Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 1
,
Febr
u
a
r
y
201
5,
pp
. 13
~22
I
S
SN
: 208
8-8
7
0
8
13
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Experim
e
ntal Dielect
ri
c Measurements f
o
r Cos
t-f
ewer P
o
lyvinyl
Chlorid
e
Nan
o
composites
Ahmed Thabe
t
*
, Yousse
f
Mob
a
rak
**
* Nano-Technolog
y
Resear
ch C
e
nt
re, Facu
lty
of
Energ
y
Engin
eer
ing, Aswan Univ
ersity
** Departement
of Electr
i
cal
Eng
i
n
eer
ing, Faculty of Eng
i
neering
,
Rabigh, King A
bdulazizUnivers
i
ty
** Depart
em
ent
of El
ectr
i
c
a
l
Eng
i
neer
ing,
F
acul
t
y
of En
erg
y
Engi
neering
,
As
wan
Univers
i
t
y
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 23, 2014
Rev
i
sed
No
v
27
, 20
14
Accepted Dec 14, 2014
Poly
mer nano
composites possess pr
omising
high perfo
r
m
ances as
engineering materials, if
they
ar
e prep
ared
and
fabricated
properly
.
In
this
res
earch
, it has
been proces
s
e
d s
a
mples of n
a
nocomposite poly
m
ers as
ele
c
tri
cal
ins
u
l
a
t
i
ng m
a
ter
i
als
for
appli
c
a
tion on
t
h
e el
ec
tric
powe
r
cab
les
b
y
using the lates
t
techniqu
es of nanotechno
lo
g
y
. This paper
has been
investigated
en
hanced
dielectric a
nd
electr
i
cal properties of
Poly
v
i
n
y
l
chlorid
e
PVC as matrix have
show
n that tr
ap
ping properties
are h
i
ghly
m
odified b
y
the
pres
enc
e
of
co
s
tles
s
nanofi
ller
s
cla
y
and
fum
e
d s
ili
ca.
A
n
experim
e
nt
al w
o
rk for die
l
e
c
t
ric
los
s
and
cap
aci
tanc
e
of the n
e
w
nanocomposite materials
have
b
een inves
tig
ated
and com
p
ared with
unfil
le
d
industrial materials. It
is found
that
a good corr
elation ex
ists in
respect of
capa
c
it
anc
e
an
d diel
ec
tric
lo
s
s
values
m
e
a
s
ured with p
e
r
cent
a
ge o
f
nanofillers. Thus
, it has been
inve
stigated
the inf
l
u
e
nce of
costless nanofill
ers
material and its concen
tration on dielec
tric properties of industrial poly
m
ers-
bas
e
d com
pos
it
e s
y
s
t
em
s
.
A c
o
m
p
ara
tive
study is
perform
ed between the
unfilled
base p
o
l
y
m
e
rs, th
e s
y
stem
s c
ontain
i
n
g
one
t
y
pe of
nanopart
icl
e
s
clay
or
fumed silica
inside the host pol
y
m
er wi
th v
a
rious
con
cen
tra
tions
.
Keyword:
Dielectric m
a
te
rials
In
su
latio
n
Nano-com
posi
t
e
Nanop
articles
Polym
e
rs
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A
h
m
e
d
Th
ab
et
, You
ssef Mobar
a
k
N
a
no-
Techno
lo
g
y
Resear
ch
Cen
t
r
e
,
Facul
t
y
o
f
E
n
e
r
gy
E
n
gi
nee
r
ing
,
Aswan Un
iversity,
A
s
w
a
n
,
815
28
, Eg
y
p
t
Em
a
il: ath
m
@
a
swu.ed
u.eg, y
s
o
lim
an
@k
au
.ed
u
.sa
1.
INTRODUCTION
Pol
y
m
e
r nano
com
posi
t
e
s are defi
ne
d as com
posi
t
e
s i
n
whi
c
h sm
all
am
ount
s of na
n
o
m
e
t
e
r si
zed
fillers are
h
o
m
o
g
e
no
usly d
i
spersed
i
n
po
ly
mers b
y
sev
e
ral weig
h
t
p
e
rcen
tag
e
s
wt%.
As
d
e
fin
e
d
,
t
h
e fillers
ad
d
e
d
t
o
th
e
matrix
are v
e
ry s
m
all in
q
u
an
tity, n
o
rm
all
y
less th
an
10
wt%. In
o
r
der to
g
r
asp
a b
e
tter
un
de
rst
a
n
d
i
n
g
on
p
o
l
y
m
e
r nanoc
om
posi
t
e
s,
Tana
ka et
al
.
[
1
]
ha
ve s
o
u
ght
t
o
fu
rt
he
r c
o
m
p
are
i
t
wi
t
h
p
o
l
ym
er
microcom
posites in anothe
r t
w
o m
a
j
o
r as
pe
cts, nam
e
ly
the size of t
h
e fille
rs and t
h
e spe
c
ific surface area of
th
e co
m
p
o
s
ites. N
a
n
o
c
o
m
p
o
s
ites ar
e in
th
e
r
a
ng
e
o
f
n
a
nometer
s in
size (
l
ess th
an
100 n
m
)
,
d
i
f
f
e
r
e
n
t
w
ith
t
h
ree o
r
de
rs o
f
m
a
gni
t
u
d
e
i
n
l
e
ngt
h as co
m
p
ared t
o
m
i
croc
om
posi
t
e
s.
Thi
s
wo
ul
d
m
ean a di
ffer
e
nce of
ap
pro
x
i
m
a
tel
y
n
i
n
e
ord
e
rs in
th
eir nu
m
b
er den
s
ity. Th
erefore, th
e d
i
stan
ce b
e
tw
een
n
e
i
g
hbo
uring
fillers are
m
u
ch s
m
aller in
nanoc
o
m
posites than i
n
m
i
c
r
oc
om
posite
s.
In te
rm
s of spe
c
ific
surface a
r
ea, na
nocom
p
osites
have
hi
gh spe
c
ific surface a
r
ea of
fillers (about three
orders large
r
t
h
a
n
m
i
croc
om
posites).
W
i
t
h
this, the
in
teractio
n o
f
p
o
l
ym
ers
m
a
trices
with
fillers is ex
p
ected
t
o
b
e
m
u
ch mo
re in n
a
no
com
p
o
s
ites.
Wh
ile th
e
con
v
e
n
t
i
onal
m
i
crocom
posi
t
e
s can al
t
e
r ce
r
t
ai
n desi
re
d
pr
ope
rt
i
e
s o
f
t
h
e
com
posi
t
e
m
a
teri
al
s (e.
g
. m
echani
c
a
l
an
d th
erm
a
l p
r
o
p
e
rties), it often
co
m
e
s with
th
e co
m
p
ro
m
i
se
of ot
he
r pr
o
p
ert
i
e
s bei
n
g negat
i
vel
y
affect
e
d
(e.
g
. el
ect
ri
cal
p
r
o
p
ert
i
e
s)
.
I
n
t
e
rest
i
n
gl
y
,
t
h
e
newl
y
em
ergi
ng
p
o
l
y
m
e
r
na
noc
om
posi
t
e
s p
r
o
v
i
d
e
si
g
n
i
f
i
cant
im
provem
ents in com
b
ine
d
el
ectrical, ther
m
a
l and m
echanical pr
op
er
ties [2
]-
[4
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 1, Feb
r
uar
y
20
1
5
:
1
3
– 22
14
These
profound im
pacts create great
b
e
n
e
fits sp
ecifically to
th
e h
i
g
h
voltag
e
in
su
lating
ind
u
stry,
especi
al
l
y
i
n
el
ect
ri
cal
pro
p
e
rt
i
e
s enha
nce
m
ent
.
Al
t
h
o
u
g
h
p
o
l
y
m
e
r nanoc
om
posi
t
e
s have
dra
w
n
re
search
in
terest in h
i
gh
v
o
ltag
e
electrical in
su
latin
g so
ciety,
th
e fu
nd
am
en
tal p
hysics an
d ch
emistry lead
in
g to
t
h
e
pr
o
p
ert
y
enha
n
c
em
ent
i
s
poor
l
y
under
s
t
o
od
and m
u
ch rem
a
i
n
s une
x
p
l
o
re
d. Pol
y
m
e
ri
c
m
a
t
e
ri
al
s have becom
e
an integral part of electric and el
ect
ro
ni
c packagi
ng sy
st
e
m
s t
oday
due t
o
their excelle
nt therm
a
l, che
m
ical,
an
d
d
i
electric p
r
op
erties ap
art fro
m
th
eir easy p
r
o
cessab
ility an
d
low cost [5
], [6
]. Fo
r
th
e enh
a
ncem
e
n
t of
in
su
lation
reliab
ility an
d
co
mp
act d
e
sign
in electric p
o
w
er app
a
rat
u
s, the electrical p
r
o
p
e
rties o
f
po
ly
m
e
r
com
posites with inorga
nic fillers in
the polym
er
m
a
trix play an i
m
porta
nt role. R
ecently, it has been
recogn
ized
th
at n
a
no
p
a
rticle fillers
h
a
v
e
ben
e
fit fo
r avo
i
d
i
ng
th
e
d
e
grad
atio
n
of in
su
latio
n
in
l
o
ng
-term
characte
r
istics [7],
[8].
Nanotechnologies are
pres
ent
in
a l
o
t
of
domain since the
y
are a
gr
eat so
ur
ce
o
f
inno
vatio
n
.
Th
ey
m
a
y
have a powe
r
f
u
l
i
m
pact
on de
vel
o
pm
ent
of a
dva
nce
d
el
ect
ri
cal
and el
ect
ro
ni
c d
e
vi
ce. I
n
t
h
e c
a
se o
f
n
a
no
co
m
p
o
s
ite, it h
a
s
b
een rep
o
rted th
at a few
p
e
rcen
t
o
f
fu
n
c
ti
o
n
a
l
n
a
nofiller can i
m
p
r
ov
e m
ech
an
ical
ch
aracteristic
p
e
rm
eab
ility
c
h
aracteristic an
d
electrical
p
r
op
erties. Man
y
p
a
p
e
rs
d
i
scu
ssing
th
e
g
e
n
e
ral
o
v
e
rv
iew, th
eory an
d
th
e fu
n
c
tio
n
a
lity o
f
n
a
no
co
m
p
o
s
ite d
i
electrics h
a
v
e
been
pu
b
lished
[9
]-[15
]
. Th
e way to
d
i
sp
erse nano
fi
llers layer in
po
ly
m
e
r
m
a
trix
at a n
a
no
m
e
tri
c
lev
e
l is still
u
n
d
e
r op
timiza
tio
n
,
h
u
t
g
ood
resu
lts
i
n
t
e
rm
s of ori
e
nt
at
i
on, c
ont
r
o
l
of i
n
t
e
ract
i
o
n bet
w
ee
n h
o
st
m
a
t
e
ri
al and n
a
no
g
r
ai
n (i
nt
e
r
cal
at
i
on, ex
fol
i
at
i
on)
h
a
v
e
b
een
ach
i
ev
ed
alread
y [1
0
]
. Th
e u
s
e of n
a
no
ad
d
itiv
es in
d
i
electric
materials h
a
s
mad
e
g
r
eat p
r
og
ress i
n
t
h
e l
a
st
few y
e
ars [1
1]
-
[
1
2
]
.
The ad
di
t
i
on o
f
i
n
o
r
ga
ni
c na
no
pa
rt
i
c
l
e
s i
n
to p
o
l
y
m
e
r (pol
ym
er nanoc
om
posi
t
e
)
has
bee
n
st
udi
ed a
n
d a
ppl
i
e
d
t
o
e
ngi
neeri
n
g
m
a
t
e
ri
al
s for
i
n
d
u
st
ri
al
pr
o
d
u
c
t
s
t
o
i
m
pro
v
e
vari
ous
pr
ope
rt
i
e
s o
f
material [1
3
]
.
It h
a
s
b
e
en
rep
o
rted
t
h
at th
e p
o
l
ym
er n
a
noco
m
p
o
s
ite h
a
s ab
ilities to
im
p
r
o
v
e
th
e d
i
electric
properties
of
base m
a
terial [14]. T
h
e c
h
arac
teristics
of p
o
l
y
m
e
r
nan
o
c
o
m
posi
t
e
fo
r elec
trical and diel
ectric
p
r
op
erties were also
stud
ied to
en
su
re th
e h
i
gh
re
liab
ility o
f
th
e in
sulatin
g
syste
m
[15
]
. Th
e effectiv
e
pr
o
p
ert
i
e
s of
d
i
el
ect
ri
c
m
i
xt
ures ha
ve bee
n
i
nve
st
i
g
at
ed m
a
t
h
em
at
i
cal
ly
and e
xpe
ri
m
e
ntal
l
y
for pre
d
i
c
t
i
on
o
f
effectiv
e d
i
electric p
r
op
erties
[16
]
-[25
].
In recent deca
des,
the use of
polym
ers
as
electri
cal insulating m
a
terials
ha
s bee
n
growing ra
pi
dly
[26], [27]. T
h
e
base
polym
e
r propertie
s ha
ve bee
n
devel
o
ped
by adding s
m
all am
ounts of
differe
n
t fillers
but
they are expe
nsive to the
pol
ym
er
m
a
terial.
Recently, gr
ea
t
expectations have focuse
d on
costless nanofillers
[26
]
. Howev
e
r, th
ere are
few p
a
p
e
rs co
ncern
i
n
g
t
h
e ef
fect o
f
typ
e
s
o
f
co
stless
n
a
n
o
fillers on
el
ectrical
p
r
op
erties of po
ly
m
e
ric n
a
noco
m
p
o
s
ite [29
]
, [30
]
.
W
ith
a co
n
tinu
a
l progress in
po
ly
m
e
r n
a
no
co
m
p
o
s
ites, th
is
researc
h
de
pi
ct
s t
h
e ef
fect
s
of
t
y
pes a
n
d
c
once
n
t
r
at
i
o
n
o
f
c
o
st
l
e
ss na
n
opa
rt
i
c
l
e
s i
n
e
l
ect
ri
cal
pr
ope
rt
i
e
s
o
f
in
du
strial po
lymer
m
a
terial. All exp
e
rim
e
n
t
al resu
lts
ha
v
e
bee
n
i
n
vest
i
g
at
ed a
n
d
di
scusse
d t
o
det
e
ct
al
l
effects
of
nanofillers on electrical prope
rties of
nanoc
o
m
posite indust
r
ial m
a
terial which fabricated; like PP
,
and PVC wit
h
vari
ous
na
nofil
l
ers of clay a
n
d fum
e
d silica.
In
t
h
i
s
st
udy
,
p
o
l
y
vi
ny
l
c
hl
ori
d
e a
n
d
co
st
-fe
wer
na
n
opa
rt
i
c
l
e
s (cl
a
y
an
d
f
u
m
e
d si
l
i
ca) w
e
re
pr
ocesse
d
and c
h
a
r
acteri
zed. Materials
selecti
on and electrical/mechanical pre
d
ictabl
e m
odel
s
h
a
ve bee
n
ca
rri
ed o
u
t
u
s
ing
Cam
b
rid
g
e
Eng
i
n
e
ering Selecto
r
(CES) prog
ram
.
It
was fou
n
d
th
at
n
a
no
fillers
o
f
fu
m
e
d
silica h
a
v
e
an
ad
v
e
r
s
e i
n
f
l
u
e
n
ce
o
n
d
i
electr
ic p
r
op
er
ties o
f
PV
C com
p
o
s
ites w
h
ile clay n
a
nopar
ticles i
m
p
r
ov
ed th
e
electrical insulation prope
rties. The
r
efore, surface analysis and
na
no m
ont
m
o
rillonite were e
x
am
ined usi
n
g
scan
ni
n
g
el
ect
r
o
n
m
i
croscope
t
o
be s
u
re
t
h
at
t
h
e
penet
r
at
i
o
n
hom
oge
nei
t
y
of
co
st
-fe
we
r
nan
o
p
art
i
c
l
e
s i
n
si
de
p
o
l
yv
i
n
yl ch
lorid
e
insu
lation m
a
teri
als. Dielectric prope
rties we
re asse
ssed
u
s
ing
H
I
OK
I
35
22-
50
LCR
H
i
-
tester de
vice.
An experim
e
ntal work for die
l
ectric loss a
n
d capacita
nce
o
f
t
h
e
new
na
n
o
c
om
posi
t
e
m
a
teri
al
s
h
a
v
e
b
e
en
investig
ated
and
co
m
p
ared
wit
h
u
n
filled
in
d
u
s
t
r
ial
m
a
terials i
n
a frequ
e
n
c
y rang
e of
1
Hz
–
0.1
MH
z.
2.
E
X
PERI
MEN
T
AL SETUP
HI
OK
I
35
2
2
-
5
0 LC
R
Hi
-t
est
e
r de
vi
ce as s
h
ow
n i
n
Fi
g.(1) has
been m
e
a
s
ure
d
electrical
param
e
ters
of
nan
o
-m
et
ri
c sol
i
d
di
el
ect
ri
c i
n
sul
a
t
i
on s
p
ecim
e
ns at
vari
ous f
r
e
que
nci
e
s:
|
Z
|
,
|
Y
|
,
θ
,
Rp
(DCR
), Rs (ESR,
DCR),
G
,
X, B,
Cp, Cs, L
p
,
Ls
, D
(tan
δ
)
,
and Q
.
Sp
ecif
i
catio
n
of
LCR is Po
w
e
r
su
pp
ly: 10
0, 120
,
2
2
0
o
r
2
40
V(
±1
0%
)
AC
(sel
ect
abl
e
),
5
0
/
6
0
Hz, a
n
d
Fre
que
ncy
:
D
C
, 1 m
H
z t
o
10
0
k
H
z,
Di
sp
l
a
y
Screen:
L
C
D wi
t
h
backl
i
g
ht
/
9
99
99
(f
ul
l
5
di
gi
t
s
), B
a
si
c Acc
u
racy
:
Z:
±
0
.
0
8% r
d
g.
θ
: ±0.05
˚
, and E
x
ternal DC
bias
±40 V
m
a
x.(
opt
i
o
n)
(
3
5
2
2
-
5
0 u
s
ed
al
one
±1
0
V
m
a
x./
usi
n
g
9
2
6
8
±4
0
V m
a
x.
). Fi
nal
l
y
, I
t
can b
e
m
easure
d
al
l
d
i
electr
i
c pr
oper
ties fo
r
pu
r
e
an
d n
a
no
co
m
p
o
s
ite ind
u
s
t
r
ial m
a
ter
i
als b
y
usin
g HI
OK
I 352
2-5
0
LCR H
i
-
t
ester
devi
ce a
n
d
ha
v
e
bee
n
det
ect
ed as
sh
o
w
n
i
n
r
e
sul
t
s
an
d
di
sc
ussi
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Experime
ntal
Dielectric
Mea
sure
ments f
o
r
Cost-fewer P
o
lyvinyl Ch
l
o
ri
d
e
N
a
noc
o
m
p
o
s
i
t
e
s (
A
hme
d
T
h
abet
)
15
Fi
gu
re
1.
Li
fe
ph
ot
o
f
o
r
ex
pe
ri
m
e
nt
al
HIOK
I
35
2
2
-
5
0
LC
R
Hi
-t
est
e
r
de
vi
ce eq
ui
pm
ent
’
s
3.
R
E
SU
LTS AN
D ANA
LY
SIS
Th
e i
n
du
strial
n
a
n
o
c
o
m
p
o
s
ites m
a
teria
l
s stu
d
i
ed
h
e
re is
PVC th
at
h
a
s
b
een fo
rm
u
l
ated
u
tilizin
g
nanoparticulat
es. T
h
e
base
of all these
polymer m
a
terial
s is a c
o
mmercially available material already
in use
i
n
t
h
e m
a
nufa
c
t
u
ri
n
g
of
hi
g
h
-
v
ol
t
a
ge H
V
i
n
d
u
st
ri
al
p
r
od
uct
s
a
nd t
h
ei
r pr
o
p
ert
i
e
s
det
a
i
l
e
d i
n
Ta
bl
e 1.
Add
itiv
es
o
f
nan
o
p
a
rticles to
th
e b
a
se i
n
d
u
strial p
o
l
ym
ers h
a
s
b
een
fab
r
icated
b
y
u
s
i
n
g
m
i
x
i
n
g
,
u
ltraso
n
i
c,
and s
o
ft
heat
i
ng
pr
ocesses i
n
Na
no
-t
ech
n
o
l
o
gy
R
e
searc
h
C
e
nt
re
, As
wan
,
Egy
p
t
.
P
r
epa
r
at
i
on
of
st
udi
e
d
pol
y
m
ers has
been
use
d
S
O
L-G
EL m
e
t
hod. T
h
e s
o
l
-
gel
pr
ocessi
ng
of
t
h
e na
n
opa
rt
i
c
l
e
s i
n
si
de t
h
e p
o
l
y
m
e
r
d
i
sso
l
v
ed in
no
n-
aq
u
e
ou
s
o
r
aq
ueou
s so
lu
t
i
o
n
is the
id
eal p
r
o
cedure for th
e
form
atio
n
of in
terp
en
et
ratin
g
n
e
two
r
k
s
b
e
tween
ino
r
g
a
n
i
c
an
d org
a
n
i
c mo
ieties at th
e
mild
er te
m
p
eratu
r
e in im
p
r
o
v
i
n
g
goo
d
co
m
p
atib
ility
and buildi
n
g s
t
rong interfaci
al interaction
betwee
n t
w
o phases. T
h
is
process
has
bee
n
use
d
s
u
ccess
f
ully to
pre
p
are
na
n
o
c
o
m
posi
t
e
s wi
t
h
na
no
pa
rt
i
c
l
e
s i
n
a ra
n
g
e
of
po
ly
m
e
r m
a
trices. Sev
e
ral st
rateg
i
es for th
e
so
l-g
e
l
pr
ocess
are
ap
pl
i
e
d
fo
r
fo
rm
at
i
on
of
t
h
e
hy
b
r
i
d
m
a
t
e
ri
al
s. One
m
e
t
hod i
n
vol
ves t
h
e
pol
y
m
eri
zat
i
on o
f
o
r
ga
ni
c
fu
nct
i
o
nal
g
r
o
ups
f
r
o
m
a pre
f
o
r
m
e
d sol
–
gel
net
w
o
r
k
.
T
h
e
so
l-
g
e
l
p
r
o
cess is a
rich ch
emistry wh
ich has b
een
revi
e
w
ed el
se
whe
r
e
on t
h
e
pr
ocessi
ng
of
m
a
t
e
ri
al
s from
gl
ass t
o
pol
y
m
ers. The
or
g
a
ni
c–i
n
o
r
ga
ni
c
hy
b
r
i
d
n
a
no
co
m
p
o
s
ites co
m
p
r
i
sing
o
f
po
lym
e
r
,
an
d n
a
nop
ar
ticles w
e
r
e
sy
n
t
hesized
thro
ugh so
l
–
g
e
l techniq
u
e
at
am
bi
ent
t
e
m
p
erat
ure
.
T
h
e
i
n
o
r
ga
ni
c p
h
ase
was ge
nerat
e
d i
n
si
t
u
by
hy
dr
ol
y
s
i
s
–co
nde
nsat
i
on
of
t
e
t
r
aet
ho
xy
si
l
a
ne TE
OS
i
n
di
ffe
rent
c
o
ncen
t
r
at
i
ons,
under acid catalysis, in
prese
n
ce
of the
orga
nic
pha
se,
pol
y
m
er, di
ss
o
l
ved i
n
fo
rm
i
c
aci
d [
2
9]
.
Tabl
e 1. Di
el
i
c
t
r
i
c
Pr
ope
rt
i
e
s of
Pu
re
a
n
d Na
no
-c
om
posi
t
e
M
a
t
e
ri
al
s
Materi
als Dielectri
c
constant at 1kHz
Resistivity
(
Ω
.m
)
Pur
e
PVC
3.
3
10
13
PVC + 1%wt Clay
3.
20
10
14
PVC + 5%wt Clay
2.
83
10
14
-10
17
PVC + 10%wt Clay
2.
49
10
17
-10
20
PVC + 1%wt
Fu
med Silica
3.35
10
12
PVC + 5%wt
Fu
med Silica
3.42
10
12
-10
10
3.1. Propertie
s
of Nanofillers
Nanofillers of
clay are n
a
nomer 1
.
30
E, C
o
st-less cl
ay catalyst is th
e b
e
st filler am
o
n
g
n
a
n
o
fillers
in
du
strial m
a
te
rials. Th
e m
a
i
n
con
s
titu
en
t o
f
n
a
n
o
f
iller clays sig
n
i
ficant q
u
a
n
tities o
f
o
t
h
e
r n
a
no
clays can
oft
e
n be pr
ese
n
t
.
Sp
heri
cal
part
i
c
l
e
shape
i
s
t
h
e
m
o
st im
port
a
nt
char
act
eri
s
t
i
c
of nanocl
a
y
fo
r p
o
l
y
m
e
r
ap
p
lication
s
. Th
e p
l
aty n
a
tu
re
m
ean
s th
at c
l
ay fillers
h
a
v
e
a g
r
eater effect o
n
p
r
op
erti
es su
ch
as v
i
sco
s
ity,
stiffn
ess an
d
streng
th
,
u
s
ing
clay as n
a
n
o
f
iller g
i
v
e
s
hig
h
lev
e
ls of flam
e
retard
ancy to
th
e p
r
od
u
ced
com
posite, and it’s selected
in this study.
Cost less of
cl
ay catalyst to be the be
st filler am
ong na
no-fillers
in
du
strial m
a
te
rials [24
]-[27
]. Nan
o
fillers of fu
m
e
d
s
ilica are a fl
u
f
fy wh
ite po
wd
er with
an
ex
trem
e
l
y lo
w
d
e
nsity,
m
a
rk
eted
u
n
d
e
r trad
e n
a
m
e
s su
ch
as A
e
rosil an
d
C
a
b
-
o
-
sil.
W
ith
b
o
t
h
h
ydro
phob
ic an
d
h
ydroph
illic
gra
d
es a
v
ai
l
a
bl
e, i
t
i
s
wi
del
y
use
d
as a
r
h
e
o
l
ogy
m
odi
fi
er
, i
m
part
i
ng hi
ghl
y
t
h
i
xot
ro
pi
c
p
r
o
p
ert
i
e
s at
rel
a
t
i
v
el
y
lo
w p
e
rcen
tages. It can
also
p
r
ov
id
e in
creased
track,
b
e
tt
er stab
ility in
su
sp
en
si
on
s and
prev
en
ts “sag
g
i
n
g
”
an
d settlin
g
o
f
so
lid
s i
n
a liquid
system
. Fo
r
th
is reason
it
is p
a
rticu
l
arly suitab
l
e for
co
atin
g
s
, ink
s
, ad
h
e
siv
e
s,
resin
s
, sealan
t
s
, and
greases. Fu
m
e
d
silic
a, or
fu
m
e
d
silico
n
d
i
o
x
i
d
e
, is produ
ced
b
y
th
e
v
a
p
o
r-p
h
a
se
h
ydro
l
ysis
o
f
silico
n
tetrach
l
orid
e i
n
an
H
2
/O
2
flam
e. Hyd
r
op
h
ilic fu
m
e
d
si
lica b
eari
n
g h
y
d
r
ox
yl group
s
o
n
its
surface is produced
by this
process. Fum
e
d silica powde
rs used in
paint
s
and c
o
atings, silicone rubbe
r and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 1, Feb
r
uar
y
20
1
5
:
1
3
– 22
16
silico
n
e
sealants, adh
e
sives,
cab
le co
m
p
o
u
n
d
s
an
d g
e
ls
,
p
r
i
n
tin
g ink
s
an
d ton
e
r, an
d
p
l
an
t
p
r
o
t
ection
[28
]
-
[3
0]
.
3.2.
Propertie
s of In
dus
trial
Pol
y
mers
PVC
i
s
t
h
e m
o
st
wi
del
y
use
d
of a
n
y
o
f
t
h
e
t
h
erm
opl
ast
s
,
pol
y
m
eri
zed vi
ny
l
chl
o
ri
de, a
nd
w
h
i
c
h i
s
pr
o
duce
d
f
r
om
et
hy
l
e
ne and a
nhy
dr
o
u
s hy
d
r
ochl
ori
c
aci
d.
PVC
i
s
st
ro
nge
r an
d m
o
re ri
gi
d t
h
an
ot
he
r ge
neral
purpose t
h
erm
oplastic m
a
terials. It has
a hi
gh tensile
stre
ngth and m
odul
us of elastic
ity.
Additives a
r
e used to
furthe
r speci
fic end
uses,
suc
h
as therm
a
l sta
b
ilizers, lu
bri
c
i
t
y
,
im
pact
m
odi
fi
ers, a
nd
pi
g
m
ent
a
t
i
on. T
h
e
r
e are
t
w
o basi
c f
o
r
m
s of PVC
ri
g
i
d and pl
ast
i
c
i
zed. R
i
gi
d P
V
C
,
as i
t
s
nam
e
sug
g
est
s
, i
s
an u
n
m
odi
fi
ed pol
y
m
er
and
ex
hi
bi
t
s
h
i
gh
ri
gi
di
t
y
. U
n
m
odi
fi
ed
PV
C
i
s
st
ro
n
g
er
and stiffe
r t
h
a
n
PE a
n
d PP. Plasticized PVC is
m
o
d
i
fied
b
y
t
h
e add
itio
n of a lo
w m
o
lecu
lar
weigh
t
sp
ecies to
flex
i
b
ilize th
e
po
ly
m
e
r. Plasticized
PVC can
b
e
form
u
l
ated
to
g
i
v
e
p
r
od
u
c
ts with
rubb
ery b
e
h
a
v
i
our.
It
is m
o
d
i
fied
by th
e add
ition
o
f
styren
e bu
tad
i
en
e
ru
b
b
er
whi
c
h i
m
proves
n
o
t
c
h
t
o
u
g
hness
an
d i
m
pact
st
rengt
h.
PVC
’
s a
r
e basi
cal
l
y
t
o
u
gh
an
d st
r
o
ng
,
resi
st
w
a
te
r
and
ab
r
a
s
i
o
n
,
an
d a
r
e
ex
c
e
lle
n
t
electri
cal insulators
[14], [30].
3.3.
Propertie
s of In
dus
trial
Pol
y
mers and
Na
no
fillers
PVC
i
s
t
h
e m
o
st
wi
del
y
use
d
of a
n
y
o
f
t
h
e
t
h
erm
opl
ast
s
,
pol
y
m
eri
zed vi
ny
l
chl
o
ri
de, a
nd
w
h
i
c
h i
s
pr
o
duce
d
f
r
om
et
hy
l
e
ne and a
nhy
dr
o
u
s hy
d
r
ochl
ori
c
aci
d.
PVC
i
s
st
ro
nge
r an
d m
o
re ri
gi
d t
h
an
ot
he
r ge
neral
p
u
rp
o
s
e th
ermo
p
l
astic m
a
terials. It h
a
s a h
i
gh
ten
s
ile strength
an
d
m
o
du
lus o
f
elasticity.
Th
e m
a
in
co
n
s
titu
en
t
o
f
n
a
n
o
fillers
o
f
clay sign
ifican
t qu
an
tities o
f
o
t
h
e
r
n
a
no
clays can
often
b
e
presen
t.
Sph
e
rical p
a
rticle sh
ap
e
(Di
a
.:
10
nm
) i
s
t
h
e
m
o
st
im
p
o
rt
a
n
t
charact
e
r
i
s
t
i
c
of cl
ay
and f
u
m
e
d si
li
ca nano
pa
rt
i
c
l
e
s whi
c
h
used
for
n
a
no
co
m
p
o
s
ites po
ly
m
e
r ap
p
l
icatio
n
s
in
th
is research
.
Th
e
p
l
aty n
a
tu
re m
ean
s th
at clay fillers h
a
v
e
a
g
r
eater
effect on
p
r
operties su
ch
as
v
i
sco
s
ity, stiffn
ess an
d
st
reng
th
,
u
s
i
n
g
clay as n
a
no
filler g
i
v
e
s
h
i
gh
lev
e
ls of
flam
e retardancy to the
produced c
o
m
pos
ite, and
it’s
selected
in th
is st
u
d
y
.
The di
st
ri
b
u
t
i
o
n
o
f
na
no
par
t
i
c
l
e
s
wi
t
h
i
n
pol
y
m
er
m
a
t
r
ix has bee
n
d
e
t
ect
ed
by
usi
n
g
sca
nni
n
g
el
ect
ron m
i
cr
osc
ope (
S
EM
)
as show
n i
n
Fi
gure
2, an
d Fi
g
u
re 3 r
e
spect
i
v
el
y
.
Fa
bri
cat
ed a
nd
t
e
st
i
n
g
nan
o
c
o
m
posi
t
e
i
ndust
r
i
a
l
m
a
teri
al
s have bee
n
d
one
by
usi
n
g al
l
experi
m
e
nt
al
set
up an
d equi
pm
ent
’
s i
n
Nan
o
-
Technol
ogyRe
search Ce
nter. Dielectric
Spect
rosc
opy
i
s
a po
wer
f
ul
ex
peri
m
e
nt
al
m
e
tho
d
t
o
i
n
vest
i
g
at
e t
h
e
dy
nam
i
cal
behavi
o
r
of a sam
p
l
e
t
h
r
o
u
g
h
t
h
e anal
y
s
i
s
of its freque
n
cy depende
n
t dielectric response. This
t
echni
q
u
e i
s
ba
sed
on
t
h
e m
easurem
ent
of
t
h
e capaci
t
a
nce a
s
a f
unct
i
on
o
f
fre
que
ncy
of a
sam
p
l
e
sandwi
c
hed
bet
w
ee
n t
w
o el
ect
ro
des. T
h
e t
a
n
δ
, a
nd ca
pa
ci
t
a
nce C
were
m
easured as a
fu
nct
i
on
of
fre
que
ncy
i
n
t
h
e r
a
ng
e
10
Hz t
o
5
0
k
H
z at
2
5
°C
f
o
r al
l
t
h
e t
e
st
sam
p
l
e
s. The
m
easurem
ent
s
were m
a
de usi
ng
hi
gh
res
o
l
u
t
i
on
dielectric spect
rosc
opy.
Fi
gu
re
2.
SEM
im
ages f
o
r
di
s
p
ersi
on
o
f
cl
ay
an
d
fum
e
d si
l
i
ca na
no
pa
rt
i
c
l
e
s i
n
P
V
C
(C
l
a
y
/
PVC
nan
o
c
o
m
posi
t
e
s)
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Experi
me
nt
al
Di
el
ect
ri
c Mea
s
ure
m
ent
s
f
o
r
C
o
st
-f
ew
er P
o
l
yvi
nyl
C
h
l
o
ri
d
e
N
a
noc
o
m
p
o
s
i
t
e
s (
A
hme
d
T
h
abet
)
17
Fi
gu
re
3.
SEM
im
ages f
o
r
di
s
p
ersi
on
o
f
cl
ay
an
d
fum
e
d si
l
i
ca na
no
pa
rt
i
c
l
e
s i
n
P
V
C
(F
um
ed Si
l
i
ca/
PVC
nan
o
c
o
m
posi
t
e
s)
4.
Predictable Mechanic
al
and Electrical
Fig
u
re
4
illu
strates th
e electri
cal an
d m
ech
an
ical prop
erties of Clay/PVC
n
a
no
co
m
p
o
s
ites u
s
i
n
g CES
so
ft
ware [31
,
3
2
]
. Th
e in
itial resu
lts u
s
ing th
e p
r
ed
ic
tab
l
e m
o
d
e
l
(CES-Software)
showed
that ad
d
i
t
i
o
n
of
clay p
a
rticles t
o
PVC can
cau
se in
creasing
in
electrical
resistiv
ity an
d
mo
du
lus o
f
elast
i
city. Th
e clay
fillers
loading are
be
tween 1 t
o
70 % wt/wt. Electri
cal resistivity was increas
ed from
1.1×
10
9
to
9
×10
10
oh
m
.
m
(m
ean
v
a
lu
e).
Mo
du
lu
s
o
f
elasticity
was i
m
p
r
ov
ed
sig
n
i
fican
tly fro
m
3
.
1
9
0
GPa to
9
3
.30 GPa with
respect to
clay fillers lo
ad
ing
1
to
7
0
% wt/wt.
Wh
atev
er, Fi
g
u
re
5 sh
ows th
e electrical an
d
m
e
ch
an
ical prop
erties o
f
Fum
e
d si
l
i
ca/PVC
na
n
o
com
posi
t
e
s
by
usi
ng C
E
S so
ft
w
a
re. A
d
di
t
i
on
of si
l
i
ca t
o
P
V
C
l
eads t
o
i
m
prove
electrical resistivity of PVC. It is
detected that the electr
i
cal resistivity
can be i
n
crea
sed u
p
t
o
5.
0
×10
1
0
Oh
m
.
m
(
m
ean
v
a
lu
e) u
s
ing
70
% Silica wt/
w
t. Th
is can
be attrib
u
t
ed
to
th
e h
i
gh
electrical resistiv
ity
o
f
silica
(1.0
×1
012
-1
.0 ×1
01
3
o
h
m
.
m
) co
m
p
arin
g
with
lo
wer electrical resistiv
ity
v
a
lu
e of PVC
m
a
trix
(3
.16
×1
0
9
-
3.
16
×1
0
9
ohm
.m
). M
odul
us
o
f
el
ast
i
c
i
t
y
of P
V
C
w
a
s i
n
c
r
ea
sed
fr
om
3 G
P
a t
o
72
G
P
a i
n
t
h
e p
r
ese
n
ce
of
7
0
%
wt/wt silica.
Figure
4. Electrical resistivity
and m
echanic
al properties
of PVC
-
Clay usi
n
g CES
progra
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 1, Feb
r
uar
y
20
1
5
:
1
3
– 22
18
Figure
5. Electrical resistivity
and m
echanic
al properties
of
PV
C
-
Silica usin
g CES
p
r
ogr
am
5.
Results
and
Discusion
Fi
gu
re 6 s
h
ow
s l
o
ss t
a
nge
nt
as a funct
i
o
n
of f
r
eq
ue
ncy
for C
l
ay
/
P
V
C
nan
o
com
p
o
s
i
t
e
s at
room
te
m
p
erature (25
o
C).
Also, this fig
u
re co
n
t
rasts th
e m
eas
u
r
ed
lo
ss tangen
t
with
rising
p
e
rcen
tag
e
o
f
clay
n
a
nofillers in
new n
a
n
o
c
o
m
p
o
site. It is clear
ed
th
at, th
e lo
ss tan
g
e
n
t
o
f
Clay/PVC n
a
no
co
m
p
o
s
ites d
ecreases
with
in
creasing
frequ
en
cy
bu
t, it in
creases with
in
creasi
n
g
clay p
e
rcen
tag
e
n
a
n
o
fillers u
p
to
1
0
%wt Clay.
Fi
gu
re 7 s
h
o
w
s capaci
t
a
nce as a funct
i
on
of f
r
e
que
ncy
f
o
r C
l
ay
/
P
VC
nan
o
c
o
m
posi
t
e
s at
room
t
e
mperat
ur
e
25
o
C. Also
, t
h
is figu
re con
t
rasts th
e m
easu
r
ed
cap
acitan
c
e with
risin
g
percen
tag
e
o
f
cl
ay n
a
no
fillers
in
th
e
nanoc
o
m
posite. It is cleared
that, the ca
pac
itance of
Clay/PVC n
a
no
com
p
o
s
ites d
ecreases with in
creasin
g
freq
u
e
n
c
y
and
in
creases with
in
creasing
clay
p
e
rcen
tag
e
n
a
n
o
fillers up
to
1
%
wt
. Bu
t, it is n
o
ticed
t
h
at,
th
e
cap
acitan
ce
o
f
Clay/PVC n
a
n
o
c
o
m
p
o
s
ites
d
ecreases with
in
creasi
n
g
clay p
e
rcen
tag
e
nan
o
fillers fro
m
1
%
wt
up t
o
10
%wt
.
Fi
gu
re 8 s
h
o
w
s l
o
ss t
a
nge
nt
as a funct
i
o
n o
f
fre
q
u
ency
f
o
r
Fum
e
d Si
l
i
ca/PVC
na
no
com
posi
t
e
s
at room
te
m
p
e
r
ature
(25
o
C
)
.
Al
so,
t
h
i
s
fi
gu
re co
nt
rast
s t
h
e
m
easure
d
l
o
s
s
t
a
nge
nt
wi
t
h
ri
si
ng
pe
rcent
a
ge o
f
fu
m
e
d
silica n
a
n
o
fillers in
n
e
w n
a
n
o
c
o
m
p
o
s
ites. It is
illu
st
rates th
at, th
e lo
ss tang
en
t of PVC d
e
creases with
in
creasing
freq
u
e
n
c
y bu
t it
in
creases at h
i
gh
fre
qu
en
ci
es. And
so
, lo
ss tang
en
t of Fu
m
e
d
Silica
/
PVC
n
a
no
co
m
p
o
s
ites d
ecreases wit
h
in
creasing
fumed
silica p
e
rcen
tag
e
n
a
nofillers up
to
5
%
fu
m
e
d
silica. Also
, it
is no
ticed
th
at, th
e loss tang
en
t of
Fu
m
e
d
Si
lica/PVC
n
a
n
o
co
m
p
o
s
ites
in
creases with
i
n
creasing
fu
m
e
d
silica
p
e
rcen
tag
e
n
a
no
fillers fro
m
5
%
wt. up
to
10%wt. fu
m
e
d
sil
i
ca n
a
no
p
a
rticles. Figu
re
9
sho
w
s cap
acitan
c
e as a
fu
nct
i
o
n
of
f
r
e
que
ncy
fo
r
f
u
m
e
d si
l
i
ca/
PVC
nan
o
c
o
m
posi
t
e
s.
Al
so
, t
h
i
s
fi
gu
re c
o
n
t
rast
s t
h
e m
easure
d
capaci
t
a
nce
wi
t
h
ri
si
n
g
pe
rce
n
t
a
ge
o
f
fum
e
d si
l
i
ca na
n
o
fi
l
l
ers i
n
t
h
e
ne
w
na
noc
om
posi
t
e
. It
i
s
de
pi
ct
ed t
h
at
,
the capacitanc
e of fum
e
d silica/PVC na
noc
om
posites decreas
es with increasing fre
que
ncy and dec
r
eas
es with
in
creasing
fu
med
silica p
e
rcen
tag
e
n
a
no
fillers up
to
5
%
wt. Bu
t, it is
n
o
ticed
th
at, th
e cap
acitan
ce of fu
m
e
d
silica/PVC n
a
no
co
m
p
o
s
ites increases
with
increasing
fu
m
e
d
silica p
e
rcentag
e
n
a
no
fillers fro
m
5
%
wt
u
p
t
o
10
%wt
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Experime
ntal
Dielectric
Mea
sure
ments f
o
r
Cost-fewer P
o
lyvinyl Ch
l
o
ri
d
e
N
a
noc
o
m
p
o
s
i
t
e
s (
A
hme
d
T
h
abet
)
19
Fi
gu
re
6.
M
eas
ure
d
l
o
ss t
a
nge
nt
as a
f
unct
i
on
o
f
f
r
e
que
ncy
f
o
r
C
l
ay
/
P
VC
n
a
noc
om
posi
t
e
s at
r
oom
te
m
p
erature
(25
o
C)
Fi
gu
re
7.
M
eas
ure
d
ca
paci
t
a
n
ce as a
fu
nct
i
o
n
of
f
r
eq
ue
ncy
fo
r C
l
ay
/
P
VC
nan
o
c
o
m
posi
t
e
s at
r
oom
te
m
p
erature
(25
o
C)
Fi
gu
re
8.
M
eas
ure
d
l
o
ss t
a
nge
nt
as a
f
unct
i
on
o
f
f
r
e
que
ncy
f
o
r
Fum
e
d Si
l
i
ca/
PVC
nan
o
c
o
m
posi
t
e
s at
ro
o
m
te
m
p
erature
(25
o
C)
-0
.1
6E
-
1
6
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
1
1
0
100
1000
10000
100000
Tan Delta
Fr
equency
(
H
z)
Pure PVC
PVC+1%Clay
PVC+5%Clay
PVC+10%Clay
1E
‐
12
1E
‐
11
1E
‐
10
1E
‐
09
1E
‐
08
1
1
0
100
1000
10000
100000
Capacitance
(F)
Frequency
(Hz
)
Pure
PV
C
PVC+1%Clay
PVC+5%Clay
0
0.
1
0.
2
0.
3
0.
4
0.
5
0.
6
1
1
0
100
1000
10000
100000
Tan
Delta
Frequency
(Hz
)
Pure
PV
C
PV
C+1
%
Fumed
Silic
a
PV
C+5
%
Fumed
Silic
a
P
V
C+10%Fumed
Silic
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 1, Feb
r
uar
y
20
1
5
:
1
3
– 22
20
Fi
gu
re
9.
M
eas
ure
d
ca
paci
t
a
n
ce as a
fu
nct
i
o
n
of
f
r
eq
ue
ncy
fo
r F
u
m
e
d Si
l
i
ca/
PVC
nan
o
c
o
m
posi
t
e
s at
r
o
om
te
m
p
erature
(25
o
C)
6.
CO
NCL
USI
O
N
Ad
di
n
g
cl
ay
n
a
no
pa
rt
i
c
l
e
s t
o
pol
y
p
r
o
p
y
l
ene
and
pol
y
v
i
n
y
l
C
h
l
o
ri
de i
s
d
ecreasi
n
g pe
r
m
i
t
t
i
v
i
t
y
and
in
creasing
t
h
e
resistiv
ity o
f
t
h
e
p
o
l
ym
er, wh
ile add
i
ng
fumed
silica n
a
no
p
a
rticles is increasing
p
e
rm
i
ttiv
it
y
an
d
d
ecreasi
ng th
e resistiv
ity
o
f
th
e polymer. Increasi
ng
perce
n
tage cl
ay n
a
n
o
p
a
rticles in
creases th
e lo
ss
t
a
nge
nt
an
d ca
paci
t
a
nce o
f
p
o
l
y
pr
o
p
y
l
ene
nan
o
c
o
m
posi
t
e
s. O
n
t
h
e
ot
he
r wi
se, i
n
creas
i
ng
perce
n
t
a
ge
cl
ay
nan
o
p
art
i
c
l
e
s up t
o
1%
wt
i
n
creases t
h
e l
o
s
s
t
a
nge
nt
and
capaci
t
a
nce o
f
Pol
y
vi
ny
l
chl
o
ri
de na
noc
om
posi
t
e
s
.
Bu
t, th
e cap
acitan
ce
o
f
Po
lyvin
y
l ch
lorid
e
decreases
w
ith
in
creasi
n
g
clay p
e
rcen
tag
e
n
a
no
fillers fro
m
1%wt
up t
o
1
0
%
w
t
.
Inc
r
easi
n
g f
u
m
e
d si
l
i
ca nan
o
p
a
rt
i
c
l
e
s up t
o
5
%
wt
i
n
p
o
l
y
pr
opy
l
e
ne
na
noc
om
posi
t
e
s i
n
cr
ease
s
lo
ss tang
en
t and
cap
acitan
c
e,
b
u
t
it d
ecreases with
in
cr
easin
g
fu
m
e
d
silica n
a
nop
articles u
p
t
o
10
%wt.
On
t
h
e
ot
he
r wi
se
, i
n
c
r
easi
n
g f
u
m
e
d si
l
i
ca nano
pa
rt
i
c
l
e
s up t
o
5%
wt
i
n
pol
y
v
i
n
y
l
chl
o
ri
de
na
no
com
posi
t
e
s de
crease
s
lo
ss tang
en
t and
cap
acitan
ce,
b
u
t
it in
creases with
i
n
creasi
n
g
fu
m
e
d
silica n
a
nop
articles
up
to10
%wt.
ACKNOWLE
DGE
M
ENTS
The
prese
n
t work
was s
u
pported by
th
e
Scien
ce and
Techno
log
y
D
e
v
e
lopmen
t Fu
nd
(
S
TD
F), Eg
yp
t
,
Gra
n
t No: Pr
oject
ID
5
0
5
.
REFERE
NC
ES
[1]
Tanak
a
, T
., M
o
n
t
anar
i, G.C
., and
M
ü
lhaupt, R. “
P
ol
y
m
er Nanoco
m
pos
ites
as
Dielectr
i
cs
and El
ec
t
r
ica
l
Ins
u
lation
-
P
e
rs
pectiv
es
for P
r
oces
s
i
ng Tech
nologies
, M
a
t
e
ri
al
Characterization and Fu
ture Applic
ations”
,
IEEE Transactions
on Diel
ectr
i
cs
a
nd El
ectr
i
cal
Ins
u
lation,
Vol.11,
No. 5, pp. 763-7
84, 2004
.
[2]
Cao, Y
.
, Irwin,
P.C., and Youn
si, K.
, “The Future of N
a
nodielectr
i
cs
in
th
e Electr
i
cal Power I
ndustr
y
”
,
IE
EE
Transactions on
Diele
c
trics and
Ele
c
trica
l
Insula
tion
, Vol. 11, No. 5
,
pp
. 797-807
, 2004.
[3]
M.
A.
Abd Allah,
Say
e
d A.
Ward,
and Amr A.
Youssef,
“E
ffect of Functionally Graded
Ma
te
rial of Disc
Spa
c
e
r
with Presence
o
f
Multi-Cont
am
inating Par
tic
les
on
Ele
c
tri
c
Fie
l
d inside Gas In
sulated Bus Du
ct”
,
Internationa
l
Journal of Electrical and
Co
mputer
Eng
i
neer
ing
(
I
JECE)
, Vol. 3
,
No. 6
,
De
cember 2013, pp. 831-
848.
[4]
Hamdy
Mohamed Soliman and S.M. El.
Hakim, “Optimum Reme
dial Oper
a
tion o
f
Permanent MagnetS
y
n
chronou
s
Motor”
,
In
ternational Journal
of Electrica
l
and
C
o
mputer Engin
e
ering (
I
JECE)
,
Vol.2, 2012, pp.621-631.
[5]
A. S
l
uzale
c
, “
S
tochas
ti
c finit
e
el
em
ents
in optim
izat
ion of powder m
e
tallurg
y m
a
t
e
ria
l
s
,
”
Mechanics Based Design
of Structures an
d Machin
es
, Vol.40, No.1, pp. 33
-41, 2012
.
[6]
A. Sluzalec,
“Stochastic sen
s
itivit
y
in m
e
tal form
ing o
f
rigidporopl
astic m
a
t
e
ri
als,”
Structural a
n
d
Multidisc
i
plinar
y Optimizat
ion
,
Vol.45, No. 1
,
p
p
. 139-145
, 201
2.
[7]
Eugen COCA, Valentin POPA,
“Antenna
Radiation Pattern Inf
l
uence on the
L
o
cal
iza
tion Acc
u
rac
y
in W
i
rel
e
ss
Sensor Networks”,
Ad
vanc
es in
Ele
c
trica
l
and
C
o
mputer Engin
e
ering
, Vol. 13
, p
p
. 43-46
, No. 2,
2013.
[8]
A. Thabet, Yous
sef A. Mobarak,
“Expe
rim
e
ntal S
t
ud
y
for Di
el
ectr
i
c S
t
rengt
h o
f
New Nanocomposite Poly
eth
y
len
e
Industrial Materials",
Internation
a
l Journal of Electrica
l Engin
e
ering and Technology (
I
JEET)
,
Vol. 3, Issue 1, pp
.
553-564, Jan-
June 2012.
[9]
J.I. Hong, L.S. Schadler, R.W
.
Sieg
el, E. Martensson, “Res
caled Electrical
Proper
ties of ZnO/Low Density
Poly
eth
y
len
e
Nanocomposites”
A
pplied
Physi
c
s Lett
ers
, Vol.82
Issue. 12
, pp
. 195
6 – 1958
, Mar
2
003.
1E
‐
12
1E
‐
11
1E
‐
10
1E
‐
09
1E
‐
08
1
1
0
100
1000
10000
100000
Capacitance
(F)
Frequency
(Hz
)
Pure
PV
C
PV
C+1
%
Fumed
Silic
a
PV
C+5
%
Fumed
Silic
a
P
V
C+10%Fumed
Silic
a
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Experime
ntal
Dielectric
Mea
sure
ments f
o
r
Cost-fewer P
o
lyvinyl Ch
l
o
ri
d
e
N
a
noc
o
m
p
o
s
i
t
e
s (
A
hme
d
T
h
abet
)
21
[10]
G.C. M
ontan
ari
,
D. F
a
bi
ani
,
F
.
P
a
lm
ieri,
D. Kaempfer,
R. T
homann and
R. M
¨
u
l
haupt, “M
odification
of Electrical
Properties and
Perform
ance of
EVA and PP Insulation
through
Nanostructur
e
b
y
Organoph
ili
c Silicates”
IEEE
Transactions on
Diele
c
trics and
Ele
c
trica
l
Insula
tion
Vol. 11
, No. 5; pp
. 754-762
,
October 2004
.
[11]
T.
Tanak
a
,
“
D
iele
ctri
c Nano
co
m
posites with
Insulating Prop
erti
es”
IEEE T
r
ansactions on Dielectrics an
d
Ele
c
trica
l
Insula
tion
Vol. 12
, No. 5, pp. 914-928,
October 2005
.
[12]
N. Shi and R.
Ram
p
rasad, “Local Pr
operti
e
s at
Interfaces in Nanodielectric
s:
An abinitio Com
putational Stu
d
y
”
IEEE Transactio
ns on
Dielectrics
and Electrica
l
I
n
sulation
Vol. 1
5
, No. 1, pp. 170
-177, Febru
a
r
y
2
008.
[13]
X.
Y.
Huang,
P.
K.
Jiang,
C.
U.
Kim
,
“
E
lectri
cal
P
r
operties
of Po
ly
e
t
hy
le
ne/
A
l
u
mi
num
Nanocomposites”
Journal of
Applied
Ph
ysics,
Vol. 102, Issue
12, pp
. 124103
-
124103-8, Dec
2007.
[14]
Z. Dang, B
.
Xia, Sh. Yao, M. J
i
ang,
H. Song,
L. Zh
ang, D. Xi
e, “Hi
gh-Diel
ectri
c
-Perm
ittiv
it
y
High-E
l
asti
ci
t
y
Three-Component Nanocomposites with Low Percol
ation Thr
e
shold and Low Dielectric Loss”
Journal of Applied
Physics Le
tters,
Vol. 94
, Issue 4
,
pp. 42902
- 429
02-3, Jan
2009.
[15]
X. Huang, Ch. Kim, P. Jia
ng,
Y. Yin, Z. Li, “Influence of Alum
inum
Nanoparticle Surface Treatment on The
Ele
c
tri
cal Proper
ties of
Poly
eth
y
lene Composites”
Journal of Applied Physics,
Vol.105, Issue 1, pp. 14105 - 14105-
10, Jan
2009.
[16]
A. Thabet, and
Y.A. Mobarak,
“N
ovel Nanocomposite Insulation Material
s for the Enhancing Performance of
P
o
wer Cables
”
2
1
st, Internat
iona
l Conferen
ce an
d Exhib
itio
n
on
Electricity Distribution (
C
IRED-2011)
,
Frankfurt,
German
y
,
June 6
-
9, 2011
.
[17]
Ion R. STANCIU, Florin MOLNAR-MATEI, “
D
etecting
Po
wer Voltage D
i
ps Using Trac
king Filters -
A
Com
p
arison Against Kalm
an”
,
Advances
in
Electrical and
Computer Eng
i
neering
,
Vol. 12
, No. 4, p
p
. 77-82
, 2012
.
[18]
M.
Roy
,
J.
K.
Nelson,
R.
K.
MacCrone,
L.
S.
Sc
ha
dl
e
r
,
C.
W.
Re
ed,
R.
Kee
f
e,
“Poly
m
e
r
Na
noc
o
mposi
t
e
Di
el
e
c
t
r
ics-
the Rol
e
of
the
Interfa
ce
”
IEEE Transactions onD
iele
ctrics and
Ele
c
tri
c
al Insul
a
tion
, Vol. 12
I
ssue 4, pp. 629
–
643, Aug. 2005.
[19]
V. Tomer, G.
Polizos, C.A
.
Randall,
E. Manias, “Poly
e
th
y
l
ene Nanocomp
o
s
ite Die
l
ec
tri
c
s: Im
plica
tions
of
Nanofiller Orien
t
ation on High F
i
eld Properties and Energ
y
Storage”
Journal of
Applied Ph
ysics
,
Vol. 109 Issue 7,
pp. 74113
- 741
13-11, Apr 2011
.
[20]
Y. Murakami,
M. Nemoto, S.
Okuzum
i, S. Masuda, M. N
a
gao, N. Hozu
mi,
Y. Sekiguchi, “
D
C Conduction
and
Electrical Break
down of
MgO/LDPE Nanocomposite”
I
EEE Transaction on Dielectrics
and Electrical Insula
tion,
Vol. 15
Issue 1,
pp. 33
– 39
, Feb
r
uar
y
2008
.
[21]
G.D. Liang and
S.C. Tjong,
“Electrical Properties of
Percolative
Poly
sty
r
en
e/Car
bon Nanofiber Composites”
IEEE
Transactions on
Diele
c
trics and
Ele
c
trica
l
Insula
tion
Vol. 15
, No. 1; pp
. 214-220
,
Februar
y
2008
.
[22]
M.G. Veena, N.M. Renukappa
,
S. Seethar
a
m
u
, P. Sam
p
athkumararr
,
“Effect of
Nanofiller
at
Low Frequen
c
y
behavior of Dielectric Insulato
r”
IEEE, Proceedings of the 9th Inter
national Conference on
Properties and
Applica
tions o
f
Diele
c
tric
Mat
e
rials
July
19-23
,
Harbin, Ch
ina, 2
009.
[23]
K. Ishimoto, E. Kanegae, Y. Ohki, T.
Tanaka, Y. Sekiguchi, Y. Mu
rata and C. C. Redd
y
,
“S
uperiority
of Dielectric
Properties of LDPE/MgONanocom
posites over Microcomposites”
IEEE Transactio
ns on
Dielec
trics
and Electrica
l
Insulation
Vol. 1
6
, No. 6; pp. 173
5-1742, December 2009.
[24]
K.
S.
Sha
h
,
R.
C.
Ja
in,
V.
Shrine
t,
A
.
K.
Singh,
D.
P.
Bhar
ambe, “High Density
Po
ly
et
hy
lene
(HDPE
)
Clay
Nanocomposite
for Dielectric Applications”
I
E
E
E
Transactions on Diele
c
trics a
nd Ele
c
trica
l
In
sulation
Vol.
16,
No. 3;pp
853 -
8
61,
2009.
[25]
L.A. Utrack
i, “Clay
-
Containing
Poly
me
r
i
c Nanocomposites and their Properties”
IEE
E
, E
l
e
c
trical Insulat
i
o
n
Magazine
, Vol.
26, Issue 4
,
pp
. 8
,
July
2010
.
[26]
N. Fuse, Y. Ohki, and
T.
Tanak
a
, “C
omparison of
Nano-structur
ation Effects in Poly
prop
y
l
ene
among Four Ty
pical
Diele
c
tri
c
Prope
rties”
IEEE Transactions on
Dielectrics and Elec
trical Insulation
Vol. 17, No. 3;p
p
. 671-677, June
2010.
[27]
M. Takala, H
.
Ranta, P. Neva
lainen, P. Pakonen
,
J. Pelto, M.
Karttunen
,
S. Virtanen, V.
Koivu,
M. Pettersson, B
.
Sonerud and
K. Kannus, “Dielectr
i
c Prop
er
ties
and Pa
rtial Discharge En
durance
of Poly
prop
y
l
ene-Silica
Nanocomposite”,
IEEE Transactions on Dielectr
ics and Electrical Insulation
,
Vol. 17, No
. 4; pp. 1259-1267
,
August 2010.
[28]
M.
Amhid,
D.
Mary
,
G.
Tey
s
s
e
dreI,
C.
Laurent ,
G.
C.
M
onta
n
ari, D. Ka
em
pfer, R. M
i
ilhaup
t, “Effect of Filler
Concentr
ation o
n
Dielectric Beh
a
viour and
on Charge Trapp
i
ng in PP/clay
Nanocomposite”
IEEE, Annual Repor
t
Conference on
Electrical Insu
lation and Dielectric Ph
enomena
, 2
004.
[29]
L. Bois, F. Ch
assagneux, S. P
a
rola
, F. Bessueill
e. “Growth of Ordere
d Silv
er Nanopart
icl
e
s in Silica Fil
m
Mesostructured with
a Triblo
ck Copoly
m
er
PEO
–
PPO–
P
EO”
Jo
urnal of Solid
State Chemistry
Vol. 182
, pp. 1700
–
1707, 2009
.
[30]
A. Thabet, Y
.
A. Mobarak, “Diel
ectr
i
c Char
acteristics of New Nano-
Composite Industr
ial Materials”
Internation
a
l
Conference on
High Voltag
e
En
gin
eering and
Application (
I
CHVE-2010)
,
New Orleans, pp
. 568
-571, Octob
e
r 1
1
–
14, 2010
.
[31]
M. Takala, H
.
Ranta, P. Neva
lainen, P. Pakonen
,
J. Pelto, M.
Karttunen
,
S. Virtanen, V.
Koivu,
M. Pettersson, B
.
Sonerud and
K. Kannus, “Dielectr
i
c Prop
er
ties
and Pa
rtial Discharge En
durance
of Poly
prop
y
l
ene-Silica
Nanocomposite”,
IEEE Transactions on Dielectr
ics and Electrical Insulation
,
Vol. 17, No
. 4; pp. 1259-1267
,
August 2010.
[32]
Yousse
f A.
Mob
a
ra
k,
M.
Ba
ss
y
o
uni,
a
nd M.
Alma
ta
wa,
“Ma
t
e
r
ia
l
s
Selection
,
S
y
nt
hesis,
and Diele
c
tri
cal P
r
opert
ies
of PVC Nanocomposites",
Adva
nces in Materials
Science and Engineering
, Vol. 2013, Article I
D
149672, 6 pag
e
s,
2013.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 1, Feb
r
uar
y
20
1
5
:
1
3
– 22
22
BIOGRAP
HI
ES OF
AUTH
ORS
Ahmed Thabet
was born in Aswan, Eg
y
p
t
in
1974. He received the BS
c (F
EE) Electrical
Engineering deg
r
ee in 1997 and
MSc (FEE) Elec
trical
Engineering degree in 20
02 both from
Faculty
of
En
er
g
y
Engineering
,
Aswan, Eg
y
p
t.
P
h
D degree
ha
d been
rec
e
iv
ed
in E
l
e
c
tri
cal
Engineering in
2006 from El-Minia Univ
ersity
,
Mini
a,
Eg
y
p
t. He join
ed with
Electr
i
cal Power
Engineering Gro
up of Faculty
of
Energ
y
Engin
e
er
ing in Aswan U
n
iversity
as a D
e
monstrator at
Jul
y
1999
, un
til
;
he h
e
ld
Associate Professor Po
sition
at
Octob
e
r
2011 up to
date. His research
inter
e
sts lie
in
the
are
a
s of
anal
ysis and
d
e
velop
i
ng e
l
ec
tr
ica
l
eng
i
neer
ing
m
odels and
appli
cat
ions, inv
e
stigat
ing novel
nano-technolog
y
m
a
terials via ad
dition nano-scal
e parti
c
les and
additiv
es for us
age in
industri
a
l
branch, electrom
agnet
i
c m
a
t
e
ri
al
s, el
ectrolum
inescence and
the
relationship with
electrical and
t
h
erm
a
l ageing o
f
industrial pol
ym
ers. Man
y
of m
obilit
y
’
s have
investigated
for
supporting his r
e
search
exp
e
rien
ce
in UK, Fin
l
and, Italy
,
and U
S
A …etc. On
2009, he h
a
d b
e
en a Prin
ciple I
nvestigato
r
of
a funded project
from Science an
d Techno
log
y
development Fund “STDF” for
deve
loping ind
u
strial materials
of
ac and dc applications b
y
nano-technolog
y techniqu
es. He
has been establis
hed first Nano-Technolog
y
Res
e
arch Cen
t
re in
the Upper Eg
y
p
t (http://www.aswan.svu.edu
.
eg/na
no/ind
e
x.htm)
. He has many
of publications
which have b
e
en published
and under published
in nation
al,
intern
ation
a
l journals and
conferen
ces and held in
Nano-
Tec
hnolog
y
R
e
sear
ch Cen
t
re website.
Youssef A. Mobarak was born
in
Luxor,
Eg
y
p
t in
1971. He r
eceiv
ed his B.Sc. and
M.Sc. degr
ees
in El
ectr
i
c
a
l En
gineer
ing from
F
acult
y of
Ener
g
y
Eng
i
ne
ering
,
As
wan Univers
i
t
y
, Eg
yp
t, in
1997 and 2001 respectively
and
Ph.D. from Faculty
of
Engineering, Cairo University
, Eg
y
p
t, in
2005. He
join
ed Electr
i
cal
En
gineer
ing Dep
a
r
t
me
nt, Faculty
of Energ
y
Engineering
,
Aswan
Univers
i
t
y
as
a
Dem
ons
trator, a
s
an As
s
i
s
t
ant L
ectur
er, an
d as
a
n
As
s
i
s
t
ant P
r
ofes
s
o
r during the
periods of 1998
–2001, 2001–20
05, and
2005–2
009 respectiv
ely. He
joined
Artificial Complex
S
y
stems, Hiroshima University
,
Japan as a Re
searcher 2007–20
08. Also, he joined Faculty
of
Engineering, Ki
ng Abdulaziz U
n
iversit
y
, Rab
i
g
h
,
Saudi Ar
abia
as Associate Professor Position
at April 2014 up to date. His research inter
e
sts are power sy
stem planning, operation,
optimization, an
d techniques
ap
p
lie
d
to powe
r
s
y
ste
m
s.
Also,
his re
se
a
r
c
h
inte
re
sts a
r
e
wind
energ
y
,
and nan
o
techno
log
y
m
a
t
e
ria
l
s via add
itio
n nano-scal
e par
ticl
e
s and add
iti
ves for usage in
industrial field
Evaluation Warning : The document was created with Spire.PDF for Python.