I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
201
7
,
p
p
.
2
1
2
5
~
2
1
3
1
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
4
.
p
p
2
1
2
5
-
2131
2125
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Particle
Sw
a
rm
O
pti
m
i
z
a
tion
for th
e P
a
th
Lo
ss
Redu
ction in
Suburba
n and
R
u
ra
l
Area
M
ess
a
o
ud
G
a
ra
h
1
,
H
o
ucin
e
O
ud
ira
2
,
L
o
t
f
i D
j
o
ua
ne
3
,
Na
zih H
a
m
di
k
en
4
1,
2,
3
El
e
c
tro
n
ic De
p
a
rtem
e
n
t
,
Un
iv
e
rsit
y
M
o
h
a
m
e
d
Bo
u
d
iaf
-
M
’S
il
a
,
A
lg
e
ria
4
El
e
c
tro
n
ic De
p
a
rt
e
m
e
n
t,
Un
iv
e
rsity
o
f
-
Ba
tn
a
,
A
lg
e
ri
a
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
1
8
,
2
0
1
7
R
ev
i
s
ed
Ma
r
2
1
,
2
0
1
7
A
cc
ep
ted
A
p
r
1
3
,
2
0
1
7
In
th
e
p
re
se
n
t
w
o
rk
,
a
p
re
c
ise
o
p
t
im
iz
a
ti
o
n
m
e
th
o
d
is
p
ro
p
o
se
d
f
o
r
tu
n
i
n
g
th
e
p
a
ra
m
e
ters
o
f
th
e
COS
T
2
3
1
m
o
d
e
l
to
im
p
ro
v
e
it
s
a
c
c
u
ra
c
y
in
th
e
p
a
th
l
o
ss
p
ro
p
a
g
a
ti
o
n
p
re
d
ictio
n
.
T
h
e
P
a
rti
c
le
S
wa
r
m
Op
ti
m
iza
ti
o
n
is
u
se
d
t
o
tu
n
e
th
e
m
o
d
e
l
p
a
ra
m
e
ters
.
T
h
e
p
re
d
ictio
n
s
o
f
th
e
t
u
n
e
d
m
o
d
e
l
a
re
c
o
m
p
a
re
d
w
it
h
t
h
e
m
o
st
p
o
p
u
lar
m
o
d
e
ls.
T
h
e
p
e
rf
o
rm
a
n
c
e
c
rit
e
ria
s
e
lec
ted
f
o
r
th
e
c
o
m
p
a
riso
n
o
f
v
a
rio
u
s
e
m
p
iri
c
a
l
p
a
th
lo
ss
m
o
d
e
ls
is
th
e
Ro
o
t
M
e
a
n
S
q
u
a
re
Err
o
r
(RM
S
E).
T
h
e
RM
S
E
b
e
tw
e
e
n
th
e
a
c
tu
a
l
a
n
d
p
re
d
icte
d
d
a
ta
a
re
c
a
lcu
late
d
f
o
r
v
a
rio
u
s
p
a
th
lo
ss
m
o
d
e
ls.
It
tu
r
n
e
d
o
u
t
th
a
t
t
h
e
tu
n
e
d
COST
2
3
1
m
o
d
e
l
o
u
t
p
e
rf
o
rm
s th
e
o
th
e
r
st
u
d
ied
m
o
d
e
ls
.
K
ey
w
o
r
d
:
E
m
p
ir
ical
m
o
d
els
Ob
ti
m
izatio
n
P
ath
l
o
s
s
P
SO
a
lg
o
r
ith
m
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Me
s
s
ao
u
d
Gar
ah
,
Facu
lt
y
o
f
T
ec
h
n
o
lo
g
y
,
E
lectr
o
n
ic
Dep
ar
te
m
e
n
t,
Un
i
v
er
s
it
y
Mo
h
a
m
ed
B
o
u
d
iaf
-
M’
Sil
a,
Un
i
v
er
s
ité
Me
d
B
OUDI
A
F
-
B
P
1
6
6
M'
s
ila
2
8
0
0
0
,
A
lg
er
ia.
E
m
ail:
m
es
s
a.
g
ar
e
h
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
n
ee
d
f
o
r
c
o
n
n
ec
ti
v
it
y
a
n
y
w
h
er
e,
ad
d
ed
to
th
e
in
cr
e
m
e
n
t
in
t
h
e
n
u
m
b
er
o
f
u
s
er
s
,
h
a
s
tr
ig
g
er
ed
th
e
d
ev
elo
p
m
e
n
t
o
f
v
ar
io
u
s
g
e
n
er
atio
n
s
o
f
m
o
b
ile
co
m
m
u
n
i
ca
tio
n
s
ta
n
d
ar
d
s
in
t
h
e
la
s
t
d
e
ca
d
es.
T
h
e
d
em
a
n
d
f
o
r
g
r
ea
ter
tr
af
f
ic
ca
p
ac
it
y
i
n
v
o
l
v
i
n
g
b
o
t
h
v
o
ice
a
n
d
d
ata
tr
an
s
m
is
s
io
n
r
eq
u
ir
es
t
h
e
p
lan
n
i
n
g
o
f
m
o
b
ile
co
m
m
u
n
icatio
n
n
et
w
o
r
k
s
co
m
p
r
i
s
ed
o
f
s
m
aller
a
n
d
s
m
alle
r
ce
lls
,
t
h
u
s
m
a
k
i
n
g
t
h
e
n
u
m
b
er
o
f
b
ase
s
tat
io
n
s
g
r
o
w
e
x
p
o
n
e
n
tiall
y
,
an
d
co
m
p
licatin
g
t
h
e
p
r
o
ce
s
s
o
f
d
ete
r
m
in
in
g
a
n
d
o
p
ti
m
izi
n
g
th
e
lo
ca
tio
n
o
f
t
h
ese
s
tatio
n
s
.
B
ec
au
s
e
o
f
t
h
is
,
ac
cu
r
ate
a
n
d
f
a
s
t
p
r
ed
ictio
n
m
o
d
el
s
ar
e
n
ee
d
ed
f
o
r
m
a
k
in
g
r
ec
eiv
ed
s
i
g
n
a
l
lev
el/p
at
h
lo
s
s
p
r
ed
ictio
n
s
p
r
i
o
r
to
ac
tu
al
n
et
w
o
r
k
d
ep
lo
y
m
e
n
t
[1
]
,
[
2]
.
I
n
th
is
p
ap
er
,
w
e
a
n
al
y
ze
t
h
e
p
er
f
o
r
m
an
ce
ac
h
ie
v
ab
le
w
i
th
a
n
i
n
ter
m
ed
iate
t
ec
h
n
iq
u
e
,
b
et
w
ee
n
p
u
r
el
y
e
m
p
ir
ical
m
o
d
el
s
[
3
]
,
[
4
]
an
d
r
ea
l
m
ea
s
u
r
e
estab
li
s
h
ed
f
r
o
m
th
e
f
ie
ld
o
f
s
tu
d
y
,
b
ased
o
n
th
e
u
s
e
o
f
P
ar
ticle
S
w
ar
m
Op
ti
m
iza
tio
n
.
I
n
th
e
la
s
t
f
e
w
y
ea
r
s
,
m
a
n
y
r
e
s
ea
r
ch
er
s
h
av
e
ap
p
lied
s
ev
er
a
l
tech
n
iq
u
es
f
o
r
p
r
ed
ictin
g
t
h
e
p
ath
lo
s
s
e
n
v
ir
o
n
m
e
n
t
s
[
5
-
7
]
.
I
n
th
e
ab
o
v
e
r
ef
er
en
ce
s
,
ex
ten
s
i
v
e
d
escr
ip
tio
n
s
an
d
G
A
o
p
ti
m
izatio
n
s
a
n
d
o
th
er
m
eth
o
d
s
,
h
av
e
b
ee
n
p
r
ese
n
ted
.
Ho
w
ev
er
,
o
p
tim
ized
m
o
d
el
ca
n
p
r
o
v
id
e
o
p
ti
m
al
p
ar
a
m
eter
s
f
o
r
r
ad
io
-
w
a
v
e
p
at
h
-
lo
s
s
p
r
ed
ictin
g
i
n
th
e
tar
g
et
ar
ea
.
T
h
is
i
s
th
e
m
ai
n
is
s
u
e
d
is
c
u
s
s
ed
in
th
i
s
p
ap
er
.
T
h
e
r
est
o
f
th
is
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
I
n
s
ec
tio
n
2
an
d
3
w
e
r
ev
iew
ea
ch
em
p
ir
ical
m
o
d
el
an
d
th
e
P
SO
m
eth
o
d
.
s
ec
tio
n
4
p
r
esen
ts
th
e
ap
p
licatio
n
,
r
esu
lts
an
d
d
is
cu
s
s
io
n
.
Fin
ally
,
in
th
e
last
s
ec
tio
n
w
e
p
r
esen
t o
u
r
co
n
c
lu
s
io
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
2
5
–
2
1
3
1
2126
2.
P
ARTI
CL
E
SWARM
O
P
T
I
M
I
Z
AT
I
O
N
T
h
e
P
ar
ticle
s
w
ar
m
o
p
ti
m
iza
t
io
n
i
s
a
p
o
p
u
latio
n
-
b
ased
al
g
o
r
ith
m
f
o
r
s
ea
r
ch
i
n
g
g
lo
b
al
o
p
ti
m
izatio
n
p
r
o
b
lem
s
d
ev
elo
p
ed
b
y
Ke
n
n
ed
y
an
d
E
b
er
h
ar
t
in
1
9
9
5
[
8
]
.
P
SO
u
tili
ze
s
a
p
o
p
u
latio
n
(
ca
lled
s
w
ar
m
)
o
f
p
ar
ticles
in
th
e
s
ea
r
ch
s
p
ac
e.
T
h
e
s
tatu
s
o
f
ea
c
h
p
ar
ticle
is
c
h
ar
ac
ter
ized
ac
co
r
d
in
g
t
o
its
p
o
s
itio
n
a
n
d
v
elo
cit
y
.
⃗
⃗
⃗
(
)
,
an
d
th
e
v
elo
cit
y
o
f
p
ar
ticle
i
is
r
ep
r
esen
ted
as
⃗
⃗
⃗
(
)
.
T
o
d
is
co
v
er
th
e
o
p
tim
al
s
o
l
u
tio
n
,
ea
c
h
p
ar
ticle
ch
an
g
es
i
ts
s
ea
r
ch
i
n
g
d
ir
ec
tio
n
ac
co
r
d
in
g
to
t
w
o
f
ac
to
r
s
:
T
h
e
b
est
p
o
s
itio
n
o
f
a
g
iv
e
n
p
ar
ticle
an
d
th
e
b
est
p
o
s
itio
n
o
b
tain
ed
b
y
th
e
s
w
ar
m
(
g
lo
b
al
p
est)
.
P
SO
s
ea
r
ch
es
f
o
r
th
e
o
p
ti
m
a
l
s
o
l
u
tio
n
b
y
u
p
d
atin
g
t
h
e
v
elo
cit
y
a
n
d
p
o
s
itio
n
o
f
ea
c
h
p
ar
ticl
e
ac
co
r
d
in
g
to
th
e
f
o
llo
w
i
n
g
E
q
u
atio
n
s
[9
]
.
(
)
(
)
(
)
(
1
)
(
)
(
)
(
(
)
(
)
)
(
(
)
(
)
)
(
2
)
W
h
er
e
t
d
en
o
tes
t
h
e
iter
atio
n
in
t
h
e
e
v
o
lu
tio
n
ar
y
s
p
ac
e,
w
i
s
th
e
in
er
tia
w
eig
h
t,
C
1
an
d
C
2
ar
e
p
er
s
o
n
al
an
d
s
o
cial
lear
n
i
n
g
f
ac
to
r
s
,
an
d
ar
e
r
an
d
o
m
v
alu
e
s
u
n
i
f
o
r
m
l
y
d
i
s
tr
ib
u
ted
w
it
h
in
t
h
e
r
an
g
e
[
0
,
1
]
.
T
h
e
b
asic p
r
o
ce
s
s
o
f
th
e
P
SO a
lg
o
r
ith
m
is
g
i
v
en
a
s
f
o
llo
w
s
:
a.
I
n
itializatio
n
: P
ar
ticles ar
e
in
it
ialized
w
it
h
r
an
d
o
m
p
o
s
it
io
n
s
an
d
v
elo
citie
s
.
b.
E
v
alu
a
tio
n
: T
h
e
v
al
u
e
o
f
o
b
j
e
ctiv
e
f
u
n
ctio
n
is
m
ea
s
u
r
ed
f
o
r
ea
ch
p
ar
ticle.
c.
Fin
d
th
e
:
I
f
th
e
v
al
u
e
o
f
o
b
jectiv
e
f
u
n
ctio
n
f
o
r
p
ar
ticle
i
i
s
b
etter
th
an
th
e
o
f
p
ar
ticle
i
,
th
e
cu
r
r
en
t
v
a
lu
e
o
f
o
b
j
ec
tiv
e
f
u
n
c
tio
n
is
s
et
a
s
th
e
n
e
w
o
f
p
ar
ticle
i.
d.
Fin
d
t
h
e
: I
f
an
y
p
b
est is
b
etter
th
an
t
h
e
,
is
s
et
to
t
h
e
cu
r
r
en
t
v
alu
e.
e.
Up
d
ate
v
elo
cit
y
an
d
p
o
s
itio
n
:
T
h
e
v
elo
cit
y
o
f
ea
c
h
p
ar
ti
cl
e
is
u
p
d
ated
ac
co
r
d
in
g
to
E
q
u
atio
n
(
1
)
,
an
d
th
e
p
ar
ticle
is
m
o
v
ed
to
th
e
n
ex
t p
o
s
itio
n
ac
co
r
d
in
g
to
E
q
u
atio
n
(
2
)
.
f.
Sto
p
p
in
g
cr
iter
io
n
:
I
f
t
h
e
n
u
m
b
er
o
f
i
ter
atio
n
s
is
m
et,
t
h
e
alg
o
r
it
h
m
w
ill
b
e
s
to
p
p
ed
;
o
th
er
w
is
e
it
w
il
l b
e
r
etu
r
n
ed
to
s
tep
2
.
3.
P
AT
H
L
O
SS
M
O
DE
L
E
m
p
ir
ical
m
o
d
el
s
d
escr
ib
e
f
r
o
m
a
s
tati
s
tical
p
o
in
t
o
f
v
ie
w
t
h
e
r
elatio
n
s
h
ip
b
et
w
ee
n
t
h
e
p
at
h
lo
s
s
a
n
d
th
e
e
n
v
ir
o
n
m
e
n
t.
R
es
u
lts
ar
e
u
s
u
all
y
o
b
tain
ed
b
y
m
ea
n
s
o
f
m
ea
s
u
r
e
m
en
t
ca
m
p
ai
g
n
s
.
I
n
t
h
is
p
ap
er
,
w
e
h
a
v
e
co
n
s
id
er
ed
f
o
u
r
v
ar
io
u
s
E
m
p
ir
ical
m
o
d
els f
o
r
o
u
r
s
t
u
d
y
as
f
o
llo
w
s
.
3
.
1
.
E
g
li
M
o
del
E
g
li
p
r
ed
ictio
n
m
o
d
el
is
a
n
e
m
p
ir
ical
m
o
d
el
w
h
ic
h
h
as
b
ee
n
p
r
o
p
o
s
ed
b
y
[
10
]
.
T
h
e
E
g
li
m
o
d
el
is
a
s
i
m
p
li
s
tic
m
o
d
el
to
ap
p
r
o
ac
h
r
ad
io
-
w
a
v
e
p
ath
-
lo
s
s
o
f
ir
r
eg
u
lar
to
p
o
g
r
ap
h
y
.
B
ased
o
n
r
ea
l
d
ata
,
th
e
p
ath
-
lo
s
s
ap
p
r
o
ac
h
in
g
ca
n
b
e
f
o
r
m
u
late
d
as f
o
llo
w
in
g
(
)
(
)
(
)
{
(
)
(
)
(
3
)
w
h
er
e
=
h
eig
h
t o
f
t
h
e
b
ase
s
ta
tio
n
a
n
ten
n
a.
U
n
it:
m
eter
(
m
)
=
h
eig
h
t o
f
t
h
e
m
o
b
ile
s
tatio
n
an
ten
n
a.
U
n
it:
m
eter
(
m
)
=
d
is
tan
ce
f
r
o
m
b
ase
s
tatio
n
an
ten
n
a.
U
n
it:
m
eter
(
k
m
)
f
=
f
r
eq
u
e
n
c
y
o
f
tr
an
s
m
is
s
io
n
.
Un
it:
m
eg
a
h
er
tz
(
MH
z
3
.
2
.
H
a
t
a
’
s
M
o
del
T
h
is
m
o
d
el
h
a
s
b
ee
n
in
tr
o
d
u
ce
d
to
u
r
b
an
ar
ea
s
;
an
d
w
i
th
s
o
m
e
co
r
r
ec
tio
n
f
ac
to
r
s
it
co
u
ld
b
e
ex
ten
d
ed
to
s
u
b
u
r
b
an
an
d
r
u
r
a
l a
r
ea
s
.
Fo
r
u
r
b
an
ar
ea
th
e
m
e
d
ian
p
ath
lo
s
s
E
q
u
a
tio
n
is
g
i
v
e
n
b
y
(
)
(
)
(
)
(
)
(
)
(
(
)
)
(
4
)
Fo
r
s
u
b
u
r
b
an
ar
ea
,
it is
e
x
p
r
ess
ed
as
(
)
(
)
(
)
(
)
(
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
P
a
r
ticle
S
w
a
r
m
Op
timi
z
a
tio
n
fo
r
th
e
P
a
th
Lo
s
s
R
ed
u
ctio
n
in
S
u
b
u
r
b
a
n
a
n
d
R
u
r
a
l A
r
ea
(
Mes
s
a
o
u
d
Ga
r
a
h
)
2127
Fin
all
y
,
f
o
r
o
p
en
r
u
r
al
ar
ea
,
it
is
m
o
d
i
fi
ed
as
(
)
(
)
(
)
(
(
)
)
(
)
(
6
)
I
n
t
h
e
ab
o
v
e
E
q
u
atio
n
s
,
d
is
t
h
e
tr
a
n
s
m
itter
-
r
ec
eiv
er
a
n
te
n
n
a
s
ep
ar
atio
n
d
is
tan
ce
an
d
i
t
is
v
alid
f
o
r
1km
–
2
0
k
m
,
f
c
r
ep
r
ese
n
ts
t
h
e
o
p
er
atin
g
f
r
eq
u
en
c
y
f
r
o
m
1
5
0
MH
z
to
1
5
0
0
MH
z.
T
h
e
tr
an
s
m
it
a
n
te
n
n
a
h
ei
g
h
t,
r
an
g
es
f
r
o
m
3
0
m
to
2
0
0
m
an
d
th
e
r
ec
eiv
e
an
te
n
n
a
h
e
ig
h
t
,
r
an
g
es
f
r
o
m
1
m
to
1
0
m
ar
e
co
n
s
id
er
ed
[
1
1
]
,
[
1
2
].
3
.
3
.
Co
s
t
2
3
1
H
a
t
a
m
o
del
Th
e
C
OST
2
3
1
is
an
im
p
r
o
v
e
d
v
er
s
io
n
o
f
th
e
Hata
m
o
d
el.
I
t
is
w
id
el
y
u
s
ed
f
o
r
p
r
ed
ictin
g
p
ath
lo
s
s
in
m
o
b
ile
w
ir
eles
s
s
y
s
te
m
.
I
t
i
s
d
esig
n
ed
to
b
e
u
s
ed
in
th
e
f
r
eq
u
en
c
y
b
an
d
f
r
o
m
1
5
0
0
M
Hz
to
2
0
0
0
MH
z.
I
t
also
in
cl
u
d
es c
o
r
r
ec
tio
n
s
f
o
r
u
r
b
an
,
s
u
b
u
r
b
an
a
n
d
r
u
r
al
(
f
lat)
en
v
ir
o
n
m
e
n
t
s
[
1
3
]
,
[
1
4
].
(
)
(
)
(
)
(
)
(
)
(
(
)
)
(
)
(
7
)
3
.
4
.
SUI
M
o
del
SUI
m
o
d
el
co
m
es o
u
t
w
it
h
th
r
ee
d
if
f
er
e
n
t t
y
p
es o
f
ter
r
ain
li
k
e
ter
r
ain
A
d
en
s
e
u
r
b
an
lo
ca
li
t
y
,
ter
r
ain
B
h
as h
i
ll
y
r
e
g
io
n
s
an
d
ter
r
ain
C
f
o
r
r
u
r
al
w
it
h
m
o
d
er
ate
v
eg
eta
tio
n
.
T
h
e
g
en
er
al
p
a
th
lo
s
s
e
x
p
r
ess
io
n
ac
co
r
d
in
g
to
th
e
SUI
m
o
d
el
i
s
g
iv
e
n
b
y
[
1
5
]
.
(
)
(
8
)
P
ar
am
eter
is
d
ef
in
ed
as
f
o
llo
w
s
(
)
(
9
)
w
h
er
e
is
t
h
e
w
av
ele
n
g
th
i
n
m
eter
s
.
P
ath
lo
s
s
ex
p
o
n
e
n
t
g
iv
e
n
b
y
[
16
]
.
⁄
T
h
e
co
r
r
ec
tio
n
f
ac
to
r
s
f
o
r
th
e
o
p
er
atin
g
f
r
eq
u
e
n
c
y
an
d
f
o
r
t
h
e
r
ec
eiv
er
an
ten
n
a
h
eig
h
t
f
o
r
th
e
m
o
d
el
ar
e
:
(
)
(
10
)
an
d
,
f
o
r
ter
r
ain
t
y
p
e
(
)
f
o
r
ter
r
ain
t
y
p
e
A
an
d
B
(
11
)
(
)
f
o
r
ter
r
ain
t
y
p
e
A
an
d
B
(
12
)
W
h
er
e
f
,
is
t
h
e
f
r
eq
u
e
n
c
y
in
MH
z,
an
d
is
th
e
r
ec
ei
v
er
an
te
n
n
a
h
ei
g
h
t i
n
m
eter
s
.
T
h
e
SUI
m
o
d
el
is
u
s
ed
f
o
r
p
ath
lo
s
s
p
r
ed
ictio
n
in
r
u
r
al,
s
u
b
u
r
b
an
a
n
d
u
r
b
an
en
v
ir
o
n
m
en
ts
.
4.
M
E
ASURE
M
E
NT
P
RO
CE
DURE AN
D
M
E
T
H
O
D
O
F
ANALY
SI
S
A
d
r
iv
e
-
test
s
y
s
te
m
w
as
u
s
ed
t
o
co
llect
an
d
r
ec
o
r
d
s
i
g
n
al
le
v
els at
v
ar
io
u
s
lo
ca
tio
n
s
in
a
f
o
r
m
o
f
lo
g
s
w
h
ic
h
w
er
e
later
p
r
o
ce
s
s
ed
w
ith
a
co
m
m
u
n
icatio
n
n
et
w
o
r
k
an
al
y
ze
r
(
C
N
A
)
.
Du
r
i
n
g
a
d
r
i
v
e
-
test
s
o
m
e
o
f
t
h
e
s
y
s
te
m
p
ar
a
m
eter
s
t
h
at
m
a
y
b
e
co
llected
ar
e:
p
il
o
t
p
o
w
er
s
t
r
en
g
t
h
E
c/I
o
,
f
o
r
w
ar
d
tr
an
s
m
i
t
p
o
w
er
T
x
,
d
o
w
n
-
lin
k
tr
an
s
m
i
t
R
x
an
d
Fra
m
e
E
r
r
o
r
R
ate
FER.
Su
c
h
a
test
ca
n
b
e
co
n
d
u
cted
f
o
r
s
o
m
e
id
e
n
tif
ied
B
ase
Statio
n
s
o
r
f
o
r
th
e
w
h
o
le
n
et
w
o
r
k
.
T
h
e
d
r
iv
e
s
y
s
te
m
m
ea
s
u
r
e
m
e
n
t
to
o
ls
u
s
ed
w
er
e:
a
Sp
ec
ial
Mo
b
ile
P
h
o
n
e
(
Hu
a
w
e
i
U6
1
0
0
)
GP
S
r
ec
eiv
er
(
NM
E
A
)
,
a
r
ec
ei
v
i
n
g
a
n
ten
n
a,
a
n
d
a
lap
to
p
w
it
h
a
k
e
y
a
n
d
a
d
r
iv
e
test
s
o
f
t
w
ar
e
(
Hu
a
w
ei
GE
NE
X
P
r
o
b
e)
.
T
h
e
v
e
h
icle
w
a
s
d
r
iv
e
n
w
it
h
in
t
h
e
b
ase
s
tatio
n
co
v
er
a
g
e
ar
ea
w
h
ile
co
n
ti
n
u
o
u
s
l
y
r
ec
o
r
d
in
g
th
e
r
ec
eiv
ed
s
i
g
n
al.
At
e
v
er
y
m
o
m
en
t
o
f
th
e
co
ll
ec
ted
m
ea
s
u
r
e
m
en
t
s
,
GP
S
d
at
a
is
al
s
o
r
ec
o
r
d
ed
s
i
m
u
lta
n
eo
u
s
l
y
.
T
h
e
e
m
is
s
io
n
s
ites
s
p
ec
i
f
icatio
n
s
o
f
t
h
e
s
e
b
ases
an
d
t
h
eir
p
o
s
itio
n
s
ar
e
s
h
o
w
n
i
n
T
ab
le
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
2
5
–
2
1
3
1
2128
T
ab
le
1
.
B
T
S p
ar
am
eter
s
P
a
r
a
me
t
e
r
s
B
T
S
1
B
T
S
2
R
e
g
i
o
n
t
y
p
e
S
u
b
u
r
b
a
i
n
R
u
r
a
l
T
r
a
n
smit
p
o
w
e
r
(
d
B
m)
46
43
C
a
b
l
e
L
o
ss +
B
o
d
y
l
o
ss
1
0
.
5
9
.
7
T
r
a
n
smit
t
i
n
g
a
n
t
e
n
n
a
g
a
i
n
(
d
B
i
)
1
7
.
5
1
6
.
7
R
e
c
e
i
v
e
a
n
t
e
n
n
a
g
a
i
n
(
d
B
i
)
0
0
T
r
a
n
smit
a
n
t
e
n
n
a
h
e
i
g
h
t
(
m)
25
35
M
o
b
i
l
e
st
a
t
i
o
n
a
n
t
e
n
n
a
h
e
i
g
h
t
(
m)
1
.
5
1
.
5
O
p
e
r
a
t
i
n
g
f
r
e
q
u
e
n
c
i
e
s
(
M
H
z
)
U
p
l
i
n
k
f
r
e
q
u
e
n
c
y
9
0
8
9
1
2
,
4
D
n
-
l
i
n
k
f
r
e
q
u
e
n
c
y
9
5
3
9
5
7
,
4
G
e
o
g
r
a
p
h
i
c
c
o
o
r
d
i
n
a
t
e
s
L
a
t
i
t
u
d
e
3
5
,
2
5
2
4
3
5
,
6
2
4
3
7
L
o
n
g
i
t
u
d
e
6
,
1
3
0
7
4
6
,
3
6
9
8
4
5.
RE
SU
L
T
S AN
D
D
I
SCU
SS
I
O
N
5
.
1
.
Co
m
pa
riso
n w
it
h pre
dict
io
n
m
o
del
s
a
co
m
p
ar
is
o
n
b
et
w
ee
n
p
r
ed
ict
ed
p
ath
lo
s
s
an
d
m
ea
s
u
r
ed
p
at
h
lo
s
s
h
av
e
b
ee
n
p
er
f
o
r
m
ed
f
o
r
t
w
o
b
a
s
e
s
tatio
n
s
B
T
S1
an
d
B
T
S2
.
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
e
m
p
ir
ic
al
m
o
d
els
is
th
e
n
co
m
p
ar
ed
to
th
e
m
ea
s
u
r
ed
p
ath
lo
s
s
d
ata
as
i
n
Fig
u
r
es
1
a
n
d
2
.
T
h
e
v
alu
es
o
f
Me
a
n
E
r
r
o
r
-
ME
,
R
o
o
t
Me
a
n
Sq
u
ar
e
E
r
r
o
r
-
R
MSE
,
Sta
n
d
ar
d
d
ev
iatio
n
o
f
er
r
o
r
-
S
TD
an
d
R
elati
v
e
E
r
r
o
r
P
er
ce
n
tag
e
,
ar
e
u
s
ed
to
m
ea
s
u
r
e
th
e
f
o
r
ec
ast
i
n
g
ac
c
u
r
ac
y
o
f
t
h
ese
m
o
d
el
s
,
ar
e
tab
u
lated
in
T
ab
le
2
an
d
T
ab
le
3
.
Fig
u
r
e
1
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
p
r
ed
icted
an
d
m
ea
s
u
r
ed
p
ath
lo
s
s
f
o
r
B
T
S1
Fig
u
r
e
2
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
p
r
ed
icted
an
d
m
ea
s
u
r
ed
p
ath
lo
s
s
f
o
r
B
T
S
2
Fro
m
T
ab
le
2
an
d
T
a
b
le
3
,
i
t is f
o
u
n
d
th
a
t p
er
f
o
r
m
an
ce
o
f
th
e
C
OST
2
3
1
Hata
m
o
d
el
is
th
e
b
est as
R
MSE
an
d
M
E
ar
e
th
e
lo
w
es
t c
o
m
p
ar
ed
to
o
th
er
m
o
d
els
.
Fi
g
u
r
e
1
an
d
Fig
u
r
e
2
co
n
s
o
lid
ate
th
e
r
esu
lt t
h
at
C
OST
2
3
1
Hata
m
o
d
el
is
clo
s
et
to
m
ea
s
u
r
ed
p
ath
lo
s
s
th
a
n
o
th
er
m
o
d
els
.
T
ab
le
2
.
P
er
f
o
r
m
an
ce
co
m
p
ar
is
o
n
b
et
w
ee
n
m
o
d
els u
s
ed
ac
co
r
d
in
g
to
test
cr
iter
ia
(
B
T
S1
)
H
A
TA
R
C
o
st
2
3
1
S
U
I
C
EG
LI
r
mse
M
e
st
d
re
2
9
.
0
1
1
2
1
3
.
8
8
4
7
3
9
.
4
7
7
1
3
3
.
2
7
3
1
2
6
.
4
3
2
8
8
.
9
1
9
7
3
6
.
4
7
4
0
3
0
.
1
8
0
5
0
.
1
4
5
2
0
.
1
4
6
2
0
.
1
4
2
7
0
.
1
4
3
9
2
0
.
4
5
9
8
6
.
9
6
1
5
2
8
.
2
1
7
8
2
3
.
3
6
5
4
0
0
.
5
1
1
.
5
2
2
.
5
20
40
60
80
100
120
140
D
i
s
t
a
n
c
e
(
K
m
)
P
a
t
h
L
o
s
s
(
d
b
)
E
m
p
i
r
i
c
a
l
M
o
d
e
l
s
I
n
s
u
b
u
r
b
a
n
a
r
e
a
C
o
s
t
2
3
1
H
a
t
a
S
u
b
u
n
f
i
l
t
e
r
e
d
m
e
a
s
u
r
e
m
e
n
t
s
S
U
I
t
y
p
e
B
E
g
l
i
0
0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
20
40
60
80
100
120
140
160
180
D
i
s
t
a
n
c
e
(
K
m
)
P
a
t
h
L
o
s
s
(
d
b
)
E
m
p
i
r
i
c
a
l
M
o
d
e
l
s
I
n
R
u
r
a
l
A
r
e
a
C
o
s
t
2
3
1
H
a
t
a
R
u
r
a
l
u
n
f
i
l
t
e
r
e
d
m
e
a
s
u
r
e
m
e
n
t
s
S
U
I
t
y
p
e
C
E
g
l
i
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
P
a
r
ticle
S
w
a
r
m
Op
timi
z
a
tio
n
fo
r
th
e
P
a
th
Lo
s
s
R
ed
u
ctio
n
in
S
u
b
u
r
b
a
n
a
n
d
R
u
r
a
l A
r
ea
(
Mes
s
a
o
u
d
Ga
r
a
h
)
2129
T
ab
le
3
.
P
er
f
o
r
m
a
n
ce
co
m
p
ar
i
s
o
n
b
et
w
ee
n
m
o
d
els u
s
ed
ac
co
r
d
in
g
to
test
cr
iter
ia
(
B
T
S2
)
C
o
st
2
3
1
H
A
TA
R
EG
LI
S
U
I
C
r
mse
M
e
st
d
re
26
.
9
4
6
2
7
.
5
1
7
5
33
.
5
4
9
9
5
1
.
1
8
0
2
2
6
.
3
6
6
2
6
.
9
4
9
3
2
.
5
8
2
5
0
.
6
9
8
8
0
.
5
8
8
6
0
.
6
0
8
4
0
.
5
7
1
2
0
.
5
5
8
9
2
0
.
1
5
4
9
2
0
.
1
8
0
9
2
4
.
9
9
2
2
3
8
.
6
5
1
6
5
.
2
.
O
pti
m
iza
t
io
n
P
ro
ce
s
s
by
P
SO
a
lg
ho
rit
h
m
T
h
e
C
OST
2
3
1
m
o
d
el
is
ch
o
s
en
f
o
r
th
i
s
s
t
u
d
y
.
Fo
r
m
u
la
ti
n
g
t
h
e
p
r
o
b
le
m
to
b
e
s
o
lv
ed
as
a
s
i
n
g
le
m
at
h
e
m
a
tical
E
q
u
a
tio
n
h
as
f
i
v
e
v
ar
iab
les
a
s
s
h
o
w
n
i
n
T
ab
le
4
,
ass
es
s
ed
b
y
a
co
s
t
f
u
n
ctio
n
to
a
s
to
p
p
in
g
cr
iter
ia
d
ep
en
d
s
o
n
th
e
p
er
f
o
r
m
an
ce
t
h
er
eo
f
.
A
n
d
t
h
is
co
s
t
f
u
n
ctio
n
is
g
e
n
er
all
y
d
e
f
i
n
ed
as
th
e
R
M
SE
(
R
o
o
t
Me
an
Sq
u
ar
e
E
r
r
o
r
)
.
C
OST
2
3
1
(
r
u
r
al/s
u
b
)
m
o
d
el
is
d
ef
in
ed
as
(
)
(
)
(
)
(
(
)
)
(
)
(
13
)
(
)
(
(
)
)
(
(
)
)
I
t c
an
b
e
w
r
itte
n
as
f
o
llo
w
s
(
)
(
)
(
)
(
)
(
)
(
)
(
14
)
T
ab
le
4
.
T
h
e
o
p
ti
m
ized
p
ar
a
m
eter
s
K
1=
46.
3
K
2=
44.
9
K
3=
-
13
.
82
K
4=
-
6.
55
K
5=
33.
9
T
h
e
f
itn
e
s
s
f
u
n
ctio
n
u
s
ed
f
o
r
p
ar
am
eter
s
ad
j
u
s
t
m
e
n
t i
s
d
ef
i
n
ed
b
y
th
e
m
ea
n
s
q
u
ar
e
er
r
o
r
(
R
MSE
)
as:
√
∑
W
h
er
e
r
ep
r
esen
ts
th
e
m
ea
s
u
r
ed
p
ath
lo
s
s
in
d
B
,
is
th
e
p
r
ed
icted
p
ath
lo
s
s
i
n
d
B
,
an
d
is
th
e
n
u
m
b
er
o
f
th
e
m
ea
s
u
r
ed
d
ata
p
o
in
ts
.
5
.
2
.
1
.
O
pti
m
iza
t
io
n
re
s
ults by
P
SO
Si
m
u
latio
n
r
es
u
lt
s
u
s
in
g
th
e
P
SO
A
lg
h
o
r
ith
m
ar
e
p
r
ese
n
t
ed
in
th
e
f
o
llo
w
i
n
g
Fig
u
r
e
3
,
F
i
g
u
r
e
4
,
T
ab
le
5
an
d
T
ab
le
6
.
Fig
u
r
e
3
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
C
O
ST
-
23
1
Hata
an
d
C
OST
2
3
1
-
Op
t
(
s
u
b
u
r
b
an
)
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
70
80
90
100
110
120
130
140
D
i
s
t
a
n
c
e
i
n
K
m
P
a
t
h
L
o
s
s
i
n
d
b
E
m
p
i
r
i
c
a
l
M
o
d
e
l
s
p
a
r
a
m
e
t
r
e
s
t
u
n
i
n
g
u
s
i
n
g
p
s
o
a
l
g
o
r
i
t
h
m
e
C
o
s
t
2
3
1
d
a
t
a
c
o
s
t
2
3
1
O
p
t
i
m
i
z
e
d
w
i
t
h
e
p
s
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
1
2
5
–
2
1
3
1
2130
Fig
u
r
e
4
.
C
o
m
p
ar
is
o
n
b
et
w
ee
n
C
O
ST
-
23
1
Hata
an
d
C
OST
2
3
1
-
Op
t
(
r
u
r
al
)
T
ab
le
5
.
R
esu
lts
o
f
t
h
e
o
p
ti
m
i
za
tio
n
p
r
o
ce
s
s
f
o
r
C
OST
-
2
3
1
Hata
m
o
d
el
(
s
u
b
u
r
b
a
n
)
C
o
st
2
3
1
-
o
p
t
C
o
st
2
3
1
P
a
r
a
me
t
r
e
s
K1
27
.
1
2
6
7
46
.3
K2
1
4
.
5
0
3
5
3
3
.
9
K3
1
9
.
6
1
5
3
1
3
.
8
2
K4
-
6
.
9
2
2
1
4
4
.
9
K5
2
5
.
5
0
1
0
6
.
5
5
R
M
S
E
0
.
7
6
8
8
1
6
.
1
1
5
8
T
i
me
o
f
c
a
l
c
u
l
a
t
i
o
n
(
s)
1
0
.
1
8
3
0
/
T
ab
le
6
.
R
esu
lts
o
f
th
e
o
p
ti
m
i
za
tio
n
p
r
o
ce
s
s
f
o
r
C
OST
-
2
3
1
Hata
m
o
d
el
(
r
u
r
al
).
C
o
s
t2
3
1
-
opt
C
o
s
t2
3
1
P
ar
am
etr
es
K1
2
5
.
9
2
8
0
46
.3
K2
5
.
7
6
2
2
3
3
.
9
K3
2
6
.
5
5
6
2
1
3
.
8
2
K4
1
0
.
3
9
8
0
4
4
.
9
K5
2
7
.
4
9
9
2
6
.
5
5
R
MSE
1
.
1
1
7
2
2
7
.
2
5
5
3
T
im
e
o
f
ca
lc
u
latio
n
(
s
)
9
.
1
1
5
0
/
B
eg
in
n
i
n
g
w
i
th
t
h
e
r
es
u
lts
o
f
T
ab
le
5
an
d
T
ab
le
6
an
d
p
ass
in
g
t
h
r
o
u
g
h
t
h
e
t
w
o
F
i
g
u
r
es 3
an
d
4
,
w
e
h
av
e
n
o
ticed
th
at
b
o
th
o
p
ti
m
iz
ed
m
o
d
els
i
n
r
u
r
al
a
n
d
s
u
b
u
r
b
an
ar
ea
s
u
r
p
ass
o
t
h
er
m
o
d
els i
n
ter
m
s
o
f
o
v
er
all
p
er
f
o
r
m
a
n
ce
.
6.
CO
NCLU
SI
O
N
I
n
t
h
is
p
ap
er
,
th
e
m
ea
s
u
r
ed
p
ath
lo
s
s
es
i
n
t
w
o
ce
lls
ar
e
co
m
p
ar
ed
w
it
h
t
h
eo
r
etica
l
p
ath
lo
s
s
m
o
d
el
s
:
Ha
ta,
SUI
,
L
ee
a
n
d
E
g
li
.
B
ased
o
n
t
h
is
,
a
n
o
p
ti
m
ized
C
OST
-
2
3
1
Hata
m
o
d
el
f
o
r
th
e
p
r
ed
ictio
n
o
f
p
ath
lo
s
s
i
n
R
u
r
al
a
n
d
S
u
b
u
r
b
an
en
v
ir
o
n
m
e
n
ts
o
f
B
atn
a
c
it
y
(
Alg
er
ia)
i
s
d
e
v
elo
p
ed
.
Fro
m
t
h
e
n
u
m
er
ical
ex
a
m
p
le,
a
n
e
w
v
a
lu
e
s
o
f
p
ar
a
m
eter
s
ar
e
p
r
o
p
o
s
ed
f
o
r
C
OST
-
2
3
1
Hata
m
o
d
el
b
ased
o
n
m
ea
s
u
r
ed
d
ata.
I
t
is
o
b
v
io
u
s
t
h
at
ad
j
u
s
ted
C
OST
-
2
3
1
Hata
m
o
d
el
s
h
o
w
s
th
e
c
lo
s
est
ag
r
ee
m
e
n
t
w
it
h
t
h
e
m
ea
s
u
r
e
m
en
t
r
e
s
u
l
t.
Hen
ce
C
OST
-
2
3
1
Hata
m
o
d
e
l
w
ith
p
r
o
p
o
s
ed
m
o
d
if
icatio
n
is
r
ec
o
m
m
en
d
ed
f
o
r
r
u
r
al
an
d
s
u
b
u
r
b
an
ar
ea
o
f
B
atn
a
cit
y
.
RE
F
E
R
E
NC
E
S
[1
]
T
o
rre
s
J,
G
u
a
rd
a
d
o
J.L
,
Ri
v
a
s
-
Dá
v
a
lo
s
F
,
M
a
x
i
m
o
v
S
,
M
e
lg
o
z
a
E
,
“
A
G
e
n
e
ti
c
A
l
g
o
rit
h
m
B
a
s
e
d
o
n
t
h
e
E
d
g
e
W
in
d
o
w
De
c
o
d
e
r
T
e
c
h
n
iq
u
e
T
o
Op
ti
m
ize
P
o
w
e
r
Distrib
u
ti
o
n
S
y
ste
m
s
Re
c
o
n
fi
g
u
ra
ti
o
n
”
,
El
e
c
tri
c
a
l
Po
we
r
a
n
d
En
e
rg
y
S
y
ste
ms
,
v
o
l.
45
,
p
p
.
2
8
–
34
,
2
0
1
3
.
0
0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
50
60
70
80
90
100
110
120
130
140
D
i
s
t
a
n
c
e
i
n
K
m
P
a
t
h
L
o
s
s
i
n
d
b
E
m
p
i
r
i
c
a
l
M
o
d
e
l
s
p
a
r
a
m
e
t
r
e
s
t
u
n
i
n
g
u
s
i
n
g
p
s
o
a
l
g
o
r
i
t
h
m
e
C
o
s
t
2
3
1
d
a
t
a
c
o
s
t
2
3
1
O
p
t
i
m
i
z
e
d
w
i
t
h
e
p
s
o
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
P
a
r
ticle
S
w
a
r
m
Op
timi
z
a
tio
n
fo
r
th
e
P
a
th
Lo
s
s
R
ed
u
ctio
n
in
S
u
b
u
r
b
a
n
a
n
d
R
u
r
a
l A
r
ea
(
Mes
s
a
o
u
d
Ga
r
a
h
)
2131
[2
]
Ca
rre
n
o
E.
,
R
o
m
e
ro
R,
P
a
d
i
lh
a
-
F
e
lt
rin
A
,
“
A
n
Ef
fi
c
ien
t
Co
d
ifi
c
a
ti
o
n
t
o
S
o
lv
e
Distrib
u
ti
o
n
Ne
tw
o
rk
Re
c
o
n
fi
g
u
r
a
ti
o
n
f
o
r
L
o
ss
Re
d
u
c
ti
o
n
P
ro
b
le
”
,
IEE
E
T
ra
n
s P
o
we
r
S
y
st
,
v
o
l.
3
,
p
p
.
42
–
51
,
2
0
0
8
.
[3
]
F
a
m
o
rij
i
J,
Ola
so
ji
Y
,
“
Ra
d
io
F
re
q
u
e
n
c
y
P
ro
p
a
g
a
ti
o
n
M
e
c
h
a
n
i
s
m
s
a
n
d
Em
p
iri
c
a
l
M
o
d
e
ls
f
o
r
Hill
y
A
r
e
a
s
”
,
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
v
o
l.
3
,
p
p.
3
7
2
-
3
7
6
3
,
2
0
1
3
.
[4
]
Im
r
a
n
I,
M
u
sta
f
a
S
,
M
a
h
m
o
o
d
A
K,
S
h
a
h
z
a
d
A
.
M
a
li
k
,
S
h
a
h
id
A
,
“
P
a
th
L
o
ss
M
o
d
e
li
n
g
o
f
W
LA
N
a
n
d
W
iM
A
X
S
y
st
e
m
”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
ter
En
g
i
n
e
e
rin
g
(
IJ
ECE
)
,
v
o
l
.
5
,
p
p
.
1
0
8
3
-
1
0
9
1
,
2
0
1
5
.
[5
]
M
.
G
a
ra
h
et
al
,
"
P
a
th
L
o
ss
M
o
d
e
ls
Op
ti
m
iza
ti
o
n
f
o
r
M
o
b
il
e
C
o
m
m
u
n
ica
ti
o
n
in
Dif
f
e
re
n
t
A
re
a
s
"
,
In
d
o
n
e
si
a
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
in
e
e
rin
g
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
,
v
o
l.
3
,
p
p
.
1
2
6
-
1
3
5
,
ju
ly
2
0
1
6
.
[6
]
T
a
h
c
f
u
ll
o
h
S
,
Risk
a
y
a
d
i
E
,
“
Op
ti
m
iz
e
d
S
u
it
a
b
le
P
ro
p
a
g
a
ti
o
n
M
o
d
e
l
f
o
r
G
S
M
9
0
0
P
a
th
L
o
ss
P
re
d
ict
io
n
”
,
T
EL
KOM
NIKA
I
n
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
E
n
g
in
e
e
rin
g
,
v
o
l.
1
4
,
p
p
.
1
5
4
-
1
6
2
,
2
0
1
5
.
[7
]
S
u
ra
ju
d
e
e
n
Ba
k
in
d
e
N,
F
a
ru
k
N
,
Ay
e
n
i
A
,
M
u
h
a
m
m
a
d
M
,
G
u
m
e
l
M
,
“
Co
m
p
a
riso
n
o
f
P
ro
p
a
g
a
ti
o
n
M
o
d
e
ls
f
o
r
G
S
M
1
8
0
0
a
n
d
W
CDMA
S
y
st
e
m
s
in
S
e
le
c
ted
Urb
a
n
A
re
a
s
o
f
Nig
e
ri
a”
,
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
A
p
p
li
e
d
In
fo
rm
a
t
io
n
S
y
ste
ms
(IJA
IS
)
,
Vo
l
.
1
3
,
p
p
.
6
-
13
,
2
0
1
2
.
[8
]
J.
Ke
n
n
e
d
y
,
R.
Eb
e
r
h
a
rt,
“
Pa
rt
i
c
le
swa
rm
o
p
ti
miz
a
ti
o
n
”
,
P
ro
c
e
e
d
in
g
s
o
f
th
e
IE
EE
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Ne
u
ra
l
Ne
tw
o
rk
s,
(ICNN
)
,
v
o
l.
4
,
p
p
.
1
9
4
2
–
1
9
4
8
,
1
9
9
5
.
[9
]
Y.
S
h
i,
R.
Eb
e
rh
a
rt,
“
A
M
o
d
i
fi
e
d
Pa
rticle
S
wa
rm
Op
ti
mize
r
”
,
Ev
o
l
u
ti
o
n
a
ry
Co
m
p
u
tatio
n
P
ro
c
e
e
d
i
n
g
s,
1
9
9
8
.
IEE
E
W
o
rld
Co
n
g
re
ss
o
n
Co
m
p
u
tati
o
n
a
l
In
telli
g
e
n
c
e
,
IEE
E
,
p
p
.
6
9
–
73
,
M
a
y
1
9
9
8
.
[1
0
]
Eg
li
J.
J
,
“
R
a
d
i
o
Pr
o
p
a
g
a
ti
o
n
a
b
o
v
e
4
0
M
c
o
v
e
r Irr
e
g
u
l
a
r T
e
rr
a
i
n
”
,
P
r
o
c
.
IRE
,
v
o
l.
45
n
o
1
0
,
p
p
.
1
3
8
3
–
1
3
9
1
,
1
9
5
7
.
[1
1
]
S
a
rk
a
r
T
.
K
.
,
e
t
a
l
,
“
A
S
u
rv
e
y
o
f
V
a
rio
u
s
P
r
o
p
a
g
a
ti
o
n
M
o
d
e
ls
F
o
r
M
o
b
il
e
C
o
m
m
u
n
ica
ti
o
n
”
,
IEE
E
An
ten
n
a
s
a
n
d
Pro
p
a
g
a
ti
o
n
M
a
g
a
zi
n
e
,
v
o
l.
4
5
,
p
p
.
5
1
–
8
2
,
2
0
0
3
.
[1
2
]
Ha
ta
M
,
“
Em
p
iri
c
a
l
F
o
rm
u
la
f
o
r
P
r
o
p
a
g
a
ti
o
n
L
o
ss
i
n
L
a
n
d
M
o
b
il
e
Ra
d
io
S
e
rv
ice
”
,
IEE
E
T
ra
n
s.
Ve
h
.
T
e
c
h
n
o
l
,
v
o
l
.
29
n
o
3
,
p
p
.
3
1
7
-
3
2
5
,
1
9
8
0
.
[1
3
]
P
a
rso
n
s J.
D
,
“
T
h
e
M
o
b
il
e
Ra
d
io
P
r
o
p
a
g
a
ti
o
n
Ch
a
n
n
e
l
”
,
2
n
d
e
d
,
W
i
le
y
,
W
e
st S
u
ss
e
x
2
0
0
0
.
[1
4
]
A
s
z
talo
s
T
,
“
P
lan
n
in
g
a
W
iM
AX
Ra
d
i
o
Ne
tw
o
rk
w
it
h
A
9
1
5
.
A
lca
tel
-
L
u
c
e
n
t
COST
A
c
ti
o
n
2
3
1
.
Dig
it
a
l
m
o
b
il
e
ra
d
io
t
o
w
a
rd
s f
u
tu
re
g
e
n
e
ra
ti
o
n
s
y
ste
m
s
”
,
f
in
a
l
re
p
o
rt,
tec
h
.
re
p
,
E
u
ro
p
e
a
n
Co
m
m
u
n
it
ies
,
EUR
1
8
9
5
7
,
1
9
9
9
.
[1
5
]
H.
R.
A
n
d
e
rso
n
,
“
F
ix
e
d
Bro
a
d
b
a
n
d
W
irele
ss
S
y
ste
m
D
e
sig
n
”
,
Jo
h
n
W
il
e
y
a
n
d
S
o
n
s L
td
,
2
0
0
3
.
[1
6
]
Erce
g
V
.
,
G
re
e
n
ste
in
L
.
J
,
“I
n
Em
p
iri
c
a
ll
y
b
a
se
d
P
a
th
L
o
ss
M
o
d
e
l
f
o
r
W
irele
ss
Ch
a
n
n
e
l
s
i
n
S
u
b
u
r
b
a
n
En
v
iro
n
m
e
n
ts
”
,
IEE
E
J
o
u
rn
a
l
o
n
S
e
lec
ted
Are
a
s o
f
Co
mm
u
n
ica
ti
o
n
s
,
v
o
l.
1
7
,
p
p
.
1
2
0
5
–
1
2
1
1
,
1
9
9
9
.
Evaluation Warning : The document was created with Spire.PDF for Python.