Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 17
25
~
1
731
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.1
069
9
1
725
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Micros
trip Line Fed L
e
aky W
a
ve Antenn
a wi
th Shortin
g Vias
for Wideband Systems
T V
Rama Kr
ishna,
B T P
Madh
av, G
Moni
ca, V Janakiram,
S Md
Abid
B
a
sh
a
Department o
f
ECE, K
L Univ
ers
i
ty
, AP, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 1, 2015
Rev
i
sed
Jun
29,
201
6
Accepte
d
J
u
l 12, 2016
In this
work a com
p
lex s
t
ructured
s
horted vias
m
i
cros
trip leak
y wa
ve antenn
a
is
des
i
gned and
anal
ys
ed. A L
eak
y wave an
te
nna is
a travel
l
i
ng wave
structure with complex propagation cons
tant
. When s
horting via
s
are loaded
in a periodic str
u
cture th
e fundamental
resonant mode
show
s
so
me stop band
charact
e
risti
c
s and som
e
of the m
odes will
strongl
y
at
tenu
ated.
Three
differen
t
t
y
p
e
s
of it
erat
ions ar
e
exam
ined
in
t
h
is work with
and withou
t
defected ground
structures. The
defect
ed ground
structure based leak
y
wave
antenn
as
are s
howing better p
e
rform
ance ch
a
r
act
eris
ti
cs
with res
p
ect t
o
effic
i
enc
y
and p
h
as
e. A m
i
cro s
t
rip
line f
eed
ing
with impedance
of 50 ohms
at both
ports
are providing
excellent
impedance matching to
th
e conducting
path on th
e microstrip surface. The shorting
v
i
as are suppressing cer
tain
higher order f
r
equency
b
a
nd
s and
providing excellent
wide band
chara
c
t
e
risti
c
s with low
loss.
Keyword:
Fu
ndam
e
nt
al
r
e
so
nance
Leaky-wave
antenna
Sh
ort
i
n
g vi
as
St
op
ba
n
d
W
i
de
ban
d
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
B T P Madh
av,
Profess
o
r, EC
E De
partm
e
nt,
K L Un
iv
ersity,
AP,
I
ndi
a
.
Em
a
il: b
t
p
m
ad
h
a
v@k
l
un
iv
ersity.in
1.
INTRODUCTION
The trans
v
e
r
se
slotted
rectangula
r
wave
guide is
a
sim
p
le
struct
ure
that
works a
s
a l
eaky-wave
antenna ha
ving freque
ncy be
am
-scanni
ng c
a
pability, with
an orthogonal polariza
tion from
the conve
ntional
trav
ellin
g-wave slo
tted
an
tenn
a. Beca
u
s
e of
th
e po
larization
,
t
h
e tran
sv
er
se
slo
tted
rectang
u
l
ar wav
e
gu
id
e
can
scan
fro
m
n
ear b
r
o
a
d
s
id
e to
en
d fire if th
e wav
e
gu
id
e
is filled
with
a
d
i
electric m
a
terial .Micro
strip an
t
e
n
n
a
s
un
de
rwe
n
t
a
b
r
oad
ra
n
g
e
of
d
e
vel
o
pm
ent
si
nce i
t
was
p
r
o
p
o
se
d fi
rst
by
M
e
nzel
. T
h
i
s
m
i
crost
r
i
p
a
n
t
e
nna
h
a
s
typ
i
cal p
r
op
erties lik
e wid
e
b
a
ndwid
th.
Th
ese an
tenn
as
m
o
stly o
p
e
rate in
th
e first h
i
g
h
e
r m
o
d
e
. Th
e
microstrip lea
k
y-wave a
n
tenna ha
s
recei
ve
d inte
nsive
Investigation since Menzel firs
t
m
a
de a
m
i
crostri
p
l
eaky
-
wa
ve a
n
t
e
nna i
n
1
9
7
9
.The
m
i
crost
r
i
p
l
eaky
-
wa
ve
ant
e
n
n
a
Us
ual
l
y
ope
rat
e
s i
n
t
h
e
fi
rst
hi
g
h
er
o
r
de
r
m
o
d
e
o
f
th
e m
i
cr
o
s
tr
ip
lin
e [1
],
[2
].
Th
e m
i
cro
s
t
r
ip
leak
y
-
wav
e
an
ten
n
a
h
a
s th
e m
e
rits o
f
b
e
ing
low
profile
an
d
h
a
v
i
n
g
stru
ctural si
m
p
lic
ity, a W
i
d
e
b
a
n
d
wid
t
h
,
a n
a
rro
w
b
eam
wid
t
h
,
and
a frequ
en
cy scann
i
ng
Ab
ility.
Recently, the
half-widt
h
m
i
c
r
ost
r
ip
leaky
-
wave
ante
nna
was also propose
d and its c
h
aracteristics a
r
e ve
ry
si
m
ilar
to
th
e fu
ll-wi
d
t
h
m
i
cr
o
s
trip
lin
e op
eratin
g
in
th
e mo
d
e
[
3
],[
4
].
The H
a
lf
-w
id
th
micro
s
trip
leaky-wav
e
antenna
has the advanta
g
es
of
re
duce
d
siz
e
and a si
m
p
ler fee
d
ing st
ructure co
m
p
ared to t
h
e Full-wi
dth
micro
s
trip
leaky-wav
e
an
tenna [5
],
[6
].
In ea
rlier stage
the antenna was fed
using a
n
asymme
t
r
i
c
al
feedi
n
g st
r
u
ct
ure
.
Thi
s
fee
d
i
ng
ga
ve t
h
e
resu
lt and
also p
r
odu
ced
so
me u
n
wan
t
ed
resu
lts lik
e b
a
sic fu
nd
am
en
tal
m
o
d
e
wh
ich
do
es no
t co
n
t
ri
bu
te to
usef
ul
radi
at
i
o
n. T
h
e
n
a t
e
c
h
ni
q
u
e
was
pr
o
pos
ed t
o
s
u
pp
r
e
ss t
h
e
fu
n
d
am
ent
a
l
m
ode. T
h
i
s
pr
oce
d
u
r
e i
n
vol
ves
i
n
sert
i
n
g
of
c
o
nd
uct
i
n
g
vi
as i
n
t
h
e m
i
crost
r
i
p
a
n
t
e
n
n
as
[
7
]
,
[8]
.
As
t
h
e
t
echni
que
was
n
o
t
el
ab
orat
e
d
cl
e
a
rl
y
,
i
t
was not
t
a
ke
n i
n
t
o
acc
ou
nt
. To o
v
erc
o
m
e
thi
s
d
r
a
w
bac
k
i
n
the
s
e a
n
tennas are
diff
ere
n
t feedi
n
g techniques
were
proposed. These i
n
clude, Microstri
p
t
o
slot line,
c
o
plana
r
wa
ve
guide. B
u
t thes
e structures al
so
gave
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
25
–
1
731
1
726
ri
se t
o
u
n
wa
nt
ed ra
di
at
i
on
w
h
i
c
h l
ead
s t
o
t
h
ei
r re
ject
i
o
n.
B
a
l
un p
r
op
ose
d
t
h
e i
n
cl
usi
o
n
of
phase
o
u
t
n
e
t
w
o
r
k
to the
fee
d
ing
whic
h s
u
ccess
f
ully supp
resse
d the fundam
e
n
tal m
ode [9],[10]
. T
h
e
Idea
of including phase
out
net
w
or
k l
ead t
o
com
p
l
e
xi
t
y
in desi
gn a
n
d anal
y
s
i
s
of t
h
e
ant
e
n
n
a. F
u
rt
h
e
r i
t
di
st
ur
bs t
h
e basi
c a
dva
n
t
age o
f
micro
s
trip
an
ten
n
a
it in
creases th
e an
tenn
a si
ze.
Thi
s
m
e
t
hod
o
f
i
n
se
rt
i
n
g vi
as
i
n
v
o
l
v
es
pl
aci
ng
co
n
duct
i
n
g
vi
as i
n
si
de t
h
e
m
i
crost
r
i
p
a
n
t
e
nna
w
h
i
c
h
sup
p
r
esses
t
h
e
un
wa
nt
ed
f
u
n
d
a
m
e
nt
al
m
ode.
Thi
s
t
ech
ni
q
u
e
gi
ves
ri
se t
o
st
op
ba
n
d
fo
r
f
u
n
d
am
ent
a
l
m
ode
.
I
n
t
h
i
s
st
o
p
ban
d
t
h
e f
u
ndam
e
n
t
al
m
ode i
s
hi
ghl
y
at
t
e
n
u
at
e
d
. T
h
e
r
e i
s
al
s
o
di
sad
v
ant
a
ge
t
h
at
ant
e
nna
has t
o
su
ffer a little
b
it in
term
s o
f
b
a
n
d
wid
t
h
[11
]
,[1
2
]
.
In
th
is p
a
p
e
r
we st
ud
y th
e
d
e
sign
o
f
su
ch
an
tenna and
im
pro
v
e i
t
s
pe
rf
orm
a
nce by
m
a
ki
ng t
h
e g
r
ou
n
d
d
e
fect
i
v
e
.
The
i
n
se
rt
ed
vi
as gi
ve ri
se t
o
a st
o
p
ba
nd
fo
r t
h
e
fund
am
en
tal
m
o
d
e
. In
th
is sto
p
b
a
nd
the fund
am
en
tal
m
o
d
e
is h
i
ghly atten
u
a
ted
wh
ich
su
ppresses the
fu
n
d
am
ent
a
l
mode
.
W
e
t
r
y
t
o
im
prove t
h
e
p
e
rf
orm
a
nce of
ant
e
n
n
a by
i
m
pr
o
v
i
n
g i
t
s
gai
n
an
d ba
nd
wi
d
t
h of
suc
h
structure
[13],[14].
2.
MATE
RIAL
S AND METHOD
Th
e leak
y-wave an
ten
n
a
s are essen
tial to
p
r
ov
id
e
th
e
b
e
nefit o
f
h
i
gh
d
i
rectiv
ity with
ou
t co
m
p
lex
feedi
ng
net
w
o
r
k
.
The
sam
e
thi
n
g can
be a
c
hi
eve
d
wi
t
h
a
rrays also
but
for com
p
act struct
ure, lea
k
y-wave
antennas are more prefe
r
a
b
le
com
p
ared with array
m
odels. Howe
ver, th
ey su
ffer of m
a
j
o
r li
m
i
tatio
n
s
in
th
eir
scann
i
ng
cap
ab
ilities, wh
ich
h
a
v
e
lim
i
t
ed
th
eir ap
p
lications to
d
a
te. Th
e
g
e
o
m
etry o
f
the
m
i
cro
s
trip
lin
e feed
an
tenn
a with
sh
orting
v
i
as alo
n
g
th
e cen
tre lin
e is sh
o
w
n
i
n
Fi
gure
1.
The arr
a
n
g
em
ent
of sh
o
r
t
i
ng
vi
as t
o
suppress s
u
rfa
ce waves ca
n
be obse
rv
e
d
from
the structure. Figure 2 s
h
ow
s the m
o
dified struct
ure
of the
l
eaky
-
wa
ve a
n
t
e
nna
wi
t
h
de
fe
ct
ed g
r
ou
n
d
st
ructure
on anot
her side
of the
substrate.
(a)
(b)
Fi
gu
re
1.
M
i
cr
ost
r
i
p
Li
ne
Fe
d
Leaky
Wa
ve
Ant
e
nna
,
(a)
A
n
t
e
n
n
a St
ruct
ur
e, (
b
)
Si
de
Vi
e
w
(a)
(b)
Fi
gu
re 2.
M
o
di
fi
ed
M
i
cr
ost
r
i
p
Li
ne Fed
Lea
k
y
W
a
ve
A
n
t
e
n
n
a wi
t
h
DG
S, (
a
) Ant
e
nna
St
r
u
ct
u
r
e,
(b
) Si
de
View
Fi
gu
re
3 s
h
o
w
s
pr
o
pose
d
l
eaky
-
wave
ant
e
nna
wi
t
h
m
odi
fi
cat
i
o
n
o
f
6
sl
ot
s as
de
fe
ct
ed g
r
ou
n
d
structure. The
dim
e
nsional characteristics of
the de
signed 3
m
odels are s
h
own in
Table
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Micro
s
trip
Line Fed Lea
ky Wa
ve An
tenna
w
ith
Sh
ortin
g Vi
a
s
f
o
r Wi
d
e
band
S
y
stem
s (T.
V. Ra
ma
Krishn
a
)
1
727
Fi
gu
re
3.
M
o
di
fi
ed
Pr
op
ose
d
M
i
crost
r
i
p
Li
n
e
Fed
Lea
k
y
Wave
Ant
e
nna
w
i
t
h
D
G
S,
(a)
Ant
e
nna
St
r
u
ct
ure
,
(
b
) Si
de
V
i
ew
In
o
r
de
r t
o
e
n
h
a
nce t
h
e
st
o
p
b
a
nd
o
f
t
h
e f
u
n
d
am
ent
a
l
m
ode, m
o
re sh
o
r
t
i
n
g
vi
as ca
n
be e
m
pl
oy
ed fo
r
each pe
riod.
The rea
s
on
behind this is
whe
n
we
plac
e
m
o
re shorting
vias the
n
we will get stronge
r
p
e
rt
u
r
b
a
tio
n to th
e
fund
am
en
t
a
l
m
o
d
e
.
To ach
i
ev
e t
h
is,
we l
o
ad
ed
a m
i
cro
s
trip
lin
e
with
50
-oh
m
i
m
p
e
d
a
n
ce.
Tabl
e 1. A
n
t
e
n
n
a di
m
e
nsi
ons i
n
m
m
L
g
W
g
W
p
L
p1
L
p1
Dc P Hc
P1
Dgh
280
55
15
12
8
0.
8
1.
6
0.
8
18.
5
16
L
g
=len
g
t
h of
gr
oun
d, leng
th of
su
b
s
t
r
ate, leng
th
of
to
tal
p
a
tch
W
g
=
W
i
d
t
h
of
gr
o
u
n
d
,
wi
dt
h of
su
bst
r
at
e
W
p
=
W
i
d
t
h
of
pat
c
h,
L
p
1
,
L
p
2=l
e
n
g
t
h
o
f
pat
c
h uni
t
e
d
st
r
u
c
t
ures
D
c
=d
iam
e
ter of th
e v
i
a cylinder
P=Distance
bet
w
een two cylinder centre
s
in s
a
m
e
period
P
1
=Distance
be
tween t
w
o cylinde
r
ce
ntres
in
consecutive
pe
riods
H
c
=hei
ght
of t
h
e cylinde
r
D
gh
=d
iam
e
ter o
f
th
e
ho
le m
a
d
e
in gro
und
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The ante
nna
m
odels are designe
d and si
m
u
lated us
ing HFSS tool and
results rela
ted to antenna
out
put
pa
ram
e
ters a
r
e
prese
n
t
e
d i
n
t
h
i
s
s
ect
i
o
n
.
Fi
gu
re
4 s
h
ows
t
h
e
re
fl
ect
i
on c
o
e
ffi
ci
ent
charact
e
r
i
s
t
i
c
s of
t
h
e
desi
g
n
e
d
ant
e
n
n
a m
odel
s
. Th
e fu
ndam
e
nt
al
reso
nant
m
o
d
e
i
s
bl
ocke
d w
i
t
h
t
h
e pr
op
os
ed st
ruct
ure a
nd t
h
e
ant
e
n
n
a m
odel
s
are reso
nat
i
n
g bet
w
ee
n 6
.
2
GHz t
o
8
.
5
G
H
z. A
n
i
m
pedance ba
nd
wi
dt
h of
35% i
s
ac
hi
eve
d
fr
om
t
h
e pr
o
p
o
s
ed a
n
t
e
n
n
a m
odel
3
w
ith
de
fected ground st
ruct
ure.
Fi
gu
re
4.
R
e
fl
e
c
t
i
on C
o
ef
fi
ci
ent of t
h
e a
n
tenna m
odels
Fi
gu
re
5 s
h
ow
s VS
WR
c
h
ara
c
t
e
ri
st
i
c
s of
2:
1 rat
i
o i
n
t
h
e
d
e
si
red
o
p
erat
i
n
g
ban
d
.
Fi
g
u
re
6 s
h
ows
t
h
e
im
pedance c
h
a
r
acteristics of a
n
tenna m
odels
with re
spect
t
o
ch
ang
e
i
n
fr
equ
e
n
c
y. A
stop
b
a
nd
at
f
und
amen
ta
l
reso
na
nt
m
ode
i
s
at
t
a
i
n
ed be
cause o
f
m
o
re num
ber of s
h
ort
i
n
g vi
as i
n
t
h
e peri
odi
c st
ruct
ure.
Wh
en
t
h
e
n
u
m
b
e
r
o
f
sh
ortin
g
v
i
as is increased
t
h
e
p
h
a
se con
s
tan
t
o
f
fu
nd
am
en
tal
mo
d
e
will d
e
crease.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
25
–
1
731
1
728
Fi
gu
re
5.
V
S
WR
Vs
Fre
q
u
e
nc
y
Fi
gu
re
6.
Im
pedance
V
s
F
r
eq
uency
Fi
gu
re
7,
8,
9
sh
o
w
s t
h
e
ra
di
at
i
o
n
pat
t
e
r
n
o
f
t
h
e
desi
g
n
ed
a
n
t
e
n
n
a
m
odel
s
at
cen
t
r
e res
o
nant
fre
que
ncy
.
A p
e
nci
l
beam
li
ke radi
at
i
o
n pat
t
ern i
s
obt
ai
n
e
d fro
m
th
ese lea
k
y-wav
e
an
tenn
as wh
ich
are
m
o
re
su
itab
l
e fo
r ap
p
lication
s
such
as lo
cal mu
ltip
o
i
n
t
d
i
strib
u
tion
serv
ice (LMDS),
WI-MAX and
satellite
com
m
unications. S
u
ch a
bea
m
cannot
be
produced effici
ently with
dyna
m
i
c scanni
ng
capability in t
h
e
2D
stru
cture
o
f
th
e con
v
e
n
tion
a
l an
tenn
as.
Fi
gu
re
7.
R
a
di
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
M
o
d
e
l
1
Fi
gu
re
8.
R
a
di
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
M
o
d
e
l
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Micro
s
trip
Line Fed Lea
ky Wa
ve An
tenna
w
ith
Sh
ortin
g Vi
a
s
f
o
r Wi
d
e
band
S
y
stem
s (T.
V. Ra
ma
Krishn
a
)
1
729
Fi
gu
re
9.
R
a
di
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
M
o
d
e
l
3
Fi
gu
re 1
0
s
h
o
w
s
t
h
e 3 di
m
e
nsi
o
nal
radi
at
i
on pat
t
e
r
n
of
t
h
e desi
g
n
e
d
ant
e
nna
m
odel
s
at
cent
r
e
reso
na
nt
fre
qu
ency
. The p
r
op
ose
d
ant
e
n
n
a m
odel
3 i
s
showi
n
g a
m
a
xim
u
m
di
rect
i
v
i
t
y
of 4
.
1
4
i
n
t
h
e
desi
r
e
d
di
rect
i
o
n.
Fi
gu
re
1
0
. R
a
d
i
at
i
on Pat
t
e
r
n
o
f
A
n
t
e
nna
M
o
d
e
l
s
i
n
t
h
ree
di
m
e
nsi
onal
vi
e
w
The s
u
rface c
u
rrent
distribut
i
on
of ante
nna
m
odels
at 7.5 GHz
is prese
n
ted i
n
Figure
11,
12,
13.
M
odel
1 i
s
sh
o
w
i
n
g cu
rre
nt
di
st
ri
but
i
o
n at
t
h
e edge
s o
f
fee
d
l
i
n
e an
d m
o
re neare
r
t
o
t
h
e p
o
rt
1 si
de c
o
nd
uct
i
n
g
l
i
n
e. M
o
del
2
i
s
sh
owi
n
g
m
a
xi
m
u
m
i
n
t
e
nsi
t
y
aro
u
n
d
t
h
e
bo
u
nda
ri
es
of
t
h
e ra
di
at
i
n
g s
t
ruct
u
r
e.
M
o
de
l
3 i
s
showing
better current
distribution c
h
a
r
acteristics over
the surface
in uni
-direction
towa
rds t
h
e ports
whic
h
cont
ri
b
u
t
e
s t
h
e
ad
di
t
i
onal
res
ona
nt
m
ode i
n
t
h
e o
p
e
r
at
i
n
g
b
a
nd
.
Fi
gu
re
1
1
. C
u
r
r
ent
di
st
ri
b
u
t
i
o
n
of
m
odel
1 at
7.
5
G
H
z
Fi
gu
re
1
2
. C
u
r
r
ent
di
st
ri
b
u
t
i
o
n
of
m
odel
2 at
7.
5
G
H
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
25
–
1
731
1
730
Fi
gu
re
1
3
. C
u
r
r
ent
di
st
ri
b
u
t
i
o
n
of
m
odel
3 at
7.
5
G
H
z
Fig
u
re 14
shows th
e
g
a
in
characteristics o
f
th
e d
e
sign
ed
an
tenn
a m
o
d
e
ls with
resp
ect
to
op
erating
b
a
nd
. A m
a
x
i
m
u
m
p
eak
r
e
alised
g
a
i
n
o
f
15
db
is attain
ed fo
r
t
h
e
p
r
op
osed
D
G
S m
o
del w
h
er
e as
13
db
is
attain
ed
for
b
a
sic m
o
d
e
l.
Fi
gu
re 1
4
. Gai
n
Vs
F
r
e
que
nc
y
4.
CO
NCL
USI
O
N
Design
and
analysis o
f
m
i
cro
s
trip lin
e
fed, p
e
ri
od
ic shortin
g v
i
as structu
r
e
with DGS m
o
d
e
l is
p
r
esen
ted
i
n
this wo
rk
. Th
e fu
nd
am
en
tal reso
nan
t
m
o
d
e
is su
ppr
essed
in
th
e pr
opo
sed leak
y-
w
a
v
e
an
tenn
a
wi
t
h
m
o
re
nu
m
b
er of
sh
ort
i
ng
vi
as
at
t
h
e
cent
r
e
o
f
t
h
e
m
i
crost
r
i
p
ra
di
at
i
ng el
em
ent
.
Large
r
ba
nd
wi
dt
h
wi
t
h
effi
ci
ent
refl
e
c
t
i
on c
o
ef
fi
ci
ent
m
a
kes t
h
i
s
ant
e
nna
sui
t
a
bl
e f
o
r
wi
de
ban
d
a
p
pl
i
cat
i
ons
. T
h
e
ad
di
t
i
onal
ad
v
a
n
t
ag
es like h
i
gh
g
a
in
, lo
w
sid
e
and
back
lob
e
s
with lo
w cro
ss
p
o
l
arizatio
n
will p
u
ll
u
p
t
h
is an
tenn
a
m
o
d
e
l fo
r d
e
sired
satellite commu
n
i
catio
n
ap
p
lication
s
.
ACKNOWLE
DGE
M
ENTS
Aut
h
o
r
s l
i
k
e t
o
ex
pre
ss t
h
ei
r g
r
at
i
t
ude t
o
war
d
s t
h
e
de
p
a
rt
m
e
nt
of EC
E and m
a
nage
m
e
nt
of K L
Un
i
v
ersity fo
r th
eir supp
ort an
d
en
co
urage
m
en
t d
u
ring
th
is work
. Fu
rth
e
r au
tho
r
s li
k
e
to
ex
press th
eir
g
r
atitud
e
to DST th
rou
g
h
FIST gran
t
SR/FST/ETI-31
6
/
2
012
.
REFERE
NC
ES
[1]
B. T. P
.
Madhav,
et a
l
.
, “Trident Shaped Ultr
a Wideband Antenna
Anal
ysis b
a
sed on Substra
t
e Perm
itt
ivit
y,
”
International Jo
urnal of
A
pplied Engineering
Research
,
ISSN 0973-4562, vol. 8
,
p
p
. 1355-1361
, 2
013.
[2]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “
T
ap
ered S
t
ep CP
W
-
F
e
d Antenna
f
o
r Wideband A
pplications,”
ARPN Journal o
f
Engineering and
Applied S
c
iences
, vol. 9, pp. 196
7-1973, 2014
.
[3]
B. T. P. Madhav,
et al.
, “
C
ir
cular
l
y
Pol
a
riz
e
d
Slotted Apert
u
re
Antenna with Coplanar Waveguid
e
Fed for
Broadband Applications,”
Journ
a
l of Engin
eerin
g Science and
Technology
, vo
l. 1
1
, pp
. 267–277
,
2016.
[4]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “Rectan
gular Microstr
ip
Patch Antenna
on Liquid Cr
y
s
tal Poly
m
e
r Substrate,”
Journal o
f
Theoretical and
Applied
Informa
tion Technology
, vol. 18, pp. 62–
66, 2010
.
[5]
M. V. Reddiah
Babu,
et al.
, “C
ompact Serrated
Notch Band M
I
MO
Antenna f
o
r UWB Applications,”
A
RPN
Journal of Engin
eering and
App
l
ied Scien
ces
, vol. 11, pp. 4358-43
69, 2016
.
[6]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “
T
ap
ered S
t
ep CP
W
-
F
e
d Antenna
f
o
r Wideband A
pplications,”
ARPN Journal o
f
Engineering and
Applied S
c
iences,
vol. 9, pp. 196
7-1973, 2014
.
[7]
P. Lotf
i,
et al.
, “Rotatable
du
al band-notch
ed
U
W
B/trip
le-b
and
WLAN reconfig
urable antenna,”
IEEE Antennas
Wireless Propag
. Lett
, vol. 12
, p
p
. 104-107
, 200
3.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Micro
s
trip
Line Fed Lea
ky Wa
ve An
tenna
w
ith
Sh
ortin
g Vi
a
s
f
o
r Wi
d
e
band
S
y
stem
s (T.
V. Ra
ma
Krishn
a
)
1
731
[8]
B
.
T
.
P
.
M
a
d
h
a
v
,
et al.
, “Liquid cr
y
s
tal poly
m
er
substrate bas
e
d wideb
a
nd
tapered step an
tenna,”
Leonardo
Electronic Journ
a
l of Pr
actices a
nd Technolog
ies
, vol. 26
, pp
. 103
-114, 2015
.
[9]
R. F. H
y
neman, “Closely
-s
paced transverse slots in
rectangular
waveguide”,
IRE Trans. Antennas Propag
., vol.
AP-7, pp. 335–3
42, 1959
.
[10]
V.
H.
Rumsey
, “Traveli
ng w
a
ve
slot an
tennas
,
”
J
.
App
l
.
Ph
ys
, vol. 24
, pp
. 1358–1
365, 1953
.
[11]
J.
Liu,
et al.
, “Modal an
aly
s
is
of dielectric-filled r
ect
angular waveguide
with
transverse slots,”
IE
EE T
r
ans.
Antennas Propag
, vol. 59
, pp
. 31
94–3203, 2011
.
[12]
B. T. P
.
Madhav
,
et a
l
.
, “CPW Fed Antenna fo
r
Wideband Applicati
ons based on
Taper
e
d Step G
r
ound and EBG
St
ruc
t
ure,
”
India
n
Journal o
f
S
c
ience and
Techno
logy
, vo
l. 8, pp. 1
19-127, 2015
.
[13]
S.
S.
M.
Re
ddy
,
et al.
, “As
y
mmetric Def
ected Ground
Struct
ured
Monopole Antenna for Wideband
Communication S
y
stems,”
Inter
national
Journal of Communications Antenna
an
d Propagation
,
vol. 5
,
pp. 256
-
262, 2015
.
[14]
T. V. Ramakris
hna,
et al.
, “Triple Band linear
ly
polarized Square
Slotted Micro strip Antenn
a for X – Band
Applications,”
Far East Journal
of Elec
tronics a
nd Communications
, vol. 15, pp.
99-110, 2015
.
Evaluation Warning : The document was created with Spire.PDF for Python.