Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
3
,
No
. 3,
J
une
2
0
1
3
,
pp
. 41
5~
42
2
I
S
SN
: 208
8-8
7
0
8
4
15
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Investigation of Electricity Produc
tion Feasibility in Tabriz using
Biomass Resources
M. T
a
hm
ase
b
pour
*,
A. jafarian**
* Department of
Electrical Eng
i
n
eering
,
I
l
khchi
B
r
anch,
Is
lam
i
c
A
zad Univ
ers
i
t
y
,
I
l
khchi
, Ir
an
** Tabr
iz Electric Power Distr
i
bu
tion Compan
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 11, 2013
Rev
i
sed
May 10
, 20
13
Accepted
May 27, 2013
In this research
, the
feasibility of biogas pr
oduction using
biomass in
collected wastes is studied
. In
this pap
e
r, first the differ
e
nt
methods of
recy
cling energ
y
and for most used algorithms are studied. Second,
b
y
anal
yz
ing dai
l
y
coll
ect
ed was
t
es
and cons
iderin
g the real
is
tic o
b
tain
ed dat
a
from
leachat
e of Tabriz waste
landfil
ls, the av
erage am
ount o
f
Chem
ical
Oxy
g
en Demand (COD) and
Bioche
mical Oxy
g
en Demand (BOD) are
obtain
e
d. Th
en,
an appropriat
e
s
cenar
io is pre
s
ented to get th
e m
a
xim
u
m
reach
abl
e
biogas
.
Als
o
, an
econo
m
i
c m
odel tak
i
n
g
into a
ccoun
t t
h
e eff
ect o
f
m
a
in vari
ables
of prepar
ations
s
u
ch as
the
cos
t
of was
t
e
trans
p
ort vehi
cl
es
,
capa
c
it
y o
f
the
purchas
ed d
e
vic
e
s
,
s
p
eci
al
cos
t
s
of biom
as
s
and dis
t
ribut
ed
density
are
cons
idered
and
the b
e
st an
d
most economical metho
d
is utilized
based on generated gas volume in bioma
ss power plants. Finally
,
the short-
term and long
-term models are pr
esen
ted
for power gen
e
ration and
investment usin
g biogas. Th
e p
r
oposed
method is applied for the wastes of
Tabri
z
Cit
y
, as one of the largest
indus
trial m
e
tro
politan in Iran
,
with a dai
l
y
waste
more than
1200
tons.
Keyword:
Bio
m
ass
B
i
ogas
Leachate
C
h
em
i
c
al
oxy
g
e
n
dem
a
nd
B
i
ochem
i
cal
oxy
ge
n
dem
a
nd
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M. Tahm
asebpour,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Ilkhchi B
r
anc
h
, Islam
i
c Azad
Uni
v
ersity, Ilkhchi,
Iran.
Em
a
il: tah
m
as
eb
pou
r@tabrizu
.
ac.i
r
1.
INT
R
O
D
UCTION
Increasi
ng
oi
l
and
gas
pri
ces and t
h
e growt
h
of cancer
diseases as well as global tem
p
eratures increase
due t
o
t
h
e pol
l
u
t
i
on
and carbon di
oxi
de
em
i
ssi
ons has cause
d
m
o
re at
t
e
nt
i
ons t
o
ward
energy
product
i
on by
t
h
e
use
of renewabl
e energy
resources. One
of t
h
e renewabl
e energy
sources known
as cl
ean sources of energy
i
s
bi
om
ass. For l
ong t
i
m
e,
Iran has been
i
nvol
ved i
n
envi
ronm
ent
a
l
i
ssues,
and t
h
e l
a
rge
vol
um
e of wast
es
and
industrial and urban
wastewaters anticipat
ed
dangerous future
in term
s of
h
ealth [1].
In Iran,
the facilities
of
gas extraction from
bio-waste landfills
have been
inst
alled in three
large cities,
and two
380 kW
biogas
generators each are
operating in 24h
period [2], [3].
Accordi
ng t
o
t
h
e dat
a
obt
ai
ned
from
Int
e
rnat
i
onal
Energy
Agency
(IEA), t
h
e
share of renewabl
e
energi
es i
n
gl
obal
energy
suppl
y
was
about
19.3% i
n
2009 of
whi
c
h
10%
i
s
at
t
r
i
but
ed t
o
bi
om
ass energy
[4]
.
In 2011, m
o
re
t
h
an 9000 M
W
bi
om
ass power pl
ant
s
are i
n
st
al
l
e
d i
n
U.S and now t
h
ere are
m
o
re t
h
an 2000 wast
e-burnt
sy
st
em
s
i
n
Japan i
n
whi
c
h m
o
re
t
h
an 80% of wast
es
are
utilized
[5]. In 2008, in Turkey, biom
a
ss has a 5% share
of total energy a
nd a num
ber of researches have been
conduct
e
d
for t
h
e product
i
on of bi
ogas
from
di
fferent
sour
ces such as
sol
i
d
wast
e, sewage and agri
cul
t
u
ral
product
s
[6]
,
[8]
.
The heat
i
ng val
u
e
of gat
h
ered ga
s i
s
about
15
- 25 M
J
/
m
3 whi
c
h can generat
e
1.5-2.2
kW
h/
m
3
energy
usi
ng
bi
ogas com
bust
i
on generat
o
rs
[3]
.
In
Thai
l
a
nd, based on
t
h
e devel
opm
ent
a
l
and
suppl
y
i
ng energy
program
s by
t
h
e end
of 2011,
generat
i
on capaci
t
y
of 2800
M
W
i
s
expect
ed for
bi
om
ass
energy
[9]
.
There
are several
m
e
t
hods
for produci
ng
bi
ogas from
bi
om
ass
such as
py
rol
y
si
s, gas-m
a
ki
ng and
ferm
ent
a
t
i
on [10]
, [14]
. In t
h
i
s
paper,
by
present
i
ng t
h
e di
fferent
m
e
t
hods
of recy
cl
i
ng energy
from
wast
es
and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
415
–42
2
41
6
biogas
production, the leachate
of Tabriz waste
landfills
are analyzed.
By taking in
to
account the effect of
m
a
i
n
vari
abl
e
s of preparat
i
ons such
as the cost
of waste transport vehicl
es, capacity of the purchased
devices,
speci
al
cost
s of
bi
om
ass and di
st
ri
but
ed
densi
t
y
are consi
d
ered
and t
h
e
best
and m
o
st
econom
i
cal
m
e
t
hod i
s
u
tilized
b
a
sed
o
n
g
e
n
e
rated
g
a
s v
o
l
u
m
e in
b
i
o
m
ass p
o
w
er p
l
an
ts.
W
a
st
es are t
h
e sol
i
d
, l
i
qui
d and gas subst
a
nces
(expect
for sewage) whi
c
h are di
rect
l
y
and/
or
indirectly resulted
from
the
hum
an activities
and consider
ed to
be useless
by the
producers. The
wastes fall
i
n
t
o
fi
ve cat
egori
e
s;
ordi
nary
wast
es,
m
e
di
cal
wast
es, poi
sonous wast
es,
agri
cul
t
u
ral
wast
es, and i
ndust
r
i
a
l
wast
es. C
onsi
d
eri
ng t
h
e abovem
e
nt
i
oned descri
pt
i
ons, Ta
bl
e 1 shows t
h
e average anal
y
s
i
s
of urban wast
es
t
h
roughout
t
h
e count
ry
.
Tabl
e
1. T
h
e
a
v
era
g
e a
n
al
y
s
i
s
o
f
ur
ban
wa
st
es t
h
r
o
ug
h
out
t
h
e co
unt
ry
Ele
m
ent
Percent
Decaying organic m
a
te
rials
62.64
Paper
,
car
dboar
d
,
car
ton
10.
92
Plastic and r
ubber
10.
28
I
r
onwar
e 3.
24
glass 4.
24
textile 4.08
W
ood and sifting
5.
52
Accordi
ng t
o
t
h
e conduct
e
d
st
udi
es, t
h
e
dai
l
y
hom
e
wast
es, hospi
t
a
l
wast
es and
i
ndust
r
i
a
l
wast
es
are
800
gr, 20 gr, and
30 gr per capita, respectively.
In Tabr
iz m
e
tropolitan, daily
collected wastes consist of 1200
tons
hom
e wastes, 15 tons hospital wast
es and 80 tons industrial wastes and
etc. Figure 1 illustrates the average
anal
y
s
i
s
of urban wast
es i
n
Tabri
z
C
i
t
y
.
As sh
o
w
n i
n
F
i
gu
re 1,
ur
ban
wast
es of Ta
b
r
i
z
C
i
ty
consi
s
t
i
ng o
f
7
0
% p
u
t
resci
b
l
e
or
ga
n
i
c
m
a
t
e
ri
al
s
have
good pote
ntial to gene
rate leachate,
a
nd in turn
biogas
production
[15].
F
i
g
u
r
e
1
.
T
h
e av
e
r
ag
e
an
a
l
ys
is
of
u
r
b
a
n wastes in
Tabriz City
The rem
i
nder of
t
h
e pa
per
i
s
as
f
o
l
l
o
ws:
sec
t
i
on 2
pr
ovi
des
t
h
e pr
op
ose
d
m
e
t
hod f
o
r bi
o
g
as pr
o
duct
i
o
n
from
wastes. The third section prese
n
ts the evaluation of
heat energy a
n
d econom
i
c
m
o
del. Section 4
prese
n
t
s
t
h
e case st
udy
and
i
t
s
res
u
l
t
s
,
and
sect
i
o
n
5 c
oncl
ude
s t
h
e
p
a
per
.
2.
THE PROPOSED
M
ETHOD
FOR BIOGA
S
PRO
DUCTION
IN WASTE LAN
D
F
ILL OF TA
BRIZ
CITY
The wastes have leachate. In general, the wastes
have about 70% - 80% hum
idity and leachate.
There
is an index of BOD in waste, the am
ount of this index is 300
m
g
/l
in
swage,
and however this quantity in waste
leachate is 36000 m
g
/l. The am
ount of produced leachate in
waste landfill depends on factors such as
weather
co
n
d
itio
n
s
(rain
, an
d
ev
ap
o
r
atio
n
)
. If th
e rate o
f
rain
in
g
is m
o
re th
an
ev
ap
o
r
atio
n
,
th
e rain
in
g
will
h
a
v
e
p
o
s
itiv
e
effect
on leachate production. The
othe
r factor is how dam
p
the waste
is which
in dry and hot weather
conditions
the dam
pness of waste plays
m
o
re im
portant
role in leachate pr
oduction. In addition, other factors
having
im
pacts on quality of leachate are the waste
landf
ill site, the type and chem
ical com
pound of wastes,
recy
cl
i
ng and separat
i
ng
t
h
e wast
es, t
h
e
rat
e
of com
p
act
i
ng
and ot
her aspect
s
of dum
pi
ng process,
t
e
m
p
erat
ure,
PH,
t
h
e condi
t
i
on of
chem
i
cal
oxi
dat
i
on and
reduct
i
on i
n
dum
pi
ng
si
t
e
, presence (or
l
ack) of sl
udge and
70%
9%
7%
3%
3%
4%
4%
D
e
c
a
y
i
n
g
or
gan
i
c
m
a
t
e
r
i
al
s
P
aper
,
c
a
r
dbo
ar
d,
c
a
r
t
on
P
l
as
t
i
c
an
d r
u
bber
Ir
o
n
w
a
r
e
gl
as
s
te
x
t
i
l
e
Wo
od
an
d
s
i
f
t
i
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
In
vestiga
tion
of Electricity Pro
d
u
c
tion
Fea
s
i
b
ility in
Ta
b
r
iz u
s
i
n
g Biomass Reso
u
r
ces (M. Tahma
s
ebp
our)
41
7
industrial
waste, the
thinness of layers
of dum
ping,
the perm
eability, and
thinness and
the daily com
p
acting
soil for convening the wastes [16], [17]
. Table 2 shows the com
ponents of fresh
leachate in Tabriz City’s waste
lan
d
f
ill
site o
b
t
ain
e
d
b
y
v
a
rio
u
s
sam
p
les
o
f
waste tran
sp
o
r
t v
e
h
i
cles. Th
ere
are th
ree d
i
fferen
t
step
s fo
r waste
decom
posi
t
i
on i
n
bi
ol
ogi
cal
processes:
2.
1.
First s
t
age
Hy
dr
olysis of c
o
m
p
lex a
n
d in
so
lub
l
e org
a
n
i
c su
bstan
ces i
n
to
so
luble form
s.
2.
2.
Second s
t
age
The
o
b
t
a
i
n
ed
or
ga
ni
c com
pone
nt
s i
n
t
h
e
fi
rst
st
ep a
r
e
b
r
o
k
e
n
do
w
n
by
aci
d-
fo
rm
i
ng
bact
eri
a
;
con
s
eq
ue
nt
l
y
t
h
e
or
ga
ni
c aci
d i
s
pr
o
duce
d
.
Usual
l
y
t
h
e
fi
v
e
-car
bo
n a
n
d s
i
x-car
b
o
n
hy
dr
ocar
b
ons
di
ss
o
l
ved i
n
water are c
o
ns
um
ed by acid-form
ing b
acte
r
ia and c
o
nve
rte
d
into c
o
m
pounds
suc
h
as
hydrogen, form
at, acetate
,
an
d carbo
n d
i
ox
id
e.
2.
3.
Third stag
e
Al
l
orga
ni
c co
m
poun
ds an
d aci
ds pr
o
duce
d
i
n
aci
d-
fo
rm
i
ng st
age are
con
v
e
r
t
e
d i
n
t
o
bi
ogas
usi
n
g
methane-form
ing bacteria.
A
n
aer
o
b
i
c
di
gest
i
on i
s
pe
rf
o
r
m
e
d i
n
a rel
a
t
i
v
e
l
y
wi
de ran
g
e
of t
e
m
p
erat
ure
,
10
– 6
0
°C
. O
p
t
i
m
u
m
tem
p
erat
ur
e fo
r
t
h
e bi
og
as p
r
o
duct
i
o
n i
n
t
e
r
m
s of t
echni
ca
l
and eco
n
o
m
i
c aspect
s i
s
about
3
7
°C
[1
8]
, [
1
9]
.
As
sh
ow
n i
n
Ta
bl
e 2,
a hi
gh
val
u
e
of B
O
D
5
i
ndi
cat
es a h
i
gh c
ont
e
n
t
o
f
or
ga
ni
c su
bst
a
nces i
n
leachate whic
h is influe
nced
by the
hi
gh c
o
ntent of
organi
c com
pounds in
the waste. High
c
once
n
trati
on ratio
of
CO
D a
n
d
COD/BO
D
5
in leachate in a
ne
wly establishe
d landf
ill sites reveal t
h
a
t
an a
n
aerobic process
sh
ou
l
d
b
e
u
s
ed
prior to
aerob
i
c on
e.
In ad
d
ition
to
an
aerob
ic and aerob
ic pro
c
esses, sin
c
e th
e h
i
gh
conce
n
tration of orga
nic
compounds re
m
a
in in the leachate whic
h are resi
st
ant to biol
ogi
cal degra
d
ation the
n
it
i
s
req
u
i
r
e
d
t
o
use a
d
v
a
nce
d
oxi
dat
i
o
n
p
r
oc
esses s
u
ch
as
o
z
oneat
i
o
n
f
o
r t
h
e el
i
m
i
n
at
i
on
of t
h
ese c
o
m
pou
n
d
s
or
streng
th
en
th
ei
r ab
ility to
u
s
e
b
i
o
l
og
ical d
e
grad
atio
n. By p
e
rfo
r
m
i
n
g
th
e ab
ov
em
en
tio
n
e
d
stag
es, the max
i
m
u
m
biogas
ca
n be obtaine
d from
the leachate
[20], [22].
Table
2. T
h
e
c
o
m
pone
nts
of i
n
fres
h
leac
hate in
waste landfill of
Tabriz C
ity
Am
ount
Unit
Para
m
e
ter
6.
5
_
PH
8000
3
m
g
5
BOD
1800
0
3
m
g
BOD
4200
0
3
m
g
COD
1.
5
3
m
g
5
BOD
COD
3.
RESEARCH METHO
D
OL
OGY
3.
1.
E
val
u
a
ti
on
o
f
Hea
t
E
n
er
gy
and
Imp
u
re E
n
erg
y
of
Ur
ba
n W
a
stes
In order t
o
com
put
e heat
val
u
e of t
h
e wast
e,
Equat
i
on (1) known as Dy
vl
ang equat
i
on i
s
used
as
fo
llo
ws:
S
O
H
C
HHV
2
.
95
)
8
1
(
7
.
1440
8
.
337
(
1
)
W
h
ere,
HHV
: Heat v
a
lu
e in
term
s o
f
Kj
/Kg
in
d
r
y co
n
d
itio
n
C
:
The percent
a
ge of carbon am
ount
H
:
The percent
a
ge of hy
drogen am
ount
O
:
The percent
a
ge of oxy
gen am
ount
S
:
The percent
a
ge of Sul
f
ur am
ount
The heat
val
u
e of m
o
i
s
t
subst
a
nce i
s
cal
cul
a
t
e
d usi
ng Equat
i
on (2).
)
100
1
(
W
HHV
HHV
dry
wet
(2)
W
:
The percent
a
ge of m
o
i
s
t
u
re am
ount
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
415
–42
2
41
8
In Iran, t
h
e heat
val
u
e of wast
e i
s
cal
cul
a
t
e
d usi
ng Equat
i
on (3).
)
100
1
(
1
i
i
n
i
i
gMSW
W
P
HHV
E
(3)
gMSW
E
:
The heat
val
u
e of unprocessed wast
e
i
HHV
: Heat value of the
i
t
h
el
em
ent
i
s
cal
cul
a
t
e
d usi
ng Eq. (3) (such as paper and cardboard)
i
P
: The percentage of the
i
th
elem
en
t in
th
e to
tal waste
The heat
val
u
e
of bi
ogas
us
ua
l
l
y
depen
d
s o
n
t
h
e
pe
rcent
a
ge of
m
e
t
h
ane. Th
e
heat
val
u
e of bi
o
g
as wi
t
h
60
% of m
e
t
h
ane i
s
equal
t
o
5.
96
k
W
h/
m
3
wh
ile th
e h
eat
v
a
lu
e of n
a
t
u
ral g
a
s is 7
.
52
kWh
/
m
3
. Heat
value of
pr
o
duce
d
bi
o
g
a
s f
r
om
t
h
e wa
st
e an
d i
t
s
eq
ui
val
e
nt
nat
u
ral
gas
v
o
l
u
m
e
i
n
ur
ba
n
wast
es a
r
e s
h
o
w
s i
n
Ta
bl
e 3
.
Tabl
e 3. Heat
val
u
e o
f
pr
od
u
c
i
b
l
e
bi
o
g
as
f
r
o
m
wast
e
Equivalent m
illion m
3
of
natural gas
Heat value of
biogas (
P
J)
City
89.
908
2.
434
Tab
r
iz
62.
46
1.
69
Ur
m
i
eh
24.
01
0.
65
Ar
debil
68.
67
1.
86
Esf
a
h
a
n
310.
21
8.
398
Teh
r
an
3.
2.
E
c
on
omi
c
m
o
del
From
t
h
e vi
ew
poi
nt
of sy
st
em
,
t
h
e econom
i
cal
operat
i
on of bi
om
ass
power pl
ant
s
i
s
det
e
rm
i
n
ed by
t
h
e
effi
ci
ency
of
energy
conversi
on regardi
ng
t
h
e am
ount
of bi
om
ass, conversi
on
t
echnol
ogy
and
t
h
e si
ze of
t
h
e
pl
ant
.
In order t
o
achi
e
ve t
h
i
s
goal
,
t
h
e power pl
ant
i
n
consi
d
ered as
a si
m
p
l
e
fashi
on shown i
n
Fi
gure 2
whi
c
h i
s
a
t
r
ansfer funct
i
on
bet
w
een i
nput
as
bi
om
ass t
on/
y
ear
desi
gnat
e
d by
M
and power
out
put
energy
M
W
desi
gnat
e
d by
NE
W
.
In
Fi
gure 2, M
i
s
t
h
e am
ount
of i
nput
bi
om
ass
t
on/
y
ear,
LHV
i
s
t
h
e fi
nal
am
ount
of bi
om
ass heat
energy
kJ/
kg,
effect
i
v
e
energy
conversi
on effi
ci
ency
and
OH
i
s
operat
i
ng hours
of power pl
ant
.
As
m
e
nt
i
oned earl
i
e
r, t
h
e val
u
e of
depends on t
h
e t
y
pe of t
echnol
ogy
and t
h
e si
ze of power pl
ant
.
NE
W
Fi
gu
re
2.
B
i
om
ass p
o
w
er
pl
a
n
t
m
odel
Econom
i
c
eval
uat
i
on of t
h
e bi
om
ass power pl
ant
i
s
obt
ai
ned based on t
h
e t
o
t
a
l
cost
of i
nvest
m
e
nt
TC
I
(IR
R
)
,
t
o
t
a
l
operat
i
on
cost
TOC
$/
y
ear,
revenue from
el
ect
ri
ci
t
y
power sal
e
s
$/
kW
h. TC
I i
s
obt
ai
ned by
t
h
e
sum
of di
rect
and i
ndi
rect
cost
s. Di
rect
cost
i
n
cl
udes pl
um
bi
ng
cost
, el
ect
ri
c cost
, const
r
uct
i
on cost
,
i
n
st
al
l
a
t
i
on
cost,
services cost, equipm
ent
cost
and si
t
e
preparat
i
on
cost
. W
h
i
l
e
i
ndi
rect
cost
i
n
cl
udes engi
neeri
ng and
operat
i
on cost
s. TOC
consi
s
t
s
of l
a
bor cost
s, purchased bi
om
ass cost
and bi
om
ass t
r
ansferri
ng
cost
,
m
a
i
n
t
e
nance
cost
, i
n
surance and ordi
nary
cost
s. Purcha
se of bi
om
ass cost
, PB
, i
s
cal
cul
a
t
e
d based on annual
bi
om
ass i
nput
rat
e
, M
,
and i
t
s
purchasi
ng cost
are cal
cul
a
t
e
d based on Equat
i
on (4).
(4)
Transport
a
t
i
on of bi
om
ass cost
,
TB
, i
s
cal
cul
a
t
e
d
by
addi
ng t
r
ansport
a
t
i
on
cost
V
$/
y
ear
and
t
r
ansport
a
t
i
on personnel
cost
,
TP
, according to Equation (5).
(5)
M
C
PB
B
TP
V
TB
O
H
LHV
W
M
W
NE
NE
3600
M
NE
W
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
In
vestiga
tion
of Electricity Pro
d
u
c
tion
Fea
s
i
b
ility in
Ta
b
r
iz u
s
i
n
g Biomass Reso
u
r
ces (M. Tahma
s
ebp
our)
41
9
Vehicle
cost
V
i
s
a funct
i
on of annual
t
r
ansport
a
t
i
on
d
T
and vehi
cl
es cost
C
VT
as i
n
Equat
i
on (6):
(
6
)
d
T
i
s
t
h
e num
ber of t
r
i
p
s
needed for provi
di
ng necessary
am
ount
of
bi
om
ass wi
t
h
t
h
e rat
e
of M
usi
ng
the vehicles
with the
capacity of
VC
tons/vehicle.
The average
num
ber of
transportation
can be calculated
consi
d
eri
ng t
h
at
bi
om
ass i
s
obt
ai
ned i
n
2 /
3 of t
h
e radi
us
of a C
i
rcl
e
area
for provi
di
ng t
h
e
M
-am
ount
of
needed bi
om
ass wi
t
h
t
h
e sam
e
densi
t
y
of bi
om
ass D
B
as i
n
Equat
i
on (7):
(7)
In
Equat
i
on (7), M
/
VC
i
s
consi
d
ered
as t
h
e num
ber of t
r
i
p
s
needed. R
e
gardi
ng
TP
as tran
sp
o
r
tatio
n
cost,
T
P
C
as t
r
ansport
a
t
i
on personnel
cost
, and
T
n
as the num
ber of operators
TP, according to Equation (8):
(8)
Fi
nal
l
y
, m
a
i
n
t
e
nance cost
, i
n
surance and ordi
nary
cost
s are
calcu
lated
as a p
e
rcen
tag
e
o
f
to
tal co
st in
th
e
fo
rm
of coefficients. The revenue obtai
ned from
electric energy sales is
cal
cul
a
t
e
d as Equat
i
on (9):
(
9
)
W
h
ere,
OH
i
s
hours of
power pl
ant
operat
i
on,
EP
is
the current
price of
el
ectric energy (disregarding
governm
e
nt
subsi
d
es),
and
WANE
i
s
a percent
a
ge of
out
put pure electric energy,
WEN
is deliverable energy
regardi
ng 90% of
WEN
and needed energy from
accessi
ble parts of devices,
finally
NPV
i
s
obt
ai
ned
usi
ng
Equat
i
on (10):
(
1
0)
W
h
ere,
N
is
p
o
w
er p
l
an
t
wo
rk
in
g
lifetim
e,
i
is
in
terest rate,
Fk
is
fin
a
n
c
ial tu
rn
o
v
e
r in
k
th
year
in
Equat
i
on (11):
(11)
W
h
ere,
T
and
Fk
are
the tax and
current balance,
respectiv
ely. Practically, the
price considered
for
electric
energy is directly related
to retail price of
el
ectricity and consistent with
com
p
etitive production cost in
bi
om
ass t
echnol
ogy
[23]
, [24]
.
4.
RES
U
LT
S AND
DISS
CUSSIO
N
Duri
ng t
h
e past
y
ears, wi
t
hout
a t
a
rget
ed program
for
organi
zi
ng,
recy
cl
i
ng
and
energy
recovery
,
great
deal
of wastes are buried in Tabriz City. After
m
a
ny years and by accum
u
lation
of wastes, the gas-m
a
king
process was st
art
e
d nat
u
ral
l
y
and
even a num
ber of
gas e
xpl
osi
ons are seen i
n
wast
es. In t
h
i
s
paper,
aft
e
r
consi
d
eri
ng t
h
e m
e
nt
i
oned
cases and
pract
i
cal
experi
en
ces
i
n
el
ect
ri
c power
generat
i
on usi
ng
bi
ogas i
n
t
w
o
other cities in Iran, also in order
to
reduce investm
e
nt risk and succe
ssful execution, the energy
production
project
i
n
Tabri
z
C
i
t
y
wast
es can be st
art
e
d by
sm
al
l
capaci
t
y
uni
t
s
. For t
h
i
s
, i
t
i
s
suggest
ed t
h
at
t
h
i
s
project
t
o
be em
ployed in two executive stages.
4.
1.
Fi
rst s
t
age
To start the project, two
generati
ng units, each with a capacity of 500
kW
or together 1 MW
, are used.
In
th
is stag
e, th
e p
r
o
d
u
ced
g
a
ses
in
o
l
d
lan
d
f
ill were co
llected
sen
t
in
to
g
e
n
e
rato
r after refin
i
n
g
.
Acco
rd
in
g
to
t
h
e dat
a
,
t
h
e const
r
uct
i
on
cost
s of
500 kW
and 1
M
W
generat
i
ng uni
t
s
are about
1.3 M
$
and 2.47 M
$
,
respect
i
v
el
y
.
C
onsi
d
eri
ng t
h
e product
i
on
of 150 m
3
/h
g
a
s
with
th
e m
i
n
i
m
u
m
7
0
%
in
lan
d
f
ill, sellin
g
p
r
ice
o
f
0.1
$/kW
h and
8000 h
with the power
of 450
kW
, the
obt
ained revenue from
selling
will
be 3.5
M$. Table 4
depi
ct
s t
h
e sel
l
i
ng am
ount
of one bi
om
ass generat
i
ng uni
t
wi
t
h
t
h
e power of 500 kW
i
n
seven
y
ears
consi
d
eri
ng annual
ri
se
of 11%. Tabl
e
5 shows t
h
e
t
o
t
a
l
cost
and
revenue of power
generat
i
on duri
ng 7
y
ears.
As i
ndi
cat
ed i
n
Tabl
e 7, t
h
e pay
b
ack peri
od of t
h
e project
i
s
about
4.5 y
ears.
E
P
OH
W
R
ANE
VC
M
D
M
d
B
T
5
.
0
3
4
T
TP
n
C
TP
TCI
i
F
NPV
N
k
k
k
1
1
F
C
T
TOC
R
F
K
V
T
T
C
d
V
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
415
–42
2
42
0
Tabl
e 4. Sal
e
s am
ount
o
f
a u
n
i
t
50
0 Kw
p
o
w
er pl
ant
du
ri
n
g
7
y
ears
Year
Electri
city price
($
/MWh
)
Total Inco
m
e
($
/Y)
1 100
3600
00
2 111
3996
00
3 123.
21
4435
56
4 136.
21
4903
56
5 151.
8
5464
80
6 168.
49
6065
64
7 187.
02
39
6732
86
4.
2.
Second s
t
age
At th
is stag
e, th
e
n
e
wly im
p
o
r
ted
wastes in
to
lan
d
f
ill site, th
e aero
b
i
c
an
d
an
aero
b
i
c d
i
g
e
stio
n
s
are
u
tilized
. Here, b
y
th
e co
n
s
tru
c
tio
n
o
f
th
e waste sto
r
ag
e tan
k
s
an
d
b
y
th
e u
s
e o
f
ad
v
a
n
ced
o
x
i
d
a
tio
n
p
r
o
cesses
su
ch
as o
z
o
n
eatio
n
,
th
e rem
o
v
a
l o
f
COD
an
d
en
h
a
n
ced
cap
ab
ilities su
ch
as b
i
o
d
e
g
r
ad
atio
n
p
r
o
cess
are
perform
ed. It
i
s
requi
red t
o
rem
ove 1 kg of C
OD
t
o
produce 300-350 m
3
of
bi
ogas. 2-3.5 kW
el
ect
ri
cal
energy
is
produced by rem
oving 1 kg of COD.
Given that
the average daily pr
oduction rate of landfill leachate is
about
400 kg, biogas production will be
1200 m
3
/
h
. At
t
h
i
s
st
age, t
w
o
1000 M
W
generat
o
rs are i
n
st
al
l
e
d and
operat
e
d.
Tabl
e
5. El
ect
r
i
ci
t
y
pro
duct
i
o
n c
o
st
s i
n
fi
r
s
t
st
age
Year
I
nvestm
e
nt
co
st($
)
Maintenance
cost($/Y)
Operation
cost ($/Y)
Total cost
($
/Y)
Total
In
co
m
e
($
/Y)
Total
Revenue
($
/Y)
1 1300
000
3900
0
7200
0
1411
000
3600
00
-
10510
00
2 0
4329
0
7992
0
1232
10
3996
00
2763
90
3 0
4805
2
8871
1
1367
63
4435
56
3067
93
4 0
5333
8
9846
9
1518
07
4903
56
3385
49
5 0
5920
5
1093
01
1685
06
5464
80
3779
74
6 0
6571
7
1213
24
1870
41
6065
64
4195
23
7
0 7294
6
1346
70
2076
16
6065
64
3989
48
C
onsi
d
eri
ng t
h
e pri
ce
of el
ect
ri
ci
t
y
sol
d
at
0.1
$/
kW
and operat
e
d
for 8000
h wi
t
h
t
h
e
power of
900
kW
h for each generator, the
profits from
the sale is
7.04 M$. Table 8 shows
the
revenue and expense
am
ounts
duri
ng si
x y
ears i
n
second
st
age.
As it can
b
e
seen
in
Tab
l
e 6
,
th
e in
itial co
st o
f
p
r
o
j
ect
is m
u
ch
m
o
re in
first
due t
o
t
h
e cost
of preparat
i
on and const
r
uct
i
on of pool
s, di
gest
ers and et
c. C
onsequent
l
y
, t
h
e pay
b
ack
peri
od
will b
e
7
years. Reg
a
rd
in
g
th
at th
e o
v
e
rh
au
l
p
e
rio
d
is
co
n
s
id
ered
to
b
e
after 8
years, th
erefo
r
e
th
e
abovem
e
nt
i
oned i
ssue has not
been appl
i
e
d i
n
t
h
e cal
cul
a
t
i
ons.
Tabl
e
6. El
ect
r
i
ci
t
y
pro
duct
i
o
n c
o
st
s i
n
sec
o
nd
st
age
Year
I
nvestm
e
nt
cost ($)
Maintenance cost
($
/Y)
Operation cost
($
/Y)
Total cost ($/Y
)
Total Inco
m
e
($
/Y)
Total
Revenue
($
/Y)
1 5000
000
1500
00
9000
0
5240
000
7200
00
-
45200
00
2 0
1800
00
9270
0
2727
00
7992
00
5265
00
3 0
2160
00
9548
1
3114
81
8871
12
5756
31
4 0
2592
00
9834
5
3575
45
9846
94
6271
49
5 0
3110
40
1012
96
4123
36
1093
011
6806
75
6 0
3732
48
1043
35
4775
83
1213
242
7356
59
7
0 4478
98
1074
65
5553
62
1346
698
7913
36
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE I
S
SN
:
208
8-8
7
0
8
In
vestiga
tion
of Electricity Pro
d
u
c
tion
Fea
s
i
b
ility in
Ta
b
r
iz u
s
i
n
g Biomass Reso
u
r
ces (M. Tahma
s
ebp
our)
42
1
5.
CO
NCL
USI
O
N
In t
h
i
s
pa
pe
r,
aft
e
r a bri
e
f st
udy
o
n
bi
om
ass hi
st
ory
an
d descri
bi
n
g
t
h
e con
d
i
t
i
on a
nd
defi
ni
t
i
ons
o
f
b
i
o
m
ass
sou
r
ces
and
b
i
og
as, th
e
pro
d
u
c
ed
wastes, urb
a
n
an
d ind
u
strial sewag
e
in large and
indu
strial cities are
exam
i
n
ed. T
h
e
n
t
h
e
wast
e c
o
m
poun
ds i
n
Ta
bri
z
C
i
t
y
an
d
I
r
an
we
re a
n
al
y
zed. C
o
nsi
d
e
r
i
n
g
t
h
at
7
0
%
of
wast
e
s
com
pone
nt
s i
n
Tabri
z
C
i
t
y
are o
f
o
r
ga
ni
c
and
put
resci
b
l
e
t
y
pes, t
hus,
by
sam
p
l
i
ng of t
r
a
n
s
p
o
r
t
e
d
wast
e
leachate into waste landfill and determ
ining
the am
ount of
BOD a
nd C
O
D, the
best and
m
o
st appropri
ate way
to
g
e
n
e
rate electricity fro
m
th
e waste in
Tab
r
iz City was p
r
esen
ted
.
Th
e proj
ect was i
m
p
l
e
m
en
te
d
in
two
stag
es.
In
t
h
e first stag
e, t
h
e produ
ced
b
i
og
as in
th
e
o
l
d
p
a
rt
o
f
lan
d
fill and co
llected
waste g
a
ses
were used
for
gene
rating the
electrical energy. For fr
esh c
o
llected waste
s
in the second
stage, a com
b
ination
of aerobic and
anaer
o
b
i
c
di
ge
st
i
ons an
d oz
o
n
eat
i
on
were
use
d
t
o
achi
e
v
e
m
a
xim
u
m
gas ext
r
act
i
o
n
.
Fi
nal
l
y
, based
on t
h
e
vol
um
e of gas
pr
o
duct
i
o
n a
n
d c
onsi
d
eri
ng
t
h
e i
n
put
of
b
i
om
ass, t
h
e di
rect
an
d i
n
di
re
ct
cost
s an
d a
v
er
a
g
e
di
scha
rge
of l
e
achat
e pr
o
duct
i
on a
nd t
h
e
us
e of m
e
nt
i
one
d eco
n
o
m
i
c
m
odel
s
i
n
t
h
i
s
p
a
per
,
t
h
e re
ve
nue a
n
d
expe
nse
of eac
h
kW power in each
stage
wa
s pe
rform
e
d and
prese
n
ted in
seve
n year.
REFERE
NC
ES
[1]
YSG Chan, LM Chu, MH W
o
ng. Effec
t
of leac
hate re
ci
rcu
l
a
tio
n on biogas production from
landfill co-disposa
l
of
municipal solid
waste, s
e
wage
sludge and
marine sediment.
En
vir
onmental Pollu
ti
on
. 2002; 118: 3
93-399.
[2]
[Online]
. Avai
la
ble,
http
://psp
.m
oe.org.ir/Hom
e
Page.aspx
?
T
a
bID=10367&Site=p
sp.m
oe.org&L
an
g=fa-IR
[3]
[Online]
. Avai
la
ble,
http
://www.suna.org.ir
/
fa/ati
onoffice/zisttood
ehoffice.
[4]
[Online]
. Avai
la
ble,
http://www.
iea.
org
/topics/bioenergy
.
[5]
M Shimada, O
Isoguchi, MI Ishihara, SN
Suz
uki. Relationships between PALS
AR backscattering data and forest
above ground b
i
omass in Japan”, IEEE Intern
atio
nal
Geosciences
and Remote Sen
s
ing
S
y
mposium, Vol. 3
,
pp
. 185
5 –
1857, 2003
.
[6]
[Online]
.
Available, http://www.
nationalatlas.
gov/article
s/people/a_energy
.html
.
[7]
B S
a
glam
, O Kucuk, E
Bilg
ili
,
B Durm
az, I Ba
ys
al
. Es
t
i
m
a
ting
F
u
el Biom
as
s
of S
o
m
e
S
h
rub Speci
es
(M
aquis
)
in
Turke
y
.
Turk
ish J
.
Agric
. 2004
; 3
2
: 349-356.
[8]
C Coskun, M Bay
r
aktar,
Z Oktay
,
I Din
cer
. In
vestigati
on of biogas and h
y
dro
g
enproduc
tion f
r
om waste water of
milk-processing
industr
y
in
Turk
ey
.
In
ternational Journal o
f
Hydr
ogen En
ergy
. 20
12; 37: 16498-1
6504.
[9]
C Chompoo, M Leelajindakr
air
e
rk, S Ba
njong
jit, P Fuangfoo.
Biomass power
generation dev
e
lopm
ent in Thiland.
IEEE
Power
&
Ener
gy So
ci
ety
Gener
a
l Me
et
ing
.
2009
.
[10]
II Ahmed, AK
Gupta. H
y
drog
en production
fro
m poly
s
ty
r
e
ne p
y
roly
sis
and g
a
sifica
tion
:
ch
aracteristics and k
i
netics
.
International Jo
urnal
of Hydrog
en En
ergy
. 2009
; 34: 6253-6264.
[11]
H Ginglan, W C
h
ang, L Dingqiang, W Ya
o, L Dan, L Guiju. Production of h
y
dro
g
en-rich gas fro
m plant biomass b
y
cat
al
yt
ic
p
y
rol
y
s
i
s
at
low
tem
p
er
ature
.
In
ternatio
nal Journal
of Hydrogen En
ergy
. 2010; 35
: 8884–
8890.
[12]
A Zaban
i
otou,
O Ioannidou, E
Antonakou,
A Lappas. E
xper
i
mental stud
y
of of
p
y
ro
ly
s
i
s for fo
r poten
tial en
er
g
y
,
h
y
drogen
and carbon material p
r
oduc
tion from lignocellulosic biomass,
International Journal of Hydrogen Energy.
2008; 33: 2433-
2444.
[13]
B Achar
y
a, A Dutta, P Basu. An
investigation
into steamga
sification of biomass for h
y
dr
og
en enr
i
ched gas production
in pres
en
ce
of C
a
O.
Internationa
l Journal
of Hyd
r
ogen Energy.
2
010; 35: 1582–1
589.
[14]
S Luo, B Xiao, X Guo, Z Hu,
S Liu,
M He. H
y
drogen-r
i
chg
a
s from cataly
tic
steam gasification of
biomass in
afixedb
e
dreactor
: Influence of particle
size on gasification perfo
rm
ance. Int
e
rna
t
ional J
ournal of
Energ
y
R
e
s
ear
ch
,
2010; 36: 335–3
45.
[15]
[Online]
. Avai
la
ble,
http
://p
asm
a
nd.tabr
iz
.ir/
?
M
I
D
=21&T
y
pe
=News&T
y
p
e
ID=1
&ID=21.
[16]
L Borzacconi, I
Lopez, M Ohanian,
M
Vinas
.
Anaerobic
aer
obic tr
eatm
e
nt
of
m
unicipal so
lid waste
lea
c
h
a
te
.
Environ.Technol
. 1999; 20: 211-
217.
[17]
H Tim
u
r, I Oztu
rk, M Altinbas,
O Arkan,
B Tu
y
l
uoglu. Anaerob
i
c
tre
a
tab
ili
t
y
of l
each
ate
a com
p
a
r
ativ
e eva
l
uat
i
on
for
differen
t
r
eactor
s
y
stem.
Wa
ter S
c
ien
c
e and Tech
nology
. 2000; 42
: 287-292.
[18]
G Yalm
az, I Ozt
u
rk. Biolog
ica
l
a
m
m
onia rem
oval from
anaerobi
c
a
ll
y pr
etre
at
ed la
ndfill l
e
a
c
hat
e
in
sequencing b
a
tc
h
reactors (SBR).
Water Scien
ce a
nd Technolog
y
.
2001; 43: 307-3
14.
[19]
S Kaly
uzhn
y
i
,
M Gladchenko. Combined anaerobic-
aerob
ic
treatment of municip
a
l solid w
a
ste leach
ates u
nder
m
e
sophilice,
sub
m
esophilic and ps
y
c
hophi
lic
con
d
itions.
Water
S
c
ien
c
e and Tech
nology.
2003; 48
: 287-292.
[20]
H Guls
en, M Turan. Anaerobi
c Trea
ta
bility
of Sanitar
y
Landfill Leacha
te in a Fluidized Bed Reactor.
Turkish J. Eng
.
Env.
Sc
i.
2004: 2
97-305.
[21]
C Coskun, E Ak
y
u
z,
Z Oktay
,
I Dincer. En
er
g
y
analy
s
is
of
h
y
drogen
produ
ction
using bio
g
as-based electr
icity
.
Elsevier International
J
ournal of
Hydrogen Energ
y
. 2011
; 36
: 114
18-11424.
[22]
C Di Iaconi, R Ramadori, A Lopez. Comb
ined biological and chemical degrad
atio
n for treatment o
f
municipal lann
fill
leachates.
Bio
c
h
e
mical Engen
eer
ing journal.
200
6; 31: 118-124.
[23]
C Caputo, M Palumbo, M Pe
lagagge, F Scacchia. Economic
s
of biomass en
erg
y
u
til
ization
in combustion and
gasific
a
tion
pl
an
ts: eff
ects
of l
ogi
stic v
a
riab
les.
Elsevier
Biomass a
nd Bio
e
nergy
. 2
005; 28: 35-51.
[24]
A Robe
rt,
J Marque
t.
Inve
stment Asse
ss
m
e
nt i
n
Co-genera
tion
with Biom
as
s
in the P
r
es
enc
e
of Uncerta
int
y
and
Flexibil
it
y.
IE
E
E
Bu
char
es
t
Po
wer
T
ech
. 2009:
36-44.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:20
88-
870
8
I
J
ECE Vo
l. 3
,
N
o
. 3
,
Jun
e
201
3
:
415
–42
2
42
2
BIOGRAP
HI
ES
OF AUTH
ORS
M
a
hin Tahmas
e
bpour
receiv
e
d
her B.S
c
and M
.
S
c
. degr
ees
in
E
l
ec
tronic
Engine
ering
from the
University
of
Tabriz, Tabriz, Ir
an, in
2001 and
2004, respectiv
e
ly
. Cur
r
ently
, s
h
e is a Ph
.D.
student in the
Department of El
ectrical
and Computer Engineer
ing at University
of
Tabriz,
Tabriz, Ir
an. She is pursuing studies in th
e ar
ea of
biosensors. Her
inter
e
st top
i
cs include sensor
des
i
gn and
m
i
cr
o el
ectrom
e
chan
ica
l
s
y
s
t
em
.
Abdollah Jafar
ian
receiv
e
d hi
s
B.S
c
and M
.
S
c
. degre
e
s
in Ele
c
tri
c
Engin
e
ering from
Iran
University
of
Science
and
T
echn
o
log
y
, in
2001
and 2010, r
e
spectively
. Cu
rrently
, he
is working
in Tabri
z
El
ectr
i
c Dis
t
ribution C
o
m
p
an
y
as
P
o
we
r Market and R
e
newable
m
a
nag
e
r. His inter
e
st
topics
includ
e P
o
wer M
a
rke
t
an
d Renewab
l
e
En
erg
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.