Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
50
4
~
51
1
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
184
5
04
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Optimal Location
of
Distributed
Generation and its Impacts on
Voltage Stability
Ma
no
j Kum
a
r
Nig
a
m
,
V.K
.
Sethi
Department o
f
Electrical Engin
e
ering,
R
.
K.D.F. University
,
Bhopal, M.P
.
, India
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 12, 2015
Rev
i
sed
D
ec 12
, 20
15
Accepte
d Ja
n
3, 2016
Distributed g
e
neration
(DG) tech
nolog
y
is based
on the
renewab
l
e sources o
f
energ
y
. Now a d
a
y
’
s distr
i
buted
generation play
s
an important ro
le of power
genera
tion u
til
it
ies to
fulfi
ll
t
h
e in
creasing
dem
a
nd of po
wer at
the
costum
er’s site
.
A distribu
ted
g
e
nera
tion
is th
e
sm
all gen
e
ra
tio
n unit
with
capa
c
it
y var
y
i
n
g
from
kW
(kilowatt) to few MW
(m
egawatt)
. The m
a
in aim
of this paper
is to find the solu
tio
n
for optimal lo
cation of
connecting DG and
also the disturbances in
the vo
ltage fl
uctuations r
e
sponds
to imperfection of
connecting DG.
A test netw
ork
of IEEE-30 bus
s
y
stem has been
simulated
using PSAT 2.1.7. The
compensation met
hods h
a
ve also been developed fo
r
filtering out
the
disturbances cau
sed b
y
the DG connect
ion.
The
disturbance
in the voltage pr
ofile is improved b
y
minimizing
the real and reactive power
losseswith the help of STATCOM. The proposed approach I
EEE-30-bu
s
s
y
ste
m
wa
s te
sted a
nd
the re
sult
wa
s disc
usse
d.
Keyword:
Co
m
p
en
satio
n
Di
st
ri
b
u
t
e
d ge
nerat
i
o
n
Gree
n h
ouse
g
a
ses
Net
w
or
k gri
d
Renewa
ble s
o
urces
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
M
a
no
j K
u
m
a
r
Ni
gam
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
RKDF Un
iv
ersity.
A
i
rp
or
t Byp
a
ss Ro
ad
,
G
a
n
d
h
i
N
a
g
a
r
,
Bho
p
a
l, Madh
ya Pr
ad
esh
4
620
33, India
Em
a
il: n
i
g
a
m
7
4
_12
3@yahoo
.co
m
1.
INTRODUCTION
The e
x
i
s
t
i
ng m
e
t
h
o
d
s
of
p
o
w
e
r ge
ne
rat
i
on
e
m
pl
oy
s a cent
r
al
po
wer
ge
ner
a
t
i
on
pl
ant
w
h
i
c
h i
s
ei
t
h
e
r
a nuclear power plant or a coal based
power plant to
g
e
nerate th
e p
o
wer in
th
ou
san
d
s
o
f
M
W
(m
eg
awatt).
Ty
pi
cal
m
e
t
hods we
re u
n
d
er
t
a
ken i
n
t
h
e
s
e
po
wer
pl
ant
s
fo
r t
h
e com
b
u
s
t
i
on o
f
coal
,
oi
l
and
ot
he
r nat
u
ral
reso
u
r
ces. T
h
e
s
e
m
e
t
hods p
r
od
uces e
nvi
r
o
n
m
ent
a
l
di
st
urb
a
nces,
heal
t
h
i
ssues i
n
hum
an bei
n
gs
, em
i
ssi
on
of
g
r
een
hou
se gases etc. w
h
erein
th
e g
e
n
e
r
a
ted
p
o
w
e
r
is to
b
e
tr
an
sm
it
t
e
d
ov
er
a long
d
i
stan
ce t
h
ro
ugh
transm
ission line to reac
h to
the costum
ers at far off pl
ace
s and creates the losses
due
t
o
increas
ed length of
tran
sm
issio
n
lin
e.
To m
i
nimize these effects,
DG m
a
y be installed at
th
e co
stu
m
er’s si
te th
at e
m
p
l
o
y
s sm
a
ll-scale
tech
no
log
i
es t
o
p
r
o
d
u
ce
electr
i
city clo
s
e to
th
e end
u
s
er
s.
DG
technolo
g
i
es
o
f
f
e
r a
n
u
m
b
e
r
o
f
po
t
e
n
tial
bene
fi
t
s
co
nsi
s
t
i
ng m
odul
a
r
(an
d
s
o
m
e
t
i
m
e
s rene
wabl
e-ene
r
gy
) ge
n
e
rat
o
r
s
.
I
n
m
a
ny
cases,
di
st
ri
b
u
t
e
d
g
e
n
e
rators can
prov
i
d
e lower-cost electricity a
n
d
h
i
g
h
e
r
p
o
wer
reliab
ility an
d
secu
rity with
fewer
envi
ronm
ental
conseque
nces than the
t
r
a
d
i
t
i
onal
p
o
w
er
ge
nerat
o
rs
. In
vi
ew o
f
t
h
e use
of a fe
w l
a
rge
-
scal
e
g
e
n
e
rating
statio
n
s
lo
cated
at q
u
ite away fro
m
lo
ad
centers, DG system
s e
m
ploy num
erous sm
all p
o
we
r
p
l
an
ts and
m
a
y
b
e
u
s
efu
l
t
o
p
r
o
v
i
d
e
p
o
wer
with
a little d
e
p
e
n
d
e
n
ce
on
th
e
d
i
stribu
tio
n and
tran
sm
issio
n
g
r
i
d
.
DG
can
be
de
fi
ned
as t
h
e i
n
st
a
l
l
a
t
i
on an
d
o
p
e
r
at
i
o
n
o
f
el
ect
r
i
c po
we
r
gene
r
a
t
i
on
uni
t
s
c
o
n
n
ect
ed
d
i
r
ectly to
th
e
d
i
str
i
bu
tio
n netw
or
ks
o
r
connected
to
t
h
e
n
e
t
w
or
k on
t
h
e custo
m
er
o
f
t
h
e
meter
[
1
].
Th
us, a
D
G
t
e
c
h
n
o
l
o
gy
of
fers
several
a
d
vant
ages l
i
k
e:
It accelerates the system
flexib
ility to supply powe
r dem
a
nd at fl
uc
tuating loa
d
s
with m
i
nim
u
m
envi
ro
nm
ent
a
l
di
st
ur
ba
nces,
Lesser ill effects on
h
u
m
an
h
e
alth
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
50
4 – 5
1
1
50
5
Econ
o
m
ical in
stallatio
n
,
Utilizatio
n
of no
n-ren
e
wab
l
e so
urces
(v
iz. so
lar, tid
al, wi
n
d
)
o
f
en
erg
y
fo
r electricity p
r
od
uctio
n
,
R
e
duces
t
h
e l
e
ngt
h
of
t
h
e t
r
an
sm
i
ssi
on line a
t
costum
ers’ sit
e
etc.
Desp
ite of
several ad
v
a
n
t
ag
es, th
e DG m
a
y
b
e
in
stalled
o
n
p
r
i
o
rity in
to
th
e ex
istin
g
gri
d
n
e
two
r
k
at
th
e
o
p
tim
al lo
catio
n
o
t
h
e
rwi
s
e it m
a
y b
e
h
a
rm
fu
l to
costum
ers’ site.
Installa
tion of DG c
r
eates
som
e
disturba
nces if not
placed at
the
optim
al loc
a
tion- it
dist
urbs the
power
flow i
n
th
e
net
w
ork
by
disturbing t
h
e
v
o
ltag
e
p
r
ofile at th
e j
u
n
c
tio
n o
f
its co
nn
ecti
o
n, po
or
stab
ility, in
creased
po
wer lo
sses etc. An
i
n
crease i
n
th
e
faul
t
l
e
vel
o
f
t
h
e p
o
w
er sy
st
e
m
m
a
y
cause l
a
rge
faul
t
cl
ear
i
ng t
i
m
e and requi
re di
sc
on
ne
ct
i
on o
f
eq
ui
p
m
ent
i
n
th
e
d
i
str
i
bu
tio
n system
d
u
r
ing op
er
ation of
pr
o
t
ectiv
e
d
e
v
i
ces.
Ov
erall, it i
s
to
b
e
in
ou
r
min
d
th
at
pro
t
ectio
n
of system
is an im
portant aspect and it is necessary to
conn
ect th
e DG at th
e o
p
tim
al
lo
catio
n
in
ord
e
r to
h
a
v
e
l
e
sser di
st
ur
ba
nces
Meth
od
s lik
e an
t co
lon
y
op
timizatio
n
[2
], particle
swarm
opt
i
m
i
zati
on [
3
-
4
]
,
m
ont
e-ca
rl
o si
m
u
l
a
t
i
o
n
m
e
t
hods
[
5
]
g
e
net
i
c
al
g
o
ri
t
h
m
[6]
and
o
p
t
i
m
al
pow
er
fl
o
w
m
e
t
hod
[
7
]
have
b
een
di
s
c
usse
d.
A m
e
t
h
o
d
i
s
bei
n
g i
n
t
r
o
duc
ed t
h
at
f
o
ur t
y
p
e
s of
D
G
are
c
onsi
d
ere
d
with o
n
e
DG in
stal
led
fo
r m
i
n
i
m
i
ze th
e to
tal real an
d
reactiv
e po
wer lo
sses. Th
e
m
a
in
ai
m o
f
th
is
m
e
th
o
d
o
l
og
y is to
calcu
late size
an
d
to
id
en
tify th
e
cor
r
es
po
n
d
i
n
g opt
i
m
u
m
l
o
cat
ion
fo
r D
G
pl
acem
e
nt
t
o
m
i
n
i
mize th
e to
talreal p
o
we
r a
nd
reactive power losse
s
an
d to
im
p
r
ov
e vo
ltag
e
p
r
o
f
ile [8
].
PV
b
u
s i
s
t
h
e
bus
whe
r
e
we
put
t
h
e
val
u
e
s
o
f
act
i
v
e
p
o
w
er a
n
d
m
a
gni
t
ude
of
v
o
l
t
a
ge
an
d
D
G
i
s
con
n
ect
ed t
o
t
h
e di
st
ri
b
u
t
i
on
g
r
i
d
t
h
ro
u
gh t
h
e
sy
nch
r
o
n
ous
g
e
nerat
o
r
wi
t
h
e
x
ci
t
a
t
i
on co
nt
r
o
l
m
ode fo
r v
o
l
t
a
ge
cont
rol
,
t
h
e PQ
bus i
s
t
h
e
b
u
s
at
whi
c
h i
n
p
u
t
val
u
es
of act
i
v
e po
wer a
n
d re
act
i
v
e po
we
r i
n
sert
e
d
.
On t
h
e
ot
he
r
han
d
i
n
PQ
b
u
s
t
h
e D
G
i
s
co
nnect
e
d
t
o
t
h
e
di
st
ri
b
u
t
i
on
g
r
i
d
t
h
ro
u
gh sy
nc
hr
o
n
o
u
s
gene
r
a
t
o
r
wi
t
h
exci
t
a
t
i
on
cont
rol
m
ode fo
r p
o
w
er fac
t
or co
nt
r
o
l
[
9
]
.
S.P. R
a
jara
m
et
al
. sugg
est
e
d t
h
at
t
h
e
opt
i
m
al
l
o
cat
i
on
o
f
con
n
ect
i
n
g
DG
i
n
a
n
y
net
w
o
r
k i
s
t
h
e
weakes
t
no
de at
w
h
i
c
h
t
h
e m
a
xim
u
m
vol
t
a
ge
d
r
op
o
ccurs
[
1
0]
.
In this pa
pe
r a new m
e
thod
have bee
n
suggested whic
h is easy to ope
rate and is ve
ry effective. T
h
e
sim
u
lation of t
h
e IEEE
30
bus test ne
twork i
s
done
using P
o
we
r System
Analysis T
ool
(PS
A
T) of M
A
TLAB.
It was an
ap
pro
ach
t
o
o
v
e
rcome th
e ill effects o
f
t
h
e
DG
byu
sing
FACT (Flex
i
b
l
e
AC Tran
sm
issio
n
)
dev
i
ces
like SVC, synchronous condenser, STATC
O
M etc. A te
st
of
IEEE 30 bus networ
k has been
designed and
sim
u
l
a
t
e
d usi
n
g P
S
AT
2.
1.
7.
The
m
e
t
hod
i
n
co
rp
orat
e
d
i
n
t
h
e
si
m
u
l
a
t
i
on
o
f
t
e
st
net
w
o
r
k
i
s
t
h
e
N
e
wt
o
n
Rap
h
s
on
m
e
th
o
d
fo
r an
alyzing
th
e pow
er f
l
ow
in th
e
n
e
twor
k.
2.
VOLTA
GE S
T
ABILITY
Vo
ltag
e
stab
ility is th
e ab
ility o
f
po
wer sy
ste
m
s to
m
a
in
tain
stead
y voltag
e
with
in perm
issib
l
e
ran
g
es at
al
l
buses i
n
no
rm
al con
d
i
t
i
ons a
n
d aft
e
r
havi
ng
been s
u
bject
e
d
t
o
a seve
re
sy
st
em
pert
ur
b
a
t
i
on.
Vo
ltag
e
i
n
stabilit
y
m
a
y resu
lt in
sig
n
i
fican
t
d
i
stu
r
b
a
nces o
f
v
o
ltag
e
s on so
m
e
b
u
s
es. Th
e m
a
in
co
n
t
ribu
ting
factor to
volta
ge instability
i
s
voltage
drop
that occurs when reactiv
ea
nd active power
flows in transmission
lin
es.
Co
n
s
equ
e
n
tly, it
li
mits
th
e
cap
ab
ility o
f
th
e tran
sm
issio
n
syste
m
fo
r v
o
ltag
e
su
ppo
rt an
d
po
wer
tran
sfer. In
add
itio
n
,
d
y
n
a
m
i
c lo
ads also
co
n
t
ribu
te to
t
h
e vo
ltag
e
i
n
stab
ility wh
en
d
i
stu
r
b
a
n
c
e occurs.
The
l
o
ad t
e
nd
s t
o
r
e
sp
on
d
by
rest
ori
n
g
t
h
e c
o
ns
um
ed po
we
r,
whi
c
h ca
n i
n
c
r
ease react
i
v
e
p
o
we
r c
o
nsum
pt
i
on a
n
d
th
e str
e
ss of
h
i
g
h
vo
ltag
e
n
e
t
w
or
k cau
s
es m
o
r
e
vo
ltag
e
r
e
du
ctio
n.
Vo
ltag
e
stab
ility
m
a
y b
e
classified
i
n
to
t
w
o d
i
stin
ct sub
-
system
ca
teg
o
r
ies:
Larg
e
d
i
stu
r
b
a
n
ce vo
ltag
e
stab
ility refers to
th
e ab
ility o
f
p
o
w
er syste
m
s t
o
m
a
in
tain
an
d co
n
t
ro
l v
o
ltages
fol
l
o
wi
n
g
l
a
r
g
e
pe
rt
ur
bat
i
o
ns,
suc
h
as
l
o
ss o
f
gene
rat
i
o
n or s
y
st
em
faul
t
s
.
Sm
a
ll d
i
stu
r
b
a
n
ce stab
ility r
e
fers to
th
e ab
ility o
f
p
o
w
er syste
m
s
to
main
tain
an
d
co
n
t
ro
l vo
ltages
fo
llowing
sm
al
l p
e
rt
u
r
b
a
tion
s
, su
ch
as in
cremen
tal ch
ang
e
in
lo
ad
s.
Mean
wh
ile, the d
u
ratio
n
tim
e
fo
r
vo
ltag
e
stab
ility p
r
o
b
l
em
s
m
a
y v
a
ry from a few second
s to
ten
s
o
f
m
i
nutes. T
h
ere
f
ore, t
h
e e
x
tent
of
voltage
stabilit
y coul
d
be a
short
-
term
or l
o
ng-term
phenom
e
non.
3.
RESEARCH METHO
D
OL
OGY
PSAT is a powerful power a
n
alyses
tool of MATLAB
.
The IEEE 30
bus network has
be
en designe
d
u
s
ing
PSAT with
ou
t DG
co
nn
ection
,
with
DG
con
n
ect
i
on a
n
d wi
t
h
DG
an
d S
T
A
T
C
O
M
b
o
t
h
c
o
n
n
ect
e
d
(
F
igu
r
e 1, Fi
g
u
r
e
2
an
d Figu
r
e
3)
r
e
sp
ectiv
el
y.
Am
ount
of p
o
w
er fl
o
w
i
n
t
h
e
net
w
or
k wi
t
h
out
DG
co
n
n
e
c
t
e
d
an
d wi
t
h
DG
c
o
nne
ct
i
o
n
,
t
h
e opt
i
m
al
lo
catio
n fo
r the con
n
e
ctio
n of
DG, th
e bu
s
with
th
e m
a
xi
m
u
m
vol
t
a
ge d
r
o
p
,
f
r
om
com
p
arat
i
v
e
st
u
d
y
of
hi
gh
vol
t
a
ge
d
r
o
p
i
t
i
s
fo
un
d t
h
at
t
h
e b
u
s n
o
.
2
9
and
3
0
sh
o
w
ed t
h
e
hi
g
h
v
o
l
t
a
ge d
r
op
(T
abl
e
-
1
an
d Ta
bl
e-
2)
respectively.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
tima
l
Lo
ca
tio
n o
f
Distribu
ted
Gen
e
ra
tio
n and
i
t
s Impa
cts
o
n
Vo
ltag
e
S
t
ab
ility
(
M
anoj
K
u
m
a
r N
i
g
a
m
)
50
6
Fi
gu
re 1.
IEE
E
3
0
bus
n
e
t
w
or
k wi
t
h
o
u
t
DG
con
n
ect
i
o
n
Fi
gu
re 2.
IEE
E
3
0
bus
n
e
t
w
or
k wi
t
h
DG
co
n
n
ect
i
o
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
50
4 – 5
1
1
50
7
Fig
u
r
e
3
.
I
E
EE 30
b
u
s
netwo
r
k
w
ith
D
G
and STATCO
M co
nn
ection
4.
RESULT AND DIS
C
USSI
ON
R
e
sul
t
s
o
b
t
a
i
n
ed f
r
om
t
h
e co
nt
i
n
u
o
u
s
po
we
r fl
o
w
m
e
t
hod
sho
w
s t
h
e i
m
p
act
on t
h
e v
o
l
t
a
ge p
r
ofi
l
e
o
f
the net
w
ork when DGsare connecte
d
at bus
no.
29
and
30
. Th
e v
a
l
u
e of
th
e vo
ltag
e
is
decrease
s
in m
o
st
of
the cases when DGs are c
o
nnected in res
p
ec
tive buses
(T
a
b
l
e
1 and Ta
bl
e 2) re
spect
i
v
el
y
.
These
di
st
ur
b
a
nces
in
vo
ltag
e
profile cau
sed b
y
t
h
e in
terconn
ectio
n
o
f
DG
are eli
m
in
ated
and
im
p
r
ov
e th
e
mag
n
itu
d
e
of
vo
ltag
e
near t
o
1.
0 p
u
i
n
b
o
t
h
w
eak
b
u
ses 2
9
an
d
30
by
t
h
e use o
f
STATC
O
M
(T
abl
e
-
3
). T
h
e i
n
t
e
rco
nnect
i
o
n
of
D
G
is also
d
i
stu
r
b
e
d
th
e to
tal
g
e
n
e
ratio
n of
r
eal an
d r
eactiv
e pow
er wh
ich is g
i
v
e
n b
e
l
o
w.
The m
e
t
hod su
gge
st
ed by
S
u
Hl
ai
ng
Wi
n et
al
. If Di
ffe
rent
t
y
pes of
DG i
n
st
al
l
e
d i
n
t
h
e sy
st
em
have
di
ffe
re
nt
im
pact
s on m
i
nim
i
zat
i
on o
f
react
i
v
e po
wer l
o
ss, o
n
t
h
e base
s of
l
o
ss re
duct
i
o
n
t
h
e opt
i
m
al
si
ze and
location of
DG are als
o
c
h
a
n
ged
with
di
ff
ere
n
t
t
y
pe
of
D
G
i
n
st
al
l
e
d i
n
t
h
e
sy
st
em
. Aut
h
o
r
s
have
s
u
g
g
es
t
e
d
a
fo
rm
ul
a i
s
used t
o
det
e
rm
i
n
e opt
i
m
al
si
ze and t
h
e l
o
cat
i
o
n
for t
y
pe-
1
t
o
t
y
pe-
4
DG [
8
]
.
Thi
s
m
e
t
hod i
s
very
co
m
p
licated
for selectio
n of
p
r
op
er
ratin
g an
d size of
DG. In ou
r test syste
m
it is v
e
ry easy to
fi
n
d
ou
t th
e
opt
i
m
al
l
o
cat
i
on
of
D
G
a
n
d t
o
m
i
nim
i
ze l
o
sses.
Resu
lts ob
tain
ed
for lo
ad
flow witho
u
t
DG
To
ta
l Generatio
n
Real power
[
p
.
u
.]
13.
9
588
Reactive powe
r [
p
.
u
.]
20.
1
38
To
ta
l Loa
d
Real power
[
p
.
u
.]
9.3117
Reactive powe
r [
p
.
u
.]
4.0149
To
ta
l Lo
sses
Real power
[
p
.
u
.]
4.
6471
Reactiv
e po
w
e
r
[p
.u
.]
16
.1
231
Resu
lt of lo
ad
flow
wit
h
DG connected
To
ta
l Generatio
n
Real power
[
p
.
u
.]
13.9605
Reactive powe
r [
p
.
u
.]
20.1497
To
ta
l Loa
d
Real p
o
w
e
r [p
.u
.]
9
.
3
093
Reactive powe
r [
p
.
u
.]
4.
0139
To
ta
l Lo
sses
Real power
[
p
.
u
.]
4.
6512
Reactive powe
r [
p
.
u
.]
16.
1
358
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
tima
l
Lo
ca
tio
n o
f
Distribu
ted
Gen
e
ra
tio
n and
i
t
s Impa
cts
o
n
Vo
ltag
e
S
t
ab
ility
(
M
anoj
K
u
m
a
r N
i
g
a
m
)
50
8
Resu
lts of lo
ad flow
with
DG
an
d STATC
O
M
To
ta
l Generatio
n
Real power
[
p
.
u
.]
0.
0028
Reactive powe
r [
p
.
u
.]
-1.0705
To
ta
l Loa
d
Real power
[
p
.
u
.]
0.
0
Reactive powe
r [
p
.
u
.]
-1.0619
To
ta
l Lo
sses
Real power
[
p
.
u
.]
0.
0028
Reactive powe
r [
p
.
u
.]
-
0.00869
It is clear fro
m
th
e abo
v
e
result th
at to
tal real
p
o
wer lo
ss is red
u
c
ed
fro
m
4
.
6
512
pu
to
0
.
00
28
p
u
and
r
eactiv
e pow
er lo
ss is r
e
du
ced
fr
o
m
1
6
.1358
pu
t
o
-
0
.
00
869
puw
ith
th
e
ab
ov
e
n
e
two
r
k
co
nf
igu
r
ation
b
y
u
s
i
n
g
STATC
O
M to i
m
p
r
o
v
e
th
e
vo
ltag
e
stab
ility
. It is th
erefo
r
e su
gg
ested
t
h
at b
e
fo
re co
nn
ectin
g
th
e d
i
stri
bu
ted
gene
rat
i
o
n i
t
i
s
necessa
ry
t
h
at
sy
st
em
desi
gn
er m
u
st
t
h
i
nk
of t
h
e com
p
en
sat
i
on
devi
ces
as wel
l
as l
o
ca
t
i
on o
f
t
h
e di
st
ri
but
e
d
gene
rat
i
o
n s
o
t
h
at
t
h
e l
o
sses
are m
i
nim
u
m
.
Th
e
op
ti
m
a
l si
ze of th
e DG
i
s
al
so
ve
ry
i
m
po
rt
ant
in
redu
cing
t
h
e lo
sses.
If a
DG
o
f
an
y
size i
s
conn
ect
ed it will in
j
ect
or ab
sorb
s activ
e
po
wer t
h
ereb
y ag
ain
di
st
ur
bi
n
g
t
h
e
vol
t
a
ge
pr
ofi
l
e
of t
h
e ass
o
ci
at
ed net
w
or
k. T
h
e di
st
u
r
ba
nce
s
caused
by
t
h
e i
n
t
e
rco
nnect
i
on
o
f
DG are
elim
inated by t
h
e
use
of ST
ATC
O
M.
Tab
l
e 1
.
Power
flow resu
lt
with
ou
t DG
conn
ectio
n
Bus
Voltage
(p
.u
.)
Bus1
Bus2
Bus3
Bus4
Bus5
Bus6
Bus7
Bus8
Bus9
Bus10
Bus11
Bus12
Bus13
Bus14
Bus15
Bus16
Bus17
Bus18
Bus19
Bus20
Bus21
Bus22
Bus23
Bus24
Bus25
Bus26
Bus27
Bus28
Bus29
Bus30
1
1
0.
7782
2
0.
7925
7
1
0.
8547
4
0.
8773
1
1
0.
8542
8
0.
7754
6
1
0.
8231
2
1
0.
7486
2
0.
7230
4
0.
7664
3
0.
7498
9
0.
6775
7
0.
6677
0.
69
0.
7106
8
0.
7116
8
0.
6670
4
0.
6360
8
0.
6542
3
0.
5467
7
0.
7194
3
0.
8379
7
0.
5565
3
0.
4586
4
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
50
4 – 5
1
1
50
9
Tab
l
e 2
.
Power
flow resu
lt
with
DG
conn
ectio
n
Bus
Voltage
(p
.u
.)
Bus1
Bus2
Bus3
Bus4
Bus5
Bus6
Bus7
Bus8
Bus9
Bus10
Bus11
Bus12
Bus13
Bus14
Bus15
Bus16
Bus17
Bus18
Bus19
Bus20
Bus21
Bus22
Bus23
Bus24
Bus25
Bus26
Bus27
Bus28
Bus29
Bus30
1
1
0.
7780
8
0.
7924
2
1
0.
8545
9
0.
8772
3
1
0.
7484
6
0.
7228
3
0.
7662
7
0.
7497
0.
6773
7
1
0.
8541
4
0.
7752
5
1
0.
8229
9
0.
6674
9
0.
6897
9
0.
7104
2
0.
7114
0.
6667
1
0.
6356
0.
6533
2
0.
5456
6
0.
7183
5
0.
8375
7
0.
5542
0.
4554
4
Tabl
e 3. Po
wer
fl
o
w
res
u
l
t
w
ith
DG
and
STATCOM
co
nn
ectio
n
Bus
Voltage
(p
.u
.)
Bus1
1
Bus2
1
Bus3
1.
0013
Bus4
1.
0015
Bus5
Bus6
Bus7
Bus8
Bus9
Bus10
Bus11
Bus12
Bus13
Bus14
Bus15
Bus16
Bus17
Bus18
Bus19
Bus20
Bus21
Bus22
Bus23
Bus24
Bus25
Bus26
Bus27
Bus28
Bus29
Bus30
1
1.
0087
1.
0051
1.
0148
1.
0226
1.
0368
1
1.
0267
1
1.
0281
1.
029
1.
0311
1.
0351
1.
0321
1.
0337
1.
0346
1.
036
1.
0358
1.
0303
1.
0318
1.
0114
1.
0116
0.
9982
1
1.
0129
0.
9986
8
0.
9987
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
tima
l
Lo
ca
tio
n o
f
Distribu
ted
Gen
e
ra
tio
n and
i
t
s Impa
cts
o
n
Vo
ltag
e
S
t
ab
ility
(
M
anoj
K
u
m
a
r N
i
g
a
m
)
51
0
Fi
gu
re 4.
V
o
l
t
a
ge pr
ofi
l
e
wi
t
h
out
D
G
c
o
n
n
ec
t
i
o
n
Fig
u
re 5
.
Vo
ltag
e
p
r
o
f
ile with
DG
conn
ectio
n
Fi
gu
re 6.
V
o
l
t
a
ge pr
ofi
l
e
wi
t
h
DG
an
d STA
T
C
O
M
5.
CO
NCL
USI
O
N
It
i
s
concl
u
de
d t
h
at
t
h
e vol
t
a
ge p
r
o
f
i
l
e
of
t
h
e net
w
or
k i
s
im
prove
d w
h
en t
h
e D
G
i
s
con
n
ect
ed t
o
sy
st
em
. The bu
s no
. 2
6
,
29 a
n
d 3
0
are
fo
u
n
d
t
o
be t
h
e
pre
f
e
rre
d l
o
cat
i
o
n f
o
r t
h
e c
o
nnect
i
on
of t
h
e di
st
ri
but
e
d
g
e
n
e
ration
with
th
e weak
est
b
u
s
no
. 29
and 3
0
h
a
d
b
e
ing
th
e o
p
tim
al
lo
catio
n
fo
r th
e co
nn
ection
of th
e DG.
The IEEE
30
bus network is first sim
u
lated without DG c
o
nnection a
n
d the
res
u
lts obta
ined
were c
o
m
p
are
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
50
4 – 5
1
1
51
1
with
th
e sim
u
l
a
tio
n
resu
lt o
f
th
e n
e
two
r
k
with
DG co
n
n
ect
i
on. T
h
e
gr
aph
s
sh
o
w
s t
h
e vol
t
a
ge
pr
o
f
i
l
e
of
wi
t
h
o
u
t
DG
co
nnect
i
o
n
a
n
d w
i
t
h
D
G
c
o
n
n
ect
i
on (Fi
g
u
r
e 4, Fi
gu
re 5)
res
p
e
c
t
i
v
el
y
.
Di
st
ur
ba
nces cause
d by
t
h
e
i
n
t
e
g
r
at
i
o
n
of
D
G
were
el
im
i
n
at
ed by
usi
n
g
t
h
e F
A
C
T
devi
ce
(STATCOM
) (figu
r
e
6
)
. It is ad
v
i
sab
l
e to
fi
rst d
e
term
in
e th
e o
p
tim
al
lo
catio
n
o
f
DG t
o
min
i
mize th
e lo
sses
cause
d
by
t
h
e
DG
co
n
n
ect
i
o
n
be
fo
re i
n
t
e
grat
i
ng t
h
e
DG
i
n
t
o
t
h
e
net
w
o
r
k.
REFERE
NC
ES
[1]
Thom
as Ackerm
ann, Goran And
e
r
sson, and Len
n
art Soder Distri
buted Gener
a
tio
n: a defin
ition
.
E
L
SEVIER E
l
e
c
tr
ic
Powe
r Sy
ste
m
s
Re
se
arc
h
. 2001
; 57(3): 195-
204.
[2]
Ham
i
d Falaghi,
Mahm
ood-Reza Haghifam
.
ACO
Based Algorith
m for Distributed Generation Sources Alloca
tion
and Sizing
in Distribution S
y
stems. Pow
e
r Tech
2007 IEEE
Laus
anne. 2007; 555-
560.
[3]
Hos
s
e
in S
h
ahinzadeh
, S
a
ye
d
M
ohs
en Nas
r-Azadani
,
Na
zer
eh J
a
nnes
a
r
i
.
Applica
tions
of
P
a
rti
c
le
S
w
arm
Optimizatio
n Algorithm to Solv
ing the Econom
ic Lo
ad Disp
atch of Units in P
o
wer S
y
stems
with Valve-Poin
t
Effects.
In
ternational Journal
of Electrica
l
and
C
o
mputer Engin
e
ering (
I
JECE)
. 2
014; 4(6): 858~8
67.
[4]
M.
F.
Alha
jri,
M.
R.
AlRa
shidi,
and M.
E.
El-Hawa
r
y
.
H
y
brid P
a
rti
c
le Swarm
Optim
izat
ion Approach for Optim
al
DistributionGen
eration Sizing
an
d A
lloc
a
tion
in
Distribution
S
y
st
em
s.
IEEE
. 2007
; 1290-1293.
[5]
Wa
l
i
d
E
l
-Kha
t
t
am,
Y.
G.
He
gazy,
a
nd
M
.
M.A. S
a
lam
a
.
Investig
a
ting Distri
bu
ted
Generation S
y
stems Performance
Using Monte Carlo Simulation.
I
EEE
T
r
ans. Pow
e
r System
. 2006; 21(2):524-532
.
[6]
Deependra Sing
h, Devend
er Si
ngh,
and
K.S.
Verm
a. Multiob
j
ective Optim
ization
for DG Pl
anning With
Lo
ad
Models.
IE
EE
T
r
ans. Power S
y
st
em
. 2009; 24, (1
): 427-436.
[7]
Chris J. Dent, Luis F. Ochoa, and Ga
reth P
.
Harrison. Network Distributed
Generation C
a
pacity
Analy
s
is Usin
g
OPF W
ith Volta
ge Steps Constr
a
i
nts
. I
EEE
T
r
ans
. Pow
e
r
Sys
t
em
.
2010; 25(1): 296
-304.
[8]
Su Hlaing Win, Py
on
e Lai Swe.Loss
Minimization of Power
Di
stribution Network usi
ng Differen
t
Ty
pes
of
Distributed Gen
e
ration Unit.
International Jour
nal of Electric
al and Computer
Engineering (
I
JECE)
. 2015; 5(5):
918~928.
[9]
JIANG
Fengli,
ZHANG Zhixia, C
AO Tong, HU Bo, PIAO Zailin.
Impact o
f
Distributed Gen
e
ration on Vo
lta
ge
Profile
and
Losse
s of Distribution Sy
ste
m
.32
nd
Chinese Con
t
rol Co
nference. Xi’an
,
China. 2013; 85
87-8591.
[10]
S.
P.
Ra
ja
ra
m,
V. Ra
j
a
se
ka
ra
n,
a
n
d V.
Si
va
kuma
r
, Opt
i
m
a
l
Pl
ac
e
m
e
n
t
of Di
st
ri
buted Ge
ne
rat
i
on forVol
t
a
ge
Sta
b
i
lity
Improvement an
d Loss Reductio
n in Distr
i
bution
Network.
IJI
R
S
E
T
. 2014; 3(3):
529-543.
BIOGRAP
HI
ES OF
AUTH
ORS
Manoj Kumar Nigam, received
th
e B.E.
and ME degree in
Elec
trical
Engin
eering from MITS
Gwalior, M
.
P
., I
ndia.
He has
m
o
re th
an 12
ye
ars
of exp
e
rien
ce
i
n
tea
c
hing
and re
s
earch
and is
a
P
h
.D. S
c
hol
ar in
El
ectr
i
c
a
l
Engin
eering
in
R.K.D.F University
, Bh
opal (M.P)
,
India.
His
current res
e
arch focus
e
s
on
Distributed g
e
neration, power
electronics drives and power
qualit
y
Issues in
the Power S
y
ste
m
.
Dr. V.K. Sethi,
rece
ived th
e BE
(Hons.) fro
m II
T Roorkee, PG
from UK and Ph. D from IIT
Delhi, He was Scientist ‘C’ De
partm
e
nt of
A
t
om
ic Energ
y
, B
A
RC, Bom
b
a
y
,
A
s
s
t
. D
i
rector,
Deputy
Director
(Faculty
)
Min
i
str
y
of Power
,
Deputy
Director
(Site),
Director
Ministr
y
of
Power, Central
Elec
tric
it
y Aut
horit
y
and Ex
.
Director M
O
P
/
CEA, EX-Rec
t
o
r & Director
,
RGPV, Bhopal
and is now
a Vi
ce Chancellor
RK
DF University
,
Bhopal (MP), In
dia.
He has published 115 research p
a
pers in reputed
na
tion
a
l, in
tern
ational journ
a
ls an
d conferen
ces
he is an autho
r
s of 12 books. His research in
te
rests are power plant
e
ngineer
ing, Ren
e
wable
Energ
y
, Green
P
o
wer Technolog
ies & CDM Opp
o
rtunities
Evaluation Warning : The document was created with Spire.PDF for Python.