems can b
e
im
p
r
oved
si
gni
fi
ca
nt
l
y
b
y
usi
n
g a pe
r
m
anent
m
a
gnet
sy
nchr
o
n
o
u
s
gene
rat
o
r (
P
M
S
G)
. T
h
e c
ont
rol
sc
hem
e
fo
r t
h
e
o
v
e
rall system
is m
a
in
ly classified
as
supp
l
y
si
de c
ont
r
o
l
a
n
d l
o
a
d
si
de c
o
n
t
rol
.
2.
STA
ND-
A
L
ON
E WIND
POWER
SU
PPLY
SY
STEM
In t
h
is stand-alone
system
, three
b
l
ad
e
wind tu
rb
in
e
with
ho
rizo
n
t
al ax
is is d
i
rectly connected
with
PMSG
w
ith
ou
t
u
s
ing
g
e
ar
box. Th
e
o
u
t
p
u
t
o
f
PMSG
f
l
o
w
s t
h
rou
g
h
thr
ee ph
ase d
i
o
d
e
r
ect
if
ier
,
D
C
-
D
C
bo
o
s
t
co
nv
erter,
b
a
ttery, and
vo
ltag
e
sou
r
ce i
n
v
e
rter to
th
e lo
a
d
. As the availa
ble wind spee
d is not consta
nt, the
bo
ost
ci
rc
ui
t
i
s
em
pl
oy
ed t
o
ext
r
act
m
a
xi
m
u
m
power
from
available wind power.
Battery energy
stora
g
e
syste
m
is to
su
pp
ly lo
ad
when
th
e wi
n
d
po
wer is sho
r
ta
ge.
A three
phase inve
rter is
connected to t
h
e loa
d
th
ro
ugh
LC
filter. Th
e
ov
erall
sch
e
m
a
tic d
i
ag
ram
o
f
th
e
prop
o
s
ed system
i
s
shown in
Figu
re 1.
Fi
gu
re
1.
Sc
he
m
a
t
i
c
di
agram
of
t
h
e
pr
o
p
o
s
e
d
sy
st
em
2.
1.
Wind Turbin
e
Model
The m
o
st im
p
o
rta
n
t technical inform
ation
for a
specific
wind turbine i
s
the
powe
r c
u
rve
which
sho
w
s
t
h
e rel
a
t
i
ons
hi
p bet
w
ee
n wi
n
d
s
p
eed a
n
d the electric
a
l power output
of t
h
e
gene
ra
tor.
The
r
e a
r
e t
h
ree
t
y
pes
o
f
wi
n
d
spee
ds:
cut
-
i
n
wi
n
d
s
p
ee
d, rat
e
d wi
n
d
s
p
ee
d,
an
d c
u
t
-
out
wi
nd
s
p
eed
.
T
h
e
cut-in wi
nd s
p
eed is
t
h
e m
i
nim
u
m
wi
n
d
s
p
eed
ne
eded
t
o
gene
ra
t
e
net
p
o
we
r.
The
gene
rat
o
r
i
s
del
i
v
eri
ng a
s
m
u
ch po
we
r
as i
t
i
s
designe
d
for when the
wind s
p
eed
r
each at the rated s
p
eed. At cut-out wi
nd s
p
ee
d, the
machine m
u
st
be shut
d
o
wn
[3
].
The m
echani
c
a
l
po
we
r ca
pt
ur
ed
fr
om
wi
nd t
u
r
b
i
n
e
i
s
g
o
v
er
ned
by
t
h
e
fol
l
owi
n
g
eq
uat
i
o
n:
3
mp
w
P=
0
.
5
ρ
AC
V
(1
)
Whe
r
e P
m
is
the
m
echanical output powe
r
o
f
th
e win
d
turb
i
n
e (W
att),
ρ
is
th
e air d
e
n
s
ity (Kg
/
m
3
), A
is th
e swep
t area (m
2
), C
p
is th
e
p
o
wer co
efficien
t of th
e
wind
turb
i
n
e an
d V
w
i
s
t
h
e
w
i
nd s
p
ee
d
(m
/
s
). T
h
e
efficiency of
a wind turbi
n
e
includes t
h
e loss i
n
the
m
echan
ical transm
ission, e
l
ect
ri
cal
gener
a
t
i
on,
conve
r
ter loss, etc.,
whe
r
e as
the power
coe
f
ficient is the
efficiency of c
o
n
v
e
r
t
i
n
g
th
e
p
o
w
e
r
in
th
e
w
i
n
d
i
n
to
mechanical energy i
n
t
h
e
rot
o
r shaf
t
.
The
po
we
r c
o
ef
fi
ci
ent
i
s
us
ual
l
y
gi
ve
n as
a
f
u
n
c
t
i
on
of
t
h
e
t
i
p
s
p
e
e
d
ratio
λ
a
n
d t
h
e
blade
pitch angle
β
. I
f
β
is eq
ual zero, in th
is
case, C
p
an
d
λ
are gi
ve
n
as:
-
2
1+0.735
λ
[]
λ
p(
λ
)
60
.04-
4.69
λ
0
.
0068
λ
C=
e
+
λ
1
-
0.03
5
λ
(2
)
r
w
R
ω
λ
=
V
(3
)
W
i
nd
W
i
nd
Tu
rb
in
e
PMSG
Di
od
e
Rect
if
ier
Boost
Co
nve
rte
r
Voltage
Sour
ce
I
nver
t
er
Filte
r
Lo
ad
Buck-
boost
Conver
t
er
Battery
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
A
nal
ys
i
s
of
St
a
n
d
-
Al
o
n
e Wi
nd
Pow
e
r S
u
p
p
l
y
Syst
e
m
w
i
t
h
Three
P
has
e PWM
…
(Tin
Za
r Kha
i
ng
)
80
0
Whe
r
e
ω
r
i
s
t
h
e rot
a
t
i
onal
s
p
eed (
r
ad/
s
) an
d R
i
s
t
h
e radi
us o
f
bl
a
d
e (m
). M
a
xi
m
u
m
powe
r
f
r
om
wind
turb
i
n
e can
b
e
ex
tracted
wh
en
th
e turb
in
e
o
p
e
rate at
m
a
x
i
m
u
m
C
p
(C
p-opt
)
.
Th
e
opti
m
u
m
v
a
lu
e of
C
p
is
ab
ou
t 0
.
48
f
o
r
λ
eq
ual
8.
1 by
assum
i
ng
β
is
equal
to ze
ro
degree
. T
h
ere
f
ore,
it is
neces
sa
ry to
adjust the
rotor
spee
d at
opt
i
m
um
val
u
e o
f
t
i
p s
p
ee
d rat
i
o
(
λ
opt
) wi
t
h
wi
nd
spee
d
vari
at
i
o
n t
o
ext
r
act
m
a
xi
m
u
m
powe
r
fr
om
w
i
nd
turb
in
e [2
].
2.
2.
Permane
nt Magnet Synchr
onous
Generator
(PMSG)
Th
e PMSG differs
fro
m
th
e in
du
ctio
n
gen
e
rat
o
r in
t
h
at th
e
m
a
g
n
e
tizatio
n
is p
r
ov
id
ed
b
y
a
p
e
rm
an
en
t m
a
g
n
e
t
po
le system
o
n
th
e ro
tor, in
stead
of takin
g
ex
citatio
n
cu
rren
t
fro
m
t
h
e arm
a
tu
re win
d
i
ng
termin
als, as it
is th
e case wit
h
th
e in
du
ction g
e
n
e
rato
r.
The
adva
nt
ages
of
perm
anent
m
a
gnet
m
achi
n
es ove
r
electrically excited
m
achines are that
they have highe
r
efficiency an
d ene
r
gy
y
i
el
d. T
h
ey
do
n
o
t
need
ad
d
ition
a
l power sup
p
l
y for th
e m
a
g
n
e
t field
ex
citation
.
Du
e to
t
h
e ab
sen
ce
of th
e field
wind
in
g
and
m
echanical com
ponents
suc
h
as slip ri
ngs
, i
t
has
sm
al
ler losses
and
higher reliability [1]. The
m
a
them
atical
m
odel
of t
h
e P
M
SG i
n
t
h
e
sy
nch
r
on
o
u
s
refe
rence
f
r
am
e (i
n t
h
e st
at
e e
quat
i
on
f
o
rm
) i
s
gi
ven
by
,
L
di
r
1
qs
ds
=v
-
i
+
ω
i
eq
dd
d
t
LLL
ds
ds
ds
(4
)
di
L
ψω
r
1
q
e
sd
s
f
=v
-
i
-
ω
i-
qq
e
d
dt
L
L
L
L
qs
qs
q
s
qs
(5
)
eq
s
q
q
ds
d
f
T
=
1.5((
L
-
L
)
i
i
+
i
ψ
(6
)
Whe
r
e, L
d
, L
q
are d an
d q a
x
i
s
i
nduct
a
nces,
R
i
s
st
at
or wi
ndi
ng
resi
st
an
ce, i
d
, i
q
are d and
q axi
s
currents
, v
q
, v
d
are
d a
nd
q a
x
i
s
v
o
l
t
a
ge,
ω
r
is an
gu
lar
v
e
l
o
city
o
f
ro
to
r,
λ
is
a
m
p
litu
d
e
of
ro
tor indu
ced fl
u
x
,
p
is pole pair num
b
er, and T
e
is electro
m
a
g
n
e
tic to
rq
u
e
. Tab
l
e I sh
ow the p
a
ram
e
ters of wind
turb
in
e with
PMSG
wh
ich
are ap
p
lied to
t
h
e sim
u
lat
i
o
n
mo
d
e
l
of th
e prop
o
s
ed system
.
Tabl
e 1. Param
e
t
e
rs
o
f
Wi
n
d
Tur
b
i
n
e
an
d G
e
nerat
o
r
Para
m
e
ters
Rating
Rated wind speed
10
m
/
sec
Cut-in wind speed m
/
sec
5
m
/
sec
Cut-
out wind speed
25
m
/
sec
Blade dia
m
ete
r
10
m
Power coef
f
i
cient
0.48
Swept ar
ea
78.
5
m
2
T
u
r
b
ine r
a
ted speed
167 r
p
m
Rated power
20 kW
fr
equency
50
Hz
Pole pairs
18
R
s
0.
5
Ω
L
s
0.
448
3.
SU
PPLY
SIDE SONV
ER
TER
CON
T
R
O
L
Th
e su
pp
ly sid
e
conv
erter co
n
t
ro
l invo
lv
ed
con
t
rol of three
phase di
ode
rectifier, DC-DC boo
st
co
nv
er
ter
an
d
D
C
-D
C b
i
d
i
r
e
ctio
n
a
l bu
ck
-boo
st co
nv
er
ter
.
3.
1
Diode
Rec
t
ifie
r
The t
h
ree
phas
e full-wa
ve
bri
dge
rectifier ca
n
be
c
o
nnecte
d
directly to t
h
e
three
phase
source
. T
h
e
av
erag
e
ou
tpu
t
vo
ltag
e
o
f
th
e
rectifier an
d the filter ca
p
acito
r to
elim
in
ate
th
e ou
tpu
t
v
o
l
t
a
g
e
ripp
les are:
dc
L
L
V=
3
2
π
V
(7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
79
8
–
80
9
8
01
rf
1
1f
R
R
C =
(8
)
Whe
r
e V
dc
is
DC
o
r
av
erag
e ou
tpu
t
vo
ltage, V
LL
is AC
lin
e vo
ltag
e
, f
r
is rip
p
le
fre
q
u
ency
,
R i
s
resistance, and
R
f
is
ripp
le fact
o
r
.
3.
2.
DC
-D
C
B
o
ost
Co
nver
ter C
o
ntr
o
l
Th
e inp
u
t
to
this co
n
v
erter is an
un
regu
lated DC v
o
ltag
e
wh
ich
can
b
e
obtain
e
d
b
y
rectifyin
g
an
AC
v
o
ltag
e
so
urce. Th
is un
regu
l
a
ted
vo
ltag
e
will flu
c
tu
ate due to
ch
ang
e
s i
n
th
e lin
e
d
u
e
to
th
e
flu
c
t
u
atio
n of
wind
sp
eed.
In o
r
d
e
r to con
t
ro
l th
is
u
n
reg
u
l
ated
DC
vo
ltag
e
in
t
o
a
regu
l
a
ted
DC
ou
tput it is n
eed
ed
t
o
u
s
e a
D
C
-D
C bo
ost co
nv
er
ter
.
Th
e
co
nv
er
ter
co
ns
i
s
t
s
of an i
n
d
u
c
t
o
r L, a
n
i
n
s
u
l
a
t
e
d gat
e
bi
pol
ar t
r
an
si
st
or
(I
GB
T)
,
a d
i
o
d
e
, and
a filter cap
acito
r C. Filters
m
a
d
e
o
f
cap
acitors
are n
o
rm
al
ly a
d
d
e
d
to
th
e ou
t
p
u
t
of th
e converter
to
r
e
du
ce ou
tpu
t
v
o
ltag
e
r
i
pple .Th
e
cir
c
u
it d
i
agr
a
m
o
f
D
C
-
D
C boo
st conv
er
ter
is shown
in
Figu
r
e
2
.
W
h
en
th
e IG
BT sw
itch
is clo
s
ed
, th
e en
erg
y
stored
in
t
h
e inducto
r
in
cr
ease.
W
h
en
it is op
en
ed, th
e
sto
r
ed en
erg
y
h
a
s t
o
tran
sfer
to
th
e
d
i
od
e, cap
acito
r and
l
o
ad
[4
].
Fi
gu
re
2.
C
i
rcu
i
t
di
agram
of
D
C
-DC
bo
ost
c
o
nve
rt
er
Th
e
bo
o
s
t conv
erter ou
tpu
t
vo
ltag
e
is
ob
tained
as:
i
o
V(
1
-
D
)
V=
(9
)
oI
I
o
VDC
VV
II
1
(
1
-
D
)
M
=
=
=
(1
0)
1o
s
o
m
a
x
L =
(
2
2
7
)
(
V
f
I
)
(1
1)
2
m
ax
o
s
L
m
i
n
cp
p
C
=
(D
V
)
(f
R
V
)
(1
2)
Whe
r
e,
V
o
i
s
out
put
v
o
l
t
a
ge
,
V
i
is inpu
t vo
ltag
e
, D is
du
ty cycle, M
VDC
i
s
DC
vol
t
a
ge t
r
a
n
s
f
er
fu
nct
i
o
n, f
s
(1
kHz
)
i
s
swi
t
c
h
i
ng f
r
eq
ue
ncy
,
L
1
i
s
m
i
nim
u
m
i
nduct
a
nce,
I
om
a
x
is
max
i
m
u
m o
u
t
pu
t cu
rren
t. C
2
is
m
i
nim
u
m filter capacitance
,
and R
Lm
in
i
s
m
i
nim
u
m
l
o
ad resi
st
ance. T
h
e
bl
ock
di
ag
ram
of t
h
e DC
-DC
bo
ost
cont
rol
l
e
r i
s
sh
ow
n i
n
Fi
gu
re
3.
In t
h
i
s
DC
-
D
C
b
oost
c
o
nve
rt
er c
ont
r
o
l
,
Pul
s
e
W
i
dt
h M
o
d
u
l
a
t
i
on
(P
WM
) co
nt
r
o
l
m
e
t
hod
i
s
u
s
ed
t
o
extract m
a
ximum
powe
r
from
the availabl
e wind
powe
r. For t
h
is syst
em
, t
h
e refere
n
ce v
o
l
t
a
ge
of
56
6
V i
s
u
s
ed
to con
t
ro
l
th
e
DC
v
o
ltage at th
e
rectifier DC
sid
e
terminals. T
h
e
refe
rence
vo
ltag
e
is co
m
p
ared wit
h
th
e
act
ual
vol
t
a
ge
fr
om
t
h
e di
ode rect
i
f
i
e
r
,
a
nd t
h
e er
ro
r s
i
gnal
i
s
fe
d t
o
a PI co
nt
r
o
l
l
e
r. T
h
e o
u
t
p
ut
of P
I
co
n
t
ro
ller is co
m
p
ared
with
carrier triang
u
l
ar wav
e
b
y
pa
ssing com
p
arat
or t
o
c
ont
rol t
h
e
duty cycle
of t
h
e
IGBT switch.
V
dc
L
Switch
D
C
2
Lo
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
A
nal
ys
i
s
of
St
a
n
d
-
Al
o
n
e Wi
nd
Pow
e
r S
u
p
p
l
y
Syst
e
m
w
i
t
h
Three
P
has
e PWM
…
(Tin
Za
r Kha
i
ng
)
80
2
Fi
gu
re
3.
B
l
oc
k
di
ag
ram
of t
y
pi
cal
DC
-
D
C
b
oost
co
n
v
ert
e
r
cont
rol
l
e
r
3.
4.
DC-DC Bidire
ctional Buck
-Boos
t Conve
r
ter
Control
The
DC
-
D
C
bi
di
rect
i
o
nal
b
u
c
k
-
b
oost
P
W
M
con
v
e
r
t
e
r i
s
us
ed t
o
pe
rf
orm
t
h
e cha
r
ge an
d
di
scha
r
g
e
fun
c
tion
to
the b
a
ttery b
a
nk. Th
e fun
c
tion o
f
th
e con
t
roller is th
at th
e referen
ce
v
o
l
tag
e
(V
dc-re
f
) o
f
the
co
nv
erter is co
m
p
ared
with
th
e actu
a
l d
c
v
o
ltag
e
(V
dc-act
ual
). The e
r
r
o
r
si
gnal
i
s
p
r
oce
ssed t
h
ro
u
gh t
h
e P
I
co
n
t
ro
ller. Th
e li
miter
li
mits
t
h
e ou
tpu
t
o
f
PI co
n
t
ro
l
l
e
r an
d com
p
are wi
t
h
t
h
e hi
g
h
fr
eq
ue
ncy
saw t
oot
h wav
e
to
g
e
n
e
rate the du
ty cycle of th
e switch
e
s Q
1
an
d Q
2
.
Wh
en
wind
po
wer
o
u
t
pu
t is g
r
eater th
an
t
h
e lo
ad
dem
a
nd, t
h
e swi
t
c
h, Q
1
is on, th
e co
nv
erter o
p
e
rates th
e buck
fun
c
tion
and
ch
arg
e
s to
the b
a
ttery b
a
nk
. Wh
en
th
e wi
n
d
power ou
tpu
t
is less th
an th
e l
o
ad
d
e
m
a
n
d
,
th
e switch
,
Q
2
is
on, the
converter operates
as
boost
m
ode and
di
sc
har
g
es t
o
t
h
e
DC
l
i
n
k
.
T
h
e
cont
rol
st
r
a
t
e
gy for the
battery energy stora
g
e system
is s
h
own i
n
Fi
gu
re 4.
Fi
gu
re
4.
B
i
di
r
ect
i
onal
c
o
n
v
er
t
e
r co
nt
r
o
l
f
o
r
t
h
e
bat
t
e
ry
ene
r
gy
st
o
r
age
sy
st
em
The bat
t
e
ry
ba
nk
vol
t
a
ge can
be ke
pt
l
o
we
r t
h
an t
h
e
refe
re
nce DC
l
i
nk
v
o
l
t
a
ge (
5
6
6
V)
vi
a DC
-
D
C
bi
di
rect
i
o
nal
b
u
ck
-
b
o
o
st
P
W
M
con
v
ert
e
r a
nd
he
nce l
e
ss
num
ber
of
bat
t
e
ri
es nee
d
t
o
b
e
co
nnect
e
d
i
n
seri
es.
In t
h
e si
m
u
l
i
nk m
odel
,
t
h
e
bat
t
e
ry
ba
nk
v
o
l
t
a
ge i
s
ke
pt
at
30
0V
f
o
r t
h
i
s
sy
st
em
whi
c
h can
co
nt
i
n
uo
usl
y
su
pp
ly
1
0
kW lo
ad
n
ear
ly t
w
o hou
r wh
en w
i
nd
po
w
e
r
i
s
shor
tag
e
. The d
e
p
t
h of
d
i
sch
a
rg
e
(
DOD
) of
th
e
battery is consi
d
ere
d
at
80%.
4.
LOAD
SI
DE I
NVE
RTER
C
O
NTR
O
L
B
a
sed
on
t
h
e
po
we
r s
u
p
p
l
y
,
i
nve
rt
ers
ca
n
be
b
r
oa
dl
y
cl
assi
fi
ed i
n
t
o
t
w
o
t
y
pes:
vol
t
a
ge s
o
urce
i
nve
rt
er (
V
SI
)
and c
u
r
r
ent
s
o
urce i
n
vert
e
r
(
C
SI).
VS
I has
a sm
al
l or ne
gl
i
g
i
b
l
e
im
pedan
ce at
i
t
s
i
nput
t
e
rm
i
n
al
whic
h ha
s a stiff
dc
voltage
s
o
urce,
whereas
for a CSI, it
is fed
with
adj
u
stab
le cu
rren
t fro
m
a d
c
so
urce wit
h
hi
g
h
i
m
pedanc
e. The
out
put
vol
t
a
ge ca
n
be
vari
e
d
by
va
r
y
i
ng t
h
e i
n
p
u
t
dc v
o
l
t
a
ge a
n
d kee
p
i
n
g c
o
n
s
t
a
nt
i
nve
rt
er gai
n
, h
o
we
ve
r, i
f
t
h
e i
n
p
u
t
dc v
o
l
t
a
g
e
i
s
fi
xed and c
a
nn
ot
be co
nt
r
o
l
l
e
d, t
h
e gai
n
of t
h
e i
n
vert
er
has t
o
be va
ri
ed t
o
o
b
t
a
i
n
va
ri
abl
e
out
put
vol
t
a
ge
.
Vary
i
n
g t
h
e
gai
n
of t
h
e i
n
vert
er i
s
m
a
i
n
ly
do
ne by
a s
c
hem
e
whi
c
h i
s
k
n
o
w
n as
p
u
l
s
e
wi
dt
h m
odul
at
i
o
n
[
5
]
.
Di
ffe
re
nt
co
nt
rol
m
e
t
hods
of i
nve
rt
er
us
ed i
n
wi
nd t
u
r
b
i
n
e
are:
(i
) Si
n
u
s
o
i
d
al
pul
se
wi
dt
h
m
odulation (S
P
W
M), (ii)
Hysteresis
Curre
nt Controll
er, (iii) S
p
ac
e vector puls
e width m
o
dulation
(SV
P
W
M
). P
W
M
t
ech
ni
q
u
e
s
are re
pres
ent
e
d by
fi
xe
d am
pl
i
t
ude
pul
ses
.
Thi
s
i
s
t
h
e m
o
st
sui
t
a
bl
e m
e
tho
d
of
co
n
t
ro
lling
o
u
t
put
v
o
l
t
a
ge.
V
dc (ref
)
V
dc (actu
a
l
)
PI
Car
r
i
er
Tr
iangular
W
a
ve
To
IGBT
Co
m
p
a
r
ator
Bidir
ectional conver
t
er
Co
m
p
a
r
ator
To
Q
2
V
dc (actu
a
l)
V
dc (ref
)
Car
r
i
er
Saw T
ooth W
a
ve
Li
m
ite
r
Q
1
Q
2
DC
L
i
nk
To
Q
1
PI
Battery
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
79
8
–
80
9
8
03
4.
1.
Vol
t
age
Sourc
e
Inverter
Contr
o
l with SP
WM
Po
wer M
O
SF
ET and
IGB
T
swi
t
c
hes are l
a
rgel
y
use
d
p
o
w
e
r sem
i
cond
uct
o
r
devi
ces f
o
r i
nve
rt
ers
.
As
th
e IGBT co
m
b
in
es l
o
w
on
-st
a
te v
o
ltag
e
drop
and
h
i
gh
off-state voltage c
h
aracteristics
of BJT a
nd
high input
im
pedance
of
t
h
e M
O
SFET
,
I
G
B
T
i
s
ch
ose
n
as p
o
we
r sem
i
con
duct
o
r
swi
t
ch. T
h
e pa
ra
m
e
t
e
rs of
K
p
=
10 a
n
d
K
i
=0
.0
1 a
r
e
us
ed
fo
r si
m
u
l
a
t
i
on
st
u
d
i
e
s.
The
ci
rcui
t
di
ag
ra
m
of t
h
e t
h
ree
pha
se
VSI
i
s
s
h
o
w
n i
n
Fi
g
u
r
e
5.
Fi
gu
re
5.
C
i
rcu
i
t
di
agram
of
t
h
ree
p
h
ase
v
o
l
t
a
ge s
o
urce i
n
v
e
rt
er
In th
is SPW
M
co
n
t
ro
l tech
n
i
qu
e, t
h
ree ph
ase vo
ltag
e
(V
abc
)
is tran
sform
e
d
to
V
dq
a
n
d it is
com
p
ared
with refe
re
nce
V
dq
. Th
e error sig
n
a
l is fed
to
th
e PI con
t
ro
ller. Th
en
it is retran
sfo
r
m
e
d
to
V
abc
. T
h
e result
refe
rence
v
o
l
t
a
ges o
f
vari
abl
e
am
pl
i
t
ude an
d f
r
eq
ue
ncy
ar
e com
p
ared
wi
t
h
carri
e
r
t
r
i
a
n
gul
a
r
wa
ve o
f
fi
xe
d
a
m
p
litu
d
e
and frequ
en
cy in
th
ree sep
a
rate com
p
arators
.
The com
p
arat
ors
g
e
n
e
rate switch
i
ng
sign
al to
th
e
cor
r
es
po
n
d
i
n
g
i
nve
rt
er l
e
g
.
S
w
i
t
c
hes
of
any
l
e
g
of t
h
e i
n
v
e
rt
er ca
nn
ot
be
swi
t
c
he
d
on
a
t
t
h
e sam
e
t
i
me si
nce
th
is wo
u
l
d
resu
lt in
a sh
ort
circu
it acro
ss
th
e d
c
link
voltag
e
sup
p
l
y.
NOT g
a
tes are u
s
ed
to
avo
i
d
th
is
co
nd
itio
n as sho
w
n
i
n
Fi
g
u
re
6
.
Fi
gu
re 6.
C
o
nt
r
o
l
si
g
n
al
gene
r
a
t
i
on fo
r
S
P
W
M
The ca
rrier and re
fere
nce
wa
ves a
r
e m
i
xed in a co
m
p
arator. T
h
e c
o
m
p
arators
give t
h
e
pulses
whe
n
si
nus
oi
dal
wa
v
e
i
s
g
r
eat
er t
h
a
n
t
h
e
t
r
i
a
n
g
u
l
a
r
wa
ve.
I
n
t
h
i
s
c
a
se, t
h
e
m
odul
at
i
on i
n
de
x m
a
i
s
defi
ned
as,
m(r
e
fe
re
n
c
e
)
a
m
(
ca
rri
e
r
)
V
m=
V
(1
3)
The
norm
alize
d
ca
rrier frequency m
f
is
(car
rier)
f
(
r
e
f
er
en
ce)
f
m=
f
(1
4)
Si
nce t
h
e o
u
t
p
ut
of t
h
e i
n
ver
t
er i
s
affect
ed by
t
h
e swi
t
c
hi
ng f
r
e
que
ncy
i
t
wi
l
l
cont
ai
n harm
oni
cs
.
Filters are
n
e
ed
ed to
elim
in
at
e th
e
h
a
rm
o
n
i
cs.
a,b,c
Vabc
d,
q
Vd
q
(ref
)
PI
d,
q
a,b,c
Carrie
r
T
r
iangular
W
a
ve
Co
m
p
a
r
ator
To IGBT
Swit
ches
G1
G2
G3
G4
G5
G6
DC
Supply
Lo
ad
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
A
nal
ys
i
s
of
St
a
n
d
-
Al
o
n
e Wi
nd
Pow
e
r S
u
p
p
l
y
Syst
e
m
w
i
t
h
Three
P
has
e PWM
…
(Tin
Za
r Kha
i
ng
)
80
4
4.
2.
Passi
ve Filters
The l
o
a
d
si
de
vol
t
a
ge s
o
ur
ce i
nvert
e
r
ge
nerat
e
s
un
wa
n
t
ed hi
g
h
f
r
eq
uency
harm
on
i
c
s. These
h
a
rm
o
n
i
cs can b
e
elim
in
ated
b
y
u
s
i
n
g filters. RC and
LC
filters are th
e
m
o
st wid
e
ly u
s
ed
p
a
ssiv
e
filters for
i
nve
rt
er. T
h
ey
are di
vi
de
d i
n
t
o
1
st
or
der
,
2
nd
Or
der a
n
d 3
rd
o
r
d
e
r
filters acco
rd
ing
to
t
h
e co
m
b
in
atio
n
o
f
t
h
e
passi
ve c
o
m
p
o
n
ent
s
. LC
i
s
a 2
nd
o
r
d
e
r filter an
d
LCL is the 3
rd
o
r
d
e
r filter [6
]. Th
e
2
nd
or
der l
o
w
pa
ss LC
filter is u
s
ed
for th
is research
. Th
e cap
acitor
main
tain
s th
e lo
ad vo
ltag
e
con
s
tan
t
wh
ereas th
e ind
u
c
t
o
r
mak
e
s
t
h
e cu
rre
nt
sm
oot
her
[
7
]
.
Ty
pi
cal
l
y
t
h
e ri
ppl
e c
u
r
r
e
n
t
c
a
n
be c
h
o
s
en
as
10%
t
o
1
5
%
of
rat
e
d
cur
r
ent
.
Co
n
s
i
d
er
i
n
g 10% r
i
pp
le at t
h
e
r
a
ted
cu
rr
en
t, t
h
e
d
e
sign
ed
v
a
lu
e of
i
n
du
ctor
in
th
e
syste
m
is g
i
v
e
n b
y
[
9
]:
DC
Ls
V
L=
8
Δ
If
(1
5)
The capacito
r
is designe
d
base
d o
n
reac
tive po
wer s
u
pplied
by the
capacitor at fundam
enta
l
fre
que
ncy
.
In t
h
is desi
gn
, rea
c
tive p
o
we
r ca
n be
ch
ose
n
as
15
% o
f
the
rat
e
d p
o
w
er a
n
d t
h
e ca
pacitor is
give
n
b
y
[8
]:
ra
t
e
d
2
ra
t
e
d
15%
×P
C =
3×2
π
×V
(1
6)
Whe
r
e, f
s
is switch
i
ng
fr
equen
c
y, V
DC
is DC link
voltage, L is filter induct
o
r. P
rated
is rated power,
V
rated
is rated voltage, f is nom
i
nal fre
quency and C is filter capacitor. To
tal harm
onic dist
ortion (THD) is
measu
r
ed b
y
the r
a
tio
o
f
d
i
sto
r
tio
n
v
o
ltage
o
r
cu
rr
en
t to
f
unda
m
e
n
t
al sin
u
s
oid
a
l in
pu
t cu
rr
en
t is
d
e
f
i
n
e
d
as:
di
s
sl
I
%T
HD = 10
0
I
(1
7)
5.
RE
S
U
LT
S O
F
SI
MUL
A
T
I
O
N
MO
D
EL FOR THE
PROPOSED
SYSTE
M
The
pr
o
pose
d
ove
rall co
ntr
o
l
m
odel for t
h
e s
t
and
-
alo
n
e va
ri
able spee
d
win
d
e
n
er
gy
su
p
p
ly
sy
stem
is
si
m
u
lated
in
M
A
T
L
A
B
/
S
I
M
U
L
I
N
K
u
n
d
e
r
d
i
f
f
e
r
e
n
t
w
i
n
d
s
p
e
e
d
v
a
r
i
a
t
i
o
n
conditions as
shown in
Figure 7.
Figur
e 7
.
Sim
u
link
m
o
del of v
a
r
i
ab
le sp
ee
d stand-
alone wind power
supp
ly
system
The sim
u
lated results of ge
ne
rator
output voltage
and c
u
rre
n
t accordi
ng to the wind spe
e
d
cha
n
ges
are
s
h
o
w
n
in Figu
re 8 whic
h pr
ovi
des
t
h
e
fluctu
ated
ge
neato
r
o
u
t
put
voltage
an
d c
u
r
r
ent
w
h
en
the
win
d
spee
d vary bet
w
een the turbine cut-i
n
and rated wind spee
d.
When the
wind speed is lowe
r than the rated
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-87
08
I
J
ECE Vo
l. 5
,
No. 4
,
Au
gu
st 2
015
:
79
8
–
80
9
8
05
spee
d, the tur
b
ine gene
rato
r c
a
nn
ot
pr
odu
ce th
e r
a
ted
power
. To
g
e
n
e
r
a
te
the rated
voltage at low wind speed,
th
er
efor
e,
DC-DC boo
st co
nver
t
er
is
u
s
ed
to get
stable DC
l
i
nk voltage.
Figu
re 8.
Sim
u
lation
res
u
lt of gene
rato
r out
p
u
t
v
o
ltage an
d cur
r
ent
Figu
re
9 gi
ves
the o
u
tp
ut v
o
l
t
age o
f
di
ode
r
ectifier.
It ca
n
be see
n
that th
e out
put
v
o
ltage o
f
dio
d
e
rectifier is 56
6
V at the wind
spee
d of
10 m
/
s and it decr
ea
ses whe
n
the
wind spee
d is lowe
r. The
dut
y cycle
of
t
h
e
I
G
B
T
s
w
itch of DC
-
D
C
b
o
o
st
conv
er
ter shown in
Fig
u
r
e
1
0
obser
v
e
s th
at th
e lo
wer
th
e wind
sp
eed,
the large
r
the
duty cycle of t
h
e IGBT s
w
itch. T
h
e out
put voltage o
f
the DC
-
D
C
b
o
ost converter is nearly
stab
le at 566
V as sh
own
in Fig
u
r
e
11
.
Figu
re 9.
Sim
u
lation
res
u
lt of rectifier out
put
v
o
ltage
(U
n
d
e
r
the
wi
nd
spee
d
variatio
n
between
cut
-
in a
n
d
rated s
p
ee
d)
Fig
u
r
e
10
. Simu
latio
n
r
e
su
lt
of
d
u
t
y
cycle
of
th
e
boo
st
co
nver
t
er
Figure 11. Simulation result
of
DC
-DC
boo
st con
v
e
r
t
er
ou
tpu
t
vo
ltag
e
(V)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN:
208
8-8
7
0
8
C
ont
r
o
l
A
nal
ys
i
s
of
St
a
n
d
-
Al
o
n
e Wi
nd
Pow
e
r S
u
p
p
l
y
Syst
e
m
w
i
t
h
Three
P
has
e PWM
…
(Tin
Za
r Kha
i
ng
)
80
6
Figu
re 1
2
. Sim
u
lation res
u
lt
o
f
duty
cy
cle
o
f
the
bi
di
rectional conve
r
ter
(Unde
r t
h
e
wind s
p
eed va
riation
betwee
n c
u
t-in
an
d
rated s
p
ee
d)
Fig
u
r
e
13
.Simu
l
atio
n
r
e
su
lt
of
d
u
t
y
cycle
of
th
e
b
i
d
i
r
ectional
co
nv
er
ter
(Wh
e
n
wind
power
ou
tpu
t
is gr
eater
than t
h
e load de
m
a
nd)
Figure 12
and Figure
13 illustrate the performa
nce of bi
directional conver
ter for the
bat
t
ery energy
stora
g
e system
. In Fi
gure 12,
the switch
Q
2
is on a
nd
Q
1
is of
f res
u
lting th
e battery
not to
be cha
r
ge
d as
there
is no su
rpl
u
s ener
gy
, thu
s
the
stored e
n
er
gy
is disc
harge
d
fr
om
the battery
durin
g the w
i
nd spee
d va
ri
ation
betwee
n c
u
t-in
an
d
un
der
rate
d
win
d
s
p
eed
.
If t
h
e sy
stem
pro
d
u
ces
po
wer
greate
r
tha
n
t
h
e loa
d
dem
a
nd, t
h
e
switch Q
1
is
on
an
d Q
2
is
off duri
ng the l
o
w
dem
a
nd load.
Duri
ng
this condition,
t
h
e bi
directional converter
ope
rates as
b
u
c
k m
ode as se
en in
Fig
u
re
1
3
, a
n
d the s
u
rp
lus ene
r
gy
is fl
ow t
h
r
o
ug
h t
h
e co
nve
rter t
o
store i
n
the battery.
Figure 14. Simulation result
of gate
sign
als fo
r inv
e
r
t
er IGBT sw
itch
e
s
The s
w
itchin
g
states or
gate
signals
o
f
the
inve
rt
er
IGB
T
switches
are
sh
ow
n i
n
Fi
g
u
re
1
4
.
It is
noticed t
h
at the two switches of the sam
e
le
g are
no tu
r
n
e
d
o
n
at the sa
m
e
tim
e
. The out
put
voltage
s of the
inve
rter, V
A
, V
B
, and
V
C
ar
e si
m
u
lated
and
ob
serv
ed
f
o
r
0
.
2s in
Figu
r
e
15
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN:
2
088
-87
08
I
J
ECE Vo
l. 5
,
No. 4
,
Au
gu
st 2
015
:
79
8
–
80
9
8
07
Figure 15. Simulation result
of
th
ree
pha
se in
verter
o
u
tp
ut
The load
voltage and curren
t
without using
LC filters are si
m
u
late
d in Figure 16
which
contains the
voltage and current
harm
onics, so filter
needs to rem
ove t
h
ese
harm
onics. By usi
n
g low
pass
passive filter,
the content
ha
rm
onics are attenuate
d as
shown in Figure
17.
Figur
e 16
. Simu
lation r
e
su
lt o
f
th
e ou
tpu
t
load vo
ltag
e
and cu
rr
en
t withou
t
f
i
lter
Figure 17. Simulation result
of the output lo
ad
voltage and cu
rrent with filter
The total
harm
onic
disto
r
tion
(T
HD
) ca
uses
ad
verse
effects to c
u
stom
er loads. T
h
us,
T
H
D of loa
d
voltage and current with
and without filters are studied wit
h
FFT an
alysis. The FFT analysis of load
voltage
and current
without usi
n
g the filter is
performed in Fi
gure
18
and
Figure
19 which m
e
nt
ion t
h
at the THD
of
load
v
o
ltage a
n
d
cu
rre
nt are
66
.4
4% a
n
d
64
% res
p
ectivel
y. Attenuation
of these
ha
rm
onics is achieve
d
by
an
LC filter as
presented in t
h
e si
m
u
l
i
nk m
odel.
Evaluation Warning : The document was created with Spire.PDF for Python.