Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
3, N
o
. 4
,
A
ugu
st
2013
, pp
. 53
3
~
54
2
I
S
SN
: 208
8-8
7
0
8
5
33
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Energy Effici
ency Opportuniti
es and Savings Potential for
Electri
c
Mot
o
r and Its I
m
pact
on GHG Emissions Redu
ction
Mol
l
a
Sh
ah
ad
at
H
o
ssai
n
L
i
pu*, Tahia
Fahrin K
a
rim**
* Department of
Electrical and
E
l
ectron
i
c
Engin
e
e
r
ing, Univ
ers
i
t
y
of As
ia P
a
cifi
c,
Banglad
es
h
** Departm
e
n
t
o
f
El
ectr
i
c
a
l
and
Ele
c
troni
c
Engin
eering
,
P
r
im
eas
i
a
Univers
i
t
y
,
Ba
nglades
h
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 23, 2013
Rev
i
sed
Ju
l 1
,
2
013
Accepte
d
J
u
l 14, 2013
M
o
tors
are
the s
i
ngle
larg
es
t us
e
r
s
of
electr
i
c po
wer, consuming
over half of
all electricity
an
d more than
60
% of th
at used in the industrial
sector.
The
use of energ
y
-ef
f
ici
e
nt m
o
tor technologi
es offer
s
utilit
ies the po
ssibilit
y
of
achieving substantial
energy
savings
and reduction of GHG e
m
iss
i
ons.
This
paper pr
esents
a comprehensiv
e liter
a
tu
re review about
energ
y
efficien
cy
opportunities an
d savings pot
ential for
electric
motor. This p
a
p
e
r compiles
lat
e
st liter
a
tur
e
s in term
s of journal art
i
cl
es, c
onferenc
e
proce
e
dings, web
materials, repor
ts, books, handb
ooks on el
ectrical motor energ
y
use, and
opportunities fo
r energ
y
efficiency
as
well as
energ
y
sav
i
ngs strateg
i
es.
Besides, pr
esent status of
the ef
fici
ent motor
technolog
y
,
market potential
have b
een pr
esented in
this p
a
p
e
r. Al
so, diffe
r
ent e
n
e
r
gy
sa
vings stra
te
gie
s
such as rewind
ing, use of
variable
speed driv
e (
V
SD), and cap
acitor b
a
nk
to
im
prove the po
wer factor
to r
e
duce
their
ene
r
g
y
us
es
hav
e
als
o
been
reviewed
. Furthermore, cost par
a
meters
to carr
y
out economic analy
s
is and
pay
b
ack p
e
riod
for differen
t
energ
y
savi
ngs strategies have been shown as
well.
Keyword:
Motor Efficiency
Ener
gy
Sa
vi
n
g
s
GHG Em
issions
Varia
b
le S
p
eed
Dri
v
e
Pay
-
bac
k
peri
o
d
s
Copyright ©
201
3 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mo
lla
S
h
ah
ad
at H
o
ss
a
i
n
L
i
pu
,
Depa
rtem
ent of Electrical a
n
d
El
ect
ro
ni
c E
n
gi
nee
r
i
n
g,
Uni
v
ersity of
Asia Pacific,
D
h
ak
a-
120
9, B
a
n
g
l
ad
esh
Em
a
il: l
i
p
u
h
o
s
sain
@g
m
a
il.co
m
1.
INTRODUCTION
Electric m
o
to
r is wi
d
e
ly u
s
ed
in
various
sectors
whe
r
e m
echanical
energy is
nee
d
ed.
It is a
n
electrom
echanical device
which c
o
nverts
ele
c
trical energy into
rota
ry m
e
c
h
ani
cal
e
n
er
gy
.
Thi
s
out
put
i
s
t
h
e
n
furth
e
r co
nv
ert
e
d
to u
ltim
ate
l
y p
r
ov
id
e t
h
e
need
ed end
u
s
e
en
erg
y
.
El
ect
ri
c
m
o
t
o
r
sy
st
em
s account
fo
r a
b
o
u
t
60 t
o
70
pe
rc
ent
o
f
i
n
d
u
st
ri
al
el
ect
ri
ci
t
y
cons
um
pt
i
on
depe
n
d
i
n
g
on
t
h
e i
n
d
u
st
ri
al
st
ruct
ure
[1]. There has
been e
x
tensi
v
ely usa
g
e
o
f
electric
m
o
to
rs no
t on
l
y
in
th
e
in
du
stry secto
r
s b
u
t
also
in
the co
mmercial,
resid
e
n
tia
l, ag
ricu
ltu
ral and
tran
sp
orta
t
i
on se
ct
ors. T
h
e sha
r
e of
each m
o
tor syste
m
in the total electri
city c
ons
um
ption of all
m
o
tor syste
m
s in the USA as well as EU is
d
e
no
ted in
Figu
re
1
.
Th
is is a g
e
n
e
ral
p
a
ttern
in m
o
st
o
f
t
h
e cou
n
t
ries which
is co
m
p
arab
le with o
t
h
e
rs with
a
sl
i
ght
va
ri
at
i
o
n. P
u
m
p
i
ng,
com
p
ressed ai
r an
d fa
n sy
st
em
s are t
h
e si
gni
fi
ca
nt
ener
gy
use
r
s
whe
r
e
con
s
um
pt
i
on o
f
el
ect
ri
ci
t
y
i
s
dom
i
n
ant
.
B
e
si
des, m
a
t
e
ri
al han
d
l
i
n
g an
d
pr
ocessi
n
g
al
so co
ns
um
e a l
o
t
of
electricity, although they a
r
e
heter
oge
ne
ous
and di
ffe
r from each
othe
r
[1].
M
o
t
o
rs a
r
e c
o
n
s
i
d
ere
d
as o
n
e
of t
h
e si
g
n
i
f
i
c
a
n
t
ene
r
gy
u
s
ers
.
The
r
e are
var
i
ous m
e
t
hods t
o
i
m
prov
e
t
h
e ef
fi
ci
ency
of
an el
ect
ri
c
m
o
t
o
r. B
y
i
m
provi
n
g
e
ffi
ci
eny
,
a s
ubst
a
nt
i
a
l
am
ount
of
ene
r
gy
a
s
wel
l
as
electricilty bill can be sa
ved whic
h can
h
e
l
p
an o
r
gani
zat
i
on t
o
e
nha
nce its electrical dem
a
nd profile.
Efficient electric
m
o
tors
not
only set up sy
ste
m
atic en
ergy cost m
a
nagement to achieve energy c
o
st savi
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 3
,
N
o
. 4
,
Aug
u
s
t 2
013
:
53
3
–
54
2
53
4
but
al
s
o
hel
p
a
n
o
r
g
a
ni
zat
i
o
n
t
o
ad
opt
s
u
st
ai
nabl
e e
n
er
gy
m
a
nagem
e
nt
pract
i
ce t
o
assu
r
e
t
h
at
ener
gy
h
a
s bee
n
efficiently consum
ed.
Figu
re
1.
(a
) El
ectric m
o
tor electric
ity u
s
e b
y
typ
e
of m
o
to
r
syste
m
in
the
US
A [
2
]
,
(b
) m
o
to
r electricity
con
s
um
pt
i
on
b
y
end
-
use i
n
t
h
e I
n
dustrial sec
t
or i
n
E
U
[3]
Am
ong t
h
e va
r
i
ous sect
o
r
s co
nt
ri
b
u
t
e
t
o
m
i
t
i
gat
e
gree
n
h
o
u
s
e
gas (G
HG
) e
m
i
ssi
ons, t
h
e r
o
l
e
pl
ay
ed
by the industrial sector is considere
d
as si
gn
i
f
i
cant
.
Th
us, l
o
we
ri
n
g
G
HG
em
i
ssi
ons fr
o
m
t
h
e
i
ndu
st
ri
a
l
sect
or
wo
ul
d
re
duce
ove
ral
l
G
H
G
em
i
ssi
ons.
If e
n
er
gy
i
s
us
ed
as co
nser
vat
i
o
n m
eans w
h
er
e rel
i
a
nce
on
ener
gy
im
port
s
w
oul
d
be l
e
ss
an
d,
t
h
us,
res
u
l
t
s
l
e
ss
GH
G em
i
ssi
on
s. E
n
er
gy
sa
vi
ngs
a
n
d
em
i
ssions
re
d
u
ct
i
o
ns
can
be
achi
e
ve
d by
1
0
-
3
0
% by
re
d
u
c
i
ng t
o
t
a
l
ener
g
y
use or by
i
n
c
r
easi
n
g t
h
e p
r
o
duct
i
o
n rat
e
pe
r u
n
i
t
of ene
r
g
y
use
d
[4]
.
B
y
c
o
nt
ra
st
, t
o
re
duce
GH
G em
i
ssi
ons,
en
ha
nce t
h
e
ene
r
gy
efficiency is the
key r
o
le to
b
e
p
l
ayed
.
There
f
ore,
ene
r
gy
re
searc
h
or
gani
zat
i
o
ns a
n
d g
o
v
er
nm
en
t
s
em
phasi
ze t
h
e
im
port
a
nce
o
f
energy efficiency of
m
o
t
o
r i
n
t
h
e i
n
dust
r
i
a
l
sect
or
at
hi
g
h
pri
o
ri
t
y
. The
r
e s
h
o
u
l
d
have
bee
n
a
p
p
r
op
ri
at
e p
o
l
i
c
y
whi
c
h ca
n
hel
p
t
o
r
e
du
ce GH
G
emissio
n
s
.
Ener
gy
-e
ffi
ci
e
n
t
m
o
t
o
rs ha
ve
n
u
m
b
er of
be
nefi
t
s
as
e
n
ergy efficient m
o
tors
ha
ve the
fe
atures
with
im
pro
v
ed m
a
nufact
uri
n
g t
ech
ni
q
u
es an
d su
p
e
ri
or m
a
t
e
ri
al
s. B
e
si
des, t
h
ey
usu
a
l
l
y
have l
o
n
g
e
r
i
n
sul
a
t
i
o
n an
d
beari
n
g lives,
higher service
factors as
well as lower wa
ste heat
out
pu
t, l
e
ss v
i
b
r
ation
,
all o
f
wh
ich
i
n
crease
reliab
ility. Mo
reov
er, long
er warran
ties wh
ich
m
o
st
m
o
to
r m
a
n
u
f
act
urers
offer fo
r th
eir m
o
st efficien
t
m
odel
s
.
2.
STATUS OF
THE TECHNOLOGY
For m
o
re tha
n
a decade
,
m
a
n
y
count
ries ha
ve st
arted im
plem
enting label
ling and m
i
nim
u
m
energy
per
f
o
r
m
a
nce st
anda
r
d
(M
E
P
S
)
sc
hem
e
s wi
t
h
an ai
m
t
o
pha
s
e out the least
efficient m
o
tor classes
by se
tting
minim
u
m
stan
dards
for the e
f
ficiency. T
h
e idea be
hi
nd its
approach is t
o
im
prove th
e e
f
ficiency of m
o
tors
on
the
m
a
rket. The labelling hel
p
s to provide t
h
e necessa
ry
in
fo
rm
atio
n
which
allo
ws fo
r
easy co
m
p
ariso
n
s
o
f
m
o
t
o
r effi
ci
en
cy
am
ong p
r
o
duce
r
s a
nd
he
nce co
nt
ri
b
u
t
e
s t
o
t
r
ans
f
o
r
m
i
ng t
h
e m
o
t
o
r
m
a
rket
t
o
wa
rd
s hi
g
h
efficiency m
o
tors
.
B
o
t
h
l
a
bel
l
i
n
g
and M
E
PS
h
a
ve al
rea
d
y
be
en st
art
e
d in
man
y
co
un
tries lik
e Brazil, Ch
in
a,
USA,
Eur
o
pe, M
e
xi
co, A
u
st
ral
i
a
and Tai
w
a
n
,
r
e
sul
t
i
ng i
n
se
veral
di
f
f
ere
n
t
nat
i
onal
st
an
dar
d
s [
5
]
.
B
u
t
due t
o
variation in m
o
tor efficiency
classes
in
d
i
fferen
t co
un
tries, it is d
i
fficu
lt
to
m
a
k
e
co
m
p
arison
an
d
it turn
s
ou
t
to be a consi
d
e
r
able trade
barrier.
The
r
e
f
o
r
e,
t
h
e Int
e
rn
at
i
o
nal
El
ect
rot
ech
ni
cal
C
o
m
m
i
ssi
on (
I
EC
) de
ve
l
ope
d
test stan
d
a
rd
s an
d
lab
e
ls
as well as in
tern
atio
n
a
l e
fficiency clas
sificati
on for electric
m
o
tors
. The
cl
assi
fi
cat
i
on
i
n
t
r
od
uce
d
by
IEC
had
di
ffe
rent
e
ffi
ci
en
cy
lev
e
ls
with
t
h
e lab
e
l IE1
fo
r th
e least efficien
t
m
o
tors an
d
IE
4
fo
r t
h
e
hig
h
e
s
t efficien
cy
m
o
to
rs.
The
de
fi
ned
efficiency classes are
pre
s
ent
e
d i
n
Fi
g
u
r
e
2 fo
r
50
Hz
m
o
t
o
rs.
The
IE
4 cl
as
s has
n
o
t
y
e
t
been
de
fi
ne
d,
but
i
s
ex
pect
e
d
t
o
dem
a
nd
a f
u
rt
he
r
1
5
p
e
rcent
redu
ction
of losses in
co
m
p
ariso
n
t
o
IE3
.
Acco
rd
ing
to
Fig
u
re
2
,
it is seen
th
at
, the e
x
pected sa
vings
and
diffe
re
nces in
efficiency are
partic
ula
r
ly
high
fo
r sm
aller m
o
tors. The g
a
p closes wit
h
increasing m
o
tor size
whi
c
h
onl
y
ha
ve a
b
o
u
t
2
perc
ent
di
ffe
rence
f
r
om
IE1
t
o
IE
3
f
o
r
3
7
5
k
W
m
o
t
o
rs.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
En
erg
y
Efficien
cy
O
ppo
rtun
ities an
d Sa
vings Po
ten
tia
l fo
r
Electric Mo
to
r… (Mo
lla
S
haha
da
t
H
o
ssa
i
n
Lip
u
)
53
5
Figure
2. Efficiency classe
s for 50
Hz
4-Pole m
o
tors
accordi
n
g
to IEC 60034-30
[5]
Un
ited
States
(US) was the first co
un
try to in
tr
oduce ambitious MEPS for electric
m
o
tors. MEPS
were p
a
ssed in
to
law as early as 19
92
, but it to
ok
fi
v
e
ye
a
r
s
to
ad
ap
t to
th
e s
t
a
n
d
a
rd
s
and
r
e
d
e
s
i
gn
th
e
i
r
m
o
to
rs. Th
is so
called
Energy Po
licy Act (EPAct)
92
stand
a
rd
is co
m
p
arab
le to
th
e in
tern
ation
a
l IE2
.
Fig
u
re
3 p
r
ovi
des a
d
e
t
a
i
l
e
d pi
ct
ure
on i
m
pl
em
ent
a
t
i
on dat
e
s
o
f
t
h
e di
ffe
rent
st
anda
r
d
s by
c
o
unt
ry
. Th
e l
a
b
e
l
s
IE1
and I
E
2
have a
l
ready
bee
n
ap
pl
i
e
d i
n
A
u
st
ra
l
i
a
, New Zeal
and
,
B
r
azi
l
,
M
e
xi
co, a
nd C
h
i
n
a. B
e
si
des, by
20
1
5
,
th
e im
p
l
e
m
en
tatio
n
o
f
IE3
cl
ass will b
e
pred
o
m
in
an
t in
USA, Can
a
d
a
and
EU co
un
tr
ies. In
Sou
t
h
East Asia,
Th
ailand
an
d t
h
e Ph
ilipp
i
n
e
s
are
p
l
ayin
g th
e lead
ing
ro
le to
ward
s th
e
d
e
v
e
lop
m
en
t o
f
n
a
tio
n
a
l
stand
a
rd
s fo
r
energy conservation [6]. In Brazil,
the first regulation of the energy ef
ficiency act for electric
m
o
tors wa
s
i
n
t
r
o
d
u
ced i
n
2
0
0
2
w
h
i
c
h est
a
bl
i
s
he
d t
w
o set
s
of m
i
nim
u
m
effi
ci
ency
pe
rf
orm
a
nce st
and
a
rds (M
E
P
S
)
,
one i
s
the ‘stan
d
a
r
d
’
(m
andatory
) a
nd
othe
r is the
‘hi
g
h
-
ef
fici
en
cy
’ (v
olu
n
tary
)
m
o
tor. Late
r,
an u
p
d
ated
reg
u
latio
n
was l
a
u
n
c
h
ed i
n
2
0
05
(E
di
ct
55
3/
2
0
0
5
)
w
h
i
c
h was
st
ro
n
g
l
y
recom
m
ended t
o
use t
h
e
pr
evi
o
us hi
g
h
-e
ff
i
c
i
e
ncy
MEPS as m
a
nd
atory fo
r all m
o
to
rs in
th
e
Brazilian
m
a
rk
et [7
].
Fi
gu
re
3.
Im
pl
em
ent
a
t
i
on
of
m
a
ndat
o
ry
M
E
PS f
o
r el
ect
ri
c
m
o
t
o
rs w
o
rl
dw
i
d
e [
8
]
an
d
[
9
]
3.
MARKET POTENTIAL
A look
at th
e
h
i
sto
r
ic m
o
to
r
mark
et d
a
ta
rev
eals
that m
a
rket transform
a
ti
on to
war
d
s
m
o
re efficient
m
o
tors has taken place in the
past. In Europe, the labe
lling has significant contribu
tion to re
duce t
h
e marke
t
share
of t
h
e l
east
effi
ci
ent
(E
ff
3) m
o
t
o
rs
whi
c
h d
r
o
p
p
ed
fr
o
m
about
6
8
per
cent
i
n
1
9
9
8
t
o
16
perce
n
t
i
n
20
0
1
,
and
o
n
l
y
2
pe
rcent
i
n
20
0
7
[9]
.
H
o
we
ve
r,
l
a
bel
l
i
ng c
o
ul
d
n
o
t
si
g
n
i
f
i
c
a
n
t
l
y
im
prove t
h
e di
f
f
u
s
i
o
n
of
hi
g
h
efficient I
E
2
(
f
o
rm
er Eff
1
) m
o
to
r in E
U
d
u
e
its hig
h
u
p
f
ront cost. Moreover, the e
fficie
n
cy class IE
1
(Eff2)
has hi
g
h
pe
rce
n
t
a
ge o
f
m
a
rket
share (ab
o
u
t
80
perce
n
t
)
i
n
com
p
ari
s
on t
o
onl
y
1
2
perc
en
t
of IE2
(Ef
f
1
)
i
n
t
h
e
EU. In
t
h
e
USA, NEMA pre
m
iu
m
m
o
tors
(equal IE3
m
o
to
rs
),
have increased stead
ily since 2001 a
nd reache
d
close to 30 pe
rcent in 200
6. In Cana
da, motors with IE
3 or hi
ghe
r eve
n
accounte
d
for 39 perce
n
t of the
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 3
,
N
o
. 4
,
Aug
u
s
t 2
013
:
53
3
–
54
2
53
6
m
a
rket
i
n
20
0
7
. I
n
K
o
re
a, I
E
1 m
o
t
o
rs ha
d
a
m
a
rket
shar
e of 1
0
pe
rce
n
t
i
n
20
05
, w
h
i
l
e
90 pe
rcent
of t
h
e
m
o
tors we
re le
ss ef
ficient.
Fi
gu
re
4.
M
a
r
k
et
share
o
f
m
o
t
o
rs
by e
fficiency class in the
US
A (le
f
t) a
n
d
the E
U
(ri
ght)
[5]
4.
DESC
RIPTI
O
N OF
THE
TECHN
OLO
G
Y
4.1. Tec
hnical
Me
asures
to I
m
prove
Motor Efficienc
y
Efficient electric
m
o
tors ac
hi
eve
greater efficien
cy
by
re
d
u
ci
n
g
t
h
e l
o
ss
whi
c
h acc
ou
nt
fo
r
onl
y
3-
6%
of
t
h
e
e
n
er
gy
t
h
at
fl
o
w
s
t
h
r
o
ug
h t
h
e m
o
t
o
r.
As
s
h
o
w
n
i
n
Ta
bl
e
1, t
h
e
r
e a
r
e
fi
ve cat
e
g
o
r
i
e
s
of
l
o
ss
e
s
t
h
at
occurre
d i
n
a
m
o
tor includi
ng stator
power lo
sses,
ro
to
r
p
o
wer lo
sses,
mag
n
e
tic co
re lo
sses,
friction
and
wi
n
d
age l
o
sses
,
an
d st
ray
l
o
a
d
l
o
sses
[
10]
.
Am
ong t
h
em
, st
at
or p
o
w
er l
o
sses co
ns
um
e the hi
ghe
st
perc
ent
a
ge
(37%
of t
o
tal energy loss
) s
h
a
r
e of ene
r
gy loss that
a m
o
tor accounts. Besi
des, st
ray load losses
whic
h
have
16%
of t
o
tal e
n
ergy los
s
ca
n
be
re
duce
d by redesi
gni
ng
sta
t
or
winding, but each de
si
gn
change m
a
y increase
losses
i
n
othe
r areas.
Moreover, rotor power
losses
,
m
a
gnet
i
c core
los
s
es a
n
d friction and winda
g
e l
o
sse
s ca
n
b
e
m
i
n
i
mized
b
y
u
s
i
n
g
h
i
gher qu
ality
m
a
t
e
rials an
d op
timizin
g
th
e d
e
sig
n
for larg
er
m
a
g
n
e
tic field
s
and
greater electricity flow
[11].
Table
1. Meas
ures
to
re
duce
energy los
s
in
electric
m
o
tors
, by type
of l
o
s
s
[10]
Type of loss
% o
f
to
ta
l
energy loss
Technical dif
f
icul
ty of
reducing loss
Measures to redu
ce loss
Stator power loss
37
Prohibitive
Theoreticall
y
, the
r
e is little po
ssibility to reduce the loss of
stator power witho
u
t also decr
easing
the power availabl
e to
create the m
a
gneti
c
f
i
eld.
Rotor
power
losses
18
M
oder
a
te
I
n
cr
ease conductor
m
a
ter
i
al (
e
.
g
. m
a
g
n
et
wir
i
ng
in
the
stator
winding, or alu
m
iniu
m
in the rotor)
Increase in f
l
ux ac
ross the air gap
Use per
m
anent
m
a
gnets to el
i
m
inate
rotor power losses
Use sem
i
conducto
r
power
switch sy
s
t
em
s to eli
m
inate rotor
power losses
M
a
gnetic cor
e
losses
20
M
oder
a
te
Increase the
length of
the
m
a
gnet stru
cture
Use thinner la
m
i
nations in the
m
a
gnetic
structure
Use silicon-grade
electrical
steel
Fr
iction and
windage losses
9 M
oder
a
te
Reducing these he
at-
p
r
oducing losse
s can
also save ener
gy
b
y
requir
i
ng less use of the
ventilation syste
m
Stray load losses
16
Prohibitive
T
h
ese losses can b
e
addr
essed thr
ough r
e
-
d
esign of the stator
winding, but
m
a
jor
reductions are dif
f
i
cult because each
design change
m
a
y actually incr
ease losses in other
ar
eas.
4.
2. Rew
i
ndi
n
g
The m
o
st
com
m
on pract
i
ce i
n
i
n
dust
r
y
i
s
t
o
rewi
nd
bu
r
n
t
-
out
m
o
t
o
rs
whi
c
h excee
d
50
%
of t
h
e t
o
t
a
l
num
ber o
f
m
o
tors in som
e
ind
u
stries
. It is a techni
q
u
e
wh
ich
can
m
a
in
tain
m
o
to
r e
fficiency at previous
levels. But careful m
easures shoul
d
be take
n care ofto
rewind
th
e m
o
to
rs as in
m
o
st
cases it can
resu
lt in
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
En
erg
y
Efficien
cy
O
ppo
rtun
ities an
d Sa
vings Po
ten
tia
l fo
r
Electric Mo
to
r… (Mo
lla
S
haha
da
t
H
o
ssa
i
n
Lip
u
)
53
7
efficiency l
o
ss. The
effect of
rewi
ndi
ng can
reduce t
h
e m
o
tor
efficiency
s
u
ch
as
wi
n
d
i
n
g m
a
t
e
ri
al
, wi
ndi
ng
and sl
ot
desi
gn
i
n
sul
a
t
i
o
n pe
r
f
o
r
m
a
nce, and
ope
rat
i
n
g t
e
m
p
erat
ure
.
F
o
r e
x
am
pl
e, whe
n
t
h
e wi
ndi
ng
s ar
e go
t
heat
ed,
t
h
e
r
e c
a
n
have
dam
a
ge t
o
t
h
e i
n
sul
a
t
i
on
bet
w
ee
n
l
a
m
i
nat
i
on w
h
i
c
h
f
u
rt
he
r
ra
i
s
e t
h
e e
ddy
c
u
r
r
ent
losses. However, if proper
measures are
taken re
gard
i
n
g usi
n
g wi
res
of g
r
eat
er
cross section, slot size
perm
i
t
t
i
ng,
wo
ul
d re
sul
t
a re
duct
i
o
n
of st
at
or l
o
sses an
d
t
h
ere
b
y
i
n
crea
si
ng e
ffi
ci
ency
. H
o
we
ver
,
o
r
i
g
i
n
al
desi
g
n
an
d st
r
u
ct
ure o
f
t
h
e m
o
t
o
r sh
oul
d be
rem
a
i
n
ed
sa
m
e
d
u
r
i
ng
th
e r
e
w
i
nd
, un
less there are s
p
ecific
load-
related r
easo
n
s
f
o
r
re
desig
n
[1
2]
.
4.3.
Power Factor
Correcti
o
n
by Installing
Capaci
tors
Capacitors
are
ofte
n used to i
m
pr
ove t
h
e power
factor
whi
c
h is c
o
nn
ected
in p
a
rallel (sh
u
n
t
ed)
with
th
e m
o
to
r. Th
e cap
acito
r itself will n
o
t
respon
sib
l
e to
im
p
r
ov
e th
e power
facto
r
of th
e m
o
to
r bu
t of th
e starter
t
e
rm
i
n
al
s wher
e po
wer i
s
ge
n
e
rat
e
d o
r
di
st
ri
but
e
d
. T
h
e be
nefi
t
s
o
f
p
o
we
r fact
o
r
cor
r
ect
i
on i
n
cl
u
d
e re
duce
d
I
2
R
l
o
sses i
n
c
a
bl
es u
p
st
ream
of t
h
e ca
paci
t
o
r
(an
d
hence
r
e
duce
d
e
n
er
gy
char
ges
)
re
duc
ed k
V
A dem
a
nd (a
nd
h
e
n
ce
redu
ced u
tility
d
e
m
a
n
d
ch
arg
e
s),
red
u
c
ed
v
o
ltag
e
d
r
o
p
in
t
h
e cab
les (lead
i
n
g to
i
m
p
r
o
v
ed
v
o
ltage
regu
latio
n),
and
an
in
crease i
n
th
e ov
erall effi
ciency of t
h
e
plant el
ectrical
syste
m
[12].
4.
4. V
a
ri
abl
e
Speed Dri
v
e
s
(VS
D
)
Electric
m
o
to
rs h
a
v
e
trad
ition
a
l co
n
t
ro
l
meth
od
s u
s
ing
main
ly
two
st
ates; sto
p
an
d
o
p
e
rate at
maxim
u
m
speed. Motors are sized
t
o
pr
o
v
i
d
e t
h
e m
a
xi
m
u
m
powe
r
out
put
re
q
u
i
r
ed i
n
m
o
st
m
o
t
o
r
in
stallatio
n
.
In o
r
d
e
r to
p
r
ov
id
e th
e m
a
x
i
m
u
m d
e
sig
n
e
d
load
, the ro
tation
a
l sp
eed
is
kep
t
con
s
tan
t
at its
max
i
m
u
m
v
a
l
u
e and
to
m
a
tc
h
with
th
e lo
ad th
e p
o
w
er inp
u
t
to
th
e
mo
tor also
rem
a
in
s co
n
s
tan
t
at th
e
m
a
xim
u
m
val
u
e.
Ho
we
ver
,
i
n
o
r
de
r t
o
hav
e
si
gni
fi
ca
nt
e
n
er
gy
savi
ng
s,
rot
a
t
i
o
nal
spee
d o
f
t
h
e m
o
t
o
r
sho
u
l
d
be dec
r
ease
d
w
h
en l
o
ad
decre
a
ses. Ne
vert
he
l
e
ss, t
h
e m
a
jori
t
y
of
m
o
t
o
rs ar
e ope
rat
e
d
onl
y
at
100% s
p
ee
d f
o
r
sho
r
t
pe
ri
o
d
s o
f
t
i
m
e
whi
c
h o
f
t
e
n res
u
l
t
s
sy
st
em
s operat
i
n
g
i
n
effi
ci
ent
l
y
and si
gni
fi
ca
nt
ener
gy
l
o
sses
du
ri
n
g
th
e
o
p
e
ration
time. To m
a
tch
th
e
sp
eed
of
th
e m
o
to
r
wit
h
th
e
related
lo
ad
,
VSD
tech
n
i
q
u
e
h
a
s
beco
m
e
a very
p
o
p
u
l
a
r
choi
ce n
o
w
-a
-
d
ay
s. The s
p
e
e
d of a m
o
t
o
r or ge
ne
rat
o
r
can be cont
r
o
l
l
e
d an
d ad
j
u
st
ed
t
o
any
desi
re
d
speed by
u
s
i
ng
VS
D. I
n
ad
di
t
i
on,
VS
D ca
n also kee
p
an electric
m
o
tor speed at a constant
lev
e
l wh
ere th
e lo
ad is
v
a
riab
le [4
].
Fi
gu
re
5.
C
o
m
p
ari
s
on
o
f
a
t
y
pi
cal
an
d a
n
e
n
ergy
e
ffi
ci
ent
p
u
m
p
sy
st
em
[1
3]
5.
SUCCESSFUL IMPLE
M
ENTATION
This section illustrates
how e
n
ergy
efficient
m
o
tors ha
ve
becom
e
su
ccessful to m
a
ke contribution in
t
e
rm
s of si
gni
f
i
cant
ener
gy
s
a
vi
n
g
s a
nd s
h
o
r
t
pay
b
ac
k
per
i
od.
Tabl
e
2 e
xpl
ai
n
s
som
e
of t
h
e case st
u
d
i
e
s i
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 3
,
N
o
. 4
,
Aug
u
s
t 2
013
:
53
3
–
54
2
53
8
diffe
re
nt count
ries where e
ffi
cient m
o
to
r tech
no
log
y
is effectiv
ely i
m
p
l
e
m
ented i
n
com
p
anies and, m
o
reove
r,
gives
an idea
of the
ene
r
gy
sa
vings t
h
at can
be
realized.
Tabl
e
2.
Succe
ssful
i
m
pl
em
ent
a
t
i
on o
f
t
h
ese
technologies in fe
w c
o
untries
[1]
Project
Country
Energy
effici
ency
im
provem
e
nt
Cost
effec
t
iveness
O
p
t
i
m
i
z
a
t
i
on of
cooling
w
a
t
er syst
em
in
a phar
m
ac
eutical c
o
m
p
an
y by installing
two new pu
m
p
s
,
apply
i
ng var
i
able speed
contr
o
l and
m
i
nim
i
zing fr
iction losses
in
the ductwor
k sy
stem
China
Reduction o
f
electricity
de
m
a
nd
of coolin
g water
s
y
stem
b
y
49%
Pay
b
ack about 1.
8
y
ear
s
(
i
nvestm
e
nt
of US$ 145,
0
00 an
d annual savings
of US$ 80,
00
0)
.
Inst
allat
i
on of
34 variable speed drives
in a petr
ochem
i
cal
co
m
p
an
y
China
28% electr
i
city
dem
a
nd r
e
duction
per
ton of cr
ude oil r
e
fined
0.48 years stati
c
pa
yback ti
m
e
.
I
n
stallation of 102
variable speed
d
r
ives
in one co
m
p
an
y
M
e
xico
20% r
e
duction of e
l
ectr
i
city
dem
a
nd of equippe
d
m
o
tor
s
1.
5 y
ear
s
static payback and in-
vestm
e
nt of ar
ound US$ 400,
000.
Electric m
o
tor
re
place
m
e
n
t
in
alu
m
inu
m
pr
oduction plant
I
ndia
Annual E
l
ectr
i
city
savings o
f
263
M
W
h
(
75%)
r
e
duction
of
electricit
y
f
o
r cooli
ng
water pu
m
p
)
Annual electr
i
city
savings o
f
US$
13,
900 an
d invest
m
e
nt of US$ 375
(payback ti
m
e
less
than two weeks).
Replace
m
e
nt of
inef
f
i
cient reciprocating
co
m
p
resso
rs b
y
sc
rew
com
p
ressors
for
co
m
p
r
e
ssed air gener
a
tion in a pulp and
paper
m
ill
India
24% of
electricity
f
o
r co
m
p
r
e
ssed
air
gener
a
tion.
About 1.
5 y
ear
s’ pay
b
ack ti
m
e
and
US$ 19,
150.
Installation of
effic
i
ent scr
e
w
co
m
p
ressors
with evapor
ative
condenser
s
f
o
r ref
r
igeration in a che
m
ical plant
I
ndia
60% of electr
i
city
for
r
e
fr
iger
ation (
2
,
238 M
W
h/a)
I
nvestm
e
nt of US$ 250,
000 an
d
annual savings o
f
US$
195,
00
0
Reduction o
f
air
leaks and intak
e
air
te
m
p
eratur
e in
co
m
p
r
e
ssed air syste
m
T
h
ailand
22% of co
m
p
r
e
ssed air
electr
icity
consu
m
ption or
130 M
W
h/y
e
ar
US$ 1,
500 invest
m
e
nt and pay
b
ack
tim
e
of 2.
5
m
onths
Co
m
p
r
e
ssed air s
y
ste
m
opti
m
i
z
a
tio
n
in
textile m
a
nufacturi
ng
plant
USA
4% r
e
duction of co
m
-
pr
essed air
electr
i
city
de
m
a
nd
and fur
t
her
reliability benefits
T
h
e total investm
e
nt of US$ 529,
00
0
had a pay
b
ack ti
m
e
of 2.
9 y
ear
s
Inst
allat
i
on of
15 variable speed drives
in a vent
ilat
i
on sy
st
em
in a
t
e
xt
ile plant
USA
59% reduction of
ventilation
syste
m
’s ele
c
tricit
y de
m
a
nd
1.
3 y
ear
s
static payback tim
e
and
US$ 130,
000 in
vestm
e
nt.
Pu
m
p
i
m
p
e
ller si
z
e
redu
c
tion,
thro
ttle
replace
m
e
nt
and
m
o
tor r
e
place
m
e
n
t
UK
Mo
re th
an
3
0
%
o
f
pu
m
p
ele
c
tricit
y
re
duction
11.
5 weeks (
i
nvestm
e
nt of £2780)
6.
FINANCIAL REQUIRE
M
ENTS AND COST
To com
p
are m
o
t
o
r o
p
t
i
o
n
s
, a sim
p
l
e
appr
oac
h
has
been
pr
o
pos
ed
base
d o
n
t
h
e p
u
r
c
hase
pri
ce o
f
t
h
e
m
o
to
r and
th
e
p
r
esen
t
v
a
lu
e
of th
e lo
sses [14]
.
LCC = PP + EF (KWe)
(1)
Whe
r
e,
LCC =
Life-cy
c
le c
o
s
t
(in
$)
, P
P
=
M
o
tor
purchas
e price (in $),
EF = E
v
aluati
on fact
or(in
$/
k
W
)
,
K
W
e
=
Eval
uat
e
d l
o
ss
(i
n
k
W
)
The e
v
aluation factor,
EF, is
defi
ned as,
EF = C(
N)
(
P
WF)
(
2
)
Whe
r
e, C =
Powe
r c
o
st
(in
$/kilowatt-hour), N
=
Opera
ting tim
e each y
ear (in
hours), PWF
=
Cu
m
u
lativ
e
p
r
esen
t worth
facto
r
.
The e
v
al
uat
i
o
n
l
o
ss,
k
W
i
s
de
fi
ne
d as,
(3
)
Whe
r
e, L = L
o
ad
fact
or = (
d
ri
ven
-
l
o
a
d
rat
e
d h
p
)/
(m
ot
or
nam
e
pl
at
e hp
), h
p
= M
o
t
o
r
nam
e
pl
at
e
h
o
r
s
ep
ow
er
,
S
e
= R
a
t
e
d ful
l
-
l
o
ad s
p
ee
d of e
v
al
uat
e
d m
o
t
o
r, r/
m
i
n, S
b
=
Rated
fu
ll-lo
ad
sp
eed
u
s
ed
as th
e
basi
s f
o
r t
h
e e
v
al
uat
i
o
n,
r/
m
i
n, E
op
= M
o
tor nom
i
nal efficiency at the
ra
ted
d
r
iv
en-equ
i
p
m
e
n
t
sh
aft load
, %,
(S
e
/S
b
)
x
-l =
rep
r
esen
ts t
h
e con
t
ro
l v
a
l
v
e loss,(l00
/
E
op
)-1
= rep
r
esen
ts t
h
e
m
o
to
r in
tern
al
lo
sses.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
En
erg
y
Efficien
cy
O
ppo
rtun
ities an
d Sa
vings Po
ten
tia
l fo
r
Electric Mo
to
r… (Mo
lla
S
haha
da
t
H
o
ssa
i
n
Lip
u
)
53
9
Tabl
e
3.
Dat
a
f
o
r
Li
fe C
y
cl
e
C
o
st
(LC
C
)
C
o
m
p
ari
s
on E
x
a
m
pl
e [13]
Para
m
e
ter
Standard
Ef
ficien
cy
m
o
tor
Pre
m
iu
m
effi
cien
cy m
o
tor
Nam
e
plate Output
25 hp
25 hp
Rated L
o
ad speed
3510 r
/
m
i
n
3540 r
/
m
i
n
Rated Load Ef
f
i
ciency
84%
93%
M
o
tor
pur
chase pr
ice
$150
0
$190
0
A
s
su
m
i
n
g
pow
er
co
st of
$
0
.06
/
kW
h, o
p
e
ratin
g
h
our
s o
f
80
00
hr
s/year,
cu
m
u
lativ
e
pr
esen
t wo
r
t
h
fact
or
e
qual
s
t
o
4,
LC
C
co
st
f
o
r
standard
efficiency m
o
tor is $6530 an
d
fo
r
prem
iu
m
efficie
n
cy
m
o
tor i
s
$
430
0 b
y
u
s
i
n
g
th
e abov
e equ
a
tio
ns.
7.
EN
ER
GY
SAV
I
NGS AN
D PA
Y
B
AC
K PER
I
OD
B
y
usi
ng en
er
gy
-ef
f
i
c
i
e
nt
m
o
t
o
rs f
o
r 5
0
%
,
75% a
nd
10
0
%
m
o
t
o
r l
o
a
d
i
n
g
,
1
7
6
5
,
27
0
3
an
d 3
6
0
5
M
W
h
o
f
t
o
t
a
l
ene
r
gy
ca
n
b
e
save
d
res
p
e
c
t
i
v
el
y
[4]
.
T
h
e
resul
t
i
s
c
a
l
c
ul
at
ed
base
d
on
per
f
o
r
m
i
ng
t
h
e
w
a
lk
thro
ugh
au
d
it in
9
1
industries o
f
Malaysia. Si
m
i
larly,
asso
ciated
b
ill sav
i
ng
s fo
r th
e esti
mated
a
m
o
u
n
t
of
en
erg
y
sav
i
ng
s ar
e U
S
$
115
,93
6
, U
S
$1
73
,019
and
U
S
$2
30
,6
93
,
r
e
sp
ecti
v
ely. I
t
also
h
a
s b
een
f
oun
d
th
at th
e
pay
b
ac
k peri
o
d
fo
r usin
g
ene
r
gy
-e
fficient
m
o
to
rs ran
g
es
f
r
o
m
0.5
3
t
o
5.
0
5
y
ear
s fo
r di
f
f
e
rent
pe
rcent
a
ges o
f
m
o
to
r lo
ad
i
n
g. Th
ese
p
a
yb
ack
p
e
ri
o
d
s
ind
i
cate th
e in
t
r
odu
ctio
n
/im
p
l
e
m
en
tatio
n of energ
y
-efficien
t
m
o
to
rs
would seem
cost effective, as
their pay
b
ack
peri
ods a
r
e
less th
an
o
n
e
-th
i
rd
of th
e m
o
to
r
life (if av
erag
e
m
o
tor
life 20 years
is
consid
ere
d
) in
som
e
cases.
The annual energy sa
vings (AES)
at
t
a
i
n
ed
by
repl
aci
ng st
anda
r
d
effi
ci
e
n
t
m
o
t
o
rswi
t
h
h
i
gh e
n
er
gy
efficien
t m
o
to
rs can b
e
estim
a
t
ed
b
y
u
s
ing
t
h
e fo
llo
wi
n
g
equatio
n
100
ee
E
1
std
E
1
r
h
0.746
L
p
h
AES
(4
)
w
h
er
e,
A
E
S =
A
nnu
al en
erg
y
sav
i
ng
s,
h
p
=
Mo
to
r r
a
ted
hor
sepow
er, hr
=
A
nnu
al op
er
atin
g hou
r
s
, L
= Lo
ad
fact
o
r
(p
ercen
tag
e
o
f
fu
ll lo
ad
), E
st
d
= Standa
rd m
o
to
r ef
ficiency
rating
(%
), E
ee
= Ener
gy
-e
ff
icient
m
o
torefficienc
y
rating
(%
).
Th
e ann
u
a
l
b
ill sav
i
n
g
s
asso
ciated
with th
e ab
ov
e en
erg
y
sav
i
ng
s can
b
e
calcu
l
ated
as-
Annu
al b
ill savin
g
s
(US$
) =
AES × c
(5)
w
h
er
e
,
c
=
Av
er
a
g
e e
n
er
g
y
cos
t
(
U
S
$
/kW
h
)
A si
m
p
l
e
payback
peri
od
f
o
r
di
ffe
rent
e
n
er
gy
savi
n
g
st
rat
e
gi
es can
be cal
cul
a
t
e
d
by
usi
n
g t
h
e
fo
llowing
equ
a
tio
n
,
Sim
p
l
e
pay
b
ac
k
peri
od
(y
ears
)
=
Inc
r
em
ent
a
l
cost
/
A
n
nual
dol
l
a
r
savi
ng
s
(6
)
Tabl
e
4. E
ffi
ci
ency
o
f
st
a
nda
r
d
a
n
d
hi
gh
ef
ficiency
m
o
tors
at diffe
re
nt loa
d
s
[1
6]
Motor pow
er
(hp)
Load (
50%
)
Load (
100%
)
E
st
d
E
ee
E
st
d
E
ee
1 70.
05
75.
28
77.
0
80.
97
2
77.
20
80.
02
81.
00
83.
55
3
77.
78
82.
44
81.
50
85.
96
4
81.
07
83.
69
82.
90
85.
96
5.
5
81.
15
84.
35
85.
30
87.
75
7.
5
84.
70
85.
51
86.
61
89.
50
15
84.
90
88.
32
87.
94
90.
44
20
86.
03
88.
51
88.
95
91.
64
30
88.
43
90.
89
90.
36
92.
85
40
88.
15
90.
39
90.
36
92.
85
50
89.
63
91.
16
92.
06
93.
38
60
87.
89
90.
07
91.
78
93.
00
75
88.
77
90.
86
92.
44
93.
02
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 3
,
N
o
. 4
,
Aug
u
s
t 2
013
:
53
3
–
54
2
54
0
Tabl
e
5. E
n
e
r
g
y
savi
n
g
s a
n
d
pay
b
ac
k
peri
od
f
o
r
hi
g
h
e
ffi
ci
ent
m
o
t
o
r i
n
M
a
l
a
y
s
i
a
[4]
Mot
o
r
pow
er
(hp)
Qua
n
ti
ty
(No
.
)
Load (
50%
)
Load (
100%
)
Incre
m
e
ntal
price (
U
S$)
Energy
savings
(M
Wh)
Bill savings
(US$/year)
P
ayback
(years)
Energy
savings
(M
Wh)
Bill savings
(US$/year)
P
ayback
(years)
1
3968
24
24
4730
1.
59
127
8158
1.
19
2
1653
25
28
1814
1.
19
71
4562
0.
89
3 2976
27
122
7798
0.
71
232
1487
3
0.
53
4 1355
6
60
393
2169
2.
04
827
5290
0
1.
53
5.
5
331
65
16
1022
2.
71
16
1056
2.
04
7.
5
661
91
19
1194
3.
77
33
2131
2.
83
15
165
147
21
1351
1.
24
41
2609
0.
93
20
3306
197
404
2588
8
1.
26
1081
6917
7
0.
94
30
331
257
11
682
1.
62
110
7014
1.
21
40
661
231
140
8938
1.
95
164
1046
9
1.
46
50
331
281
58
3721
0.
95
203
1299
4
0.
71
60
827
574
257
16,
417
2.
89
173
11,
060
4.
29
75
165
518
60
3862
2.
22
141
9018
0.
95
From
Tabl
e 5,
i
t
i
s
evi
d
ent
t
h
at
a hu
ge am
ou
nt
of e
n
er
gy
can be save
d fo
r di
f
f
ere
n
t
p
e
rcent
a
ges o
f
spee
d re
d
u
ct
i
o
ns. M
o
re e
n
e
r
gy
can
be sa
v
e
d f
o
r hi
ghe
r
spee
d re
d
u
ct
i
o
ns.
Al
o
n
g
wi
t
h
e
n
er
gy
savi
ngs
, a
sub
s
t
a
nt
i
a
l
am
ou
nt
i
n
e
xpe
ns
e can
be
sa
ved
an
d as
soci
at
e
d
em
i
ssi
on r
e
d
u
ct
i
o
n
s
ca
n
be
achi
e
ved
u
s
i
n
g
VS
D
for indu
strial
m
o
to
rs in
Malaysia.
There
are
m
a
ny ways to estimate the ene
r
gy saving
s associated
with th
e u
s
e of
VSD
fo
r ind
u
s
t
r
ial
m
o
to
rs fo
r
v
a
rio
u
s
ap
p
licatio
ns. Math
em
atica
l
form
u
l
atio
n
s
to
estim
a
t
e en
erg
y
sav
i
ng
s u
s
i
n
g VSD is
ES
VSD
= n ×
P
× H
avg-usage
× S
SR
(7
)
Whe
r
e, ES
VSD
= Ener
gy
savi
ng
wi
t
h
t
h
e ap
pl
i
cat
i
on o
f
V
S
D (M
Wh
), n
= num
ber of
m
o
t
o
rs, P =
m
o
tor po
wer (
k
W),
H
avg-usage
= Annual a
v
erage usa
g
e of hours, S
SR
= pe
rcentage e
n
ergy savings assoc
i
ated
cert
a
i
n
perce
n
t
a
ge of
spee
d re
duct
i
o
n.
Tabl
e
6. M
o
t
o
r
ene
r
gy
sa
vi
n
g
s
wi
t
h
VS
D
f
o
r
di
ffere
n
t
% of spee
d
re
du
ction
in Malaysia [4
]
Mot
o
r
pow
er
(hp)
Energy savings (
M
Wh)
10%
speed
reduction
20%
speed
reduction
30%
speed
reduction
40%
speed
reduction
50%
speed
reduction
60%
speed
reduction
1
391
782
1084
1297
1475
1582
2
325
650
901
1078
1226
1315
3
880
1761
2441
2921
3321
3561
4
5341
1068
2
1480
9
1772
3
2015
1
2160
7
5.
5
179
357
496
593
674
723
7.
5
487
975
1352
1617
1839
1972
15
251
502
696
833
947
1016
20
6519
1303
8
1807
5
2163
1
2459
4
2637
2
30
975
1950
2703
3235
3678
3944
40
2600
5199
7208
8626
9808
1051
7
50
1625
3250
4505
5391
6130
6573
60
4904
9808
13,
597
16,
272
18,
501
19,
839
75
1256
2511
3481
4166
4737
5079
8.
GHG E
M
IS
SI
ONS
RE
DUCTION
Efficient electric
m
o
tor has the potential to reduce
em
issions associated
with the energy savings by
m
o
to
rs u
s
i
n
g
VSD. Tab
l
e
8
sh
ows th
e estimatio
n
of em
is
sio
n
red
u
c
tion
s
fo
r
on
ly 91
ind
u
s
t
r
ies in Malaysia.
The ene
r
gy s
a
vings is likely
to reduce the electricity gene
ration from
power pl
ants. As a
conseque
nce, the re
ductio
n o
f
GH
G em
i
ssi
ons (C
O
2
, CO,
NO
x, S
O
2
) from the fuels use
d
by the powe
r sector
can
be estim
ated.
Each of the
GHGs
ha
s thei
r
own
em
ission factor
whic
h i
s
shown in t
h
e
table 7.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
En
erg
y
Efficien
cy
O
ppo
rtun
ities an
d Sa
vings Po
ten
tia
l fo
r
Electric Mo
to
r… (Mo
lla
S
haha
da
t
H
o
ssa
i
n
Lip
u
)
54
1
Tabl
e7
. Em
i
ssion
fact
ors
o
f
fo
ssi
l
fuel
s
f
o
r el
ect
ri
ci
t
y
gener
a
t
i
on
[1
5]
Fuels
Em
ission factor
(
k
g/kW
h)
CO
2
SO
2
NO
x
CO
Coal
1.
18
0.
0139
0.
0052
0.
0002
Petr
oleu
m
0.
85
0.
0164
0.
0025
0.
0002
Natur
a
l
Gas
0.
53
0.
0005
0.
0009
0.
0005
Hy
dr
o
0.
00
0.
000
0.
0000
0.
0000
Other
s
0.
00
0.
000
0.
0000
0.
0000
The am
ount
o
f
em
i
ssi
on t
h
at
can be
red
u
ce
d ass
o
ci
at
ed w
i
t
h
t
h
e ene
r
gy
savi
n
g
s ca
n be
est
i
m
a
t
e
d
usin
g follo
win
g
fo
rm
ula
[1
4]
.
ER = AES ×
E
F
(8)
Whe
r
e,
ER
=
E
m
i
ssi
on R
e
d
u
c
t
i
on,
EF =
Em
issi
on
Fact
o
r
Tabl
e 8.
Em
i
ssi
on re
duct
i
o
ns associ
at
ed wi
t
h
ene
r
gy
sa
vi
n
g
s
by
VS
D [4]
Mot
o
r
pow
er (hp)
E
m
ission reduct
i
on (k
g)
f
o
r 20% s
p
eed reduct
i
on
E
m
ission reduct
i
on (k
g)
f
o
r 40% s
p
eed reduct
i
on
CO
2
SO
2
NO
x
CO
CO
2
SO
2
NO
x
CO
1 3,
911,
02
6
23,
411
11,
029
2,
379
6,
488,
74
8
38,
842
18,
298
3,
947
2 3,
258,
53
1
19,
506
9,
189
1,
982
5,
406,
20
0
32,
361
15,
245
3,
288
3 8,
799,
80
9
52,
676
24,
819
5,
352
14,
599,
6
8
3
87,
394
41,
171
8,
880
4 53,
445,
4
3
5
319,
92
4
150,
71
6
32,
507
88,
670,
8
3
6
530,
78
3
250,
05
2
53,
932
5.
5 1,
794,
36
1
10,
741
5,
060
1,
091
2,
977,
00
8
17,
820
8,
395
1,
811
7.
5 4,
886,
31
9
29,
249
13,
779
2,
971
8,
106,
84
7
48,
528
22,
861
11,
413
15
2,
439,
46
3
14,
603
6,
879
1,
484
4,
047,
29
1
24,
227
11,
413
2,
462
20
6,
170,
62
9
390,
11
1
183,
78
1
39,
639
108,
12
3,
998
647,
23
0
304,
91
0
65,
764
30
9,
787,
42
2
58,
587
27,
601
5,
953
16,
238,
2
2
3
97,
202
45,
792
9,
877
40
26,
060,
3
6
6
155,
99
7
73,
490
15,
851
43,
236,
5
1
7
258,
81
4
121,
92
7
26,
298
50
16,
312,
3
7
0
97,
636
46,
001
9,
922
27,
063,
7
0
5
162,
00
3
76,
320
16,
461
60
48,
907,
5
4
1
292,
76
0
137,
91
9
29,
747
81,
142,
0
5
7
485,
71
6
228,
82
1
49,
353
75
12,
197,
3
1
6
73,
013
34,
396
7419
20,
236,
4
5
6
121,
13
5
57,
067
12,
308
9.
CO
NCL
USI
O
N
Efficiency im
provem
ent in electric
m
o
tor is one
of
t
h
e m
o
st
im
port
a
nt
ene
r
gy
sa
vi
n
g
o
p
t
i
ons
. T
h
ere
are
vari
ous
m
e
thods t
o
im
prove the efficieny of the
elect
ric m
o
to
r.
By introd
u
c
i
n
g
efficient electric motor i
n
t
h
e i
n
d
u
st
ri
al
s
ect
ors, a si
gni
f
i
cant
ener
gy
coul
d be sa
ve
d whi
c
h w
o
ul
d f
u
rt
her re
d
u
ce e
m
i
ssi
ons. T
h
i
s
revi
e
w
pape
r c
oul
d
b
e
usef
ul
f
o
r m
o
t
o
r desi
g
n
ers
,
ope
rat
o
rs, e
n
ergy
m
a
nagers
and
m
o
t
o
r m
a
nu
fact
u
r
ers
t
o
ful
l
y
u
n
d
e
rstand
en
erg
y
sav
i
ng
op
po
rt
u
n
ities in
el
ectric m
o
to
rs an
d fu
rt
h
e
r t
o
tak
e
p
r
o
p
er en
erg
y
sav
i
ng
m
e
a
s
u
r
es
t
o
enha
nce e
n
ergy
ef
fi
ci
enc
y
i
n
i
ndust
r
i
e
s
as wel
l
as resi
dent
i
a
l
and a
g
ri
c
u
l
t
u
re sect
ors
.
They
co
ul
d hel
p
d
e
sign
ers ad
opt p
r
o
p
er
d
e
sign op
tio
n
s
and
con
cep
ts in
t
h
e
decisio
n
-
m
a
k
i
ng
p
r
o
cess
du
ri
ng
th
e in
itial p
l
an
n
i
n
g
and
desi
g
n
st
ages (i
.e. h
o
w
t
o
red
u
ce l
o
ss
es) an
d hel
p
ope
rat
o
rs t
o
u
s
e adva
nce
d
cont
rol
al
g
o
ri
t
h
m
s
i
n
p
r
actical op
eratio
n
s
t
o
redu
ce th
e
g
l
ob
al en
erg
y
co
nsu
m
p
tio
n in
electric
m
o
to
rs and
enh
a
n
c
e con
t
ro
l stab
ilit
y
an
d
env
i
ro
n
m
en
tal su
stain-ab
i
lity. Also
, it cou
l
d
b
e
usef
u
l
fo
r t
h
e gov
ernmen
t to
ev
alu
a
te th
e cu
rren
t electric
m
o
to
r en
erg
y
po
licies.
REFERE
NC
ES
[1]
Uniter Nations I
ndustrial Develo
pment Or
ganization (UNIDO)
working paper
.
“Ene
rg
y
efficien
cy
in
electric
motor
s
y
stems: Techno
log
y
, sav
i
ng po
tentials and
pol
icy
options for
dev
e
loping
countr
i
es”, 2011
.
[2]
International
En
erg
y
Agen
cy
(I
EA). “Track
ing In
dustria
l Energ
y
Efficiency
and
C
O
2 Emissions”,
Paris, 2007
.
[3]
AT Alm
e
ida,
P
F
ons
eca, P
B
e
rt
oldi.
“
E
nerg
y-ef
fici
ent m
o
tor s
y
s
t
em
s
in th
e indu
s
t
rial
and
in th
e
s
e
rvices
s
e
ctors
in
the European
Un
ion: characterization,
poten
ti
als
,
barriers
and
po
li
cies
”
.
Energy
, v
o
l 27, pp. 673-6
90, 2003
.
[4]
R Saidur, NA Rahim, HW Pin
g
, MI
Jahirul, S
Mekhilef and
HH Masjuki.
“Energ
y
and emission analy
s
is for
industrial motors in Malay
s
ia”.
E
n
ergy Po
lic
y
. 20
09; 37: 3650–36
58.
[5]
R Boteler, C Bru
nner, A
de Almeida, M Doppelb
auer
and
W Ho
y
t
. “Electric Motor
MEPS Guide”.
Zürich
, 2009
.
[6]
PAA
Yantiand TMI Mahlia. “Considerations
for the s
e
lec
tion of an appli
cabl
e
en
erg
y
effic
i
en
c
y
t
e
s
t
procedure fo
r
electric motors in Malay
s
ia: less
ons
for other dev
e
loping
countr
i
es”.
En
ergy Poli
c
y
. 2009
; 37
: 346
7–74.
[7]
AGP
Garcia, AS
S
z
klo, R S
c
haef
fer and M
A
M
c
Neil. “
E
nerg
y-
ef
fici
enc
y
s
t
and
a
r
d
s
for elect
ric m
o
tors
in Brazi
lia
n
industr
y
”
.
En
ergy Po
lic
y
. 2007; 3
6
: 3424–39.
[8]
AT Alm
e
ida, F
F
e
rreira
,
J
F
ong and P
F
ons
eca.
“
E
UP Lot 11
M
o
tors
, P
r
epara
t
or
y
s
t
ud
y for t
h
e Energ
y
Us
in
g
Products (EuP)
Directive”. Co
imbra, 2008.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 3
,
N
o
. 4
,
Aug
u
s
t 2
013
:
53
3
–
54
2
54
2
[9]
C Brunner and
N Borg. “From
voluntar
y
to mandator
y
: po
licy
developments in
electric motors
between 2005
and
2009”. 2009
.
[10]
A Emadiand CA John. “Energy
-
Ef
ficient
Electric Motors
(3rd ed. rev
.
and exp
a
nded)”. New York: CRC Press,
2005.
[11]
FK Kreithand
DY Goswami. “Handbook of
ener
g
y
effi
ciency
an
d renew
a
ble en
erg
y
”. CRC
Press, 2007
.
[12]
Bureau of
Energ
y
Efficien
cy
(BEE). “Ministr
y
of
Power,
India. Co
mponents of an
El
ectric Motor”.
2005. Availab
l
e
at www.en
erg
y
managertraining
.
com/equipmen
t_
all/electr
i
c_moto
rs
/eqp_comp_motors.htm
[13]
H De Keulenaer,
et al. “Energy Efficien
t Motor
Driven Systems
can save Euro
pe 200 billion kWh of electricity
consumption an
d 100 million
to
nne of greenhou
se gas emission
s a year
,
Motor
Challenge”
. Br
ussels: European
Copper Institute, 2004
[14]
PS
Hamer,
DM
Lowe
a
nd S
Wa
l
l
a
ce
.
“Ener
g
y-ef
ficient indu
ction motors-
performance characteristi
c
s and life-
cycle cost comparison
for
centr
ifugal loads”
. T
h
e Institu
te
of E
l
ec
tric
al
and
Ele
c
troni
cs Engin
e
ers Incorpora
t
e
d
Industr
y
Applications Society
43r
d Annual
confer
ence. 1996
: 209-
217.
[15]
Mahlia
. “
E
m
i
ssions from
ele
c
tri
c
it
y g
e
nera
tion
in
Mala
y
s
ia
”.
Ren
e
wable Energy
. v
o
l 27, pp. 293–3
00, 2002
.
[16]
AGP Garcia
et a
l
. “
E
n
e
rg
y-effi
ci
enc
y
st
andards f
o
r el
ectr
i
c
m
o
tors in Bra
z
il
ian
in
dustr
y
”
.
Energy
Polic
y
. 2009; 35
:
3424–3439.
BIOGRAP
HI
ES OF
AUTH
ORS
Molla Shahadat Hossain Lipu was born in
Dhak
a, Bang
ladesh. He obtained the B.Sc. in
Ele
c
tri
cal
and
El
ectron
i
c
Engin
e
e
r
ing from
Is
lam
i
c
Univers
i
t
y
of
Techno
log
y
(IU
T), B
a
nglad
es
h
and M.Eng. in E
n
erg
y
f
i
eld of st
ud
y
from
Asian Institute of T
ech
nolog
y
(AIT)
,
T
h
ail
a
nd in 2008
and 2013, respectively
.
His research inter
e
sts are
integr
ation of renewable en
erg
y
to the nation
a
l
grid, s
m
art grid
, energ
y
pol
ic
y and energ
y
m
a
nagem
e
nt
. He
has
three
year
s
of academ
ic
experi
enc
e
. He i
s
currentl
y
work
ing as
a Le
cture
r
in the dep
a
rtment of Electr
i
cal
and Electron
ic
Engineering o
f
University
of
Asia Pacific.
Tahi
a F
a
hrin K
a
rim
was
born in
Dhaka, B
a
nglad
es
h. S
h
e r
ece
ive
d
her B.S
c
. d
e
gr
ee in
El
ec
tric
al
,
Electroni
c and
Com
m
unication Engineering fr
om
Militar
y
Institut
e
of Sci
e
nce & Technol
o
g
y
(MIST), Bangladesh in 2009and M.Eng. degree
in
Tel
ecom
m
unicat
ions from
Asian Institut
e
of
Techno
log
y
(AI
T
), Tha
iland in
2013. She has three
y
ears of
academ
ic exp
e
rienc
e
. She is
current
l
y
workin
g as
a
L
ectur
er
in the
dep
a
rtm
e
nt
of Electrical and
El
ectronic Engineering
of
Prim
easia Unive
r
sit
y
.
Evaluation Warning : The document was created with Spire.PDF for Python.