Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 4
,
A
ugu
st
2015
, pp
. 63
6
~
64
3
I
S
SN
: 208
8-8
7
0
8
6
36
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Analysis Air Cooling Mechanis
m f
o
r Phot
ovolt
a
i
c
P
a
nel b
y
Solar Simulator
Y.
M. I
r
w
a
n
1
, W.
Z.
Leo
w
2
, M. Irw
a
n
t
o
3
, Fareq
M
4
, A.R
.
A
melia
5
, N. Gomesh
6
, I.
Sa
f
w
at
i
7
1,2,3,4,5,6
Centre of
Excellence for
Renewable
Ener
g
y
, School of
Electr
i
cal
S
y
s
t
em Engineering,
Universit
y
Ma
la
ysia
Perl
is (Uni
MAP), Mala
y
s
ia
7
Institute
of
Eng
i
neer
ing Math
e
m
atics, Univ
er
si
t
y
Mal
a
y
s
ia
Perl
is, (UniMAP),
Mala
y
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Ja
n 13, 2015
Rev
i
sed
Ap
r
27
, 20
15
Accepted
May 10, 2015
Measurement th
e outdoor
efficiency
of phot
ovo
ltaic (PV) pan
e
ls is essential,
but it is not likel
y
an exc
e
ptio
nal ci
r
c
umstance at an
y
g
i
ven
moment is
alwa
y
s
r
e
pea
ting
itself. A solar sim
u
la
tor was designed and fabricated for the
purpose of
analy
z
ing
the p
e
rfo
rmance of
PV panel with
and
without air
cooling mech
anism in indoor test. Twenty
units
of 500 W halo
gen lamps
with build-in ref
l
ector support by
the st
eel structure holder act
as a natural
sunlight. The
r
e
quirement
for a solar
simu
lator i
s
a stable sol
a
r r
a
dia
tion and
illum
i
nat
i
on unif
o
rm
it
y. The unif
o
rm
it
y
of the solar radi
ation was
m
easured
in the test ar
ea. Two units of
PV pa
nel with
sam
e
chara
c
ter
i
stics wer
e
experimental in
four sets of unif
o
rmit
y
of solar radiation, which
are 413, 620
,
821 and 1016 W/m². The operating temperatur
e of PV panel with air coolin
g
m
echanis
m
can
be decr
eas
ed
2-
3
˚
C com
p
ared
to P
V
panel r
e
f
e
renc
e.
The
P
V
panel with
air coo
ling m
echan
is
m
can b
e
incr
eas
ed
in
6-14 % of
maximum po
wer output base
d
on differen
t
fix
e
d of solar rad
i
ation
.
An
overall method and procedur
e of the m
easurement b
y
the solar simulator ar
e
discussed and
pr
oposed.
Keyword:
Air coo
lin
g m
e
ch
an
ism
I
ndo
or
Test
Power Output
So
lar Sim
u
lato
r
Tem
p
erature
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Y.M
.
Ir
wa
n,
C
e
nt
re
of
Exc
e
l
l
e
nce f
o
r R
e
ne
wabl
e
Ene
r
gy
,
School of
Elec
trical
Sy
st
em
Engi
neeri
n
g
,
Un
i
v
ersity Malaysia Perlis (Un
i
MAP), Malaysia.
Em
a
il: irwan
y
u
s
off@u
n
i
m
a
p
.
edu
.
m
y
1.
INTRODUCTION
Non
-
ren
e
wab
l
e en
erg
y
is p
r
o
d
u
c
ed
b
y
so
urces th
at will b
e
u
s
ed
u
p
o
r
will n
e
v
e
r
b
e
rep
l
en
ish
e
d
i
n
ou
r l
i
f
et
i
m
es.
B
e
si
des t
h
at
, t
h
e i
s
s
u
es
wi
t
h
a p
o
we
r s
o
u
r
c
e
an
d
use are
r
e
l
e
vant
not
o
n
l
y
t
o
gl
obal
wa
rm
i
ng,
but
al
s
o
t
o
s
u
c
h
t
y
pe o
f
e
nvi
r
onm
ent
a
l
conc
erns a
s
ai
r p
o
l
l
u
t
i
o
n
,
aci
d
pre
c
i
p
i
t
a
t
i
on,
ozo
n
e ex
ha
ust
i
o
n,
fo
res
t
dam
a
ge, an
d ra
di
oact
i
v
e s
u
bst
a
nce em
i
ssi
ons. Se
veral
pot
e
n
t
i
a
l
sol
u
t
i
ons
h
a
ve
devel
ope
d
t
o
av
oi
d t
h
ese t
y
pes
of i
n
fl
ue
nces, i
n
cl
u
d
i
n
g ene
r
g
y
conser
vat
i
o
n
vi
a enha
nced
electric powe
r
efficiency,
a red
u
c
tion
in
fo
ssil fu
el
use a
nd a
n
i
n
c
r
ease i
n
Ec
o-
fr
i
e
ndl
y
p
o
we
r s
u
p
p
l
i
e
s. M
a
ny
devel
ope
d a
n
d
t
h
e de
vel
o
pi
n
g
co
u
n
t
r
i
e
s p
r
om
ot
e
ren
e
wab
l
e en
erg
y
app
licatio
n
s
to
so
lv
e th
e issu
e
o
f
non-renewable e
n
e
r
gy
and to
p
r
ot
ect
t
h
e e
nvi
ro
nm
ent
.
A re
newa
ble resource is a ve
ry easy task to take
place of non-re
ne
wable
ener
gy. Electri
cal energy is
g
e
n
e
rally g
e
n
e
rated
b
y
u
tilizin
g
sev
e
ral k
i
n
d
s
of
ren
e
wab
l
e en
erg
y
such
as
wind
en
erg
y
, so
lar en
erg
y
,
geot
herm
al
energy
,
bi
om
ass ener
gy
an
d t
i
d
al
ener
gy
. S
o
l
a
r
ener
gy
i
s
fam
ous am
ong al
l
r
e
newa
bl
e ene
r
gy
t
h
at
is g
e
n
e
rally u
tilized
in
two
tech
n
i
q
u
e
s. The first tech
n
i
qu
e is to
ap
p
l
y it
in
stan
tly fo
r h
eating
o
r
perh
aps
cool
i
n
g o
f
wat
e
r an
d ai
r, w
h
i
l
e
not
usi
n
g an ad
vance
d
electric circuitry. The second techni
que is sim
p
ly
conve
r
ted int
o
electrical ener
gy
t
h
r
o
u
g
h
t
h
e
use o
f
P
V
pa
nel
.
Di
re
ct
l
y
con
v
e
r
si
o
n
p
r
oc
ess of s
o
l
a
r
ra
di
at
i
o
n
i
n
t
o
el
ect
ri
cal
ene
r
gy
i
s
co
nsi
d
e
r
ed
t
h
e
m
o
st
conve
ni
e
n
t
m
e
t
hod
o
f
usi
n
g s
o
l
a
r
en
ergy
.
T
h
e
ben
e
fi
t
s
o
f
utilizing the PV reaction to generate
electrical energy consi
s
t of absolute
ly no production of
polluta
nts duri
ng
ope
rat
i
o
n, si
l
e
nt
an
d
p
r
ol
on
g
e
d l
i
f
es
pan
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
63
6
–
64
3
6
37
The m
a
in envi
ronm
ental factor t
h
at affects
the el
ectrical efficiency a
n
d
po
we
r
o
u
t
p
ut
of PV pa
nel
are sol
a
r ra
di
at
i
on a
nd
o
p
erat
i
ng t
e
m
p
erature [1, 2].
When the PV
pa
nel
ab
so
rb
s ex
cess so
lar
rad
i
ation
,
the
o
p
e
rating
temp
erat
u
r
e
o
f
t
h
e PV
p
a
n
e
l
will b
e
in
cr
eased
. Wh
en
the o
p
e
rating
temp
erat
u
r
e o
f
PV
p
a
n
e
l
increase, t
h
e PV pa
nel efficiency decrease
s
and
vice
ver
s
a [3]
.
T
h
i
s
i
s
due t
h
at
P
V
panel
onl
y
1
5
% o
f
sunli
ght e
n
ergy converts i
n
to electrical
energy with t
h
e re
st conve
r
ted t
o
the heat e
n
e
r
gy. Hassa
n B.S. et al
[4]
car
ri
ed
o
u
t
t
h
e exce
ss
ph
ot
on
ene
r
gy
i
s
di
ssi
pat
e
d i
n
the
form
of heat a
f
fect th
e
performance of s
o
lar cells.
Th
us, c
o
ol
i
n
g
m
e
t
hod
o
f
s
o
l
a
r
panel
was
d
e
si
gne
d i
n
or
d
e
r t
o
kee
p
o
p
e
r
at
i
n
g
t
e
m
p
erat
ure st
a
b
l
e
a
n
d
l
o
w
.
H.
G. Te
o [
5
]
s
u
g
g
est
e
d t
h
at
ai
r co
ol
i
ng a
n
d wat
e
r co
ol
i
n
g are
use
d
t
o
cool
t
h
e P
V
p
a
nel
t
o
keep
u
p
l
o
we
r
ope
rating tem
p
erature
.
T
h
is is beca
use the t
e
m
p
eratur
e of
PV
p
a
n
e
l
witho
u
t
activ
e coo
lin
g
m
ech
an
ism was
hi
g
h
a
nd
PV
c
e
l
l
s
can o
n
l
y
a
c
hi
eve a
n
e
ffi
c
i
ency
of
8
-
9 %
.
K
.
T
o
n
u
i
[6]
desc
ri
be
d ai
r
cool
i
n
g i
s
p
r
ef
erre
d
t
h
an t
h
e
ot
he
r
cool
i
n
g a
rra
ng
em
ent
s
due t
o
m
i
nim
a
l use o
f
m
a
t
e
ri
al
and
l
o
w
ope
rat
i
n
g cost
des
p
i
t
e
i
t
s
po
o
r
th
erm
o
p
h
y
sical p
r
op
erties. It is can
decrea
se the te
m
p
era
t
ure of PV pa
nel
in
o
r
d
e
r to
en
h
a
n
ce th
e electrical
efficiency of
PV panel.
The weather i
s
always cha
n
ging and as many scie
nt
i
s
t
s
are ha
rd t
o
de
si
gn
way
s
t
o
enha
nce t
h
e
efficiency
of
PV
pa
nel. T
h
us, s
o
lar sim
u
lators are
v
e
ry h
e
lp
fu
l in a so
lar en
erg
y
in
v
e
stig
ati
o
n. So
lar
si
m
u
lato
rs are
a lig
h
t
sou
r
ce su
pp
lyin
g
illu
min
a
tio
n
ap
pro
x
i
mate to
th
e n
a
tu
ral su
n
ligh
t
.
Th
ey are
u
tilized
for
m
a
ni
pul
at
i
n
g i
n
d
o
o
r
of t
h
e
v
a
ri
o
u
s com
p
o
n
e
nt
s an
d de
vi
c
e
s t
o
assess, b
u
t
oft
e
n f
o
r t
h
e st
udy
PV cel
l
s
, t
h
e
cell characteristics and performance valid
at
i
on
of com
p
o
n
e
nt
s i
s
achi
e
ve
d. T
h
e t
e
st
s can be i
n
vest
i
g
at
ed by
u
tilizin
g
so
lar
si
m
u
lato
r at any ti
me, co
n
tinued
fo
r
2
4
ho
urs a d
a
y, con
t
ro
lled
fo
r
v
a
riation
of tem
p
eratu
r
e and
ot
he
r feat
ures
of a
com
m
on e
nvi
ro
nm
ent
.
Fu
Qi
an
g an
d
T
o
n
g
Na
n [
7
]
ha
ve
pr
op
ose
d
si
m
u
l
a
t
i
on m
odel
of
PV
cells is bu
ilt to
sim
u
late en
viron
m
en
t situ
atio
n
s
un
d
e
r
d
i
fferen
t ligh
t
s an
d tem
p
eratu
r
es. Th
e cho
i
ce of an
id
eal lig
h
t
so
urce to
sim
u
lat
e
sun
lig
h
t
an
d it’s a real
st
r
e
ngt
h i
s
t
h
e
pr
i
n
ci
pal
w
o
r
k
wi
t
h
a
desi
g
n
of s
o
l
a
r
sim
u
l
a
t
o
r.
In
t
h
e
bac
k
g
r
o
u
n
d
o
f
s
o
l
a
r
si
m
u
lat
i
on,
m
a
ny
di
ffe
rent
o
f
l
a
m
p
s ha
ve
bee
n
s
u
gge
st
ed,
an
d
t
h
i
s
can
be l
i
s
t
e
d as
f
o
l
l
o
ws:
hal
oge
n l
a
m
p
s,
xen
o
n
ar
c l
a
m
p
s, ar
g
o
n
arc l
a
m
p
, m
e
rcury
xe
no
n l
a
m
p
a
n
d
s
o
on
.
Sol
a
r
si
m
u
l
a
t
o
r c
onsi
s
t
s
o
f
cl
im
at
e t
y
pe 14
3
t
u
n
g
st
e
n
hal
o
gen
3
0
0
W l
a
m
p
s had
bee
n
devel
ope
d
by
NASA-Lewis
l
a
b
o
ratory, USA [8
]. Th
e
in
frared
rad
i
a
tion g
e
n
e
rated
b
y
th
e lam
p
s was red
u
c
ed
b
y
u
tilizin
g
diachronic re
flectors.
Natural
solar
radiation on the ea
rth’s surf
ace
was
sim
u
lated by artificial light several
decade years a
g
o. E.J.G. Bee
s
on
[9]. P. Krusi [10]
and S.P. Ke
nny [11] reporte
d the m
u
ltiple-la
m
p
solar
si
m
u
lato
rs consisted
o
f
20
,
21
and
28
CSI la
m
p
s with
a rated
p
o
wer
o
f
10
00
W
a
tts, resp
ectiv
ely. A si
m
p
le
lo
w-co
st
so
lar si
m
u
lato
r
fo
r
i
n
doo
r
testing
usin
g
14
qu
artz h
a
log
e
n
lam
p
s
o
f
10
00
W fo
l
l
o
w
ed
in
19
85
[12
]
.
The s
o
l
a
r
ra
di
a
t
i
on i
s
i
n
t
h
e
r
a
nge
o
f
4
0
0
an
d
15
0
0
W
/
m
²
. 45
u
n
i
t
s
of
hal
oge
n l
a
m
p
s t
y
pe C
DX
3
0
0
W
was
b
u
ilt in a so
lar
si
m
u
lato
r [13
]
, and
a sim
u
lat
o
r con
s
tru
c
ted
with
2
3
u
n
its
of tung
sten h
a
l
o
g
e
n lam
p
s o
f
50
0
W
[14
]
. Th
e i
n
frared rad
i
atio
n produ
ced b
y
t
h
e la
m
p
s was filtered ou
t
b
y
u
s
i
n
g two
ex
h
a
u
s
t
fan
s
.
The com
p
arison of the
performan
ce o
f
th
e PV p
a
n
e
l with
an
d
with
ou
t air co
o
ling
m
ech
an
ism
is th
e
main
fo
cu
s
o
f
th
is in
v
e
stig
atio
n. Th
e
resu
lts o
f
bo
th
PV pan
e
ls are tested
b
y
u
s
i
n
g so
l
a
r sim
u
lato
rs.
Hen
c
e,
th
e n
e
x
t
section
s
t
h
ese an
alyses will b
e
carried
o
u
t
.
2.
EQUIPMENT SETUP
FOR SO
LAR SIMUL
A
TOR T
E
STING
Twen
ty u
n
its o
f
h
a
log
e
n
lam
p
s with
b
u
ilt in
reflector were bu
ilt in
so
lar sim
u
lato
r. A steel
m
e
tal
su
ppo
rt st
ru
ct
ure with th
e size is 18
3 cm
b
y
1
8
3
cm
b
y
1
8
3
cm
is u
tili
zed
to carry all th
e h
a
l
o
g
e
n
l
a
m
p
s,
whi
c
h a
r
e ar
ra
nge
d i
n
a
n
a
rra
y
as di
s
p
l
a
y
e
d
i
n
Fi
g
u
r
e
1.
Fi
gu
re
1.
The
f
a
bri
cat
i
o
n s
o
l
a
r si
m
u
l
a
t
o
r des
i
gn
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Ana
l
ysis Air C
o
o
ling
Mechanism
fo
r Ph
o
t
o
v
o
lta
ic Pa
n
e
l
b
y
So
la
r S
i
m
u
l
a
to
r
(Y.M. I
r
w
an)
63
8
Th
e
ho
ld
er
stan
d steel m
e
tal
supp
or
t struct
ure
can be
a
d
justed inde
pe
ndently.
T
h
e di
stance betwee
n
eac
h
center of halogen lam
p
is close to 32 cm
.
The space
distance betwee
n the PV
panels
and
halogen la
m
p
s is
app
r
oxi
m
a
t
e
ly
67
.3
cm
, 82.
5
cm
, 95
cm
and
11
9.
3
8
cm
for
t
e
st
i
ng t
h
e
di
ff
erent
s
o
l
a
r
ra
di
at
i
on,
res
p
ect
i
v
el
y
.
Th
e co
lor tem
p
erat
u
r
e of t
h
e lam
p
is th
e tem
p
eratu
r
e
of
a
n
i
d
eal
bl
ac
k
b
ody
ra
di
at
or
w
i
t
h
t
h
e
pea
k
irradia
n
ce at the sam
e
wavelengt
h as the te
st source. T
h
e
selectio
n
lam
p
s u
s
ed
in
th
is
fabricatio
n
are h
i
gh
-
efficien
cy lamp
s,
with
co
iled
-
co
il filam
e
n
t
, g
i
v
i
ng
wh
ite h
a
log
e
n
ligh
t
and
m
a
n
i
p
u
l
ate at 2
3
0
V,
Ph
ilip
s
Hal
o
gen
5
00
W. Ta
bl
e 1 s
h
ows t
h
e speci
f
i
cat
i
on o
f
Phi
l
i
p
s Pl
us Li
ne
Hal
o
gen Lam
p
. The l
i
f
es
pan
of t
h
e
l
a
m
p
s i
s
200
0
ho
urs
.
H
o
we
ver
,
i
t
s
i
n
expe
nsi
v
e a
nd ex
c
e
l
l
e
nt
l
i
ght
ou
t
put
, m
a
i
n
t
e
nance, an
d i
m
prove
d
co
nsisten
c
y [15
]
m
a
k
e
it wid
e
ly u
s
ed
as t
h
e in
frared
ligh
t
sou
r
ce in
m
u
lti-sou
r
ce so
l
a
r sim
u
lato
rs an
d
t
h
e
so
lar
sim
u
lato
rs with less sp
ectru
m
req
u
i
remen
t
s.
Tab
l
e 1
.
Sp
eci
ficatio
n
s
Ph
ilip
s
Plu
s
Lin
e
Hal
o
g
e
n
Lam
p
.
Model Specification
W
a
ttage 500
W
Voltage 230
V
Cur
r
e
nt 2.
17
A
Flux lam
p
9660 Lm
Color
tem
p
er
ature
2900 K
L
i
fetim
e
2000
hr
Dia
m
et
er
12
mm
L
e
ngth 117.
6
m
m
In
t
h
is in
v
e
stig
atio
n, two
units o
f
50W M
o
no
crys
tallin
e PV
p
a
n
e
ls
were u
tilized
to
co
nv
ert so
lar
energy into ele
c
trical energy
.
One
of t
h
e PV panels is attached
with
DC
brus
hless fa
ns a
t
the back s
u
rface of
t
h
e pa
nel
and t
h
e ot
her pa
nel
i
s
a t
r
adi
t
i
onal
PV as a ref
e
re
nce pa
nel
as sho
w
n i
n
Fi
g
u
r
e
2. TES s
o
l
a
r
po
we
r
meter was
u
s
ed
to m
easu
r
e t
h
e so
lar rad
i
atio
n of
so
lar
si
m
u
la
to
r.
Four
sets of av
erag
e so
lar rad
i
ation
were
m
easured a
s
4
1
3
,
6
2
0
,
82
1 a
nd
1
0
1
6
W
/
m
²
. PR
O
VA
2
0
0
sol
a
r m
odul
e
anal
y
zer was
use
d
t
o
m
easure t
h
e
per
f
o
r
m
a
nce of
b
o
t
h
PV
pa
nel
s
wi
t
h
an
d
wi
t
h
out
ai
r c
ool
i
n
g
m
echani
s
m
.
Fig
u
re
2
.
PV
pan
e
l with and
with
ou
t c
ool
i
n
g m
echani
s
m
by
usi
n
g s
o
l
a
r
si
m
u
l
a
t
o
r
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The fa
bri
cat
ed
sol
a
r sim
u
l
a
t
o
r i
s
capabl
e
of
generat
i
ng re
peat
abl
e
ra
nge
s of sol
a
r ra
di
at
i
on at
any
ti
m
e
an
y w
eath
e
r
in
th
e indoo
r
test. Four
sets o
f
av
er
ag
e
so
lar
r
a
d
i
atio
n
h
a
v
e
b
een
m
easu
r
ed
b
y
using so
lar
m
e
t
e
r. Tabl
e
2
sho
w
s
t
h
e
di
st
a
n
ce
bet
w
ee
n t
h
e PV
pa
nel
s
a
n
d
hal
o
gen
l
a
m
p
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
63
6
–
64
3
6
39
Table2.
Distance
Between
PV Panels
And Haloge
n Lam
p
Average Solar
Radiation
Distance betw
een
PV panels and halogen lam
p
s
413 W
/
m
²
119.
38 cm
620 W
/
m
²
95 cm
821 W
/
m
²
82.
5 cm
1016 W
/
m
²
67.
3 cm
Fig
u
r
e
3
shows th
e op
eratin
g te
m
p
erature
of PV pa
nel wit
h
and
w
ithout
air cooling m
echanism
at
41
3,
6
2
0
,
8
21
and
1
0
1
6
W
/
m
²
, res
p
ect
i
v
el
y
.
In t
h
e
4
13
W
/
m
²
, t
h
e avera
g
e ope
rat
i
n
g t
e
m
p
erat
ure o
f
P
V
pa
nel
with air cooling m
echanis
m
is 37.09
˚
C.
While the avera
g
e ope
rating te
m
p
er
at
ure of P
V
pa
nel
refe
re
nce i
s
39
.6
5
˚
C
.
B
a
se
d o
n
t
h
e res
u
l
t
s
of
bot
h PV
p
a
nel
s
, i
t
can be
seen t
h
at
t
h
e ope
rat
i
n
g t
e
m
p
erat
ure
of P
V
pane
l
can
be
decrea
s
e
d i
s
a
p
pr
oxi
m
a
t
e
l
y
2.5
6
˚
C
by using air cooling m
echanis
m
.
On
th
e o
t
her h
a
nd
,
th
e op
eratin
g
te
m
p
erature
of PV pa
nel wit
h
air co
o
ling
mech
an
ism
is
also
lo
wer th
an
t
h
e P
V
pa
ne
l
refere
nce at
62
0 a
n
d
82
1
W
/
m
²
. B
y
usi
n
g ai
r c
o
ol
i
ng m
echani
s
m
,
t
h
e P
V
pa
nel
can b
e
dec
r
eas
ed 2
.
4
1
˚
C
an
d
2.
19
˚
C c
o
m
p
ared t
o
PV
p
a
n
e
l r
e
f
e
ren
ce in th
e 620
W
/
m
²
an
d
82
1
W
/
m
²
, r
e
sp
ect
iv
ely.
Fi
gu
re
3.
O
p
er
at
i
ng t
e
m
p
erat
ure
o
f
P
V
pa
ne
l
wi
t
h
a
n
d
wi
t
h
out
ai
r c
ool
i
n
g
m
echani
s
m
Besides that, the ave
r
age
operating tem
p
erature of
PV
pan
e
l with
air co
o
ling
m
ech
anis
m
is
5
3
.
1
1
˚
C an
d
avera
g
e ope
r
ating tem
p
erature of
P
V
pa
nel
r
e
fere
nce i
s
56
.
4
˚
C fo
r th
e so
lar rad
i
ation
is in
10
16
W
/
m
²
. In
th
e
com
p
ari
s
on
re
sul
t
of b
o
t
h
P
V
pa
nel
s
i
n
t
h
e 10
16
W
/
m
²
, the decrem
ent of the ope
r
ating te
m
p
erature
of PV
panel
i
s
3.
2
9
˚
C
by
usi
ng
ai
r
co
ol
i
ng m
echani
s
m
.
From
the fi
gu
re a
b
ove, it can
be analytically that
the
PV
p
a
n
e
l suffers
fro
m
th
e h
i
gh op
erating
tem
p
eratu
r
e unde
r h
i
g
h
cond
itio
n
o
f
so
lar rad
i
atio
n
.
Th
e
h
i
gh
er
ope
rat
i
n
g t
e
m
p
erat
ure
o
f
PV
panel
i
s
a ne
ga
t
i
v
e effect
o
n
t
h
e electrical efficiency of
PV
panel
.
T
h
e
op
erat
i
n
g
t
e
m
p
erat
ure
of
PV pa
nel
can
be dec
r
eased
by
usi
n
g DC
b
r
us
hl
ess fa
ns.
Th
us, t
h
e ai
r c
i
rcul
at
i
on
by
f
o
rci
n
g
flow in the channel re
duces
t
h
e o
p
erat
i
n
g t
e
m
p
erat
ur
e o
f
PV pa
nel
by
a
t
l
east
2.19
˚
C. Infield et al. [16]
carri
ed
o
u
t
t
h
e
t
e
m
p
erat
ure
of
PV
panel
ca
n b
e
red
u
ce
d by
fl
owi
ng ai
r bet
w
een P
V
pa
nel
a
nd t
h
e d
o
ubl
e
gl
ass
wall
fo
r sp
aci
ng
h
eatin
g.
Fi
gu
re
4 di
s
p
l
a
y
s
t
h
e m
a
xim
u
m
vol
t
a
ge
of P
V
pa
nel
wi
t
h
a
nd
wi
t
h
out
ai
r
cool
i
n
g m
echani
s
m
.
In t
h
e
41
3
W
/
m
²
, t
h
e
avera
g
e m
a
xi
m
u
m
vol
t
a
ge
o
f
P
V
pa
nel
wi
t
h
ai
r c
ool
i
ng
m
echani
s
m
i
s
16
.7
2
V w
h
i
l
e
15
.9
7
V
i
s
t
h
e ave
r
ag
e m
a
xim
u
m
vol
t
a
ge
f
o
r
P
V
pa
nel
re
fe
rence. T
h
e i
n
crem
ent of
maxim
u
m
voltage is
app
r
oxi
m
a
t
e
ly 4.4
9
%
by
us
i
ng DC
br
us
hl
ess fans
. B
e
si
des t
h
at
,
16
.7
1 V,
1
5
.
74
V
and
1
5
.
35
V are t
h
e
av
er
ag
e m
a
x
i
m
u
m v
o
ltag
e
fo
r
t
h
e PV
p
a
n
e
l w
ith
air
coo
lin
g
m
ech
an
ism
in
th
e 620W
/m², 82
1W
/m
² an
d
1016
W
/
m
²
, r
e
sp
ectiv
ely.
W
h
er
eas, th
e av
er
ag
e max
i
m
u
m
v
o
ltage of
the PV
p
a
n
e
l r
e
f
e
r
e
n
c
e in
t
h
e
6
2
0
W
/
m²,
821
W
/
m
²
an
d 1016
W
/
m
²
is 1
5
.14
V
,
1
4
.89
V
an
d 14
.70
V, r
e
sp
ectiv
ely. Th
e
co
m
p
ar
iso
n
b
e
t
w
een PV
p
a
n
e
l
w
ith
and without ai
r c
ooling m
echanism
ca
rri
ed
o
u
t
t
h
at
t
h
e
m
a
xim
u
m
vol
t
a
ge ca
n
be i
n
c
r
eased
by
usi
n
g
DC
br
us
hl
ess f
a
ns
.
The
i
n
crem
en
t
of
m
a
xim
u
m
vol
t
a
ge
i
s
9.
4
%,
5.
4 % a
n
d
4.
23
% i
n
t
h
e
62
0
W/
m
²
, 82
1
W
/
m
²
an
d 101
6
W
/
m², r
e
sp
ectiv
ely.
0
50
100
12
345
6
78
9
1
0
Temperature
(
˚
C
)
No.
Operating Temperature of
PV
Panel With And Without
Air Cooling Mechanism
413
W/m
²
W
ithout
Air
Cooling
413
W/m
²
W
ith
Air
Cooling
620
W/m
²
W
ithout
Air
Cooling
620
W/m
²
W
ith
Air
Cooling
821
W/m
²
W
ithout
Air
Cooling
821
W/m
²
W
ith
Air
Cooling
1016
W/m
²
W
ithout
Air
Cooling
1016
W/m
²
W
ith
Air
Cooling
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ana
l
ysis Air C
o
o
ling
Mechanism
fo
r Ph
o
t
o
v
o
lta
ic Pa
n
e
l
b
y
So
la
r S
i
m
u
l
a
to
r
(Y.M. I
r
w
an)
64
0
Fi
gu
re
4.
M
a
xi
m
u
m
vol
t
a
ge o
f
P
V
pan
e
l
wi
t
h
a
n
d
wi
t
h
o
u
t
ai
r co
ol
i
n
g m
e
chani
s
m
Wh
en th
e
so
lar rad
i
ation
is i
n
creasi
n
g,
bo
th
op
en circ
u
it
v
o
ltag
e
an
d sho
r
t ci
rcu
it cu
rren
t
will b
e
i
n
creased.
Whe
n
the
sol
a
r radiation i
n
crease
s
as
the
opera
ting
te
m
p
erature
also i
n
cr
eased
. Bu
t, t
h
e
oper
a
ting
te
m
p
erature
is anothe
r m
a
in factor
to
determin
e th
e
p
e
rform
a
n
ce of
P
V
panel
.
Whe
n
t
h
e op
erat
i
n
g
te
m
p
erature is
increased, the
rate of phot
on ge
nera
tion increase
s
and reverse sat
u
rati
on c
u
rrent inc
r
eases
rapi
dly. This condition ca
use
the band ga
p of sem
i
condu
ctor will be re
duce
d
and lea
d
to curre
nt slightly
chan
ges
an
d
m
a
jor
cha
n
ge
i
n
v
o
l
t
a
ge.
T
h
us, t
h
e
DC
br
ushl
ess
fa
ns
w
e
re
used
t
o
c
o
ol
d
o
w
n
t
h
e
o
p
erat
i
n
g
t
e
m
p
erat
ure i
n
or
der t
o
e
nha
n
ce per
f
o
r
m
a
nce of
PV
pa
ne
l.
Tr
ig
an
agno
stop
ou
lod
et al
[17] exam
ined that PV
cool
i
n
g ca
n b
e
i
n
crease
d
t
h
e perf
o
r
m
a
nce of P
V
pa
ne
ls an
d
in
creasing
th
e to
tal efficien
cy o
f
th
e who
l
e
syste
m
s.
Fi
gu
re
5
p
r
ese
n
t
s
t
h
e
va
ri
et
y
o
f
m
a
xim
u
m
cur
r
en
t
of PV p
a
n
e
l
with
and
with
ou
t an
air coo
ling
m
echani
s
m
i
n
di
ffe
re
nt
fi
xe
d
sol
a
r ra
di
at
i
o
n.
The va
ri
at
i
on
of m
a
xim
u
m
cur
r
ent
of P
V
p
a
nel
wi
t
h
ai
r c
ool
i
n
g
m
echani
s
m
and P
V
panel
re
fere
nce
were t
e
st
ed i
n
t
h
e 4
1
3
W
/
m
²
, 62
0
W
/
m
²
, 821
W
/
m
²
and
1
0
1
6
W
/
m
²
,
respectively. T
h
e ave
r
age m
a
xim
u
m
current
of PV pa
n
e
l
with
air coo
ling
m
ech
an
ism i
s
1
.
1
5
A wh
ile th
e
avera
g
e m
a
xim
u
m
current
o
f
PV pa
nel
refe
r
e
nce i
s
1.
12
A i
n
t
h
e 41
3
W
/
m
²
. B
y
usi
ng ai
r cool
i
n
g m
e
chani
s
m
,
t
h
e m
a
xim
u
m
cur
r
ent
of P
V
panel
ca
n be increase
d
2.6 %. In t
h
e 620 W
/
m
²
and 821
W
/
m
²
, the avera
g
e
m
a
xim
u
m
curr
ent
t
h
at
ge
ner
a
t
e
d
by
a
PV
panel
wi
t
h
ai
r
co
ol
i
n
g m
echani
s
m
i
s
hi
ghe
r t
h
a
n
t
h
e
PV
pa
ne
l
refe
rence
.
Fi
gu
re
5.
M
a
xi
m
u
m
current
o
f
P
V
pan
e
l
wi
t
h
a
n
d
wi
t
h
o
u
t
ai
r co
ol
i
n
g m
e
chani
s
m
13
14
15
16
17
18
12
3456
789
1
0
Maximum
Voltage
(V)
No.
Maximum
Voltage With And
Without Air Cooling
Mechanism
413
W/m
²
W
ithout
Air
Cooling
413
W/m
²
W
ith
Air
Cooling
620
W/m
²
W
ithout
Air
Cooling
620
W/m
²
W
ith
Air
Cooling
821
W/m
²
W
ithout
Air
Cooling
821
W/m
²
W
ith
Air
Cooling
1016
W/m
²
W
ithout
Air
Cooling
1016
W/m
²
W
ith
Air
Cooling
0
1
2
3
12
34
56
789
1
0
Maximum
current
(A)
No.
Maximum Current With And
Without Air Cooling
Mechanism
413
W/m
²
W
ithout
Air
Cooling
413
W/m
²
W
ith
Air
Cooling
620
W/m
²
W
ithout
Air
Cooling
620
W/m
²
W
ith
Air
Cooling
821
W/m
²
W
ithout
Air
Cooling
821
W/m
²
W
ith
Air
Cooling
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
63
6
–
64
3
6
41
The a
v
era
g
e m
a
xi
m
u
m
curren
t
of P
V
pa
nel
wi
t
h
ai
r c
ool
i
n
g m
echani
s
m
is 1.
61
A a
nd
2
.
0
7
A
fo
r 6
2
0
W
/
m
²
and 821 W/m²,
re
spectively
.
T
h
e perce
n
t
a
ge
i
n
crem
ent
o
f
m
a
xim
u
m
cu
rre
nt
i
s
2.
48
%
an
d
1
0
.
1
%,
respectively, c
o
m
p
ared to PV pa
nel refe
re
nce. Beside
s t
h
at, the ave
r
a
g
e
m
a
xim
u
m
cu
rre
nt of the PV pa
nel
wi
t
h
ai
r co
ol
i
n
g m
echani
s
m
is 2.
49
A
whi
l
e
t
h
e avera
g
e m
a
xi
m
u
m
current
of
PV
pa
nel
refer
e
nce i
s
2.
43
A
fo
r t
h
e
1
0
1
6
W
/
m
²
sol
a
r
ra
di
at
i
on.
As
ca
n
be see
n
from
th
e figu
re, th
e
p
e
rcen
tag
e
in
crem
en
t in
max
i
m
u
m
cur
r
ent
of P
V
panel
i
s
2
.
4
1
% by
usi
n
g
D
C
br
ushl
ess
fa
ns. It
ca
n be
o
b
ser
v
e
d
t
h
at
t
h
e i
n
crem
ent
of
sol
a
r
rad
i
ation
as th
e sh
ort circu
it cu
rren
t
of PV p
a
n
e
l in
creas
es. But, the increm
ent
of t
h
e PV pa
nel
ope
rat
i
n
g
te
m
p
erature
,
the short circu
it cu
rren
t is slig
htly d
ecreased
. In
o
r
d
e
r to
enha
nce the electrical
efficiency of PV
panel, t
h
e surface of PV pa
nel m
u
st alwa
ys keep at
a lowe
r tem
p
erature
.
It can be
pointe
d
out that the
m
a
xim
u
m
curr
ent
o
f
PV
pa
ne
l
can
be i
n
crea
sed
by
usi
n
g ai
r c
ool
i
n
g m
echani
s
m
.
Fig
u
re
6
illu
st
rates th
e v
a
riatio
n
o
f
m
a
x
i
mu
m
p
o
w
er
of
PV
p
a
n
e
l wit
h
and
witho
u
t
air coo
ling
m
echani
s
m
i
n
di
ffe
re
nt
fi
xed
sol
a
r
ra
di
at
i
on.
The
va
ri
at
i
o
n
of
m
a
xim
u
m
powe
r
of
P
V
pa
nel
wi
t
h
ai
r
co
ol
i
n
g
m
echani
s
m
and P
V
panel
re
fere
nce
were t
e
st
ed i
n
t
h
e 4
1
3
W
/
m
²
, 62
0
W
/
m
²
, 821
W
/
m
²
and
1
0
1
6
W
/
m
²
,
respectively. In
the 413 W
/
m
²
,
the
av
e
r
a
g
e
m
a
xim
u
m
pow
er o
f
P
V
pa
nel
wi
t
h
ai
r c
ool
i
n
g m
echani
s
m
is 19
.1
7
W w
h
i
l
e
t
h
e a
v
era
g
e m
a
xim
u
m
powe
r
t
h
at
gene
rat
e
d
by
PV
panel
r
e
fe
r
e
nce i
s
1
7
.
9
3
W.
In t
h
e com
p
ari
s
o
n
bet
w
ee
n b
o
t
h
PV pa
nel
s
, t
h
e
PV pa
nel
wi
t
h
ai
r co
ol
i
ng
m
echani
s
m
can be ge
ne
rat
e
d
m
o
re po
wer
out
put
com
p
ared to
PV
panel
refe
rence
.
It is clear that
th
e increm
en
t o
f
the
m
a
x
i
m
u
m
p
o
w
er
o
f
PV
pan
e
l is
app
r
oxi
m
a
t
e
ly
6.
47 % w
h
e
n
appl
y
DC
br
us
hl
ess fan
s
at
the bac
k
si
de o
f
PV panel
.
On
t
h
e ot
her ha
n
d
, t
h
e
av
er
ag
e m
a
x
i
m
u
m
p
o
w
er of PV p
a
n
e
l
w
ith air
co
o
ling
m
ech
an
ism
is 26
.8
5
W
and
32
.58
W
in th
e 620
W
/
m²
and
821
W/m
²
,
respectively.
While the a
v
erage m
a
xim
u
m
p
o
w
e
r
of
PV
pan
e
l r
e
f
e
r
e
n
ce
in
th
e 620
W
/
m² an
d
8
2
1
W
/
m
²
,
is
23
.8
1 W
and
27
.7
1 W
r
e
sp
ectively.
Fi
gu
re
6.
The
vari
at
i
o
n
of m
a
xi
m
u
m
powe
r
of
PV
pa
nel
wi
t
h
an
d
wi
t
h
out
ai
r co
ol
i
n
g m
e
chani
s
m
.
It can be seen t
h
at the
m
a
ximum
pow
er
of PV pa
nel can be
increased
by
using air cooling m
echanis
m
.
Also,
i
t
i
s
ob
vi
o
u
s t
h
at
t
h
e pe
rcent
a
ge
of i
n
crem
ent
i
n
t
h
e m
a
xim
u
m
powe
r
of
P
V
panel
i
s
11
.3
2 % a
n
d 1
4
.
9
5
% f
o
r
th
e 620
W
/
m
²
an
d 821
W
/
m
²
, r
e
sp
ectiv
ely.
Besid
e
s th
at
, t
h
e a
v
era
g
e m
a
xi
m
u
m
power
of
PV
pa
nel
w
i
t
h
ai
r
cool
i
n
g m
echa
n
i
s
m
i
s
38.
16
W a
n
d
t
h
e a
v
e
r
age
m
a
xim
u
m
p
o
we
r
of
PV
panel
refe
re
nc
e i
s
3
5
.
7
6
W i
n
t
h
e
1
016
W
/
m
²
. I
t
can
b
e
ob
ser
v
ed
th
at
the average m
a
xim
u
m
powe
r of PV pa
n
e
l with
air co
o
ling
m
ech
an
is
m
is
hi
g
h
er t
h
a
n
t
h
e PV pa
nel
re
f
e
rence
.
The i
n
crem
ent
of t
h
e
m
a
xim
u
m
power
of P
V
p
a
n
e
l
i
s
6.2
9
% b
y
usi
n
g
DC
br
us
hl
ess f
a
ns.
Thi
s
i
s
du
e
t
h
at
DC
br
us
hl
ess fans
ca
n red
u
ce
t
h
e o
p
e
r
at
i
n
g
t
e
m
p
erat
ure o
f
P
V
pa
n
e
l
.
It
can be co
ncl
u
ded t
h
at
t
h
e per
f
o
r
m
a
nce of PV pa
ne
l decreases as the operating tem
p
erature increases
.
There
f
ore,
t
h
e
cool
i
n
g
m
echani
s
m
i
s
im
port
a
nt
t
o
co
ol
do
wn
t
h
e
o
p
erat
i
n
g
t
e
m
p
erat
ure
o
f
P
V
pa
nel
i
n
or
der
to increas
e the
electrical efficiency of
P
V
pa
nel
.
C
h
o
w
et
al
. [1
8]
ha
ve
de
vel
o
ped m
odel
i
ng
of ai
r-c
ool
ed P
V
panels
. T
h
ey found that t
h
e
overall el
ectrica
l efficiency
of the PV /
T syst
e
m
in the year is around
10.2
%.
0
10
20
30
40
50
12345678
9
1
0
Maximum
Power
(W)
No.
Maximum Pow
e
r
W
i
th
And W
i
thout
Air
Cooling
Mechanism
413
W/m
²
W
ithout
Air
Cooling
413
W/m
²
W
ith
Air
Cooling
620
W/m
²
W
ithout
Air
Cooling
620
W/m
²
W
ith
Air
Cooling
821
W/m
²
W
ithout
Air
Cooling
821
W/m
²
W
ith
Air
Cooling
1016
W/m
²
W
ithout
Air
Cooling
1016
W/m
²
W
ith
Air
Cooling
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ana
l
ysis Air C
o
o
ling
Mechanism
fo
r Ph
o
t
o
v
o
lta
ic Pa
n
e
l
b
y
So
la
r S
i
m
u
l
a
to
r
(Y.M. I
r
w
an)
64
2
4.
CO
NCL
USI
O
N
The design a
nd
fabrication of
the s
o
lar sim
u
lator wi
th haloge
n lam
p
s has been success
f
ully
d
e
term
in
ed
in
th
is exp
e
rim
e
n
t
. Th
e so
lar
rad
i
atio
n
o
f
t
h
e
so
lar sim
u
lato
r syste
m
is h
i
g
h
e
r
rep
e
atab
le
at an
y
ti
m
e
. Th
is so
la
r si
m
u
lato
r syste
m
can
b
e
ab
le to
test
th
e p
e
rfo
r
m
a
n
ce o
f
PV p
a
n
e
l with
in th
e size o
f
test
area.
Th
e m
a
in
p
u
r
p
o
s
e o
f
so
lar si
m
u
lato
r is to
an
alysis th
e p
e
rfo
r
m
a
n
ce o
f
PV p
a
n
e
l with
and
witho
u
t
an
air
co
o
ling
m
ech
an
ism
in
in
d
o
o
r
test. Th
e
so
l
a
r rad
i
atio
n and
ope
rating tem
p
erature ar
e
the m
a
in factors tha
t
affect the electrical efficien
cy
of PV
panel
.
The i
n
crem
ent
i
n
ope
rat
i
n
g t
e
m
p
erat
ure of P
V
pa
nel
due t
o
hi
g
h
e
r
solar
ra
diation leads t
o
re
duce the electric
a
l efficiency
a
n
d
t
h
e
de
gra
d
at
i
on
of
PV
p
a
nel
.
Whe
n
t
h
e sol
a
r
radiation dec
r
e
a
sed, t
h
e m
a
xim
u
m powe
r
output that ge
ne
rated by PV pa
nels
also
decre
a
sed. T
h
is is becaus
e
o
f
less av
ailab
i
lity o
f
p
h
o
t
on
s
o
f
sem
i
co
n
d
u
c
to
r cells. Th
e air coo
lin
g
m
ech
an
ism
is d
e
sig
n
e
d
an
d
con
s
t
r
u
c
ted
to
k
e
ep
t
h
e p
a
nel with
in
certain
te
m
p
eratures
. In the
com
p
arison
betwee
n
p
e
rf
orm
a
nce o
f
PV
pa
nel
s
wi
t
h
an
d
with
ou
t air coo
lin
g
m
ech
an
i
s
m
,
a
i
r co
o
ling
setup
h
a
s
decreased
due to therm
a
l
effects and inc
r
ea
ses the
po
we
r
out
put
.
B
e
si
des, t
h
e
o
p
erat
i
n
g t
e
m
p
erat
ure
of
PV
p
a
nel
wi
t
h
ai
r
c
ool
i
n
g m
echan
i
s
m
i
s
l
o
wer
t
h
an t
h
e
PV
pa
nel
re
fe
rence
.
T
h
e e
x
peri
m
e
nt
al
resul
t
s
m
e
nt
i
oned
t
h
at
t
h
e
dec
r
em
ent
of
o
p
er
at
i
ng t
e
m
p
erat
ure i
s
aro
u
nd 2-
3
˚
C
increase the
powe
r output
of t
h
e PV
pa
nel
wi
t
h
ai
r co
ol
i
ng m
echani
s
m
by
6 -
14
%. Th
e
in
crem
en
t o
f
po
wer
ou
tpu
t
wi
ll h
a
v
e
a sign
ifican
t con
t
ribu
tio
n to
t
h
e PV
syste
m
ap
p
licati
o
n
s
.
ACKNOWLE
DGE
M
ENTS
The authors thank the Cent
re
of Excellence
for
Ren
e
wab
l
e En
erg
y
(CERE), Un
iv
ersity Mala
ysia
Perlis (Un
i
MAP) i
n
Kang
ar,
Perlis fo
r pro
v
i
d
i
ng
all d
a
ta u
s
ed
in th
is st
u
d
y
.
REFERE
NC
ES
[1]
Koumi N.S., Njomo D., a
nd Moungnutou M.I., “Comparison of Predic
tiv
e Models for Pho
t
ovoltaic Module
P
e
rform
ance un
der Tropi
cal C
l
i
m
a
te”,
TELKO
M
NIKA Indones
i
an Journal
of Electrica
l
Engin
eering
, Vol. 10,
No.2, June 2012, pp. 245-256.
[2]
M. Abdulkadir
,
A.S.
Samosir an
d A.H.M. Ya
tim, “Modeling
and
Simulation of
a Solar Photovoltaic S
y
stem,
Its
D
y
nam
i
cs
and
Trans
i
en
t Chara
c
ter
i
s
tics
in LA
BVIEW
”
,
Inter
national Journa
l of
Power Electronics and Drive
Sys
t
em (
I
JPEDS
)
, Vol. 3
,
N0. 2,
June 2013, pp. 1
85-192.
[3]
W.Z.
Leow, Y.M. Irwan, M.
Ir
wanto, N
.
Gomesh and I
.
Safw
ati,
“PIC18F4550 Controlled So
lar Pan
e
l Coo
lin
g
S
y
stem Using D
C
H
y
br
id”,
Jour
nal of Scientific
Research
&
Rep
o
rts
, 3(21): 2801
-2816, 2014
.
[4]
Hassane B.S.,
B
e
n M.D.
and He
lm
aoui A.,
“
T
he
oreti
cal
Stud
y o
f
Multipl
e
Solar
Cells S
y
s
t
em
a
s
a Function of
Tem
p
eratur
e”
,
TELKOMNIKA Indonesian Journal
of Electrical Engineering
, Vol. 12, No. 7, July
2014, pp. 4928-
4933.
[5]
Teo H.G.,
Lee P.S., Hawlader
M.N.A., “An activ
e cooling
s
y
s
t
em for PV modules”,
Applied En
ergy
.2012; 90: 309-
315.
[6]
J.K. Tonui, Y. Tripanagnostopou
los, “A
ir-cooled PV/T
solar collectors
with
low cost performan
ce improvements”,
Solar Energy
, 20
07, pp
. 498–511
.
[7]
Fu Qiang and Tong Nan, “A Str
a
teg
y
Research
on MPPT Technique in P
hotovoltaic Power Ge
neration S
y
stem”,
TELKOMNIKA Indonesian Journ
a
l
of Electrical
Engineering
, Vol. 11
, No
. 12
, December 2013
, pp
. 7627-7633
.
[8]
Yass, K., Curtis, H.B., 1974, “Low
Cost
Air Mass 2
Solar Simul
a
tor”,
NASA Technical Memorandum
,
NAS
A TM
X-3059.
[9]
Bees
on, E
.
J
.
G.,
“
T
he CS
I lam
p
as
a s
ource of r
a
diation for solar simulation”,
Lighting Research
&
Technology
,
10(3), 164-166
(
1978).
[10]
Krusi P., Schmid R., “The CSI
1000W lamp as
a source for solar radiation simulation
”
,
Solar En
ergy
, 30 (5)
,
455
-
462 (1983).
[11]
Kenne
y
S.P,
an
d Davidson J.H., “
D
esign of a
Multiple-
L
am
p Large-Sc
al
e Solar Sim
u
lator”,
ASME Journal
of
Solar Energy En
gineering
, 116(1
1
), 200–205
(19
94).
[12]
Garg, H.P.,
and
Shukla, A.R.,
1985, “Develop
ment of Si
mple Low-Cost Solar Simulator for
Indoor Collecto
r
Testing
,
New De
lhi,
India
”
,
App
l
i
e
d En
ergy
,
21, p
p
. 43–54
.
[13]
S
upranto, S
opia
n
, K
., D
a
ud
, W
.
R.W
., O
t
hm
an,
M
.
Y
., and Y
a
tim, B., “Design and Construction
of Low Cost Solar
Sim
u
lator”,
World Renewable
En
ergy Congress V
, (Perg
a
mon Press, Oxford, 1999
), pp
. 121–125
.
[14]
Nazari
,
A.B., 2007, “
P
erform
ance Eva
l
uat
i
on
of a D
ouble-Pass Photovoltaic-Th
e
rm
al Sola
r Collec
t
or wit
h
Compound Parabolic Concen
trators
and Fins”, P
h
D Thesis, UKM.
[15]
E.J.G. B
eeson, “The CSI Lamp as a S
ource of
Radiation
for Solar
Simulation”,
Lighting Research
and Technology
,
10(1978), pp
. 16
4-166.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
63
6
–
64
3
6
43
[16]
Infield D, M
e
i L
,
and E
i
ck
er U,
“
T
herm
al P
e
rfor
m
ance es
tim
at
io
n of Ventil
ated
P
V
F
acades
”,
So
lar Energy
2004
;
76: 93-8.
[17]
J.K. Tonui, Y. Tripanagnostopou
los, “P
erformance Improvement of PV/T Sola
r
Collectors with
Natural Air Flo
w
Operation
”
,
Sola
r
Energy
, 2008
,
pp. 1-2
.
[18]
Chow T.T., “A r
e
view on
Photov
olta
ic/Thermal H
y
brid
Solar Technolog
y
”
,
Applied Energy
2010
; 87: 365-79.
Evaluation Warning : The document was created with Spire.PDF for Python.