Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 1
,
Febr
u
a
r
y
201
6,
pp
. 12
0
~
12
9
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
1.9
108
1
20
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Predictable Models and Expe
rim
e
ntal Measurements for
Electri
c
Prop
erti
es of Pol
y
propyl
ene Nanocomp
osit
e Films
Ahmed Thabe
t
*, You
ssef Mo
ba
rak*,
*
*
* Nanotechnolo
g
y
Resear
ch C
e
n
t
re, Electrical En
gineer
ing De
p
a
rtment Faculty
of
Ener
g
y
Eng
i
neer
ing, Sah
a
ri 8152
8,
Aswan University
, Sahar
i
City
, 8
1528,
Aswan, Eg
y
p
t,
** Departmen
t
o
f
Electr
i
cal
Engineering
,
Faculty
of Engin
eerin
g,
Rabigh, King
Abdulaziz Univ
ersity
, Saudi
Arab
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Sep 30, 2015
Rev
i
sed
No
v 5, 201
5
Accepted Nov 24, 2015
This
pap
e
r pro
ces
s
e
d and
ch
a
r
act
eriz
ed
cos
t
-
f
ewer pol
yprop
y
l
e
ne
(P
P
)
nanocomposite
films; an exp
e
r
i
mental
work
has
been
inves
tigat
ed for
stud
y
i
ng
the electr
i
c prop
erties
of
th
e new n
a
nocomposite mater
i
als
and
com
p
ared with u
n
filled
industri
a
l
m
a
teri
al
s in
a fr
equency
range u
p
to 1 kHz.
A sm
all addit
i
o
n
of nanoparti
c
l
e
s (cl
a
y
,
and fu
m
e
d silica) to p
o
l
y
prop
y
l
en
e
showed appreciable improvemen
t
in th
e electric reactan
ce
and conductan
ce
at diff
eren
t freq
u
enc
y
up to
1k
Hz, in
addit
i
on,
an el
ec
tric
s
p
ec
tros
cop
y
has
been measured
the
electric p
r
o
p
erties
of poly
p
rop
y
lene with and without
nanoparticles under varian
t temperatur
es (20°C, and 60°C). Cambridge
Engineering
Selector (CES) pr
ogram were carri
ed out the
electrical/mechanical predic
table models for
the sugge
sted material
s. Finally
,
this paper
le
ads to s
y
n
t
he
size e
l
e
c
tri
cal
insulating
p
o
l
y
prop
yl
en
e
nanocom
posite f
ilm
s where the
e
l
ec
tric
al prop
erti
es are prop
erl
y
m
a
intain
ed
in order to achiev
e more cost-effe
ct
i
v
e,
ene
r
gy
-e
ffec
t
i
v
e a
nd he
nce
environm
enta
ll
y
bett
er m
a
t
e
ria
l
s f
o
r the
e
l
ec
tri
cal
i
n
sulation
te
chno
log
y
.
Keyword:
Dielectric strength
Electric properties
I
n
su
latio
n po
lyp
r
op
ylen
e
Nan
o
c
o
m
posi
t
e
Polym
e
rs
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Yo
usse
f M
oba
rak
,
Electrical Engi
neeri
n
g De
part
ment Faculty of E
ngi
neeri
n
g,
Rab
i
gh
, King
Abdu
laziz
Un
iv
ersity,
Saud
i Arab
ia
Em
a
il: yso
l
i
m
a
n
@k
au
.ed
u
.sa
1.
INTRODUCTION
Pol
y
m
e
r nano
com
posi
t
e
fi
l
m
s have at
t
r
a
c
t
e
d wi
de
i
n
t
e
rest
wi
t
h
reg
a
rd t
o
en
ha
nc
i
ng
pol
y
m
er
properties and extending thei
r utilit
y in recent years. The na
noc
om
posite
material which the nanopa
rticles are
ev
en
ly d
i
stri
b
u
ted
in
th
e
p
o
l
y
m
er
m
a
terial a
t
tracts atten
tio
n as an
in
su
lating
m
a
terial
beca
use the
propert
i
es of
t
h
e ori
g
i
n
al
m
a
t
e
ri
al
can be dr
ast
i
cal
l
y
im
proved
by
addi
ng
a few pe
rcent
of na
n
opa
rt
i
c
l
e
s. Nan
o
-
com
posi
t
e
s
represen
t a
v
e
ry attractiv
e ro
u
t
e t
o
u
pgrad
e an
d d
i
v
e
rsi
f
y prop
erties o
f
t
h
e
po
ly
m
e
rs.
Nan
o
-filler-filled
p
o
l
ym
ers
m
i
g
h
t
b
e
d
i
fferen
t
i
ated
fro
m
mi
cro-filler-
filled p
o
l
ym
ers in
th
ree m
a
j
o
r asp
ects th
at th
e
n
a
no-
com
posi
t
e
s n
o
r
m
a
ll
y
cont
ai
n
sm
al
l
e
r am
ount
s, ar
e i
n
ran
g
e o
f
nan
o
m
e
ters i
n
si
ze a
n
d
hav
e
t
r
em
end
ousl
y
large s
p
ecific
s
u
rface a
r
ea. Al
l these c
h
aract
eristics are
refl
ected in their
material prop
e
r
ties [1-4].
In general,
fillers are add
e
d
to
po
lym
e
ric
m
a
terials in
o
r
d
e
r to
en
h
a
n
c
e th
erm
a
l an
d
mech
an
ical pro
p
erties. Ov
er the p
a
st
few years t
h
ere h
a
v
e
b
e
en
few
n
u
m
b
e
rs of research
es
on
th
e effect
o
f
fillers
o
n
d
i
electric prop
erti
es of
poly
m
ers [5
-8]
.
The s
h
ift from ceram
ic
electric in
sul
a
t
i
n
g
m
a
t
e
ri
al
s (e.g.
po
rcel
ai
n a
n
d
gl
ass) a
nd
fr
o
m
oi
l
-
pape
r
in
su
lation
s
to po
ly
m
e
ric
materials h
a
s
been
th
e m
a
j
o
r ch
an
g
e
i
n
the field
o
f
h
i
gh
v
o
ltag
e
in
su
lation
t
echn
o
l
o
gy
d
u
r
i
n
g t
h
e
past
t
h
ree
deca
des.
To
day
p
o
l
y
m
e
rs are
wi
del
y
use
d
i
n
m
o
st
of t
h
e
hi
g
h
v
o
l
t
a
g
e
equi
pm
ent, e.g.
powe
r transform
e
rs, insulators, ca
pac
itors
, react
ors
,
surge a
rresters
,
curre
nt and
voltage
sen
s
o
r
s, bu
sh
in
g
s
, power cab
l
es and
term
i
n
atio
ns. Th
e wid
e
po
ssi
b
ilities o
f
th
e ex
i
s
tin
g
po
lym
e
r
s
an
d,
part
i
c
ul
a
r
l
y
, t
h
e h
uge sce
n
ari
o
s o
f
ne
w
pol
y
m
er
co
m
p
o
s
ites in
h
i
g
h
vo
ltag
e
t
ech
no
log
y
in
sp
ire th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
12
0 – 12
9
12
1
researc
h
ers of the
field
for
innovative ne
w materials
a
nd t
o
st
udy t
h
eir
properties
[9-11]. Research work
on
n
o
v
e
l po
lym
e
r
m
a
terials is a
g
r
eat si
g
n
i
fican
ce bo
t
h
n
a
ti
o
n
a
lly and
in
t
e
rn
ation
a
lly in
th
e field
o
f
po
wer
engi
neeri
n
g
,
hi
gh
v
o
l
t
a
ge t
echn
o
l
o
gy
an
d e
nvi
ro
nm
ent
a
l
techn
o
l
o
gy
d
u
e
t
o
t
h
e i
n
creasi
ng
dem
a
nds o
f
m
o
re
cost-e
ffective
,
efficient, relia
ble a
nd e
n
vi
ro
nm
ent
a
l
l
y
sat
i
s
fact
ory
hi
g
h
v
o
ltag
e
equ
i
p
m
en
t. Particu
l
arly, th
ere
is a need for developing a ra
nge
of com
p
ac
t devices
and accessories, for
bot
h outd
oor a
nd indoor conditions,
in
wh
ich nov
el and
m
o
re reliab
l
e in
su
latio
n syste
m
s will p
l
ay th
e k
e
y
ro
le.
Nano-m
a
terial
s, in
fo
rm
o
f
po
ly
m
e
ric n
a
no-co
m
p
o
s
ite
s, are foresee
n
as
e
x
cellent ca
ndi
dates able to
fu
lfill th
e
n
e
w requ
irem
en
ts. Nano
-filler-filled
po
ly
m
e
rs
mig
h
t
b
e
d
i
fferen
tiated
fro
m
micro
-filler-filled
pol
y
m
ers i
n
t
h
ree m
a
jor aspe
ct
s t
h
at
t
h
e nano
-c
om
posi
t
e
s no
rm
al
ly
cont
ai
n sm
al
l
e
r am
o
unt
s
,
are i
n
ran
g
e of
nano-m
e
ters in size and
have
trem
endously large s
p
ecifi
c s
u
rface area
. Al
l these ch
aract
eristics are refl
ected
in
th
eir
m
a
teri
al p
r
op
erties [1
2-1
6
]
. Po
lyp
r
o
p
y
len
e
PP is wid
e
ly u
s
ed
as an
in
su
lating
m
a
terial
fo
r po
wer
cab
les. Electri
cal in
su
latin
g
p
o
l
ym
ers are u
s
ually
m
o
d
i
fi
ed
with
ino
r
gan
i
c fillers to i
m
p
r
o
v
e
electrical,
mechanical, therm
a
l prope
rties. Poly
propylene is
widely use
d
as a
di
electric insulation
of power
cable
.
Nanoparticles/polym
er com
posites are
now
o
f
con
s
id
erab
le in
terest for th
ei
r s
p
ecific el
ectrical prope
rties. It
is recognized
that the in
terfaces betwe
e
n
the host
dielectric and
the nanom
e
tric
par
ticles can strongl
y
influe
nce the dielectric properties of
the composite m
a
terial as a whole.
Si
nce interface
s dom
inate dielectric
situ
atio
n
s
at this lev
e
l,
n
a
n
odielectrics an
d in
terface
s
b
ecome in
ex
tricab
le. Lo
w frequ
e
n
c
y po
larization
is
a
type of polariz
a
tion c
once
r
ning t
o
in
te
rface
pola
r
ization,
and it strongly
relates to the
space c
h
arge s
t
ora
g
e
and t
r
a
n
s
p
ort
a
t
i
on i
n
di
el
ect
ri
c
m
a
t
e
ri
al
s [1
7-
2
1
]
.
As
of
no
w, wo
rk
is un
d
e
rw
ay
to exa
m
ine the phy
sical
pr
o
p
ert
i
e
s
of
n
a
noc
om
posi
t
e
m
a
t
e
ri
al
s com
pos
ed
o
f
nan
o
p
art
i
c
l
e
s o
f
m
e
t
a
l
s
and
t
h
ei
r
c
o
m
pou
nd
s st
ab
i
l
i
zed
within a
poly
m
eric dielectric
m
a
trix
[2
2-
2
5
]
.
The el
ect
ri
c and
o
p
t
i
c
pr
ope
rt
i
e
s o
f
t
h
e
s
e m
a
t
e
ri
al
s have bee
n
dem
onst
r
at
ed t
o
be
hi
g
h
l
y
de
pen
d
e
n
t
o
n
t
h
e
si
ze, st
r
u
ct
u
r
e,
an
d c
once
n
t
r
a
t
i
on
of
t
h
e
na
n
opa
rt
i
c
l
e
s, as
wel
l
as
on
t
h
e t
y
pe
o
f
pol
y
m
eri
c
m
a
t
r
i
x
[
2
6-
33]
.
Great
e
x
pect
at
i
ons
ha
ve
f
o
cu
sed
o
n
c
o
st
l
e
ss
na
n
opa
rt
i
c
l
e
s. H
o
we
ve
r, i
t
h
a
s bee
n
co
ncer
ned
i
n
t
h
i
s
pape
r a
b
o
u
t
t
h
e ef
fect
o
f
t
y
pes of
co
st
-fe
wer
na
noparticles on
electrical
p
r
op
erties of
p
o
ly
m
e
ric
n
a
no
co
m
p
o
s
ite film
s. W
ith a con
tin
ual prog
ress in po
lymer
n
a
no
co
m
p
o
s
ite fil
m
s, th
is research d
e
p
i
cts th
e
effect
s
of t
y
pe
s an
d co
nce
n
t
r
at
i
on o
f
c
o
st
-f
ewer
na
no
part
i
c
l
e
s i
n
el
ect
ri
cal
pr
ope
rt
i
e
s o
f
i
n
dust
r
i
a
l
pol
ym
er
material. Ex
p
e
rim
e
n
t
al resu
lt
s h
a
v
e
b
e
en
d
i
scu
ssed
th
e effects o
f
clay and
fu
m
e
d
silica
n
a
nop
articles
wit
h
vari
ous
volum
e
fractions
and
te
m
p
eratures
on el
ectric a
n
d dielectric prope
r
ties o
f
po
lyp
r
op
ylen
e.
2.
E
X
PERI
MEN
T
AL SETUP
2.
1. N
a
n
o
p
a
rti
c
l
e
s
The
use
d
co
st
-
f
ewe
r
nan
o
p
art
i
cl
es have a
sp
heri
cal
part
i
c
l
e
sha
p
e (
D
i
a
.:
1
0nm
) an
d
have
t
h
e m
o
st
im
port
a
nt
cha
r
act
eri
s
t
i
c
for e
nha
nci
n
g
pol
y
m
er appl
i
cat
i
o
ns
. T
h
e reas
o
n
of sel
ect
i
o
n cl
ay
nano
pa
rt
i
c
l
e
s i
s
due
t
o
havi
ng a g
r
eat
er effect
on
pro
p
e
r
t
i
e
s such as vi
scosi
t
y
, st
i
ffnes
s and st
ren
g
t
h
, usi
n
g cl
ay
as nanopa
r
t
i
c
l
e
s
gi
ve
hi
g
h
l
e
vel
s
o
f
fl
am
e ret
a
rda
n
cy to t
h
e
produced
com
posite. Cost
-fe
we
r clay na
nopa
rticles are catalyst to
be the
best filler am
ong na
noparticles indus
t
rial
m
a
terial
s.
On t
h
e other
wise, fum
e
d silica is a fluffy
white
p
o
wd
er
with
an
ex
trem
ely lo
w d
e
n
s
ity. Also
, fu
m
e
d
silic
a p
o
wd
er is u
s
ed
in
p
a
i
n
ts an
d
co
ating
s
, si
lico
n
e
rubb
er and
silico
n
e
sealan
ts, ad
h
e
si
v
e
s, cab
l
e co
m
p
o
u
n
d
s an
d
g
e
ls, p
r
in
tin
g
ink
s
and
to
n
e
r, an
d
p
l
ant
pr
ot
ect
i
o
n
.
2.
2. B
a
se
M
a
t
r
i
x
Polypropylene
is one of the m
o
st com
m
on and
vers
atile therm
oplastics in the plastics indust
r
y. The
p
r
op
erties
o
f
po
lyp
r
op
ylen
e
h
a
v
e
a l
o
w den
s
ity, h
i
g
h
tran
sitio
n tem
p
eratu
r
e, h
i
g
h
m
e
ltin
g
p
o
i
n
t
, and
h
i
gh
th
erm
a
l d
i
men
s
io
n
a
l stab
ility. Also
, it is o
n
e
o
f
th
e m
o
st i
m
p
o
r
tan
t
p
o
l
y
m
ers wh
ere it i
s
u
s
ed
as in
su
l
a
tio
n
of
m
o
d
e
rn
HV
cap
acito
rs. Filling
po
lyprop
ylen
e wit
h
a cer
tain
n
a
no
p
a
rticles m
a
y in
crease electrical, ten
s
ile &
im
pact
st
ren
g
t
h
,
fl
ex
ur
al
m
odul
us,
an
d
de
fl
ect
i
on t
e
m
p
era
t
ure
pr
o
p
ert
i
e
s.
The
fi
nal
p
r
op
ert
i
e
s de
pe
nd
m
a
i
n
l
y
on
t
h
e t
y
pe
an
d
perce
n
t
a
ges
of
na
n
opa
rt
i
c
l
e
s.
Gen
e
ral
l
y
i
m
provi
n
g
t
e
nsi
l
e
st
ren
g
t
h
m
a
y
adve
rsel
y
af
f
ect
o
n
cor
r
es
po
n
d
i
n
g
el
on
gat
i
o
n [
10]
. Pol
y
m
e
r
na
noc
om
posi
t
e
can be pr
epare
d
usi
n
g t
h
ree
m
a
i
n
m
e
t
h
o
d
s;
in
tercalatio
n [1
2
]
, So
l-Gel
usin
g a
hy
d
r
ol
y
s
i
s
react
i
o
n a
n
d c
o
nde
nsat
i
o
n
pol
y
m
eri
zat
ion
o
f
m
e
t
a
l
alko
xi
d
e
[1
3]
, di
rect
s
di
spe
r
si
o
n
i
n
whi
c
h i
n
or
ga
n
i
c nan
o
p
a
rt
i
c
l
e
s are
di
st
ri
b
u
t
e
d i
n
t
o
a
m
a
t
r
i
x
pol
y
m
er [
14]
.
Po
lyprop
ylen
e n
a
n
o
c
o
m
p
o
s
ite fil
m
s were
prep
ared and
com
p
o
s
ited
with n
a
n
o
p
a
rticles
o
f
fu
m
e
d
silic
a and
m
ontm
o
ri
l
l
oni
t
e
cl
ay
(1%wt
.
up t
o
1
0
%
w
t
.
);
t
h
ese na
n
opa
rt
i
c
l
e
s were m
i
xed an
d
heat
ed
u
p
t
o
18
5 oC
a
n
d 5
0
rpm
fo
r
8 m
i
n i
n
knea
d
e
r
.
Th
e co
m
p
o
und
ed m
a
ter
i
als
w
e
r
e
gr
oun
d an
d ro
lled
at
16
0
o
C to ob
tain
th
i
n
film
(t
h
i
ckn
e
ss
of
0.
1±
0.
0
1
) as s
h
ow
n i
n
Fi
gu
re
1. P
o
l
y
pr
o
p
y
l
ene na
n
o
com
p
o
s
i
t
e
fi
lm
s were obt
ai
ne
d
un
de
r 2
5
M
P
a an
d
18
5°C
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Predi
ct
a
b
l
e
M
odel
s
a
n
d
Ex
pe
ri
ment
al
Mea
s
urem
ent
s
f
o
r E
l
ect
ri
c Prope
rt
i
e
s of
…
(
Y
o
u
ss
ef
Mo
bar
ak)
12
2
fo
r
5 m
i
n usi
n
g
hot
pres
s. C
h
aract
eri
zat
i
o
n
of
na
n
o
st
r
u
ctured m
a
terial sam
p
les was carried out a
nd ac
hieve
d
th
ro
ugh
a screen
ing
of th
e
main
el
ectric a
nd
dielectric properties. T
h
e
base o
f
al
l
na
noc
om
posi
t
e
p
o
l
y
m
e
r
materials have been m
easure
d
thei
r el
ect
ri
c
and
di
el
ect
ri
c pr
ope
rt
i
e
s aft
e
r m
a
nufact
u
r
i
ng a
n
d det
a
i
l
e
d as
sho
w
n i
n
Ta
bl
e 1.
Su
rface
a
n
al
y
s
i
s
an
d m
ont
m
o
ri
l
l
on
ite clay and fum
e
d silica nanopa
rt
icles were
exa
m
ined
usi
n
g sca
n
ni
n
g
el
ect
ro
n m
i
crosco
pe as
sh
o
w
n i
n
Fi
g
u
r
e
1.
(a) C
l
ay
/
PP
na
noc
om
posi
t
e
(b
) F
u
m
e
d si
l
i
ca/
PP na
n
o
com
posi
t
e
Fi
gu
re
1.
SEM
im
ages f
o
r
PP
nan
o
c
o
m
posi
t
e
fi
l
m
s
Tabl
e
1.
Di
el
ect
ri
c co
nst
a
nt
a
n
d
resi
st
i
v
i
t
y
pr
ope
rt
i
e
s o
f
na
n
o
com
posi
t
e
fi
l
m
s
Materi
als
Dielectri
c Constant at 1kHz
Resistivity (
Ω
.m
)
Pur
e
PP
2.
28
10
8
PP + 1%wt Clay
2.
21
10
9
PP + 5%wt Clay
1.
97
10
9
-1
0
10
PP + 10%wt Clay
1.
75
10
10
-10
12
PP + 1%wt
Fu
m
e
d
Silica
2.29
10
7
PP + 5%wt
Fu
m
e
d
Silica
2.37
10
7
-1
0
5
PP + 10%wt Fu
m
e
d Silica
2.47
10
5
-1
0
4
2.
3. Me
asure
m
ent De
vi
ces
Fi
gu
re 2 s
h
o
w
s H
I
O
K
I
3
5
2
2
-
50 LC
R
t
h
at
m
easured
e
l
ectrical param
e
ters of na
n
o
-m
etric solid
di
el
ect
ri
c i
n
s
u
l
a
t
i
on s
p
eci
m
e
ns at
va
ri
o
u
s
f
r
e
que
nci
e
s:
|
Z
|
,
|
Y
|
,
θ
,
R
p
(DCR),
Rs (ESR
,
DCR), G, X, B,
Cp
,
Cs, L
p
, L
s
,
D
(
t
an
δ
),
a
n
d Q.
Fig
u
r
e
2
.
HI
OK
I
35
22-
50
LCR
H
i
-
t
ester
dev
i
ce
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
12
0 – 12
9
12
3
Speci
fi
cat
i
o
n o
f
LC
R
i
s
Pow
e
r su
ppl
y
:
10
0
,
12
0,
22
0 o
r
24
0 V
(
±
1
0%)
AC
(sel
ect
abl
e
), 5
0
/
6
0 Hz,
an
d Frequ
e
n
c
y: DC,
1
m
H
z to
1
0
0
kHz, Di
sp
lay Screen
:
LCD
with
b
a
ck
lig
h
t
/
999
99
(fu
ll 5 d
i
g
its).
Vo
ltage
R
a
t
i
ng:
2
2
0
V
AC
5
0
Hz,
Te
st
Vol
t
a
ge:
0~
5K
V,
0~
12
K
V
.
O
u
t
p
ut
C
a
pa
ci
t
y
:
up t
o
1K
VA
, C
u
t
-
o
ff c
u
r
r
ent
:
Adjustable levels current,
Al
ar
m
Syste
m
:
Buzzer &
N-GO i
ndicator l
a
m
p
. Test Time: approx
0~180 sec
(Adj
u
s
tab
l
e),
Circu
it Pro
t
ect: Circu
it Break
e
r.
2.
4. Ph
ysi
c
al
a
nd Mech
ani
c
a
l
Proper
ti
es of
Pol
y
pr
op
yl
en
e
(PP
)
Po
lyprop
ylen
e
(PP) is
o
n
e
of t
h
e m
o
st co
mmo
n
and
v
e
rsatile th
erm
o
p
l
astics in
th
e p
l
asti
cs in
du
stry.
The
pr
ope
rt
i
e
s
of
p
o
l
y
pr
opy
l
e
ne ha
ve a l
o
w
den
s
i
t
y
, hi
g
h
t
r
ansi
t
i
on t
e
m
p
erat
ure
,
hi
g
h
m
e
l
t
i
ng p
o
i
n
t
,
a
n
d
hi
g
h
th
erm
a
l d
i
men
s
io
n
a
l stab
ility. Also
, it is o
n
e
o
f
th
e m
o
st i
m
p
o
r
tan
t
p
o
l
y
m
ers wh
ere it i
s
u
s
ed
as in
su
l
a
tio
n
of
m
o
d
e
rn
HV
cap
acito
rs. Filling
po
lyprop
ylen
e wit
h
a cer
tain
n
a
no
p
a
rticles m
a
y in
crease electrical, ten
s
ile &
im
pact
st
ren
g
t
h
,
fl
ex
ur
al
m
odul
us,
an
d
de
fl
ect
i
on t
e
m
p
era
t
ure
pr
o
p
ert
i
e
s.
The
fi
nal
p
r
op
ert
i
e
s de
pe
nd
m
a
i
n
l
y
o
n
th
e typ
e
and
p
e
rcen
tag
e
s
o
f
n
a
no
fillers.
Gen
e
rally
, imp
r
ov
ing
ten
s
ile streng
th m
a
y
ad
v
e
rsely affect o
n
cor
r
es
po
n
d
i
n
g el
on
gat
i
o
n
.
P
hysical and m
echanical
propert
i
es of
pol
ypr
oplen
e ar
e listed
i
n
Tab
l
e
(
2
)
[
34-
37
].
It is fo
und
th
at
trap
p
i
n
g
p
r
operties o
f
m
a
tri
x
are
h
i
gh
ly
mo
d
i
fied
b
y
th
e
p
r
esen
ce
o
f
costless n
a
no
fillers clay.
The nan
o
cl
ay
part
i
c
l
e
s
we
re
di
spe
r
se
d ho
m
ogeno
usl
y
i
n
PP up
t
o
10
%wt
/
w
t
.
Di
el
ect
ri
c
co
nst
a
nt
of PP
-
nanoclay com
posites was dec
r
eased succe
ssfully from
2.
28
t
o
1.
75 at
1
K
H
z
and 1
0
% c
o
n
cent
r
at
i
o
n. A s
m
al
l
ad
d
ition
o
f
n
a
n
o
c
lay to
po
lyp
r
op
len
e
sho
w
ed
ap
preciab
le i
m
p
r
ov
em
en
t in
th
e electric
resistiv
ity at d
i
fferen
t
fre
que
ncy
.
Table 2. Physi
cal
and
Mecha
n
ical
Prop
er
ties of
Po
lypr
op
y
l
en
e (PP)
Properties
PPs
Density
,
g/c
m
³
0,
95
Yield
stress, MPa
32
E
l
ongation at y
i
eld
,
%
8
E
l
ongation at br
eak,
%
70
T
e
nsile
m
odulus of elasticity
, M
P
a
1300
Notched im
p
act strength,
kJ/m
²
6
Ball indentation har
dness,
M
P
a
70
Shor
e har
dness (
D
)
72
M
ean coefficient of linear
ther
m
a
l ex
pansion,
1,
6x10-
4
T
h
erm
a
l
conductivity
,
W
/
m
* K
0,
22
Dielectr
i
c str
e
ngth, kV/m
m
22
Surface resistivity, Oh
m
1014
T
e
m
p
er
atur
e
r
a
nge,
°
C
to +100
In t
h
i
s
st
udy
,
pol
y
p
r
opy
l
e
ne
nan
o
c
o
m
posi
t
e
s were
pr
ocess
e
d an
d c
h
aract
eri
zed. M
a
t
e
ri
a
l
s sel
ect
i
o
n
and electrical/mechanical pre
d
ictable m
odels we
re ca
rri
e
d
out
usi
n
g
C
a
m
b
ri
dge
E
ngi
nee
r
i
n
g Sel
ect
o
r
(
C
ES)
p
r
og
ram
.
It was found
th
at
n
a
no
silica h
a
s an
ad
v
e
rse i
n
flu
e
n
ce on
d
i
electric p
r
o
p
e
rties o
f
po
lyprop
len
e
nan
o
c
o
m
posi
t
e
s w
h
i
l
e
cal
y
n
a
no
pa
rt
i
c
l
e
s i
m
prove
d t
h
e e
l
ectrical in
su
latio
n
p
r
o
p
ertie
s.
T
h
er
ef
or
e
,
So
l-G
e
l
tech
n
i
qu
e was ap
p
lied
to
prep
are
p
o
l
yprop
len
e
n
a
no
co
m
p
o
s
ites. Su
rface an
alysis an
d
m
o
n
t
m
o
rillo
nite cla
y
n
a
nop
articles disp
ersab
ility were ex
am
in
ed
u
s
ing
scann
i
ng electron
m
i
cr
o
s
co
p
e
. Diel
ectrical p
r
o
p
e
rties were
assessed
u
s
i
n
g
HI
OK
I
3
5
2
2
-
5
0 LC
R
Hi
-t
est
e
r
devi
ce.
A
n
e
xpe
ri
m
e
nt
al
wor
k
fo
r c
o
nd
uc
t
a
nce a
n
d
su
sc
pt
ance
o
f
th
e
n
e
w
n
a
no
co
m
p
o
s
ite materials h
a
v
e
been
i
n
v
e
stig
ated
and
co
m
p
ared
with
un
filled ind
u
s
t
r
ial m
a
t
e
rials
in
a freq
u
e
n
c
y rang
e o
f
1Hz –0
.1
MHz.
Th
e resu
ltin
g
v
a
l
u
es fits with Lich
t
e
n
eck
er’s eq
u
a
tio
n
[10
]
:
1
(1
)
1
(2
)
Whe
r
e,
f i
s
t
h
e
vol
um
e fract
i
on
o
f
P
o
l
y
m
e
r
and
na
n
opa
rt
i
c
l
e
s.
ε
m
and
ε
f
are th
e
relativ
e
p
e
rm
itt
iv
ities o
f
pu
re
p
o
l
ym
er an
d nan
o
p
a
rticles. k
is a
fittin
g
fact
o
r
of th
e n
a
no
co
m
p
o
s
ite.
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Beg
i
nn
ing
with
a co
m
p
lete
an
alysis o
f
th
e d
i
electric sp
ectro
sco
p
y
results, th
is p
a
p
e
r
p
r
esen
ts in
d
e
tail th
e ex
p
e
rim
e
n
t
al
resu
lts u
s
ed
in s
u
ch
specialized techni
que
s as hi
gh-fre
quency di
electric
m
easure
m
ents
u
n
d
e
r varian
t
th
erm
a
lly c
o
nd
itio
ns. Th
i
s
research cov
e
rs electric
p
r
op
erties
o
f
n
e
w
p
o
l
ypro
p
y
len
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Predi
c
t
a
bl
e M
odel
s
a
n
d
Ex
pe
ri
ment
al
Mea
s
u
rem
e
nt
s f
o
r E
l
ect
ri
c Prope
rt
i
e
s of
…
(
Y
o
u
ss
ef
Mo
bar
ak)
12
4
n
a
no
co
m
p
o
s
ite fil
m
s with
n
e
w app
licatio
n
s
in
a rang
e
of
polym
e
ric syste
m
s. The
conductance and rea
c
tance
were
m
easured as a
function
of fre
que
ncy in the
range
up to
1
kHz
at va
riant te
m
p
eratures
for all sam
p
les.
3.
1. E
l
ectri
c
a
l
Ch
arac
teri
z
a
t
i
on
of
P
o
l
y
pr
op
yl
ene
Na
no
comp
osi
t
e
Fi
l
m
s a
t
T
e
m
p
er
atu
re
20
o
C
Figure 3(a
)
s
h
ows
reactanc
e
of the test
ed
sam
p
les as a function
of
fre
que
ncy
for clay/PP
n
a
no
co
m
p
o
s
ite film
s at ro
om
te
m
p
eratu
r
e (20
o
C). T
h
e
measured reac
tance
contrast
s on
decreasi
n
g the
reactance with increasing the percentage
of clay na
noparticles up to 1%wt; then
it is
increasing with
in
creasing
clay n
a
nop
articles p
e
rcen
tag
e
up
to
10
%wt,
s
p
e
c
i
a
l
l
y
, at
hi
gh fre
que
nci
e
s.
W
h
at
eve
r
, Fi
g
u
r
e
3(
b
)
cont
rasts on
the
m
easured rea
c
tance
that dec
r
eases w
ith
i
n
creasing
p
e
rcentag
e
of
fu
m
e
d
silica n
a
no
p
a
rt
icles
i
n
t
h
e
na
noc
o
m
posi
t
e
up t
o
10
wt
%.
(a) clay
/PP
(b
) fum
e
d
silica/PP
Figure 3.
Meas
ure
d
reactance
of
na
noco
m
pos
ite film
s at room
te
m
p
erature
(20
o
C)
Fi
gure 4(a) cont
rast
on conduct
a
nce of cl
ay
/
PP nanocom
posi
t
e
sam
p
l
e
s t
h
at
decreases wi
t
h
i
n
creasi
ng frequency
at
room
t
e
m
p
erat
ure (20
o
C
)
. On
t
h
e ot
herwi
s
e,
Fi
gure 4
obvi
ous t
h
e m
easured
conduct
a
nce t
h
at
decreases wi
t
h
i
n
creasi
ng percent
a
ge of
cl
ay
nanopart
i
c
l
e
s i
n
t
h
e nanocom
posi
t
e
up
t
o
5%wt
but
t
h
e m
easured conduct
a
nce of cl
ay
/
PP nanocom
posi
t
e
fi
l
m
s i
n
creases wi
t
h
i
n
creasi
ng t
h
e cl
ay
percent
a
ge of nanopart
i
c
l
e
s up t
o
percent
a
ge of
10%wt
. W
h
at
ever, Fi
gure 4(b) shows t
h
at
t
h
e
m
easured
conductance are increased w
ith increasing the percentage
of fum
e
d
silica nanoparticles in the
nanocom
posite
especi
al
l
y
at
l
o
w
frequenci
e
s. It
i
s
cl
eared t
h
at
nanopart
i
c
l
e
s
have been changed
el
ect
ri
c pol
y
m
er
propert
i
e
s.
The di
el
ect
ri
c propert
i
e
s of i
n
sul
a
t
i
ng pol
y
m
er nanocom
pos
ite
film
s h
a
v
e
b
een
in
v
e
stig
ated
in
th
e
freq
u
e
n
c
y
dom
ai
n from
0.1Hz t
o
1kHz.
(a) clay
/PP
(b
) fum
e
d
silica/PP
Fi
gu
re
4.
M
eas
ure
d
c
o
nd
uct
a
n
ce o
f
nan
o
c
o
m
posi
t
e
fi
lm
s at
ro
om
t
e
m
p
erat
ure
(
2
0
o
C)
0.
E+00
1.
E+07
2.
E+07
3.
E+07
4.
E+07
5.
E+07
6.
E+07
7.
E+07
8.
E+07
0
200
400
600
800
1000
Reactance,
ohm
Frequency,
Hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
F
S
0.
E+00
1.
E+07
2.
E+07
3.
E+07
4.
E+07
5.
E+07
6.
E+07
7.
E+07
8.
E+07
0
200
400
600
800
1000
Reactance,
ohm
frequency,
hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
0.
E+00
1.
E
‐
08
2.
E
‐
08
3.
E
‐
08
0
200
400
600
800
1000
conductivity,
mho
frequency,
hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
0.
E+00
5.
E
‐
08
1.
E
‐
07
2.
E
‐
07
0
500
1000
conductivity,
mho
Frequency,
hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
12
0 – 12
9
12
5
3.
2.
E
l
ectri
c
a
l
Ch
arac
teri
z
a
t
i
on of
Pol
y
pr
o
p
ylene
Nanoc
o
mposite
Films at Temper
ature 60
o
C
It is i
m
p
o
r
tan
t
to
stud
y th
ermal stab
ility o
f
th
e n
e
w
p
o
l
ypro
p
y
len
e
n
a
n
o
c
o
m
p
o
s
ite fil
m
s
in
ord
e
r t
o
ap
p
l
y and
u
s
e
in
in
du
strial ap
p
lication
s
safely; it h
a
s b
een
rest
ricted
rel
a
ted
to
th
e l
o
west m
e
l
tin
g
po
in
t of
bot
h na
nopa
rticles and polymer
m
a
trix. Thus
, Figure
5(a) shows the relation betwee
n reactance
ve
rsus t
h
e
applied
fre
que
n
cy for clay/PP na
noco
m
posite film
s at te
m
p
erature
(60
o
C).
T
h
e measured reac
tance
of
pol
y
p
r
opy
l
e
ne
nan
o
c
o
m
posi
t
e
i
n
creases
wi
t
h
i
n
creasi
ng
cl
ay
p
e
rcen
tag
e
nan
o
p
a
rticles u
p
to
5wt%.
After th
at
,
the reacta
n
ce
of clay/PP
na
noc
om
posite decreases
with
increasing
cla
y
perce
n
tage nanoparticles up
to
10wt%. Also, Figure 5(b) shows
that the
measured react
ance of fum
e
d silica/Poly
propylene decreases with
i
n
creasi
n
g
f
u
m
e
d si
l
i
ca na
n
o
p
art
i
c
l
e
s pe
rce
n
t
a
ge
u
p
t
o
1
0
%
wt
. Fi
gu
re
6
(
a)
de
pi
ct
s co
n
duct
a
nce
vers
u
s
t
h
e
appl
i
e
d
vol
t
a
g
e
freq
u
e
n
cy
fo
r cl
ay
/
PP na
nocom
posite films at te
m
p
erature (60
o
C
)
, the
measured c
o
nductanc
e
decrease
s
with increasi
ng c
l
ay nanopartic
les percen
t
a
ge
up t
o
5%
wt
,
t
h
en, t
h
e m
e
asure
d
co
n
duc
t
a
nce
increases
with increasing clay
pe
rcen
tag
e
n
a
n
o
p
a
rticles
up
to
10
%wt. A
lth
oug
h, Fi
g
u
r
e
6
(
b
)
sh
ow
s t
h
at th
e
measured conducta
nce
decre
a
ses with
in
creasin
g fu
m
e
d
silica p
e
rcen
tag
e
n
a
nop
articles up
to 1%wt, after
th
at, th
e condu
ctan
ce of
fumed
silica/PP n
a
no
co
m
p
o
s
i
t
e fil
m
s d
ecreases w
i
t
h
in
creasin
g fu
m
e
d
silica
nan
o
p
art
i
c
l
e
s perce
n
t
a
ge (
5
%wt
-1
0%
wt
)
.
Thi
s
i
s
ob
v
i
ous t
h
at
, ri
si
ng t
e
m
p
erat
ur
e of na
noc
om
posi
t
e
materials raise
s
n
a
nop
articles te
m
p
eratu
r
es wh
ich
ch
a
n
g
i
ng di
el
ect
ri
c
beha
vi
o
r
with resp
ect to
no
rm
al
co
nd
itio
ns.
(a) clay
/PP
(b
) fum
e
d
silica/PP
Figure 5.
Meas
ure
d
reactance
of
na
noco
m
pos
ite film
s at certain tem
p
erature (60
o
C)
(a) clay
/PP
(b
) fum
e
d
silica/PP
Fi
gu
re
6.
M
eas
ure
d
c
o
nd
uct
a
n
ce o
f
nan
o
c
o
m
posi
t
e
fi
lm
s at
cert
a
i
n
t
e
m
p
erat
ure
(6
0
o
C)
3.3.
Tre
nds of Cos
t
-fewer Nanoparticles on
Electrical Charac
teriz
a
ti
on of
Po
ly
pro
p
y
l
ene
In t
h
e be
gi
n
n
i
n
g,
wi
t
h
com
p
ar
i
ng
resul
t
s
f
o
r
depi
ct
i
n
g
th
e effect of raisin
g co
n
c
en
tration
o
f
clay and
fu
m
e
d
silica n
a
nop
articles
are
p
o
i
n
t
ed ou
t in
Figures
(3-4) at
room
tem
p
erature
(20
o
C
)
, t
h
e m
easure
d
reactance c
h
a
r
acteristics vari
es bet
w
een low a
n
d hi
gh
with res
p
ect to
perce
n
ta
ges
of na
nopa
rticles and
exp
o
se
d
p
o
we
r
fr
eq
ue
nci
e
s.
On
t
h
e
ot
her
w
i
s
e, t
h
e
m
eas
ured conducta
nce va
ries
with
increasing pe
rcentage
o
f
clay
n
a
nopar
ticles in
sid
e
th
e
n
a
no
co
mp
o
s
ite,
wh
atever
, the m
easu
r
ed
con
d
u
c
tance ar
e cl
o
s
ed w
ith
in
creasing
th
e p
e
rcen
tag
e
of fu
m
e
d
silica n
a
nop
artic
les in
th
e n
a
no
co
m
p
o
s
ite.
W
i
t
h
rising
sa
m
p
les
0.
E+00
1.
E+07
2.
E+07
3.
E+07
0
200
400
600
800
1000
Reactance,
ohm
Frequency,
Hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
0.
E+00
1.
E+07
2.
E+07
3.
E+07
0
500
1000
Reactance,
ohm
Frequency,
Hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
0.
E+00
2.
E
‐
08
4.
E
‐
08
6.
E
‐
08
8.
E
‐
08
1.
E
‐
07
0
200
400
600
800
1000
Conductivity,
mho
Frquency,
Hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
0.
E+00
2.
E
‐
08
4.
E
‐
08
6.
E
‐
08
8.
E
‐
08
1.
E
‐
07
0
200
400
600
800
1000
Conductivity,
MHO
Frequency,
Hz
Pure
PP
PP+1%
FS
PP+5%
FS
PP+10%
FS
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Predi
c
t
a
bl
e M
odel
s
a
n
d
Ex
pe
ri
ment
al
Mea
s
u
rem
e
nt
s f
o
r E
l
ect
ri
c Prope
rt
i
e
s of
…
(
Y
o
u
ss
ef
Mo
bar
ak)
12
6
t
e
m
p
erat
ure
up
t
o
60
oC
, i
t
can be
not
i
c
e
d
t
h
at
t
h
e effect
s h
i
gh t
e
m
p
erat
ur
e val
u
es
on
na
no
pa
rt
i
c
l
e
s i
n
si
de t
h
e
nan
o
c
o
m
posi
t
e
fi
lm
s and s
o
, t
h
e ef
fect
o
f
rai
s
i
ng c
o
ncent
r
at
i
on
of
na
no
pa
r
t
i
c
l
e
s i
s
poi
nt
e
d
o
u
t
i
n
Fi
g
u
re
s (5
-
6)
. It
i
s
obvi
ous t
h
at
ri
si
n
g
t
e
m
p
erat
ure
of na
noc
om
posi
t
e
m
a
t
e
ri
al
s affect
s on
n
a
no
pa
rt
i
c
l
e
s heat
i
n
g
t
e
m
p
erat
ures
whi
c
h cha
ngi
n
g
el
ect
ri
cal
behavi
or
ove
r
the norm
al conditions; thus, t
h
e
m
easured re
actance
has bee
n
cha
n
ged
wi
t
h
res
p
e
c
t
t
o
wei
ght
p
e
rcent
a
ges o
f
cl
ay
or fum
e
d si
l
i
ca nanopa
r
t
i
c
l
e
s up t
o
10
%wt
.
Fi
nal
l
y
, t
h
e im
po
rt
ance
of a
d
di
n
g
na
n
opa
rt
i
c
l
e
s of cl
ay
or
fum
e
d si
l
i
ca
can be c
o
ncl
u
ded i
n
co
nt
r
o
l
l
i
ng i
n
i
n
creasi
n
g
o
r
d
ecreasi
n
g t
h
e e
l
ect
ri
cal
st
reng
t
h
o
f
p
u
re
p
o
l
y
pr
opy
l
e
ne
by
usi
n
g
na
n
o
t
echn
o
l
o
gy
t
e
c
hni
que
s.
Al
so, i
n
crea
si
ng e
n
vi
r
onm
ent
t
e
m
p
erat
u
r
e of
na
noc
o
m
posi
t
e
m
a
t
e
ri
al
s causes
nan
o
p
art
i
c
l
e
s
heat
i
n
g
te
m
p
eratu
r
es th
at ch
ang
i
ng
el
ectrical b
e
h
a
v
i
o
r
ov
er th
e
no
rmal co
n
d
ition
s
.
3
.
4
Predictable Mecha
n
ica
l
a
n
d Electrica
l
Behav
i
our o
f
Fumed Silica
/
Po
lypropy
l
ene
Co
mpo
s
ites
CES-Ed
u
software
was used to
p
r
ed
ict th
e electri
cal and
m
echanical prop
ert
i
e
s of po
l
y
pro
p
y
l
ene
nanoc
o
m
posite film
s. Selected m
a
terials
were c
h
em
ica
lly
treated
for p
o
l
ym
er co
m
p
o
s
ites syn
t
h
e
sis.
Polypropylene
nanoc
o
m
posite film
s were e
l
ectrically an
alyzed usi
ng
LCR Hi-tester tes
t
er. Surface analysis
of
na
noc
om
po
si
t
e
fi
lm
s was carri
ed
o
u
t
u
s
i
ng
SEM
t
e
st
.
Th
e essen
tial step
s to
b
e
ad
op
ted
for th
is
research
have
bee
n
m
e
nt
i
one
d;
t
hus
, m
echani
cal
, p
h
y
s
i
cal
and chem
ical properties
of applied m
a
terials were
g
e
n
e
rated. Figu
re
7
illu
strates th
e electrical an
d
m
ech
an
ical p
r
o
p
e
rties o
f
fu
m
e
d
silica/PP u
s
in
g
CES
soft
ware
. Ad
di
t
i
on o
f
fum
e
d si
l
i
ca t
o
pol
y
p
ro
py
l
e
ne l
eads
to increase di
electric consta
nt and c
o
nductance.
Th
e in
itial resu
lts for
u
s
ing
t
h
e pred
ictab
l
e
m
o
d
e
l (CES
-So
f
t
w
are) showed
th
at ad
d
ition
of fu
m
e
d
silica to
pol
y
p
r
opy
l
e
ne
nan
o
com
pos
i
t
e
fi
lm
s can im
pro
v
e sl
i
ght
l
y
t
h
e tensi
l
e
st
rengt
h of
pol
y
p
r
opy
l
e
n
e
n
a
no
co
m
p
o
s
ite fil
m
s b
u
t
it
cau
ses a reductio
n
in
electrical resistiv
ity
. Th
erefo
r
e t
h
e fu
m
e
d
silica
was
excluded in the experim
e
ntal work for ca
ble and el
ectrical insulation applica
tions. Tec
hnical/m
anagement
chal
l
e
ng
es a
n
d
o
b
st
acl
es we
r
e
enc
o
u
n
t
e
re
d
du
ri
n
g
sy
nt
hes
i
s and
p
r
ocessi
ng
o
f
nan
o
c
o
m
posi
t
e
fi
lm
s. It
wa
s
noticed that cl
ay nanoparticles agglom
eration can
be a
v
oided at
hi
gh mixing rate at
a
concent
r
ation up t
o
10
%wt
.
Figure
7. Electrical and m
ech
an
ical pr
op
er
ties of
Fu
m
e
d
Silica/PP using
CES softwa
re
3.
5 Conseque
nce
of Nan
o
te
chnol
o
gy Sc
ience on
Dielectrics Proper
tie
s
In the field
of dielectri
cs and electrical insulation, polyme
r nan
o
com
posi
t
e
s ar
e known for their
excellent dielectric prope
r
ties and are t
h
e subject
of intensive res
earch. Fo
r ex
am
pl
e, pol
y
m
er-cl
a
y
nan
o
c
o
m
posi
t
e
s are co
nsi
d
e
r
e
d
p
r
om
i
s
i
ng as
el
ect
ri
cal
i
n
sul
a
t
i
on f
o
r
po
w
e
r ap
parat
u
s, c
a
bl
esan
d
wi
res
i
n
t
h
e
n
ear fu
ture
d
u
e to
t
h
eir
g
ood
insu
lating
cap
a
b
ilities, flame retard
an
ce and
m
ech
an
i
cal p
r
op
erties [3
4
]
.
Th
erm
o
p
l
astic an
d
th
erm
o
set
resin
s
reinfo
rced
b
y
n
a
no
p
a
rt
icles o
f
clay, silica, ru
tile and
alu
m
in
a h
a
ve b
e
en
devel
ope
d a
n
d
st
udi
e
d
[
35]
.
It
has
bee
n
s
y
nt
hesi
zed
we
l
l
-
di
spe
r
sed p
o
l
y
p
ro
py
l
e
ne b
a
sed nan
o
c
o
m
posi
t
e
dielectric
m
a
te
rials via in situ supp
orted m
e
tallocene pol
y
m
e
rization catalys
is, to
in
v
e
stig
ate th
e effects o
f
matrix
p
o
l
ym
e
r
an
d
n
a
nop
art
i
cle id
en
tities,
lo
ad
ing
,
a
n
d
sh
ap
e
o
n
th
e el
ectrical/d
ielect
ric p
r
o
p
e
rties o
f
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
12
0 – 12
9
12
7
resu
lting
n
a
noco
m
p
o
s
ites, an
d to
co
m
p
are th
e ex
perime
n
t
al find
ing
s
with
t
h
eoretical calcu
latio
ns. Th
e
in
v
e
stig
ation
of electrical prop
erties
o
f
cenosp
h
ere
f
illed
po
lyp
r
op
ylen
e co
m
p
o
s
ites in
form
s th
at Dielectric
con
s
t
a
nt
dec
r
e
a
ses wi
t
h
i
n
c
r
easi
ng ce
n
o
sp
here
v
o
l
u
m
e
fract
i
on.
It
i
s
fo
un
d t
o
dec
r
eas
e wi
t
h
t
e
st
fre
que
nc
y
and i
n
crease
d
with tem
p
erature
.
Dissi
pation fact
or
follo
ws the tre
n
d observe
d
for
di
electric consta
nt with
respect to t
h
e
m
a
terial and electrical tes
t
param
e
te
rs. B
o
t
h
a.c. a
n
d
d.c. c
o
nd
uct
i
v
i
t
y
have a s
t
ro
ng
depe
n
d
ence
on
t
h
e wei
g
ht
per
cent
of fl
y
as
h i
n
p
o
l
y
p
r
opylene.
Validation
of the
o
retical a
n
d expe
rim
e
ntal dc
con
d
u
ct
i
v
i
t
y
val
u
es sh
ow
s s
a
t
i
s
fact
ory
res
u
l
t
s
at
hi
ghe
r conce
n
t
r
at
i
o
n
of ce
nos
p
h
ere
[3
6]
. Ne
w t
y
pes o
f
co
up
ling
ag
en
ts were sy
n
t
h
e
sized
an
d app
l
i
e
d
for enh
a
n
c
i
n
g th
e in
teract
io
n b
e
t
w
een talc sup
ported
m
u
l
ti-
wal
l
e
d car
b
o
n
nan
o
t
u
bes a
nd
p
o
l
y
pr
o
p
l
e
ne. C
a
r
b
on
n
a
not
ube
s can
l
o
wer t
h
e el
ect
ri
cal
resi
st
i
v
i
t
y
of
pol
y
p
r
opy
l
e
ne
consi
d
era
b
l
y
.
The el
ect
ri
cal
cond
uct
i
v
i
t
y
perc
ol
at
i
on t
h
res
h
ol
d i
n
t
h
e pol
y
m
er
m
a
t
r
i
x
i
s
app
r
ox
.
2
wt
% f
o
r
b
o
t
h
na
not
ube
t
y
pes,
t
h
e PP/
C
N
T c
o
m
posi
t
e
s we
r
e
i
n
v
e
st
i
g
at
ed
o
n
t
h
e
basi
s
of
t
h
e
measu
r
ed d
a
ta; carbo
n n
a
no
tu
b
e
s exh
i
b
ited v
e
ry sim
ilar b
e
h
a
v
i
our as
p
o
l
ypro
p
y
len
e
fillers. Th
e t
h
erm
a
l
con
d
u
ct
i
v
i
t
y
of p
o
l
y
pr
o
p
y
l
ene can
be i
m
pr
o
v
ed
by
ad
di
n
g
car
bo
n
n
a
not
ube
s i
n
t
o
t
h
e
m
a
t
r
i
x
. UP
NT
nan
o
t
u
bes
o
u
t
p
er
fo
rm
ed co
m
m
e
rci
a
l
NC
nan
o
t
u
bes
by
17
% in t
h
is re
spect.
Unlike
in the ca
se
of e
l
ectrical
co
ndu
ctiv
ity, th
erm
a
l co
n
d
u
c
tiv
ity d
o
e
s n
o
t
satu
rate at ap
pro
x
. 2
wt% CNT co
n
c
en
tration
s
bu
t rath
er, it k
eep
s
i
n
creasi
n
g a
s
a
qua
si
l
i
n
ear
f
u
nct
i
o
n
o
f
t
h
e
n
a
not
ube
co
nt
e
n
t
s
of
t
h
e
sam
p
le [
37]
.
4.
CO
NCL
USI
O
N
As the electrical insulation of
pol
y
p
r
op
y
l
ene com
pos
i
t
e
s cont
ri
b
u
t
i
on t
o
i
t
s
rea
c
t
a
nce an
d
con
d
u
ct
ance v
a
l
u
e i
n
pol
y
p
r
opy
l
e
ne
nan
o
c
o
m
posi
t
e
fi
lm
s i
n
l
o
wer f
r
e
que
ncy
ra
nge
m
a
y resul
t
in t
h
e
el
ect
ri
cal
i
n
sul
a
t
i
on o
f
t
h
e
na
noc
om
posi
t
e
fi
lm
s havi
ng
be
e
n
affected
by the prese
n
ce
of nanoparticles. There
i
s
no l
i
n
ea
r p
e
rf
orm
a
nce i
n
si
ght
of i
n
creasi
ng
pe
rcent
a
ge
of cl
ay
na
n
opa
rt
i
c
l
e
s on
pol
y
p
r
o
py
l
e
ne el
ect
ri
cal
pr
o
p
ert
i
e
s.
W
h
at
eve
r
, i
n
cre
a
si
ng
pe
rcent
a
ge
of
f
u
m
e
d si
l
i
ca na
no
part
i
c
l
e
s i
n
c
r
eases p
o
l
y
pr
o
p
y
l
ene
conductance
but
decrease
s
its reactance
at high
t
h
erm
a
l conditions. The
r
m
a
l stability of the
new
pol
y
p
r
opy
l
e
ne
nan
o
com
posi
t
e fi
lm
s has been
rest
ri
ct
ed rel
a
t
e
d t
o
t
h
e l
o
we
st
m
e
l
t
i
ng poi
nt
of
bo
t
h
nanoparticles
a
n
d polym
er
m
a
trix for getting
i
n
dustrial
safely applications. Unde
r hi
gh therm
a
l condi
tions
,
t
h
e i
n
fl
uence
of t
h
e rel
a
xat
i
on t
i
m
e of t
h
e char
ge ca
rri
ers on t
h
e electrical in
su
latio
n
of
po
lypr
op
ylen
e
nan
o
c
o
m
posi
t
e
fi
l
m
s can be
i
g
n
o
re
d.
T
hus
t
h
e
n
u
m
b
er o
f
c
h
ar
ge ca
rri
e
r
s a
n
d
a
ppl
i
e
d
fre
q
u
en
cy
be
com
e
dom
i
n
at
i
ng fa
ct
ors o
f
t
h
e e
l
ect
ri
cal
i
n
sul
a
t
i
on o
f
pol
y
p
r
opy
l
e
ne
nan
o
c
o
m
posi
t
e
fi
lm
s. The p
r
ese
n
ce of
n
a
nop
articles in
sid
e
po
lyp
r
o
pylen
e will restrict th
e ch
ain
mo
b
ility an
d
resu
lt in
in
creasing
electric in
su
lation
as suc
h
rest
ri
ct
i
on l
i
m
it
ed t
h
e gene
rat
i
o
n o
f
m
obi
l
e
charge
and t
h
e m
ove
m
e
nt
of c
h
ar
g
e
carri
er
s i
n
p
o
l
y
m
e
r
dielectrics, especially at a
lower freque
ncy range wher
e the in
su
latio
n
wi
ll p
l
ay a
m
o
re
i
m
p
o
r
tan
t
ro
le. Th
u
s
the variation of reactance a
n
d conducta
nce
value at
low
fre
que
ncy ra
nge m
a
y be due to the infl
ue
nce of
in
org
a
n
i
c fillers’ electrical in
su
lation
.
Electrical stab
ilit
y o
f
n
e
w
n
a
no
co
m
p
o
s
ite fil
m
s o
ccu
rs at sm
a
l
l
am
ounts
clay or fum
e
d silica na
nopa
rticles but adding large
am
ounts t
h
es
e na
noparti
c
les
to polypropylene
will be reve
rs
e electrical behavi
or c
h
aract
eristics
gra
dua
lly. A high therm
a
l
condition of polypropylene
n
a
no
co
m
p
o
s
ite m
a
terials is chan
g
e
d
electrical b
e
h
a
v
i
or
ov
er th
e
n
o
rm
al co
n
d
ition
s
.
ACKNOWLE
DGE
M
ENTS
The
present
work was support
e
d by
t
h
e Sci
e
nce
and Technol
ogy
Devel
opm
ent
Fund (STDF), Egy
p
t
,
Grant
No:
Project
ID 505.
REFERE
NC
ES
[1]
T. Tokoro
,
M. Nagao and M.
Kosaki,
“High-Field Dielectric
Properties and ac
Dissipati
on Curr
ent Waveforms of
Pol
yet
h
y
len
e
Fi
lm
”,
I
EEE Transactions on
El
ec
t
r
ical Insula
tion
,
Vol. 27
No. 3
,
p
p
. 482-487
, June 1992.
[2]
M. Araoka, H. Y
oneda, Y. Ohk
i
,
“Die
lectr
i
c Properties of New-
Ty
p
e
Po
ly
et
hy
l
e
ne
Po
ly
me
rized U
s
ing A Singlesite
Cataly
st”,
IEEE 6th Internation
a
l Conf
eren
ce o
n
Conduction
a
nd Brea
kdown
in Solid Dielectr
i
cs,
ICSD
'
98, p
p
.
493-497, 1998
.
[3]
Z.
Nawawi,
K.
T.
Si
rait, M. Nag
a
o, “
Sur
face Re
s
i
s
t
ance
E
ffe
ct on
Diele
c
tr
ic
Br
eakdown Charateristic o
f
LDPE
Film
”
,
IEE
E
, P
r
oceed
ings
of The 6th Int
e
m
a
tional Conf
eren
ce on P
r
operti
e
s
and Applicat
i
ons
of Dielectr
i
c
Materials, June
21 -26, China, p
p
. 1073-1075
, 2
000.
[4]
I.L. Hosier, A.S
.
Vaughan
,
and
S.G. Swingler
, “The
Effects of
Meas
uring Tech
nique
and Sample Prep
aration o
n
the Breakdown
Strength of Poly
ethly
e
ne”,
IEE
E
Transactions o
n
Diekctri
cs and Elec
trical Insul
n
tion
,
Val.
9,
No.
3, pp
. 353-361
,
2002.
[5]
Chao Zhang
,
Tatsuo Mori, Teru
y
o
shi Mizu
tani,
and '
M
itsugu lshioka, “Effects
of
Manufactur
in
g; Techno
lon on
Electrical Break
down and Mor
pholoiof Thin Flms of
Low De
nsity
Poly
eth
y
lene Bl
ended with Poly
prop
y
l
en
e
Copoly
m
er
”,
IEEE Transactions
on Dielectric
s and Ele
c
t
ric
a
l Insulation
Vo
l. 10,
No. 3; pp. 435-4
43, 2003
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Predi
c
t
a
bl
e M
odel
s
a
n
d
Ex
pe
ri
ment
al
Mea
s
u
rem
e
nt
s f
o
r E
l
ect
ri
c Prope
rt
i
e
s of
…
(
Y
o
u
ss
ef
Mo
bar
ak)
12
8
[6]
Dang, Zh
imin
Shen, Yang
Fan, Lizhen
C
a
i,
Ning
Na
n, Cew
e
n
Zhao
, Shujin, “Dielectr
i
c pr
operties of carb
on
fiber f
illed low-
density
poly
e
th
ylene”,
Journal o
f
Applied
Physics,
Volume: 93 I
ssue: 9, pp
. 554
3 – 5545, M
a
y
2003.
[7]
Hong, J.I.
Sch
a
dler
, L.S.
Siegel
, R
.
W.
Martensson, E.,
“Rescaled
electr
i
cal properties of
ZnO/low density
poly
e
t
h
y
l
e
n
e nanoc
omposi
t
e
films”
,
Applied Ph
ysics
Letters,
Vo
lume: 82 Issue:
12, pp
.1956 –
19
58, Mar
2003.
[8]
A. Am
an, M
.
M
.
Yaacob
,
M
.
A.
Als
aedi,
Kh.
A.
Ibrahim
,
“
P
ol
y
m
eric com
pos
ite b
a
s
e
d on was
t
e
m
a
teria
l
for high
voltag
e
outdoor
application”,
International
Jour
nal of Elect
rical Power
&
Energy Systems
,
Volume
45,
Issue
1,
Februar
y
2013
,
Pages 346-352.
[9]
R. S
a
ra
thi
,
R.
U
m
am
ahes
wari, “
U
nders
ta
nding
the par
tial d
i
scharge activ
ity
gene
rated
due to p
a
rticle movement
in
a composite insulation under A
C
voltages”,
International Journ
a
l of Electr
ical Power
&
Energ
y
Systems
, V
o
lum
e
48, June 2013, Pages 1-9
.
[10]
Yousse
f A.
Mob
a
ra
k,
M.
Ba
ss
y
o
uni,
a
nd M.
Alma
ta
wa,
“Ma
t
e
r
ia
l
s
Selection
,
S
y
nt
hesis,
and Diele
c
tri
cal P
r
opert
ies
of PVC Nanoco
m
posite films",
Advances in Ma
terials Scien
ce a
nd Engin
eering
, Vol. 2013
, Article ID 149672,
6
pages, 2013
.
[11]
J.D. McCalley
,
V. Krishnan, “A surv
ey
of
trans
m
ission technologies for
p
l
ann
i
ng long d
i
stance bulk
transmission
overlay
in US”,
International Journal of Electr
i
cal Power
&
E
n
ergy Systems,
Volume 54, Januar
y
2014
, Pages
559-568
[12]
D.A. da S
ilv
a,
et
all
,
“
R
eli
a
bi
lit
y
of
directly
-mold
e
d poly
m
er surg
e arr
e
sters:
Degr
adation b
y
immersion test v
e
rsus
ele
c
tri
cal p
e
rfor
m
ance”
,
International Journal of Electr
ica
l
Power
&
Energy Systems
, Volum
e
53,
Decem
ber 2013,
Pages 488-498
[13]
T
.
T
a
na
ka
, G.
C.
Mont
a
n
a
r
i a
n
d R.
Mül
h
a
upt
, “Poly
m
e
r
Na
noc
o
mposi
t
e
films a
s
Di
e
l
e
c
t
r
ic
s a
nd
E
l
ec
t
r
i
c
a
l
Insulation-p
e
rspectives for Processi
ng Technolo
g
ies, Material C
h
aracteri
zation
and Future Applications”,
IE
EE
T
r
ans
. Dielec
tr
.
Ele
c
tr
.
Ins
u
l
., V
o
l. 11
, pp
. 763-7
84, 2004
.
[14]
G. C. M
ontan
ari
,
D. F
a
bi
ani, F
.
P
a
lm
ieri, D
.
Kae
m
pfer
, R. Thom
ann and R. Mülhaupt
, “Modification of
Electr
ical
Properties and
Perform
ance of
EVA and PP Insulation
th
rough
Nanostructure
b
y
Organoph
ili
c Silicates”,
IEEE
T
r
ans
. Dielec
tr
.
Ele
c
tr
.
Ins
u
l
., V
o
l.11, pp.754-76
2, 2004
.
[15]
Yoshimi Yamamoto, Masaaki I
k
eda, and
Yasuhiro Tanaka,
“Electrical Properties and Mo
rpholo
g
y
of
Poly
eth
y
lene
Produced with a Novel Catal
y
st
”
,
IEEE Transact
i
ons on Dielectr
i
cs and Elec
tric
al Insulation
Vol. 11, No. 5; pp.
881-890, 2004
.
[16]
Chao Zhang, Ralf Mason and Gar
y
C Stevens, “
Dielectric Properties of Epoxy
a
nd Polyeth
y
lene Nanocomposite
films
”, IE
EE
, P
r
oceed
ings
of Internat
ional S
y
m
p
os
ium
on Electr
i
ca
l Ins
u
lating
M
a
teri
als
,
J
une
5-9, Kitak
y
us
hu
,
Japan, 2005
.
[17]
X. Dong, Y. Yin, Z. Li an
d X.
Jiang, “Low Frequency
Polarization Behavior of
Nano
-Ag/Low-dens
ity
Po
ly
et
hy
l
e
ne
C
o
mp
o
s
i
t
e
”
,
IEEE, International C
onference on Propertie
s and applications of Dielectric Materia
l
s
,
2006.
[18]
A.N. Ulzutu
ev,
and N.M. Ushakov, “Inve
stigation of the Ch
arg
e
Localizati
on P
r
ocesses in th
e
Metal Poly
meric
Materials Based
on the
Low Dens
ity
Poly
eth
y
lene Matr
ix Wi
th Stabilized N
a
noparticles”,
IE
EE, In
ternat
ion
a
l
Conference on
Advanced
Optoelectronics and
Lasers, CAOL,
pp
. 4
35-437, 2008
.
[19]
K. Hinat
a
,
A. F
u
jita
, K.
Toh
y
a
m
a, and Y
.
Mur
a
ta
, “
D
ie
l
ectr
i
c
Properties of
L
D
PE/MgO Nanocom
posite Mat
e
ria
l
under AC High
Field”,
IEEE, Annual Report C
onference on Electri
cal Insulation and Dielectric Phenomena
, pp
.
313-316, 2006
.
[20]
A. Thabet, Y.A. Mobarak, “A Mode
l for Dielectr
i
c Character
i
zation of
Nanocomposite Poly
meric Industrial
Ma
te
ria
l
s”
,
Jour
nal of Engin
eering Sciences (
J
ES)
,
Assiut University
,
Eg
y
p
t, Vo
l. 40
, No. 5, September 2012.
[21]
A. Thabet, Yous
sef A. Mobarak,
“Expe
rim
e
ntal S
t
ud
y
for Di
el
ectr
i
c S
t
rengt
h o
f
New Nanocomposite Poly
eth
y
len
e
Industrial Materials",
Internation
a
l Journal of Electrica
l Engin
e
ering and Technology (
I
JEET
), Vol. 3, Issue 1, pp
.
553-564, Jan-
June 2012.
[22]
A. Thab
et
, Y.A
.
M
obarak,
“
D
iele
ctri
c Char
ac
teris
tics
of
New Nan
o
-Com
pos
ite Ind
u
s
t
rial
M
a
ter
i
a
l
s
”
,
In
ternational
Conference on
High Voltag
e
En
gineering
and Application
(ICH
V
E-2010), New
Orleans, pp
. 568
-571, Octob
e
r 1
1
–
14, 2010
.
[23]
A. Thabe
t
, “
E
x
p
erim
enta
l Inve
s
tigation on
Th
erm
a
l El
ectr
i
c
a
nd Diele
c
tri
c
C
h
arac
teri
za
tion f
o
r P
o
l
y
prop
yl
en
e
Nanocomposite films Using
C
o
st-fewer Nanoparticles”,
Inter
national Journa
l of Electrical
Engineering and
Technology
(
I
JEET)
,
ISSN 09
76 – 6545
(
P
rin
t
)
,
ISSN 0976
– 6553(Online)
,
Volume 4, I
s
sue 2, pp. 1-12, ©
IAEMEMarch-
A
pril 2013.
[24]
O. Gouda, A T
h
abet
, Y.A. M
ubarak,
and M. Sam
i
r, “
N
anotechnolog
y
Effe
c
t
s on Space Ch
arge Re
laxa
tion
M
eas
urem
ents
for P
o
l
y
vin
y
l
Chl
o
ride Thin F
i
lm
s
”
,
International
Journal of Electr
ical Engin
eerin
g and Informatics
(
I
JEEI)
,
Engin
e
ering and Techno
logy,
Vol: 6 No:
1, pp
. 1-12
, Mar
c
h, 2014
.
[25]
X. Wang, H.Q. He, D.M. Tu, C. Le
i and Q.G.
Du, “Dielectri
c Properties and Cr
y
s
tallin
e Morpholog
y
of Low
Density
Poly
eth
y
lene ble
nded w
ith Meta
lloc
e
ne
Catal
y
z
e
d Pol
y
e
t
h
y
len
e”,
I
EEE
T
r
ansactions on Dielec
trics and
Ele
c
trica
l
Insula
tion
Vol. 15
, No. 2; pp
. 319-326
,
2008.
[26]
K. Ishimotol, T.
Tanak
a
2, Y.
Oh
ki 1, Y. Sekigu
chi3, Y.
Murata3, and M. Gos
y
ow
aki3
, “Comparison of Dielectric
Properties of L
o
w-densit
y
Pol
y
eth
y
l
e
ne/MgO
Com
posites with Different Siz
e
Fillers”
,
IEEE, Annual Rep
o
rt
Confer
enc
e
on
E
l
ec
tr
ical
Ins
u
lati
on Diel
ectr
i
c
Ph
enomena
, pp. 20
8-211, 2008
.
[27]
I.E. Ku
znetsova, B.D. Zaitsev
, and
A.M. Shikhabudinov “E
lastic and Viscous Propert
ies of Nanocomposite Films
Based on Low-
Density
Poly
eth
y
lene”
IEEE Transactions on Ultras
onics, Ferroelectrics,
and Frequency
Control,
Vol. 57
, No. 9, p
p
. 2099-2102
, 2
010.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
12
0 – 12
9
12
9
[28]
L. Shengtao, Y. Guilai, N
.
Fengy
an
, B.
Suna, L. Jian
y
i
ng, Z. Tu
o, “Inves
tigat
ion
on the Diel
ectr
i
c P
r
operti
e
s
of
Nanotitanium Dioxide - Low
Densit
y
Poly
eth
y
lene Composites”,
IEEE, International
Conference on Solid
Diele
c
trics,
Po
tsdam, Germany
,
July
4
-
9, pp. 1-4
,
2010
.
[29]
F
.
Ciuprina
,
I. P
l
es
a, P
.
V
.
Notin
gher, P
.
Ra
in, T
.
Zah
a
res
c
u
,
and
D. P
a
nait
es
cu,
“
D
ielectr
i
c P
r
op
erti
es
of LDP
E
-
SiO2 Nanocom
posite film
s”,
I
E
EE, In
ternation
a
l Conferenc
e
o
n
Solid Dielectr
i
cs, Po
tsdam, Germany
, July
4
-
9,
pp.1-4, 2010.
[30]
P
.
F
a
ng, X. Qi
u, W
.
W
i
rges
,
R. Gerhard
,
“
P
ol
yeth
yl
ene-n
a
p
h
thal
ate (P
EN)
F
e
rroele
c
tr
ets
:
Cellul
a
r S
t
ruc
t
u
r
e,
Piezoe
l
ec
tric
it
y
and Therm
a
l St
a
b
ilit
y”
,
I
EEE Tr
ansactions on Diele
c
trics and E
l
e
c
trical
Insulatio
n
, V
o
l. 17, N
o
. 4
;
pp.1079-1087,
2010.
[31]
A. Thab
et, and
,
Y.A. Mobarak
,
“Expe
rimental Stud
y
for Dielectr
ic Streng
th of N
e
w Nanocomposite Poly
eth
y
lene
Industrial Mater
i
als”,
Internatio
nal Journal of Electrical
Eng
i
neering and Technology (
I
JEET)
,
vol. 3, iss. 1, pp
.
353-364, 2012
.
[32]
A. Thabe
t
, “
E
x
p
erim
enta
l Inves
tigat
ion on Th
er
m
a
l Diele
c
tri
c
C
h
arac
teri
za
tion f
o
r New PMMA
Nanocom
posite
film
s”,
International Journal on
Electrica
l
Eng
i
n
eering and
Infor
m
atics (
I
JEEI)
,
vol. 6
,
iss. 4, pp. 631-643, 2014.
[33]
A. Thab
et
, “
A
.
Experim
e
nt
al
en
hancem
ent
for d
i
el
ectr
i
c s
t
r
e
ngth
of pol
ye
th
ylen
e
ins
u
lat
i
on m
a
te
rials
us
ing
cos
t
-
fewer n
a
noparticles”,
Int
e
rnation
a
l Journal
of
El
ectri
cal
Power
&
E
n
ergy Syste
m
s (
I
JEPES)
,
vo
l. 64
, pp
. 469-47
5,
2015.
[34]
Ali Jihad
Hamad, Lightweigh
t
concrete r
e
inforced w
ith
poly
p
ro
p
y
lene fibers
,
In
ternational Jour
nal of Advan
ces
in
Applied
Sc
ien
ces
, Vol 4, No 2, June 2015.
[35]
Ahm
e
d Thabet
,
and
Yous
s
e
f M
obarak,
Exp
e
rim
e
ntal Di
el
ectr
i
c
M
eas
urem
ents
f
o
r Cos
t
fewer P
o
l
y
v
i
n
y
l Ch
loride
Nanocomposites,
International Journal
of
Electrical and Computer
Engineering (
I
JECE)
, Vol 5
,
No 1, 2015 pages
13-22.
[36]
Janu Sharma, M
.
N. B
a
pat, “Eff
ect
of
Fly
Ash C
e
nosphere on
Electr
i
c Properties of Poly
prop
y
l
ene”,
Int
e
rnation
a
l
Journal of Composite
Ma
terials a
nd Matric
es
Vol. 1: Issue 1, pp.7-
19, 2015
.
[37]
A
.
S
zentes
,
Cs
.
V
a
rga, G
.
H
o
rvá
t
h, L
.
Barth
a
, Z
.
K
ó
n
y
a
,
H
.
H
a
s
p
el, J
.
S
z
é
l
, Á
.
K
u
kovecz
, “
E
le
ctri
cal res
i
s
t
ivit
y
an
d
thermal proper
t
ies of compatibilized multi-wall
ed carbon nano
tu
be/poly
p
rop
y
len
e
composites”,
Polymer L
e
t
t
ers
Vol. 6
,
No. 6, pp
. 494–502
, 2012
.
BIOGRAP
HI
ES OF
AUTH
ORS
Ahm
e
d Thabet was born in Aswan, Egy
p
t
in
1974. He received the BSc (FEE)
Electrical
Engineering degree in
1997 and MSc
(FEE) El
ectrical
Engineering degree in
2002 both
from
F
aculty
of Energy
Engineering, As
wan, Egy
p
t. P
h
D degree had been received in
Electrical
Engineering in
2006 from
El-Minia University
,
Mini
a, Egy
p
t.
He joined
with Electrical Power
Engineering
Group of Faculty
of Energy
Engineeri
ng
in Aswan University
as a Demonstrator at
July
1999, until; he held Associate Professor Po
sition
at October 2011 up to date. His research
interests
lie in
the areas
of analy
s
is and
developing electrical
engineering models and
applications, investigating
novel nano-technology
m
a
terials
via addition
nano-scale particles and
additives for usage in industria
l branch, electrom
a
gnetic m
a
terials, electrolum
i
nescence and
the
relationship with electrical and therm
a
l ageing of
industrial poly
m
ers. Many
of m
obility
’s have
investigated
for supporting
his research experien
ce
in UK,
Finland, Italy
,
and
USA …etc. On
2009,
he had been a Principle Investigator of
a funded project from Science and Technology
development
Fund “STDF” for
developing industria
l materials
of ac and
dc applications by
nano-technology
techniques. He
has been establis
hed
first Nano-Technology
Research Centre in
the
Upper Egy
p
t (http://www.aswan.svu.edu.eg/na
no/index.htm). He has
many
of publications
which have been published and under published
in national, international journals and
conferences and held in Nano-Tec
hnology
Research Centre website.
Youssef A. Mobarak was born
in
Luxor,
Egy
p
t
in
1971. He received his B.
Sc. and M.Sc. degrees
in Electrical Engineering from
F
aculty
of
Energy
Engineering, Aswan University
, Egy
p
t,
in
1997
and 2001 respectively
and Ph.D. from Faculty
of
Engineering, Cairo University
, Egy
p
t, in
2005. He joined Electrical Engineering Departme
nt, Faculty
of Energy
Engineering, Aswan
Univers
ity
as
a
Dem
ons
trator, as
an As
s
i
s
t
ant L
ecturer,
and as
an As
s
i
s
t
ant
P
r
ofes
s
o
r during the
periods
of 1998–2001, 2001–2005,
and 2005–2009 respectivel
y
.
He joined Artificial Complex
Sy
stems, Hiroshima University
,
Japan as a
Re
searcher 2007–2008. Also,
he joined Faculty
of
Engineering,
King Abdulaziz University
,
Rabigh,
Saudi Arabia
as Associate Professor Position
at April
2014 up
to date.
His research
intere
sts
are power
sy
stem planning, operation,
optimization,
and techniques app
lie
d to
powe
r
sy
ste
m
s.
Also,
his
re
se
a
r
c
h
inte
re
sts a
r
e
wind
energy
, and nanotechnology
m
a
terials via addition na
no-scale
particles and additives for usage in
industrial field.
Evaluation Warning : The document was created with Spire.PDF for Python.