I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
2
,
A
p
r
il
201
8
,
p
p
.
7
2
3
~7
2
9
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
2
.
p
p
7
2
3
-
7
2
9
723
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
Ana
ly
sis
o
f
Indu
c
tance
G
ra
dient
a
nd Curr
ent
Densi
ty
Distribu
tion
O
v
er
Dif
f
eren
t
Cro
ss
-
s
ection o
f
Ra
i
ls
M
.
N.
Sa
ra
v
a
na
K
u
m
a
r
1
,
R.
M
urug
na
2
1
De
p
a
rte
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
S
t.
P
e
ters
Un
iv
e
rsit
y
,
Ch
e
n
n
a
i,
T
N,
In
d
ia
2
De
p
a
rte
m
e
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
S
t.
J
o
se
p
h
‟
s In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
,
Ch
e
n
n
a
i,
T
N,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
2
,
2
0
1
7
R
ev
i
s
ed
Dec
2
6
,
2
0
1
7
A
cc
ep
ted
J
an
8
,
2
0
1
8
In
a
ra
il
g
u
n
sy
ste
m
th
e
a
r
m
a
tu
re
a
c
c
e
ler
a
ted
d
u
e
t
o
th
e
L
o
re
n
tz
f
o
r
c
e
c
a
u
se
d
b
y
th
e
c
u
rre
n
t
w
h
ich
is
d
if
f
u
se
d
in
t
o
t
h
e
ra
il
s.
T
h
e
e
n
ti
re
sy
ste
m
d
e
p
e
n
d
s
o
n
th
e
in
d
u
c
tan
c
e
g
ra
d
ien
t
o
f
th
e
ra
il
w
h
ich
is
d
irec
tl
y
c
o
n
n
e
c
t
e
d
to
th
e
a
c
c
e
le
r
a
ti
n
g
p
e
rf
o
r
m
a
n
c
e
a
n
d
e
ff
i
c
ien
c
y
o
f
ra
il
g
u
n
.
He
n
c
e
,
th
e
e
x
a
c
t
a
n
a
ly
sis
o
f
in
d
u
c
tan
c
e
g
ra
d
ien
t
is
e
x
trem
e
l
y
sig
n
if
i
c
a
n
t
f
o
r
th
e
ra
il
g
u
n
d
e
sig
n
.
S
in
c
e
sh
o
rt
d
u
ra
ti
o
n
o
f
c
u
rre
n
t
p
u
lse
is
a
p
p
l
ied
t
o
t
h
e
ra
il
s
d
e
term
in
a
ti
o
n
o
f
in
d
u
c
tan
c
e
g
ra
d
ien
t
is
v
e
ry
d
iff
i
c
u
lt
.
T
h
e
i
n
d
u
c
tan
c
e
g
ra
d
ien
t
v
a
ri
e
s
w
it
h
th
e
g
e
o
m
e
tri
c
d
i
m
e
n
sio
n
s o
f
th
e
ra
il
s
a
n
d
a
rm
a
tu
re
.
A
n
d
it
c
a
n
b
e
c
a
lcu
late
d
w
it
h
a
n
a
ly
ti
c
a
l
m
e
th
o
d
a
n
d
n
u
m
e
rica
l
m
e
th
o
d
s.
In
t
h
is
p
a
p
e
r
i
n
d
u
c
tan
c
e
g
ra
d
ien
t
o
f
th
e
ra
il
h
a
s
b
e
e
n
c
o
m
p
u
ted
a
n
d
c
o
m
p
a
re
d
w
it
h
th
e
d
iff
e
re
n
t
ra
il
c
ro
ss
-
se
c
ti
o
n
a
l
m
o
d
e
ls
u
si
n
g
A
n
so
f
t
M
a
x
w
e
ll
Ed
d
y
c
u
rre
n
t
so
lv
e
r
u
se
s
f
in
it
e
e
le
m
e
n
t
tec
h
n
iq
u
e
t
o
c
a
lcu
late
th
e
f
ield
d
istri
b
u
ti
o
n
i
n
a
sp
a
c
e
.
T
h
e
c
u
rre
n
t
d
e
n
sity
,
m
a
g
n
e
ti
c
f
lu
x
d
e
n
sity
,
re
p
u
lsiv
e
f
o
rc
e
a
c
ti
n
g
o
n
th
e
ra
il
s
a
lso
c
o
m
p
u
ted
to
a
n
a
ly
z
e
th
e
p
e
rf
o
rm
a
n
c
e
o
f
ra
il
g
u
n
.
K
ey
w
o
r
d
:
C
u
r
r
en
t d
en
s
it
y
FEA
I
n
d
u
cta
n
ce
g
r
ad
ien
t
Ma
g
n
e
tic
f
l
u
x
d
en
s
it
y
R
ep
u
l
s
iv
e
f
o
r
ce
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
M.
N.
Sar
av
an
a
K
u
m
ar
,
Dep
ar
te
m
en
t o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
St.
P
eter
s
Un
iv
er
s
it
y
,
C
h
e
n
n
ai,
T
am
il Na
d
u
,
I
n
d
ia.
E
m
ail: sar
a
n
v
ih
ar
ec
e2
0
0
9
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
R
ail
g
u
n
w
o
r
k
s
u
n
d
er
th
e
p
r
in
cip
le
o
f
L
o
r
en
tz
f
o
r
ce
,
w
h
en
t
h
e
cu
r
r
en
t
p
as
s
es
t
h
r
o
u
g
h
o
n
e
r
ail
an
d
it
w
il
l p
ass
to
th
e
ar
m
at
u
r
e
(
i.e
.
,
p
r
o
j
ec
tile)
an
d
th
en
it
w
i
ll b
e
r
etu
r
n
ed
b
ac
k
th
r
o
u
g
h
t
h
e
o
th
e
r
r
ail
b
y
g
e
n
er
ati
n
g
th
e
m
a
g
n
etic
f
l
u
x
e
s
o
v
er
th
e
r
ail
w
h
ic
h
ca
u
s
es
elec
tr
o
m
a
g
n
etic
e
f
f
ec
t
i
n
t
h
e
r
ailg
u
n
.
B
ec
au
s
e
o
f
t
h
i
s
ef
f
ec
t,
th
e
L
o
r
en
tz
f
o
r
ce
p
r
in
cip
le
h
a
s
b
ee
n
ex
ec
u
ted
r
esu
lt
s
in
ac
c
eler
atin
g
th
e
ar
m
at
u
r
e,
w
h
ic
h
h
as
b
ee
n
s
h
o
w
n
i
n
F
ig
u
r
e
1.
Fig
u
r
e
1
.
A
Si
m
p
le
R
ai
lg
u
n
r
ep
r
esen
tatio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
2
3
–
7
2
9
724
I
n
d
u
cta
n
ce
g
r
ad
ien
t,
m
a
g
n
et
ic
f
lu
x
d
en
s
it
y
,
cu
r
r
en
t
d
i
s
tr
ib
u
t
io
n
o
v
er
th
e
r
ails
,
r
ep
u
l
s
i
v
e
f
o
r
ce
ac
tin
g
o
n
th
e
r
ails
a
n
d
te
m
p
er
at
u
r
e
ar
e
th
e
m
aj
o
r
k
e
y
p
ar
a
m
eter
s
o
f
th
e
r
ail
g
u
n
.
P
r
o
j
ec
tile
f
o
r
ce
an
d
th
e
g
r
ad
ien
t
o
f
in
d
u
cta
n
ce
ar
e
d
ir
ec
tl
y
p
r
o
p
o
r
tio
n
al
as
B
ased
o
n
th
is
eq
u
a
tio
n
;
t
h
e
P
r
o
j
ec
tile
ca
n
ac
h
ie
v
e
h
y
p
er
v
elo
cit
y
o
n
co
n
s
id
er
i
n
g
th
e
i
n
p
u
t
c
u
r
r
en
t
an
d
th
e
g
r
ad
ien
t
in
d
u
c
tan
ce
(
L
‟
)
[
1
]
.
Fo
r
th
e
s
ev
er
al
d
ec
ad
es
t
h
e
r
esear
ch
er
s
w
er
e
f
o
cu
s
ed
o
n
co
m
p
u
ti
n
g
I
n
d
u
cta
n
ce
g
r
ad
ie
n
t
(
L
‟
)
b
y
v
ar
y
i
n
g
t
h
e
w
id
th
(
w
)
,
h
ei
g
h
t
(
h
)
an
d
s
ep
ar
atio
n
(
s
)
b
et
w
ee
n
t
h
e
t
w
o
r
ails
.
D
if
f
er
en
t
cr
o
s
s
-
s
ec
t
io
n
o
f
r
ails
h
a
s
b
ee
n
co
n
s
id
er
ed
f
o
r
f
in
d
i
n
g
th
e
in
d
u
cta
n
ce
g
r
ad
ien
t
(
L
‟
)
b
y
„
E
d
d
y
C
u
r
r
en
t
‟
s
o
l
v
er
f
o
r
v
ar
i
o
u
s
(
s
)
,
(
w
)
,
(
h
)
[
2
]
.
T
h
e
r
ail
g
u
n
is
s
u
p
p
lied
w
it
h
lar
g
e
cu
r
r
en
t
a
s
a
r
esu
lt,
t
h
er
m
al
en
er
g
y
is
g
en
er
ated
w
h
ic
h
ch
a
n
g
es
t
h
e
elec
tr
ical
an
d
t
h
er
m
al
p
r
o
p
er
ties
o
f
th
e
r
ail
m
ater
ials
.
Hen
ce
,
i
n
o
r
d
er
to
g
ain
a
q
u
a
n
titati
v
e
u
n
d
er
s
tan
d
in
g
o
f
th
e
s
e
p
ar
a
m
ete
r
s
,
it
is
d
esira
b
le
to
ca
lcu
late
t
h
e
m
in
ad
v
an
ce
[
3
]
.
I
n
g
e
n
er
al,
th
e
s
e
v
al
u
es
ar
e
a
f
f
ec
ted
b
y
n
u
m
b
er
o
f
p
ar
a
m
et
er
s
s
u
c
h
as
v
elo
cit
y
o
f
th
e
m
o
v
in
g
ar
m
at
u
r
e
an
d
r
ail
g
eo
m
etr
y
,
r
ail
d
i
m
e
n
s
io
n
s
,
ar
m
a
tu
r
e
an
d
r
ail
m
ater
ial
s
[4
-
7]
.
Ma
x
w
ell
‟
s
eq
u
atio
n
w
a
s
o
n
e
o
f
th
e
ele
g
a
n
t
w
a
y
s
f
o
r
d
escr
ib
in
g
th
e
f
u
n
d
am
e
n
tal
s
o
f
elec
tr
ic
an
d
m
ag
n
etic
f
ac
to
r
s
o
f
t
h
e
s
y
s
te
m
.
A
s
m
al
l
m
o
d
i
f
icatio
n
in
t
h
e
elec
tr
o
m
a
g
n
etic
th
e
o
r
y
lead
s
to
m
o
d
i
f
y
t
h
e
lo
r
r
en
tz
f
o
r
ce
la
w
an
d
Ma
x
w
ell
‟
s
eq
u
atio
n
s
[
8
]
.
C
o
m
p
ar
is
io
n
h
a
s
b
ee
n
d
o
n
e
o
n
r
ec
tan
g
u
lar
,
co
n
v
e
x
an
d
co
n
ca
v
e
r
ail
cr
o
s
s
s
ec
tio
n
s
o
n
c
h
a
n
g
i
n
g
th
e
g
eo
m
etr
ic
d
i
m
e
n
s
io
n
.
W
h
en
t
h
e
ar
ea
o
f
cr
o
s
s
s
ec
tio
n
i
s
d
ec
r
ea
s
ed
th
e
c
u
r
r
en
t
d
e
n
s
it
y
d
is
tr
ib
u
tio
n
m
a
y
b
e
u
n
i
f
o
r
m
w
h
ic
h
te
n
d
s
to
h
i
g
h
in
d
u
cta
n
ce
g
r
ad
ien
t
[
9
]
,
[
1
0
]
.
Hu
er
ta
et
al.
[
1
1
]
h
as
ca
lcu
l
ated
th
e
in
d
u
ctan
c
e
g
r
ad
ien
t
o
f
t
h
e
r
ails
b
y
u
s
in
g
co
n
f
o
r
m
al
m
ap
p
in
g
m
et
h
o
d
.
E
llies
et
al.
[
1
2
]
h
av
e
s
t
u
d
ied
th
e
in
f
l
u
e
n
ce
o
f
b
o
r
e
an
d
r
ail
g
eo
m
etr
y
b
y
u
s
i
n
g
2
-
D,
A
.
C
f
i
n
ite
e
le
m
e
n
t
m
et
h
o
d
w
ith
h
ig
h
f
r
eq
u
e
n
c
y
li
m
it.
P
atch
et
al.
[1
3
]
h
as
an
al
y
ze
d
th
e
r
ai
l
b
ar
r
el
d
esi
g
n
u
s
i
n
g
A
.
C
a
n
al
y
s
i
s
.
A
r
m
atu
r
e
v
e
lo
cit
y
ca
n
b
e
ca
lc
u
la
ted
b
y
f
in
d
i
n
g
th
e
ac
ce
lr
atin
f
f
o
r
ce
at
t
h
e
ti
m
e
o
f
la
u
n
c
h
a
n
d
d
is
p
lace
m
en
t
o
f
t
h
e
ar
m
at
u
r
e.
Fo
r
ce
-
d
is
p
lac
e
m
en
t
s
e
n
s
o
r
s
w
er
e
u
s
ed
to
f
i
n
d
t
h
e
ac
ce
ler
at
in
g
f
o
r
ce
an
d
th
e
d
is
p
lace
m
en
t
[
1
5
]
,
[
1
6
]
.
Fro
m
t
h
e
ab
o
v
e
liter
atu
r
e
r
ev
ie
w
,
it
h
a
s
b
ee
n
o
b
s
er
v
ed
th
a
t
f
o
r
th
e
p
a
s
t
s
e
v
er
al
y
ea
r
s
,
v
ar
io
u
s
n
u
m
er
ical
an
d
an
a
l
y
t
ical
m
et
h
o
d
s
w
er
e
d
e
v
elo
p
ed
to
co
m
p
u
te
t
h
e
r
ail
g
u
n
k
e
y
p
ar
am
eter
s
.
T
h
ese
p
ar
a
m
eter
s
ca
n
b
e
ca
lcu
lated
eith
er
b
y
tr
a
n
s
ie
n
t
an
a
l
y
s
is
o
r
A
.
C
m
et
h
o
d
in
th
e
h
i
g
h
f
r
eq
u
e
n
c
y
li
m
it.
I
n
al
l
t
h
ese
ca
s
es,
th
e
cu
r
r
en
t
is
d
i
s
tr
ib
u
ted
o
v
er
th
e
s
u
r
f
ac
e
o
f
t
h
e
co
n
d
u
cto
r
.
T
h
is
is
a
g
o
o
d
ap
p
r
o
x
i
m
at
io
n
f
o
r
r
ail
g
u
n
s
to
c
h
o
o
s
e
g
o
o
d
co
n
d
u
cto
r
.
T
h
e
o
b
j
e
ctiv
e
o
f
th
is
w
o
r
k
i
s
to
d
eter
m
i
n
e
t
h
e
g
r
ad
ien
t
o
f
in
d
u
ctan
ce
(
L
‟
)
o
v
er
th
e
d
i
f
f
er
en
t
cr
o
s
s
s
ec
tio
n
o
f
t
h
e
r
ails
f
o
r
v
ar
io
u
s
h
ei
g
h
t
(
h
)
,
w
id
t
h
(
w
)
a
n
d
s
ep
ar
atio
n
(
s
)
b
et
w
ee
n
t
h
e
t
w
o
r
ail
s
b
y
m
e
an
s
o
f
„
2
-
D
E
d
d
y
C
u
r
r
en
t
‟
s
o
lv
er
u
s
in
g
An
s
o
f
t
Ma
x
w
ell,
w
h
ic
h
is
p
o
p
u
lar
f
o
r
f
in
ite
ele
m
e
n
t a
n
al
y
s
i
s
.
2.
M
AJ
O
R
K
E
Y
P
ARAM
E
T
E
R
ANALY
SE
S O
N
DIFF
E
R
E
NT
C
RO
SS
S
E
C
T
I
O
N
O
F
RAIL
S
Si
m
u
latio
n
s
et
u
p
h
av
e
b
ee
n
m
ad
e
b
ased
o
n
th
e
b
asic
co
m
b
in
at
io
n
o
f
s
y
m
m
etr
ic
a
n
d
as
y
m
m
etr
ic
g
eo
m
etr
ic
d
i
m
e
n
s
io
n
p
ar
a
m
et
er
s
o
f
th
e
r
ails
ar
e
s
et
as
w
=
2
cm
,
s
=
2
c
m
,
h
=
2
cm
,
r
ad
iu
s
=
0
.
5
cm
(
f
o
r
co
n
ca
v
e
a
n
d
co
n
v
e
x
r
ail)
.
He
r
e,
th
e
an
al
y
s
e
s
h
a
v
e
b
ee
n
m
ad
e
w
it
h
t
h
e
s
a
m
e
r
ail
(
co
p
p
e
r
–
co
n
d
u
ctiv
it
y
o
f
5
.
8
x
1
0
^
7
an
d
r
elativ
e
p
er
m
e
ab
ilit
y
o
f
0
.
9
9
9
9
9
1
)
m
ater
ial,
f
i
x
ed
s
o
lv
er
(
E
d
d
y
C
u
r
r
en
t)
a
n
d
u
n
if
o
r
m
c
u
r
r
en
t
in
p
u
t
(
3
0
0
k
A
)
w
it
h
A
d
ap
tiv
e
f
r
eq
u
en
c
y
o
f
2
k
Hz,
f
o
r
v
ar
io
u
s
cr
o
s
s
s
ec
tio
n
s
o
f
t
h
e
r
ails
w
it
h
v
ar
io
u
s
di
m
en
s
io
n
s
u
s
in
g
f
in
ite
ele
m
e
n
t
an
al
y
s
is
.
Fi
g
u
r
e
2
s
h
o
w
s
th
e
d
if
f
er
en
t
cr
o
s
s
-
s
ec
tio
n
o
f
th
e
r
ail
in
th
e
r
ailg
u
n
s
y
s
te
m
f
o
r
an
al
y
zi
n
g
t
h
e
i
n
d
u
c
tan
ce
g
r
ad
ie
n
t (
L
‟
)
an
d
C
u
r
r
en
t D
is
tr
ib
u
tio
n
.
(
a)
(
b
)
(
c)
(
d
)
(
e)
Fig
u
r
e
2
.
Dif
f
er
en
t r
ail
cr
o
s
s
-
s
ec
tio
n
s
i
n
th
e
r
ail
g
u
n
s
y
s
te
m
,
(
a)
R
ec
tan
g
u
lar
,
(
b
)
R
ec
tan
g
u
la
r
-
C
ir
c
u
lar
C
o
n
v
ex
,
(
c)
R
ec
ta
n
g
u
lar
C
o
n
c
av
e
,
(
d
)
R
ec
tan
g
u
lar
Se
m
i
-
C
o
n
ca
v
e
,
(
e)
C
ir
cu
lar
C
o
n
v
ex
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
n
a
lysi
s
o
f I
n
d
u
ct
a
n
ce
Gra
d
ie
n
t a
n
d
C
u
r
r
en
t D
en
s
ity
Dis
tr
i
b
u
tio
n
….
(
M.
N
.
S
a
r
a
va
n
a
K
u
ma
r
)
725
3.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
NS
3
.
1
.
Co
m
pa
risi
o
n o
f
Ra
il De
s
ig
n
P
a
ra
m
et
er
w
i
t
h Dif
f
er
ent
R
a
il Sha
pes
3
.
1
.
1
.
I
nd
uct
a
nce
G
ra
dient
f
o
r
Dif
f
er
ent
Ra
il sh
a
pes
I
n
d
u
cta
n
ce
g
r
ad
ien
t
p
la
y
s
an
v
ital
r
o
le
f
o
r
th
e
lau
n
ch
in
g
s
y
s
te
m
.
W
h
e
n
th
e
i
n
p
u
t
s
u
p
p
l
y
cu
r
r
en
t
is
h
ig
h
t
h
e
c
u
r
r
en
t
d
i
s
tr
ib
u
tio
n
w
o
n
‟
t
b
e
u
n
i
f
o
r
m
l
y
d
is
tr
ib
u
te
d
o
v
er
th
e
r
ail
a
n
d
ar
m
at
u
r
e.
On
co
n
ce
n
tr
ati
n
g
o
n
ac
h
iev
in
g
h
i
g
h
L
‟
v
al
u
e
t
h
e
d
is
tr
ib
u
tio
n
o
f
c
u
r
r
en
t
m
a
y
b
e
m
ad
e
u
n
i
f
o
r
m
.
I
n
d
u
c
tan
ce
g
r
ad
ien
ts
(
L
‟
)
o
f
t
h
e
r
ails
w
er
e
co
m
p
u
ted
f
o
r
v
ar
io
u
s
r
ail
s
h
ap
es
s
h
o
w
n
in
F
i
g
u
r
e
2
.
I
t
h
as
b
ee
n
an
al
y
ze
d
b
y
ch
an
g
i
n
g
th
e
s
in
g
le
p
ar
am
eter
,
i.
e.
,
o
n
l
y
v
ar
y
in
g
t
h
e
h
eig
h
t
(
h
)
an
d
m
a
k
i
n
g
th
e
o
th
er
d
i
m
e
n
s
io
n
s
a
s
co
n
s
tan
t.
T
h
e
co
r
r
esp
o
n
d
in
g
r
esu
lt
s
o
f
t
h
e
ca
lcu
lated
i
n
d
u
ct
an
ce
g
r
ad
ien
t (
L
‟
)
ar
e
tab
u
late
d
in
T
ab
le
1
.
T
ab
le
1
.
C
o
m
p
ar
is
o
n
o
f
L
‟
w
it
h
Di
f
f
er
e
n
t Rai
l s
h
ap
es
I
n
d
u
c
t
a
n
c
e
G
r
a
d
i
e
n
t
(
L
'
)
i
n
(
µ
H
)
R
a
i
l
M
o
d
e
l
H
e
i
g
h
t
(
h
)
o
f
t
h
e
R
a
i
l
i
n
(
c
m)
(
w
=
s=2
c
m,
r
a
d
i
u
s
=
0
.
5
c
m)
5
4
3
2
R
e
c
t
a
n
g
u
l
a
r
0
.
5
4
1
2
0
.
5
6
1
9
0
.
6
2
2
7
0
.
6
5
1
2
R
e
c
t
a
n
g
u
l
a
r
-
C
i
r
c
u
l
a
r
C
o
n
v
e
x
0
.
5
5
8
1
0
.
6
3
0
2
0
.
6
7
1
0
0
.
6
9
3
3
R
e
c
t
a
n
g
u
l
a
r
C
o
n
c
a
v
e
0
.
4
5
9
8
0
.
5
6
3
5
0
.
6
2
5
8
0
.
6
5
4
6
R
e
c
t
a
n
g
u
l
a
r
S
e
mi
-
C
o
n
c
a
v
e
0
.
4
6
9
6
0
.
5
7
2
5
0
.
6
3
1
6
0
.
6
5
8
5
C
i
r
c
u
l
a
r
C
o
n
v
e
x
0
.
6
7
0
6
0
.
7
0
3
2
0
.
7
1
9
6
0
.
7
3
6
8
As s
ee
n
f
r
o
m
th
e
T
ab
le
1
,
it h
as b
ee
n
o
b
s
er
v
ed
th
at
th
e
i
n
d
u
cta
n
ce
g
r
ad
ie
n
ts
i
n
cr
ea
s
e
o
n
v
ar
y
in
g
th
e
h
e
ig
h
t
f
o
r
d
if
f
er
e
n
t c
r
o
s
s
s
ec
tio
n
o
f
t
h
e
r
ails
.
A
s
co
m
p
ar
e
d
to
o
th
er
r
ail
s
h
ap
es,
cir
cu
lar
co
n
v
e
x
s
h
ap
ed
r
ail
cr
o
s
s
-
s
ec
tio
n
s
h
o
w
s
h
i
g
h
v
al
u
e
o
f
L
‟
s
h
o
w
n
i
n
F
i
g
u
r
e
3
.
Fig
u
r
e
3
.
I
n
d
u
ctan
ce
Gr
ad
ie
n
t
f
o
r
Dif
f
er
en
t
R
ail
s
h
ap
es
3
.
2
.
Curre
nt
Dens
it
y
f
o
r
Dif
f
er
e
nt
Ra
il sh
a
pes
Du
r
in
g
t
h
e
elec
tr
o
m
ag
n
etic
la
u
n
c
h
,
th
e
cu
r
r
e
n
t
d
is
tr
ib
u
tio
n
is
n
o
t
u
n
if
o
r
m
o
v
er
th
e
r
ail
d
u
e
to
h
ig
h
i
n
p
u
t
i
m
p
ed
a
n
ce
.
T
h
is
ca
n
b
e
m
i
n
i
m
ized
b
y
c
h
o
o
s
in
g
th
e
p
r
o
p
er
m
ater
ial
an
d
b
y
s
elec
tin
g
th
e
ap
p
r
o
p
r
iate
r
ail
s
h
ap
e
[
1
4
]
.
H
er
e,
th
e
C
u
r
r
en
t
d
en
s
it
y
(
J
)
o
f
th
e
r
ail
s
w
a
s
co
m
p
u
ted
f
o
r
v
ar
io
u
s
r
ail
s
h
ap
es
s
h
o
w
n
i
n
F
i
g
u
r
e
2
an
d
t
h
e
o
b
tain
ed
cu
r
r
en
t
d
en
s
it
y
f
iel
d
p
lo
ts
w
er
e
d
is
p
la
y
ed
i
n
F
i
g
u
r
e
4
.
I
t
h
as
b
ee
n
an
al
y
ze
d
b
y
o
n
l
y
v
ar
y
i
n
g
t
h
e
h
eig
h
t
(
h
)
an
d
m
a
k
i
n
g
t
h
e
o
th
er
d
i
m
e
n
s
io
n
s
as
co
n
s
tan
t.
T
h
e
co
r
r
esp
o
n
d
in
g
r
esu
lt
s
ar
e
tab
u
lated
in
T
ab
le
2
.
T
h
e
cu
r
r
e
n
t
d
en
s
it
y
d
is
tr
ib
u
ti
o
n
f
o
r
d
i
f
f
er
e
n
t
r
ail
cr
o
s
s
-
s
e
ctio
n
s
h
o
w
n
i
n
Fi
g
u
r
e
2
h
ad
b
ee
n
d
ev
elo
p
ed
an
d
d
is
p
la
y
ed
g
r
a
p
h
icall
y
in
Fi
g
u
r
e
5
.
I
n
th
is
an
al
y
s
is
,
th
e
c
ir
cu
lar
co
n
v
e
x
s
h
ap
ed
r
ail
cr
o
s
s
-
s
ec
tio
n
s
h
o
w
s
u
n
if
o
r
m
v
ar
iati
o
n
o
n
v
ar
y
in
g
t
h
e
r
ail
h
ei
g
h
t c
o
m
p
ar
i
n
g
to
o
th
er
r
ail
s
h
ap
es.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
2
3
–
7
2
9
726
T
ab
le
2
.
C
o
m
p
ar
is
o
n
o
f
J
w
it
h
Dif
f
er
en
t
R
ail
S
h
ap
es
C
u
r
r
e
n
t
D
e
n
si
t
y
(
J)
x
1
0
9
i
n
(
A
/
m
2
)
R
a
i
l
M
o
d
e
l
H
e
i
g
h
t
(
h
)
o
f
t
h
e
R
a
i
l
i
n
(
c
m)
(
w
=
s=2
c
m,
r
a
d
i
u
s
=
0
.
5
c
m)
2
3
4
5
R
e
c
t
a
n
g
u
l
a
r
4
.
8
9
2
3
4
.
8
7
3
5
4
.
8
5
1
5
3
.
7
2
6
3
R
e
c
t
a
n
g
u
l
a
r
-
C
i
r
c
u
l
a
r
C
o
n
v
e
x
6
.
0
0
0
3
5
.
3
6
9
3
4
.
7
5
4
9
4
.
2
5
6
2
R
e
c
t
a
n
g
u
l
a
r
C
o
n
c
a
v
e
5
.
8
7
0
6
5
.
0
1
6
7
4
.
3
7
1
6
3
.
8
2
6
R
e
c
t
a
n
g
u
l
a
r
S
e
mi
-
C
o
n
c
a
v
e
7
.
2
4
2
8
7
.
1
2
5
3
6
.
1
8
9
5
.
4
3
6
2
C
i
r
c
u
l
a
r
C
o
n
v
e
x
7
.
0
5
3
1
5
.
7
8
5
3
4
.
9
4
4
8
4
.
2
6
4
8
(
a)
R
ec
tan
g
u
lar
(
b
)
R
ec
tan
g
u
lar
-
C
ir
c
u
lar
co
n
v
ex
(
c)
R
ec
tan
g
u
lar
co
n
ca
v
e
(
d
)
R
ec
tan
g
u
lar
Se
m
i
-
co
n
ca
v
e
(
e)
C
ir
cu
lar
C
o
n
v
ex
Fig
u
r
e
4
.
C
u
r
r
en
t D
e
n
s
it
y
o
v
e
r
th
e
d
if
f
er
en
t r
ail
s
h
ap
es
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
n
a
lysi
s
o
f I
n
d
u
ct
a
n
ce
Gra
d
ie
n
t a
n
d
C
u
r
r
en
t D
en
s
ity
Dis
tr
i
b
u
tio
n
….
(
M.
N
.
S
a
r
a
va
n
a
K
u
ma
r
)
727
Fig
u
r
e
5
.
C
u
r
r
en
t D
e
n
s
it
y
f
o
r
d
if
f
er
e
n
t Rai
l
m
o
d
el
3
.
3
.
A
na
ly
s
is
o
f
Dif
f
er
ent
Sh
a
p
ed
Ra
il
Cro
s
s
-
s
ec
t
io
na
l
Ra
ilg
un
by
co
ns
i
dering
t
he
C
ro
s
s
-
s
ec
t
io
na
l
S
urf
a
ce
A
re
a
t
o
be
C
o
ns
t
a
nt
I
n
t
h
e
ab
o
v
e
s
ec
tio
n
th
e
an
al
y
s
e
s
h
as
b
ee
n
d
o
n
e
b
y
v
ar
y
in
g
t
h
e
r
ail
d
i
m
e
n
s
io
n
s
with
o
u
t
co
n
s
id
er
in
g
t
h
e
ar
ea
as c
o
n
s
ta
n
t.
Her
e
in
th
i
s
s
ec
t
io
n
t
h
e
ar
e
a
o
f
th
e
r
ail
i
s
m
ad
e
co
n
s
ta
n
t a
s
4
c
m
2
a
n
d
th
e
k
e
y
p
ar
am
eter
s
w
er
e
co
m
p
ar
ed
w
i
th
d
if
f
er
en
t r
ail
s
h
ap
es
s
h
o
w
n
in
T
ab
le
3
.
T
ab
le
3.
T
a
b
u
latio
n
o
n
v
ar
io
u
s
p
ar
am
e
ter
s
o
f
r
ail
w
it
h
co
n
s
t
an
t a
r
ea
D
i
f
f
e
r
e
n
t
R
a
i
l
S
h
a
p
e
J
X
1
0
9
(
A
/
m
2
)
L‟
(
µ
H
)
F
1
-
(
k
N
)
F
2
(
k
N
)
R
e
c
t
a
n
g
u
l
a
r
R
a
i
l
5
.
3
6
0
.
6
6
1
5
8
.
0
9
1
5
8
.
0
7
R
e
c
t
a
n
g
u
l
a
r
-
C
i
r
c
u
l
a
r
C
o
n
v
e
x
R
a
i
l
6
.
2
0
0
.
6
6
3
1
4
.
7
5
3
1
5
.
6
4
R
e
c
t
a
n
g
u
l
a
r
C
o
n
c
a
v
e
R
a
i
l
5
.
6
4
0
.
4
3
8
2
.
8
7
8
2
.
9
1
R
e
c
t
a
n
g
u
l
a
r
S
e
mi
-
C
o
n
c
a
v
e
R
a
i
l
8
.
0
9
0
.
5
7
9
0
.
1
1
9
0
.
1
2
C
i
r
c
u
l
a
r
C
o
n
v
e
x
R
a
i
l
7
.
2
4
0
.
6
9
4
0
9
.
3
7
4
0
9
.
3
6
T
h
e
cu
r
r
en
t d
en
s
it
y
f
ield
p
lo
t
f
o
r
d
if
f
er
en
t r
ail
m
o
d
els
s
h
o
w
n
in
F
ig
u
r
e
6
,
b
y
co
n
s
id
er
i
n
g
th
e
r
ail
ar
ea
to
b
e
c
o
n
s
tan
t a
s
4
c
m
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
2
,
A
p
r
il 2
0
1
8
:
7
2
3
–
7
2
9
728
(
a)
R
ec
tan
g
u
lar
(
b
)
R
ec
tan
g
u
lar
-
C
ir
c
u
lar
co
n
v
ex
(
c)
R
ec
tan
g
u
lar
co
n
ca
v
e
(
d
)
R
ec
tan
g
u
lar
Se
m
i
-
co
n
ca
v
e
(
e)
C
ir
cu
lar
C
o
n
v
ex
Fig
u
r
e
6
.
C
u
r
r
en
t
De
n
s
it
y
o
v
e
r
th
e
d
if
f
er
en
t r
ail
cr
o
s
s
-
s
ec
t
io
n
b
y
co
n
s
id
er
in
g
th
e
cr
o
s
s
-
s
ec
tio
n
al
ar
ea
as c
o
n
s
tan
t
3.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
in
v
esti
g
ates
t
h
e
in
d
u
cta
n
ce
g
r
ad
ie
n
t
(
L
‟
)
an
d
C
u
r
r
en
t
d
en
s
it
y
(
J
)
on
v
ar
y
in
g
t
h
e
g
eo
m
etr
ic
d
i
m
en
s
io
n
s
o
f
t
h
e
d
if
f
er
en
t r
ail
cr
o
s
s
-
s
ec
tio
n
s
.
I
n
t
h
is
p
ap
er
it h
as b
ee
n
a
n
al
y
s
ed
in
t
w
o
w
a
y
s
.
a.
T
h
e
h
eig
h
t
o
f
th
e
r
ail
cr
o
s
s
-
s
ec
tio
n
h
a
s
b
ee
n
ad
j
u
s
ted
,
w
i
t
h
o
u
t
co
n
s
id
er
in
g
t
h
e
cr
o
s
s
-
s
e
ctio
n
al
ar
ea
o
f
t
h
e
r
ail
a
s
co
n
s
ta
n
t.
I
t
h
as
b
ee
n
s
ee
n
t
h
at
cir
c
u
lar
c
o
n
v
e
x
r
ail
cr
o
s
s
-
s
ec
tio
n
s
h
o
ws
h
ig
h
in
d
u
cta
n
ce
g
r
ad
ie
n
t
v
al
u
e
w
h
ich
ten
d
s
to
u
n
i
f
o
r
m
c
u
r
r
en
t
d
en
s
it
y
d
i
s
tr
ib
u
tio
n
o
v
er
th
e
r
ail
th
at
h
as b
ee
n
tab
u
lated
in
t
h
e
co
m
p
ar
is
o
n
T
ab
le
1
an
d
T
ab
le
2
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
A
n
a
lysi
s
o
f I
n
d
u
ct
a
n
ce
Gra
d
ie
n
t a
n
d
C
u
r
r
en
t D
en
s
ity
Dis
tr
i
b
u
tio
n
….
(
M.
N
.
S
a
r
a
va
n
a
K
u
ma
r
)
729
b.
T
h
e
h
eig
h
t
o
f
th
e
r
ai
l
cr
o
s
s
-
s
e
ctio
n
h
a
s
b
ee
n
ad
j
u
s
ted
,
b
y
co
n
s
id
er
in
g
t
h
e
r
ail
w
i
th
co
n
s
ta
n
t
ar
ea
o
f
4
cm
2
.
A
cc
o
r
d
in
g
l
y
,
th
e
s
i
m
u
latio
n
r
es
u
lts
w
er
e
tab
u
late
d
in
th
e
co
m
p
ar
is
o
n
T
ab
le
3
,
h
er
e
to
o
th
e
co
n
v
ex
s
h
ap
ed
r
ail
s
h
o
w
s
m
o
r
e
e
f
f
icie
n
t th
a
n
o
th
er
r
ail
m
o
d
el
s
.
On
ad
j
u
s
ti
n
g
t
h
e
d
i
m
en
s
io
n
o
f
t
h
e
r
ail
a
n
d
m
a
k
in
g
t
h
e
ar
ea
h
as
to
b
e
co
n
s
ta
n
t
th
e
C
ir
c
u
l
ar
C
o
n
v
ex
R
ail
cr
o
s
s
-
s
ec
tio
n
s
h
o
w
s
u
n
i
f
o
r
m
c
u
r
r
en
t
d
is
tr
ib
u
tio
n
o
v
er
th
e
r
ail
an
d
w
i
th
h
i
g
h
v
alu
e
o
f
i
n
d
u
c
tan
ce
g
r
ad
ien
t.
So
th
at,
o
n
b
y
ch
o
o
s
in
g
a
p
r
o
p
er
r
ail
m
ater
ial,
t
h
e
C
ir
cu
lar
C
o
n
v
e
x
R
ail
s
h
o
w
s
a
b
etter
ef
f
icien
t
f
o
r
th
e
E
M
lau
n
c
h
.
RE
F
E
R
E
NC
E
S
[
1
]
Ke
sh
tk
a
r
A
.
(2
0
0
5
),
“
Ef
fe
c
t
o
f
ra
il
d
im
e
n
sio
n
o
n
c
u
rre
n
t
d
istr
ib
u
ti
o
n
a
n
d
in
d
u
c
tan
c
e
g
ra
d
ien
t”,
I
EE
E
T
ra
n
s.
M
a
g
n
.
,
v
o
l.
4
1
,
No
.
1
,
p
p
.
3
8
3
–
3
8
6
.
[
2
]
Zh
o
u
Y.,
YA
N
P
.
,
Yu
a
n
W
.
Q,
Wan
g
J.,
L
i
M
.
T
.
(2
0
0
9
)
“
Cu
rre
n
t
Distrib
u
ti
o
n
A
n
d
In
d
u
c
tan
c
e
G
ra
d
ien
t
Ca
lcu
latio
n
A
t
Di
ff
e
re
n
t
Ra
il
Ge
o
m
e
tri
c
P
a
ra
m
e
ters
”
,
IEE
E,
p
p
.
1
2
9
0
-
1
2
9
3
[
3
]
Je
rr
y
F
.
Ke
rris
k
(1
9
8
4
),
“
El
e
c
tri
c
a
l
a
n
d
T
h
e
r
m
a
l
M
o
d
e
li
n
g
o
f
Ra
il
g
u
n
s”
,
IEE
E
T
ra
n
s.
M
a
g
n
.
,
Vo
l.
M
a
g
-
20,
No
.
2
,
p
p
.
3
9
3
-
4
0
2
.
[
4
]
M
u
ru
g
a
n
.
R
a
n
d
U
d
h
a
y
a
k
u
m
a
r.
K
(2
0
0
5
),
“
Ef
fec
t
o
f
R
a
il
Dim
e
n
sio
n
s
o
n
Ra
il
g
u
n
De
sig
n
P
a
ra
me
ter
s”
,
IEE
E
In
d
ico
n
2
0
0
5
C
o
n
f
e
re
n
c
e
,
Ch
e
n
n
a
i,
In
d
ia,
p
p
.
6
2
3
-
6
2
5
.
[
5
]
S
tep
h
a
n
H
u
n
d
e
rtm
a
r
k
,
M
a
rk
u
s
S
c
h
n
e
i
d
e
a
n
d
G
re
g
o
ry
V
in
c
e
n
t
(2
0
1
3
),
“
P
a
y
lo
a
d
Ac
c
e
ler
a
ti
o
n
Us
in
g
a
1
0
-
M
J
DES
Ra
il
g
u
n
”
,
IEE
E
T
ra
n
s.o
n
Pl
a
sm
a
S
c
ien
c
e
,
Vo
l.
4
1
,
No
.
5
,
p
p
.
1
4
5
5
-
1
4
5
9
.
[
6
]
Ba
rb
a
ra
W
il
d
,
Ch
risti
a
n
S
c
h
u
p
p
ler,
F
a
rid
A
lo
u
a
h
a
b
i,
M
a
rk
u
s S
c
h
n
e
id
e
a
n
d
Ry
a
n
Ho
ffm
a
n
(2
0
1
5
),
“
T
h
e
In
f
lu
e
n
c
e
o
f
th
e
Ra
il
M
a
teria
l
o
n
th
e
M
u
lt
ish
o
t
P
e
rf
o
r
m
a
n
c
e
o
f
th
e
Ra
p
id
F
ire
Ra
il
g
u
n
”
,
IEE
E
T
ra
n
s.
o
n
Pl
a
sm
a
S
c
ien
c
e
,
V
o
l.
43,
No
.
6
,
p
p
.
2
0
9
5
-
2
0
9
9
.
[
7
]
M
o
h
a
m
m
a
d
S
a
jj
a
d
Ba
y
a
ti
a
n
d
As
g
h
a
r
Ke
sh
tk
a
r
(2
0
1
5
),
“
No
v
e
l
S
tu
d
y
o
f
th
e
Ra
il
‟s
G
e
o
m
e
tr
y
in
th
e
El
e
c
tro
m
a
g
n
e
ti
c
L
a
u
n
c
h
e
r”
,
IEE
E
T
ra
n
s.o
n
P
la
sm
a
S
c
ien
c
.
,
V
o
l
.
4
3
,
No
.
5
,
p
p
.
1
6
5
2
-
1
6
5
6
.
[
8
]
A
si
f
A
li
L
a
g
h
a
ri
(2
0
1
4
),
“
In
terp
r
e
taio
n
o
f
M
o
d
if
ie
d
El
e
c
tro
m
a
g
n
e
ti
c
th
e
o
ry
a
n
d
M
a
x
w
e
ll
‟s
e
q
u
a
ti
o
n
s
o
n
Ba
sic
o
f
Ch
a
rg
e
v
a
riatio
n
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
te
r E
n
g
i
n
e
e
rin
g
,
V
o
l
.
4
,
No
.
2
,
p
p
.
2
3
1
-
2
3
6
.
[
9
]
L
o
n
w
e
n
J
in
,
Bin
L
e
i,
Qia
n
z
h
a
n
g
a
n
d
Re
n
g
u
i
Zh
u
(2
0
1
5
),
“
El
e
c
tro
m
e
c
h
n
a
ica
l
P
e
rf
o
r
m
a
n
c
e
o
f
Ra
il
s
w
it
h
d
iff
e
re
n
t
cr
o
ss
-
se
c
ti
o
n
a
l
sh
a
p
e
s in
Ra
il
g
u
n
”
,
IEE
E
T
r
a
n
s.
o
n
Pl
a
sm
a
S
c
ien
c
e
.
,
V
o
l.
4
3
,
No
.
5
,
p
p
.
1
2
2
0
-
1
2
2
4
.
[
1
0
]
M
o
h
a
m
m
a
d
sa
jj
a
d
Ba
y
a
ti
a
n
d
As
g
h
a
r
Ke
sh
tk
a
r
(2
0
1
5
),
“
No
v
e
l
S
tu
d
y
o
f
Ra
il
‟s
G
e
o
m
e
tr
y
in
th
e
El
e
c
tro
m
a
g
n
e
ti
c
L
a
u
n
c
h
e
r”
,
IEE
E
T
ra
n
s.o
n
P
la
sm
a
S
c
ien
c
e
.
,
Vo
l.
4
3
,
No
.
5
,
p
p
.
1
6
5
2
-
1
6
5
6
.
[
1
1
]
Hu
e
rta
M
.
A
.
a
n
d
Ne
a
rin
g
J.
C
.
(1
9
9
1
),
“
Co
n
f
o
rm
a
l
M
a
p
p
in
g
Ca
lcu
la
ti
o
n
Of
Ra
il
g
u
n
S
k
in
In
d
u
c
tan
c
e
”
,
IEE
E
T
ra
n
s.
M
a
g
n
.
,
v
o
l
.
2
7
,
N
o
.
1
,
p
p
.
1
1
2
–
1
1
5
.
[
1
2
]
El
li
s
R.
L
.
,
P
o
y
n
o
r
J.
C.
,
M
c
G
las
so
n
B.
T
.
a
n
d
S
m
it
h
A
.
N
(
2
0
0
5
),
“
In
f
lu
e
n
c
e
o
f
b
o
re
a
n
d
ra
il
g
e
o
m
e
tr
y
o
n
a
n
e
lec
t
ro
m
a
g
n
e
ti
c
n
a
v
a
l
ra
il
g
u
n
s
y
s
tem
”
,
IEE
E
T
ra
n
s.
M
a
g
n
.
,
V
o
l.
4
1
,
No
.
1
,
p
p
.
1
8
2
–
1
8
7
.
[
1
3
]
P
a
tch
L
.
,
Co
m
sto
c
k
J.
M
.
,
T
h
io
Y.
C.
a
n
d
Yo
u
n
g
F
.
J
.
(1
9
8
4
),
“
Ra
il
g
u
n
Ba
rre
l
De
sig
n
a
n
d
A
n
a
ly
sis”
,
IEE
E
T
ra
n
s.
M
a
g
n
.
,
V
o
l.
M
a
g
-
2
0
,
No
.
2
,
p
p
.
3
6
0
–
3
6
3
.
[
1
4
]
Je
rr
y
F
.
Ke
rris
k
(1
9
8
4
)
,
“
El
e
c
tri
c
a
l
a
n
d
T
h
e
r
m
a
l
M
o
d
e
li
n
g
o
f
Ra
il
g
u
n
s”
,
IEE
E
T
r
a
n
s.
M
a
g
n
.
,
Vo
l.
M
a
g
-
20,
No
.
2
,
p
p
.
3
9
3
-
4
0
2
.
[
1
5
]
Am
in
e
B
e
n
a
b
d
e
ll
a
h
,
Zak
a
ry
a
A
b
b
a
ss
i
a
n
d
A
b
d
e
lrh
a
n
i
Na
k
h
e
li
(2
0
1
6
),
“
Ne
w
El
e
c
tro
m
a
g
n
e
ti
c
F
o
rc
e
-
Disp
lac
e
m
e
n
t
S
e
n
so
r”
,
B
u
ll
e
ti
n
o
f
El
e
c
trica
l
E
n
g
in
e
e
rin
g
a
n
d
In
f
o
rm
a
ti
c
s
,
Vo
l.
5
,
No
.
3
,
p
p
.
3
3
4
-
3
3
9
.
[
1
6
]
Am
in
e
B
e
n
a
b
d
e
ll
a
h
,
Zak
a
ry
a
A
b
b
a
ss
i
a
n
d
A
b
d
e
lrh
a
n
i
Na
k
h
e
li
(2
0
1
6
),
“
Ne
w
El
e
c
tro
m
a
g
n
e
ti
c
F
o
rc
e
-
Disp
lac
e
m
e
n
t
S
e
n
so
r”
,
B
u
ll
e
ti
n
o
f
El
e
c
trica
l
E
n
g
in
e
e
rin
g
a
n
d
In
f
o
rm
a
ti
c
s
,
Vo
l.
5
,
No
.
4
,
p
p
.
4
5
1
-
4
5
5
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
M
.
N
.
S
a
r
a
v
a
n
a
K
u
m
a
r
h
a
s
re
c
e
iv
e
d
h
is
Ba
c
h
e
lo
r‟s
De
g
re
e
in
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
En
g
in
e
e
rin
g
in
Bh
a
jara
n
g
En
g
in
e
e
rin
g
Co
ll
e
g
e
,
Ch
e
n
n
a
i,
T
a
m
il
N
a
d
u
,
In
d
ia
in
th
e
y
e
a
r
2
0
0
9
,
th
e
n
h
e
re
c
e
iv
e
d
h
is
M
a
ste
r
o
f
En
g
in
e
e
rin
g
De
g
re
e
in
P
o
w
e
r
El
e
c
tro
n
ics
a
n
d
Driv
e
s
f
ro
m
Ra
jala
k
sh
m
i
En
g
in
e
e
rin
g
Co
ll
e
g
e
,
Ch
e
n
n
a
i
in
th
e
y
e
a
r
2
0
1
3
.
A
t
p
re
se
n
t
h
e
is
p
u
rsu
i
n
g
P
h
.
D.
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
in
S
t
.
P
e
ter‟s
Un
iv
e
rsit
y
,
c
h
e
n
n
a
i.
T
a
m
il
Na
d
u
,
In
d
ia.
H
is
A
r
e
a
s
o
f
in
tere
st
s
is
P
o
w
e
r
El
e
c
tro
n
ics
,
El
e
c
tro
-
m
a
g
n
e
ti
c
F
ield
.
R.
M
u
r
u
g
a
n
h
a
s
re
c
e
iv
e
d
b
a
c
h
e
lo
r‟s
De
g
re
e
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
f
ro
m
Un
iv
e
rsit
y
o
f
M
a
d
ra
s,
T
a
m
il
n
a
d
u
,
In
d
ia
in
A
p
ril
1
9
9
6
.
T
h
e
n
,
h
e
r
e
c
e
iv
e
d
h
is
M
a
ste
r'
s
D
e
g
re
e
Hig
h
V
o
l
tag
e
En
g
in
e
e
rin
g
f
ro
m
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
A
n
n
a
Un
iv
e
rsity
,
G
u
in
d
y
,
Ch
e
n
n
a
i,
T
a
m
il
N
a
d
u
,
In
d
ia
in
F
e
b
ru
a
ry
1
9
9
9
.
T
h
e
n
P
h
.
D
d
e
g
re
e
in
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
d
e
p
a
rtm
e
n
t
f
ro
m
A
n
n
a
Un
iv
e
rsit
y
,
Ch
e
n
n
a
i,
T
a
m
il
N
a
d
u
,
In
d
ia
in
2
0
1
1
.
His
m
a
in
a
re
a
s
o
f
in
tere
st
a
r
e
El
e
c
tro
m
a
g
n
e
ti
c
f
ield
a
n
d
Hig
h
Vo
lt
a
g
e
En
g
in
e
e
rin
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.