Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
81
0
~
81
8
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
606
8
10
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Experiment-based Study on th
e Impact of Soiling on PV
System
’s
Perf
ormance
Wa
n Juza
ili J
a
m
il
1
,2
,
H
a
sim
a
h Ab
dul Rah
m
an
1
,2
,
Kyair
u
l Az
mi Baharin
1
,2
1
Centre of
Electr
ical En
erg
y
S
y
st
em
s (CEES), Ins
titut
e
of
Future
Energ
y
, Univers
iti
Te
kno
logi M
a
lay
s
ia (UTM), 8
1310
Johor Bahru, Johor, Malay
s
ia
2
Centre
of
Ele
c
tr
ica
l
En
erg
y
S
y
st
em
s (CEES), Fa
kulti K
e
juru
t
e
ra
a
n
El
ektrik
, Univ
ersiti
Tekno
logi
Mala
y
s
ia
(UTM),
81310 Johor Bahru, Johor, Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 11, 2015
Rev
i
sed
D
ec 13
, 20
15
Accepte
d Ja
n
3, 2016
Soiling refers to the accumulation of
dust on PV
modules wh
ich play
s
a
small but significant role in
degr
adi
ng solar photovoltaics s
y
stem efficien
cy
.
Its effect
cann
o
t be g
e
ner
a
lized be
cause
the
severi
t
y
is lo
cat
ion an
d
environment dependent. Curren
tly
, th
er
e
are
lim
ited s
t
ud
ies
av
ai
labl
e on th
e
soiling eff
ect
in
the hot and hu
mid Ma
la
y
s
i
a
n t
r
opica
l cl
im
ate. This
paper
pres
ents
an
exp
e
rim
e
ntal-b
as
ed a
pproach to inves
tigat
e the
effe
ct
of
s
o
iling
on PV module performance
in a
tropical
climate. The exp
e
riment involved
a
full day
exposu
r
e of a pol
y
c
r
y
stallin
e PV m
o
dule in th
e out
doors with
acc
ele
r
at
ed ar
tif
ici
a
l dust lo
adi
ng and an
ind
oor experim
e
n
t
for testing
variab
le dust dimensions. The findings
s
how that for the wor
s
t cas
e, th
e
module’s output
can b
e
r
e
duced b
y
as much
as 20
%.
Keyword:
Dust
Perform
a
nce
PV m
o
dule
So
ilin
g
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
H
a
sim
a
h
A
bdul Rah
m
an
,
Cen
t
re
o
f
Electrical En
erg
y
Syste
m
s (CEES), In
stitu
te of
Fu
ture En
erg
y
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia (UTM),
8
131
0 Joho
r B
a
h
r
u
,
Joho
r, M
a
laysia.
Pho
n
e
: +60
7
-55
5
700
2
/
7
006
,
Fax
:
+6
07-
555 70
05
Em
a
il: h
a
sh
imah
ar@u
tm
.
m
y
1.
INTRODUCTION
PV sy
st
em
s generat
e
el
ect
ri
ci
t
y
vi
a t
h
e co
nve
rsi
o
n
of s
u
nl
i
ght
i
r
radi
at
i
o
n
.
T
hus
, t
h
e
PV m
odul
es
need
t
o
be m
ount
e
d
out
do
or
whe
r
e m
a
xim
u
m
sunl
i
g
ht
ca
n be
o
b
t
a
i
n
e
d
[1]
.
No
net
h
el
ess, by
e
x
posi
n
g t
h
e
m
odules outdoor, the m
o
dule’s s
u
rf
ace
will be easily accum
u
lated with th
e
prese
n
ce
of dust; or
worse
,
without a pri
o
r cleani
ng s
c
hem
e
in
a
l
o
ng
duratio
n, lead
in
g
to
veg
e
tatio
n
o
f
l
i
ch
en
s. Th
is
k
i
nd
of
accum
u
lation
will pre
v
e
n
t t
h
e s
u
nlight
from
directly
reaching t
h
e
m
odule’s s
u
rface. Meanwhile, ot
her
external factors suc
h
as t
h
e
fluctu
ati
on
of global s
o
lar i
rra
diance, am
b
i
en
t tem
p
eratu
r
e, hu
m
i
d
ity,
wind
v
e
lo
city, site c
h
aracteristic (lo
cal v
e
g
e
tation
,
p
e
d
e
stri
an
an
d
v
e
h
i
cu
lar traffic, air po
llutio
n
,
etc.) will also
cont
ri
b
u
t
e
t
o
t
h
e
per
f
o
rm
ance de
gra
d
at
i
o
n
of
t
h
e
PV
sy
st
e
m
[2,
3]. Ac
c
o
rding t
o
se
ve
ral researc
h
es
, t
h
e iss
u
e
o
f
so
iling
or
du
st can
b
e
co
me seriou
s,
d
e
p
e
n
d
i
n
g
to
th
ei
r site en
v
i
ro
n
m
ental co
nd
itio
n
,
PV system
’s scale an
d
t
h
e fi
na
nci
a
l
c
onsi
d
erat
i
o
n
[4
-7]
.
Not
onl
y
t
h
at
, ge
ne
ral
l
y
, con
v
e
n
t
i
onal
P
V
m
odul
e
onl
y
con
v
ert
4-
1
7
%
of
the receive
d irradiation into
electric
ity [8]. Thus, the effect of soiling
will worsen the efficiency of PV
sy
st
em
. Thi
s
si
t
u
at
i
on bec
o
m
e
s a furt
he
r
chal
l
e
nge i
n
achi
e
vi
n
g
t
h
e com
m
on pu
rp
ose o
f
P
V
sy
st
em
in
stallatio
n
,
wh
ich
alread
y face ch
allen
g
e
s to
m
i
n
i
mize
the
syste
m
’s cost, m
i
nim
i
ze
t
h
e sy
st
em
’s perf
or
m
a
nce
l
o
ss o
v
er t
i
m
e
and fi
nal
l
y
t
o
m
a
xim
i
ze t
h
e sy
st
em
s’ out
put
or be
nefi
t
[9]
.
On t
h
e ot
he
r
pers
pect
i
v
e, t
h
ere are
li
mited
stu
d
i
es o
n
inv
e
stig
ati
n
g
t
h
e so
iling
effect upo
n
PV system in
th
e h
o
t
and
h
u
m
id
Malaysian
trop
ical
clim
ate [10].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
0 – 8
1
8
81
1
2.
BA
C
KGR
OUN
D
OF STUDY
Soiling is formed from
the accum
u
lation of dust
ove
r
a surface,
in t
h
is case t
h
e surface
of
PV
m
odules. S
o
m
e
tim
e
s it
m
a
y
com
e
from
the de
position
of
dirt like
bird dropping or s
p
l
a
tted m
ud whi
c
h is
referred
as cemen
t
ed
so
ilin
g.
Gen
e
rally, the term
d
u
s
t is
o
f
ten
u
s
ed
to
describ
e
th
e so
ilin
g issue.
Accord
i
n
g to
Mek
h
ilef et
al, du
st is
o
n
e
o
f
th
e three
facto
r
s id
en
tified
from
n
a
tu
re b
e
sides hu
m
i
d
ity an
d
air v
e
l
o
city wh
ich
may affect PV syste
m
s p
e
rform
a
n
ce [3
]. M
a
n
i
and
Pillai d
e
fi
n
e
d
t
h
at du
st is a term
g
e
n
e
rally app
lied
t
o
m
i
nut
e sol
i
d
p
a
rt
i
c
l
e
s wi
t
h
di
am
et
ers l
e
ss t
h
an
50
0µm
[2]
.
They
al
so
de
v
e
l
ope
d a
fram
e
wo
rk
i
n
di
cat
i
ng t
h
e
facto
r
s influ
e
ncin
g
du
st settlemen
t
as in
t
h
e
Fig
u
re
1
.
Fig
u
re
1
.
Factors influ
e
n
c
ing
d
u
s
t
settle
m
e
n
t
b
y
Man
i
and
Pillai in
2
010
[2]
R
e
ferri
ng t
o
Fi
gu
re 1,
dust
co
m
e
s i
n
vari
ous
charact
eri
s
t
i
c
and ca
n be ana
l
y
s
ed at
di
ffere
nt
pr
ope
rt
y
suc
h
as chem
ical prope
r
ty, biological
prope
r
ty, electrostatic prope
rty an
d p
h
y
sical p
r
oper
t
y (
s
ize, sh
ap
e and
wei
g
ht
).
S
o
i
l
i
ng c
o
m
p
ri
sed a
vary
i
n
g c
o
m
p
o
s
i
t
i
on
of
di
f
f
er
ent
d
u
st
t
y
pe
s t
oget
h
er
beca
us
e i
t
i
s
t
r
an
sp
ort
e
d
by
wind
(m
o
s
tly) fro
m
th
e d
i
fferen
t
o
r
i
g
in
s
(d
ep
end
i
ng
o
n
t
h
e wind
d
i
rection) b
e
fore settlin
g
down
o
n
an
y
k
i
nd
of surface. Local site activit
y determ
ines t
h
e dust settle
ment rate in the specific
are
a
suc
h
as air
pollut
i
on
[11
]
, n
e
arb
y
in
du
stry,
n
e
arby co
n
s
tru
c
tion site [1
2
]
,
t
r
an
sportatio
n
facilit
y [1
3
]
an
d n
a
ture act (vo
l
can
ic
eru
p
t
i
o
n, haz
e
fr
om
forest
b
u
r
n
i
n
g, sa
nd
st
or
m
,
et
c.) In a
d
d
i
t
i
on t
o
t
h
at
, w
i
nd ca
n be c
o
n
s
i
d
ere
d
as o
n
e
of t
h
e
maj
o
r fact
o
r
s
co
n
t
ribu
tes to
t
h
e so
iling
p
r
o
b
l
e
m
ap
art fro
m
a
m
b
i
en
t tem
p
e
r
atu
r
e and
relativ
e hu
m
i
d
ity.
Man
i
and
Pillai’s fram
e
work
also
i
d
en
tifi
e
d
th
at o
t
h
e
r
th
an
th
e
g
e
ograph
i
cal factors and
du
st
property, the
m
odule surfac
e’s m
o
rpho
logy and the way
it’s being m
o
unted (e
xpos
ure
to the atm
o
sphere a
nd
tilt an
g
l
e) can
also
influ
e
n
ce t
h
e so
ilin
g rate
[14
-
16
].
Pre
v
i
o
us st
u
d
i
e
s ha
ve di
sc
o
v
ere
d
t
h
e
ef
fe
ct
of s
o
i
l
i
ng c
a
n re
d
u
ce t
h
e
PV sy
st
em
’s per
f
o
r
m
a
nce
(
e
ff
icien
c
y, outp
u
t
pow
er
and
I-
V
cur
v
e
characteristic) [4-6, 17-21]. Howeve
r
,
m
o
s
t
o
f
t
h
e
m
c
o
m
e
u
p
w
i
t
h
di
ffe
re
nt
res
u
l
t
s
and
j
u
st
i
f
i
cat
i
ons
on t
h
e i
m
pact
o
f
soi
l
i
n
g
t
o
PV sy
st
em
’s pe
rf
orm
a
nce
due t
o
t
h
e
di
f
f
ere
n
t
g
e
ograph
i
cal co
nd
itio
n on
t
h
e stu
d
i
ed
site.
In
Malaysia,
the resu
lt mig
h
t
b
e
d
i
fferen
t
. Th
is p
a
p
e
r so
m
e
h
o
w is
add
r
essi
ng t
h
e
soi
l
i
ng i
s
s
u
e i
n
t
h
e hot
an
d h
u
m
i
d
M
a
l
a
y
s
i
a
n t
r
opi
cal
cl
im
ate based
on t
w
o
set
of expe
ri
m
e
nt
s.
Th
e first on
e was
cond
u
c
ted
ou
tdo
o
r wh
ile
the
o
t
h
e
r
on
e
was p
e
rfo
r
m
e
d
in
th
e labo
rat
o
ry.
Th
e
resu
lt from
th
e
labo
ratory
e
x
p
e
rim
e
nt was co
m
p
ared
with the at least simil
a
r stud
y
b
y
Sulaim
an et al, 2014 for validati
o
n
.
3.
PROBLEM STATEMENT
So
ilin
g p
l
ays
a sm
a
ll b
u
t
sig
n
i
fican
t ro
le
in
d
e
creasing
PV
p
o
wer ou
t
p
u
t
.
Its sev
e
rit
y
is h
i
g
h
l
y
depe
n
d
ent
on t
h
e i
n
st
al
l
a
t
i
on l
o
cat
i
on.
PV s
y
st
em
s near desert
s an
d beac
hes are s
u
b
j
ect
t
o
hi
gh
er am
ount
o
f
so
ilin
g, as for syste
m
s
in
a p
o
llu
ted
env
i
ron
m
en
t. An
o
t
h
e
r facto
r
is th
e d
i
m
e
n
s
io
n
o
f
so
ilin
g
elem
en
t
s
. Th
e
di
rt
m
a
y
consi
s
t
of
dese
rt
d
u
s
t
,
ai
rb
or
ne
p
o
l
l
u
t
a
nt
s,
bi
r
d
d
r
op
pi
n
g
s
o
r
ot
h
e
r pa
rt
i
c
ul
at
e
m
o
l
ecul
e
s whi
c
h
vary
i
n
sha
p
e a
n
d si
ze. St
u
d
i
e
s
on
t
h
e i
m
pact
of s
o
i
l
i
ng
o
n
P
V
m
odul
es are l
i
m
i
t
e
d, especi
al
l
y
for t
r
o
p
i
cal
cl
im
at
e
co
un
tries su
ch as Malaysia.
Th
is research
atte
m
p
ts to
fi
l
l
t
h
e gap
usi
n
g
expe
ri
m
e
nt
al
-
b
ase
d
anal
y
s
i
s
on t
h
e
so
ilin
g effect.
FACTORS
INFLU
E
NCING
DUST
SETTLEMENT
PV
System
Tilt
Angle
and
Orientation
(e
xp
o
s
u
r
e
movements
of
the
su
n
and
w
i
nd)
Du
st
P
r
o
p
ert
i
es
(
i
nc
l
ude
s
dus
t
type
‐
ch
emical
,
biological
and
e
l
e
c
tros
tatic
prope
r
ty,
siz
e
,
sh
a
p
e
and
weigh
t
)
Wind
Ve
l
o
c
i
t
y
Glaz
in
g
Characteristics
(T
h
i
s
inc
l
udes
the
PV
panel
su
rf
ace
and
co
at
in
g
characteristics)
Site
C
h
aracte
ris
t
ics
(local
v
e
ge
tation,
pe
de
s
t
ri
an
and
veh
i
cu
l
a
r
t
r
a
ffic,
air
p
o
llu
tion
)
Ambient
Temperature
and
Humidity
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Experi
me
nt
-
b
a
s
ed St
u
d
y o
n
t
h
e
I
m
p
a
ct
of
S
o
i
l
i
ng on
PV Syst
em’s
Perf
o
r
m
a
nce
(
H
asi
m
ah
Ab
dul
R
a
hm
a
n
)
81
2
4.
METHODS
Tw
o ex
peri
m
e
nt
s ha
ve bee
n
con
d
u
ct
ed.
Th
e fi
rst
ex
peri
m
e
nt
i
n
v
o
l
v
e
d
t
h
e si
ngl
e day
e
x
p
o
s
u
re
of
a
10
W rate
d polycrystalline PV m
odule in the atm
o
s
phe
ric condition with the
accel
erated artificia
l dust
l
o
adi
n
g. T
h
e di
m
e
nsi
ons
of t
h
e PV m
odul
e were
35
0 m
m
(wi
d
t
h
)
by
30
0
m
m
(l
engt
h
)
b
y
17 m
m
(t
hi
ckne
ss
)
.
Wheat
fl
ou
r (i
n g
r
am
per
m
e
t
e
r²) was
use
d
as art
i
f
i
c
i
a
l
dust
a
nd
bei
n
g de
po
si
t
e
d evenl
y
o
n
t
h
e
m
odul
e
surface e
v
ery
half an
hour
, then t
h
e output (m
odule
ܸ
and m
o
d
u
l
e
ܫ
௦
) we
re o
b
se
rv
ed. F
o
r e
v
e
r
y
measurem
ent taken
of
ܸ
and
ܫ
௦
, th
e po
ssib
l
e
n
a
tu
ral p
a
ram
e
ter
s
in
relation
to th
e PV m
o
du
l
e
p
e
rform
a
n
ce
alo
n
g
with
influ
e
n
ce
o
f
du
st
settle
m
e
n
t
which
are so
la
r irrad
i
an
ce, am
b
i
en
t tem
p
eratu
r
e, relativ
e
h
u
mid
i
t
y
(R
H)
an
d
wi
n
d
s
p
eed
we
re r
ecor
d
e
d
. T
h
e e
xpe
ri
m
e
nt
was co
nd
uct
e
d
i
n
day
f
r
om
m
o
rni
n
g t
o
e
v
e
n
i
n
g.
T
h
e
m
easurem
ent
t
a
ken
i
s
s
h
o
w
n
i
n
Fi
g
u
r
e
2 t
o
Fi
gu
re
6.
Fi
gu
re
2 i
ndi
c
a
t
e
s t
h
e i
r
radi
ance l
e
vel
m
e
asure
d
d
u
ri
ng
t
h
e o
u
t
d
o
o
r
ex
peri
m
e
nt
t
oget
h
er
wi
t
h
t
h
e
accelerated dust loading.
Howeve
r, it do
es
not
resem
b
le the im
portant fi
ndi
ng
s related
to dust effect as bot
h
param
e
t
e
rs he
r
e
are i
nde
pe
nd
ence.
They
a
r
e
o
n
l
y
m
easured t
o
be
as a
re
f
e
rence
.
Usual
l
y
,
i
n
t
h
e
at
m
o
sphe
ri
c
condition, dry
weathe
r with high
i
rra
diance
may accelerate the
dust settlement rate.
Dusts can easily being
bl
o
w
n
by
wi
nd
whe
n
i
t
dri
e
s
.
It
i
s
al
so o
b
ser
v
ed t
h
at
t
h
e ra
pi
d fl
uct
u
at
i
o
n
s
of t
h
e i
rra
di
a
n
ce val
u
e d
u
r
i
ng t
h
e
measurem
ent.
This ha
ppe
ns
because of the unpre
d
icta
bl
e weather condition on that
day. It was raining
heavi
l
y
bet
w
ee
n
3.
00
p
.
m
.
t
o
4.
30
p
.
m
.
and t
h
e cl
o
u
d
fo
rm
at
i
on
was c
h
a
n
g
i
ng
p
r
om
pt
l
y
in t
h
e
s
k
y
.
Figure
2. Solar irra
diance
tr
end in single
day
with the
accel
e
r
ated a
r
tificial dust
loa
d
ing
Th
e b
e
h
a
v
i
o
r
al
o
f
cli
m
atic
an
d
m
e
teo
r
o
l
o
g
i
cal co
n
d
ition
s
are illu
strated
in
Figu
re 3
an
d Fig
u
r
e
4
.
They show the
correlation
bet
w
een
am
bient te
m
p
erature, rel
a
tive hum
i
dity
and
winds
p
ee
d to irra
diance
level
.
It can
b
e
ob
serv
ed
in
Fi
g
u
re
3
th
at th
e a
m
b
i
en
t te
m
p
eratu
r
e is lo
w in
th
e m
o
rn
in
g
d
u
e
t
o
lo
w so
lar irrad
i
an
ce
lev
e
l, so
less
heat b
een
tran
sferred
to
atm
o
sp
h
e
re.
Al
so, the a
m
b
i
en
t con
d
itio
n
will g
e
t ho
tter as th
e sun risin
g
and
dec
r
easi
n
g
by
t
h
e
en
d o
f
t
h
e
day
.
A
d
di
t
i
onal
l
y
, du
ri
n
g
rai
n
or
cl
o
udy
weat
he
r, w
h
ere
t
h
e
i
r
radi
a
n
ce l
e
vel
is lo
w, th
e am
b
i
en
t te
m
p
e
r
atu
r
e will
d
e
crease acco
r
d
i
n
g
l
y to th
e av
ailab
l
e
h
eat
in
th
e atm
o
sph
e
re.
Mean
wh
ile, for RH, it is redu
ced du
ri
n
g
warm
co
n
d
itio
n (refer
Figu
re
3
)
.
Wh
en
th
e
su
rroun
d
i
ng
getting
warm
er, th
e am
b
i
en
t te
m
p
eratu
r
e
will rise,
water
v
a
p
o
rs ea
sily ev
apo
r
ate in
th
e air, leave th
e co
nd
ition drier.
For a typical wind spee
d characteristic as in Fi
gu
re
4 sh
o
w
s t
h
at
i
t
usua
l
l
y
i
nde
pen
d
e
n
t
and d
o
n
o
t
to
tally rely o
n
so
lar irrad
i
ance, am
b
i
en
t te
m
p
eratu
r
e and relativ
e h
u
m
i
d
ity. Th
e p
a
ttern
o
f
wind
sp
eed
in
a
sin
g
l
e
d
a
y is
un
pred
ictab
l
e an
d in
term
itten
t
. It m
a
y in
crea
se in
t
h
e
d
r
y con
d
ition
,
l
o
w am
b
i
en
t te
m
p
eratu
r
e, or
ev
en dur
ing
r
a
i
n
ing
.
Fro
m
m
e
tr
o
l
og
ical study, w
i
nd
sp
eed
is go
v
e
r
n
ed
b
y
th
e
o
r
b
ital m
o
v
e
m
e
n
t
o
f
t
h
e
m
o
o
n
whic
h als
o
determ
ine the ebb an
d flow of se
awater
le
vel.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
0 – 8
1
8
81
3
Figure
3. A typical a
m
bient tem
p
erature a
n
d
RH
pr
ofi
l
e
Fig
u
r
e
4
.
A
typ
i
cal w
i
nd
sp
eed pr
of
ile
The
m
odul
e
o
u
t
p
ut
s
w
h
i
c
h
are
ܸ
an
d
ܫ
௦
s
u
pp
ose
d
t
o
be
t
h
e
depe
n
d
en
ce v
a
ri
abl
e
s
o
f
d
u
st
settle
m
e
n
t
, so
lar irrad
i
an
ce,
a
m
b
i
en
t te
m
p
eratu
r
e, RH
and
wi
n
d
sp
eed
.
Th
e correlation
is sign
ifican
t
wh
en
co
m
p
ares to the irrad
i
atio
n pattern
,
ܸ
and
ܫ
௦
. Howev
e
r, Fi
g
u
re
5
an
d Figure 6
illu
st
rate bo
th
ܸ
an
d
ܫ
௦
have sim
ilar tr
end c
u
rve as the solar irra
diance res
p
ectiv
el
y. These val
u
e
s
degrade i
n
the end
of the
da
y due
t
o
t
h
e l
o
w i
r
ra
di
at
i
on a
nd
pr
ol
i
f
erat
i
o
n o
f
d
u
st
de
nsi
t
y
. Duri
ng t
h
e
hi
g
h
e
st
i
rradi
ance l
e
vel
of
99
0
W/m
²
and
the dust accum
u
lation is
100
g/m
²
,
ܸ
is m
easu
r
ed at
18.99
V
and
ܫ
௦
i
s
at
1.
6
2
A.
At
l
o
w
e
st
i
r
radi
a
n
ce o
f
10
2
W
/
m
²
, the
dus
t
accum
u
lation is
160 g/m
²
, the
values
of
ܸ
and
ܫ
௦
are m
easure
d
at
4.
80
V a
n
d
0.
3
0
A
respectively. T
h
e
results a
r
e t
a
bulated in Ta
ble 1.
Fi
gu
re 5.
M
o
d
u
l
e
ܸ
with accel
erated soiling
Fi
gu
re 6.
M
o
d
u
l
e
ܫ
௦
with accele
r
ated soiling
Tab
l
e
1
.
A
typ
i
cal d
a
y ou
tdoor
ex
p
e
r
i
m
e
n
t
al
r
e
su
lts
Irrad
i
an
ce
Du
st
Den
sity
(g
/
m
²)
ࢂ
ࢉ
(V)
ࡵ
࢙ࢉ
(A)
990
100
18.
99
1.
62
104
160
4.
80
0.
30
89.
49% r
e
duction
40% incre
m
ent
74.
72% r
e
duction
81.
48% r
e
duction
It can be
obse
rved that t
h
e
va
lues
of
V
oc
and
I
sc
is reduce
d significa
ntly
acco
rding t
o
the
low level
of
irrad
i
an
ce and with
th
e in
creased
of du
st den
s
ity. Th
is resu
lt is tru
e
fo
r
I
sc
altern
ativ
ely n
o
t
fo
r
V
oc
w
h
ere
th
eoretically i
t
is n
o
t
true b
e
cau
s
e
V
oc
n
e
v
e
r
fo
llow th
e irrad
i
atio
n
p
a
ttern. It is p
o
ssi
b
l
e th
at th
e h
eating fro
m
th
e irrad
i
ation
cau
sed
th
e redu
ctio
n in
its
v
a
lu
e.
An i
n
d
o
o
r e
x
p
e
ri
m
e
nt
was cond
uct
e
d
by
usi
ng t
h
e sam
e
mod
u
l
e
an
d art
i
f
i
c
i
a
l
dust
.
Thi
s
expe
ri
m
e
nt
is actu
a
lly to
v
e
rify th
e
ou
td
oor exp
e
rim
e
n
t
find
ing
s
.
In th
is ex
p
e
rim
e
n
t
a 5
0
0
W sp
o
tligh
t
is u
s
ed
as an
artificial so
lar so
urce and
a clo
s
ed
labo
rat
o
ry ro
o
m
at
am
b
i
ent
t
e
m
p
erat
ure of
25 ºC
. B
e
fo
re pe
rf
orm
i
ng t
h
e
expe
ri
m
e
nt
, t
h
e i
rradi
ance l
e
vel
s
and l
i
g
ht
i
n
t
e
nsi
t
y
from
the sp
ot
l
i
ght
w
h
i
c
h i
s
han
g
o
v
e
r t
h
e
m
odul
e
need t
o
be m
easured.
They
wer
e
m
e
asure
d
at
ni
ne
di
ffe
re
nt
poi
nt
s due t
o
i
r
re
gul
ari
t
y
of l
i
ght
di
spersi
o
n
. The a
v
era
g
e
val
u
e cal
c
u
l
a
t
e
d
fr
om
t
h
e ni
ne
p
o
i
n
t
s
a
r
e
39
6
.
2
2
2
2
W/
m
²
and
13
9
5
.
7
7
7
8
l
u
x eac
h’s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Experi
me
nt
-
b
a
s
ed St
u
d
y o
n
t
h
e
I
m
p
a
ct
of
S
o
i
l
i
ng on
PV Syst
em’s
Perf
o
r
m
a
nce
(
H
asi
m
ah
Ab
dul
R
a
hm
a
n
)
81
4
The e
x
peri
m
e
nt
set
u
p
i
s
as
s
h
ow
n i
n
Fi
gu
re
7i
n a
dar
k
l
a
bo
rat
o
ry
.
T
h
e s
p
o
t
l
i
ght
was
u
s
ed
i
n
st
ead
o
f
n
a
tural sun
lig
ht to
m
a
in
tain
t
h
e irrad
i
an
ce l
e
v
e
l wh
ile o
b
serv
i
n
g
t
h
e in
cre
m
en
t o
f
d
u
s
t
d
e
nsity (in
gram p
e
r
meter²) effect t
o
t
h
e
ܸ
and
ܫ
௦
. The P
V
m
odule
was
placed
horizontally facing t
h
e
s
p
otlight. The
s
o
iling te
st
was c
o
nducted by loa
d
ing t
h
e
wheat fl
our
on the
m
odule s
u
rface
with its
de
nsity being i
n
crease
d
by
10 g/m
²
for eac
h m
easurem
ent. At the
sam
e
tim
e, the variation
of
ܸ
and
ܫ
௦
we
re rec
o
rd
ed.
Fi
gu
re
7.
The
e
xpe
ri
m
e
nt
al
setup
5.
RESULTS
A
N
D
DI
SC
US
S
I
ON
In the
first e
xpe
rim
e
nt where the
artific
ial so
iling
rat
e
bei
n
g accelerated i
n
t
h
e
atm
o
sphe
ric
condition, t
h
e
m
odule output
s,
ܸ
and
ܫ
௦
res
p
on
ded
acc
or
di
n
g
l
y
t
o
t
h
e
s
o
l
a
r i
rra
di
ance
l
e
vel
.
Whe
n
e
v
er t
h
e
irrad
i
an
ce lev
e
l is lo
w, th
e ou
tpu
t
s g
e
n
e
rat
e
d
are also
low and
wh
en
the irrad
i
an
ce lev
e
l is h
i
gh
, th
e o
u
t
p
u
t
will rise. But, the output m
a
y
not re
sem
b
le the total response because
of
t
h
e presence of dust over the panel
whi
c
h i
n
c
r
eas
es ra
pi
dl
y
al
o
n
g
t
h
e m
easur
em
ent
.
Thi
s
c
a
n
be see
n
t
h
ro
u
gh t
h
e
gra
phs
i
n
Fi
g
u
re
8 a
n
d
Fi
gu
re 9.
Fi
gu
re 8.
M
o
d
u
l
e
ܸ
with accel
erated soiling
Fi
gu
re 9.
M
o
d
u
l
e
ܫ
௦
with accele
r
ated soiling
This res
u
lt can only show t
h
e
PV m
odule output patte
rn due to the accelerated soiling i
n
single day.
There i
s
n
o
t
h
i
ng m
u
ch ca
n
be j
u
st
i
f
i
e
d
fr
om
t
h
e experi
m
e
nt
i
n
rel
a
t
i
on t
o
t
h
e i
m
pact
of s
o
i
l
i
ng
and
PV
sy
st
em
’s perf
o
r
m
a
nce. The
expe
ri
m
e
nt
need t
o
be pe
rf
orm
e
d i
n
m
u
ch l
o
nge
r
peri
o
d
t
o
c
o
m
e
out
wi
t
h
concl
u
si
ve
fi
n
d
i
n
gs. F
u
rt
her
m
ore, t
h
e fl
uct
u
at
i
on
o
f
t
h
e s
o
l
a
r i
r
radi
a
n
ce
(su
p
pose
d
t
o
b
e
t
h
e fi
xe
d pa
r
a
m
e
t
e
r)
du
ri
n
g
t
h
e m
easurem
ent
due
t
o
som
e
nat
u
r
a
l
i
n
fl
ue
nces s
u
ch a
s
cl
o
ud
f
o
rm
at
i
on (de
p
endi
ng
o
n
wi
n
d
spe
e
d
and
wi
n
d
di
rec
t
i
on) a
nd R
H
(
d
epe
n
di
n
g
o
n
am
bi
ent
t
e
m
p
erat
ure)
[2
2]
, i
t
is har
d
t
o
anal
y
ze t
h
e
m
odul
e out
p
u
t
variation on the reduce irra
diation du
e to the accelerated soiling. This wi
ll co
m
p
licate
t
h
e soiling effe
ct study.
Not to forget,
the heat a
b
s
o
rbed
by the m
o
dule from
a
m
bient and
s
o
lar irra
diance
might also re
duce the
per
f
o
r
m
a
nce [2
3]
.
M
a
l
a
y
s
i
a
i
s
diffe
rent
f
r
om
ot
her co
u
n
t
r
y
.
I
t
i
s
l
o
cat
ed i
n
t
h
e eq
uat
o
r
w
h
i
c
h e
xpe
ri
enc
i
ng
hot
a
n
d
h
u
m
id
cli
m
ate
at th
e sam
e
ti
me. Mo
st of the p
e
riod
, t
h
e cl
o
u
d
form
atio
n
is d
i
fficu
lt to
be p
r
ed
icted. Pl
u
s
, i
n
here
, t
h
ere i
s
no
ob
vi
o
u
s
dr
y
season an
d
wet
seaso
n
w
h
i
c
h s
o
i
l
i
ng q
u
ant
i
f
i
cat
i
o
n i
s
easi
l
y
bei
n
g
m
a
de.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
0 – 8
1
8
81
5
Usually, soiling phenom
enon on P
V
m
odule surfa
ce was
studie
d
in a stable
dry seas
on and m
o
stly in the
cou
n
t
r
y
w
h
i
c
h
have t
h
i
s
t
y
pe of cl
i
m
at
e [24
-
26]
. T
h
e
r
ef
ore
,
t
h
e secon
d
ex
pe
ri
m
e
nt
was pe
rf
o
r
m
e
d in
laboratory
with the
controlled situa
tion to s
t
udy the
sam
e
soiling a
ccelera
tion but with fixe
d
irradiation
a
nd
surroundi
ng te
m
p
erature.
Th
e
second
exp
e
rim
e
n
t
sho
w
ed
t
h
at wit
h
the in
crem
en
t of th
e artificial du
st
d
e
nsity, th
e
ܸ
and
ܫ
௦
were
re
duce
d
.
The c
o
r
r
el
at
i
o
n o
f
du
st
de
nsi
t
y
and t
h
e m
o
d
u
l
e
ܸ
is sh
ow
n in
Figur
e 10
. I
t
w
a
s
o
b
s
erv
e
d
t
h
at
ܸ
sl
i
ght
l
y
red
u
c
e
d fr
om
18
.9
9
t
o
1
5
.
3
1 V (2
0.
01
% decr
em
en
t) with
th
e p
r
o
lifera
tion of
th
e
d
u
st d
e
nsity
fr
om
0 t
o
20
0
g/
m
²
. Accor
d
i
n
g t
o
t
h
e
com
m
on
sem
i
conduc
t
o
r f
u
ndam
e
nt
al
,
ܸ
sh
oul
d be l
e
ss affect
e
d
by
t
h
e
i
rradi
a
n
ce b
u
t
sho
u
l
d
res
p
o
n
d
t
o
t
h
e m
odul
e t
e
m
p
erat
ure.
Ho
we
ver
,
i
n
t
h
i
s
expe
ri
m
e
nt
,
ܸ
m
i
ght
have al
so
been re
duce
d by the rise of
module
te
m
p
erature due to the
sh
ort distance
(65cm
)
of
m
o
dule surface from the
sp
o
tligh
t
.
Th
e effect of artificial d
u
s
t to th
e
ܫ
௦
is presen
t
e
d
in
Fi
gu
re
11
. Sim
ilar with
ܸ
, it was seen
th
at
ܫ
௦
al
so sl
i
ght
l
y
re
duce
d
f
r
o
m
1.64 m
A
t
o
1.
3
1
m
A
(2
0.
12
% r
e
duct
i
o
n
)
. T
h
e
resul
t
o
b
t
a
i
n
e
d
was
gai
n
e
d
t
h
r
o
ug
h
th
e i
n
cr
em
en
t
o
f
ar
tif
icial
dust lo
ad
ing un
til 200 g
/
m
²
. Bo
t
h
of
ܸ
and
ܫ
௦
were e
xpecte
d
t
o
decrease
m
o
re
if
t
h
e
l
o
a
d
i
n
g ha
d been
p
r
ol
o
n
g
e
d.
Fi
gu
re
1
0
. T
h
e
re
duct
i
o
n
of
ܸ
Fi
gu
re
1
1
. T
h
e
re
duct
i
o
n
of
ܫ
௦
R
e
sul
t
obt
ai
ne
d fr
om
t
h
e secon
d
ex
peri
m
e
nt
was co
m
p
ar
ed
w
ith
f
i
nd
ing f
r
o
m
Sulaim
a
n
et al 2014
wo
rk
s [
1
0]
. Th
e st
udy
by
t
h
i
s
gr
o
up c
o
nd
uct
e
d a set
of l
a
b
o
rat
o
ry
e
xpe
ri
m
e
nt
t
o
st
u
d
y
t
h
e ef
fect
o
f
di
r
t
on a
PV m
odul
e’s
out
put
.
Al
t
h
o
u
gh t
h
e a
p
p
r
oa
ch t
a
ken i
s
q
u
i
t
e
di
ffere
nt
, t
h
ei
r st
u
d
y
i
s
the m
o
st
sim
i
l
a
r wo
r
k
whic
h ca
n
be c
o
m
p
ared t
o
he
re. Differently from
this st
u
d
y
, th
eir
work
s inv
e
stig
ate th
e
effect of
various
dirts
on t
h
e
PV m
odul
e
’
s o
u
t
p
ut
l
i
k
e t
a
l
c
um
, dust
,
sand
, wat
e
r
dr
opl
et
an
d a l
a
y
e
r of ve
get
a
t
e
d
m
o
ss whi
c
h we
re
sprea
d
e
v
enly on the m
odule surface. However, in he
re
, t
h
e wheat flour loading on the
m
odule s
u
rfa
ce was
measured in
gra
m
per m
e
ter squa
re
whic
h is
m
o
re accura
te
than t
h
e a
v
era
g
e s
p
rea
d
ing.
Besides, thei
r
study
obs
er
vi
n
g
t
h
e
m
odul
e’s
out
p
u
t
p
o
w
e
r
red
u
c
t
i
on
whi
c
h wa
s
do
ne
by
co
n
n
e
c
t
i
ng t
h
e m
o
d
u
l
e t
o
sm
all
l
o
ads l
i
k
e
bul
bs a
nd m
o
t
o
r
wi
t
h
t
h
e
di
f
f
ere
n
t
l
i
ght
i
r
r
a
di
ance i
n
p
u
t
.
Th
is was no
t do
n
e
i
n
th
is st
ud
y, th
e m
o
du
le o
u
t
p
u
t
was m
easu
r
ed
o
n
th
e
no
lo
ad
co
nd
itio
n.
C
o
m
p
ari
s
on
c
a
n
be
m
a
de b
y
o
b
ser
v
i
n
g
t
h
e de
pl
et
i
o
n
of
ܸ
and
ܫ
௦
with
t
h
e I-V cu
rv
ed
p
l
o
tted
fr
om
Sul
a
im
an
et
al
201
4
wo
r
k
s as i
n
Fi
g
u
re
12
. At
t
h
e a
v
e
r
age irra
diance
of
25
0
W/m
²
,
it can be estimated
th
at th
e
red
u
c
ti
o
n
of
ܸ
an
d
ܫ
௦
for talcu
m
o
n
l
y (wh
i
ch
is
simil
a
r to wh
eat
flou
r ph
ysical textu
r
e) are ab
ou
t
2.24% and
13.46% each.
While at th
e average irra
diance
of 350
W
/
m
²
,
the values are
2.91% and
18.31%
each.
Table
2 below t
h
e
figure
shows t
h
e
com
p
arison
of the
indoor e
xpe
rim
e
nt conducte
d a
n
d the one
obt
ai
ne
d
by
S
u
l
a
im
an et
al
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Experi
me
nt
-
b
a
s
ed St
u
d
y o
n
t
h
e
I
m
p
a
ct
of
S
o
i
l
i
ng on
PV Syst
em’s
Perf
o
r
m
a
nce
(
H
asi
m
ah
Ab
dul
R
a
hm
a
n
)
81
6
Fi
gu
re 1
2
. I-
V cur
v
e fo
r di
rt
’s
i
n
fl
uence
t
e
st
at
radi
at
i
o
n
i
n
t
e
nsi
t
y
of
3
5
0
W
/
m
²
and
25
0 W
/
m
²
[1
0]
Tab
l
e
2
.
C
o
m
p
arison
o
f
th
e
ob
tain
ed resu
lt (th
e
redu
ctio
n of
ܸ
and
ܫ
௦
ሻ
Co
m
p
ar
ison
Sulaim
an et al 2014
[
10]
T
h
is
Study
Soiling ty
pe
T
a
lcu
m
W
h
eat flour
Methods
Artificial soiling spread
evenly
on th
e
m
odule surface
Artificial soiling spread ev
enly
on th
e
m
odule surface
L
o
ading was
m
eas
ur
ed in g/m
²
and being incr
ease fr
o
m
0
to 200 with 10 g/m
²
incr
em
ent
Ex
tern
al
Distur
bance
Not
m
e
ntioned
Heat fr
o
m
spotlight
ܸ
r
e
duction
Aver
age irr
a
diance of 250 W
/
m
²
2.
24%
Average ir
radiance
of
396.
22
22 W
/
m
²
0 -
20.
01%
Aver
age irr
a
diance of 350 W
/
m
²
2.
91%
ܫ
௦
r
e
duction
Aver
age irr
a
diance of 250 W
/
m
²
13.
46%
0 -
20.
12%
Aver
age irr
a
diance of 350 W
/
m
²
18.
31%
The
res
u
l
t
s
i
n
num
eri
cal
val
u
e are t
o
t
a
l
l
y
di
ffe
rent
fo
r t
h
e
bot
h st
udy
as
t
h
e m
e
t
hod
em
pl
oy
i
s
q
u
i
t
e
d
i
fferen
t
ev
en
w
ith
th
e sim
i
la
r so
iling
typ
e
.
Sin
ce th
e
av
erag
e irrad
i
an
ce
used
in
th
is study is 3
9
6
.222
2
W
/
m
²
,
t
h
e nea
r
est
m
a
tchi
n
g
i
rra
di
a
n
c
e
use
d
by
S
u
l
a
i
m
an et
al
whi
c
h can
be m
a
de fo
r com
p
ari
s
o
n
i
s
at
35
0
W
/
m
²
. At
20
0
g/
m
²
of wheat
fl
o
u
r l
o
ad
i
ng
densi
t
y
, t
h
e red
u
ct
i
o
n o
f
ܸ
and
ܫ
௦
du
e to
soilin
g
ar
e
2
0
.01% an
d
20
.1
2%
each while from Sulaim
an et
al are about 2.91% and
18
.31% each. The reduction of
ܫ
௦
f
o
r
bot
h st
u
d
y
are
quite sim
ilar, pe
rha
p
s
of the a
p
proxim
a
ted s
o
iling
de
nsity loa
d
ed
on the
m
odul
e surface
a
n
d
ܫ
௦
is
fu
n
d
am
ent
a
l
l
y
l
e
ss affect
e
d
b
y
m
odul
e
heat
i
ng.
H
o
weve
r,
f
o
r
ܸ
t
h
e
bi
g
d
i
ffere
nt
am
oun
t
of
va
ri
at
i
o
n
f
o
r
bot
h studies was cont
ributed
from
m
odule heating.
W
ith
the m
odule surface
distance
only 65cm
from
the
sp
o
tligh
t
, th
e ex
cessiv
e
h
eat can
b
e
ab
so
rb
ed d
i
rectly ev
en
t
h
oug
h
it was lig
h
t
en
up
in
a few seco
nd
s
d
u
e to
th
e larg
e sp
o
tli
g
h
t
po
wer
ratin
g. Th
eo
retically, with
th
e in
crem
en
t o
f
m
o
du
le tem
p
eratu
r
e fro
m
2
5
º
C
,
ܸ
will
decrease
d
r
ast
i
cal
l
y
. Sul
a
im
an et
al
res
u
l
t
can be
re
fer
r
e
d
i
n
t
h
i
s
case,
wi
t
h
o
u
t
t
h
e
d
i
st
urba
nce
of
m
odul
e
h
eatin
g,
ܸ
is n
o
t
sign
ifican
tly
affected b
y
so
ilin
g. Desp
ite o
f
th
is,
fro
m
Tab
l
e
2
,
it is seen t
h
at
with th
e risin
g
of irra
diance le
vel, t
h
e
reduction
of
ܸ
and
ܫ
௦
b
e
co
me
mo
r
e
obv
io
u
s
.
A
t
th
e
av
er
a
g
e ir
r
a
d
i
an
c
e
of
35
0
W
/
m²
in Sulaim
an et
al expe
rim
e
nt,
ܸ
and
ܫ
௦
was reduc
e
around 2.91%
and 18.31%
each.
6.
CO
NCL
USI
O
NS
Fro
m
th
e m
e
t
h
od
s em
p
l
o
y
ed
in
t
h
is stud
y
and
co
m
p
ariso
n
m
a
d
e
with
Su
laim
an
et al
stu
d
y
, it is
fo
u
nd t
h
at
t
h
e
effect
o
f
d
u
st
defi
ne
d
by
so
i
l
i
ng t
e
rm
can
t
r
ul
y
deg
r
ade
t
h
e per
f
o
r
m
a
nce o
f
a PV s
y
st
em
.
B
e
l
o
w a
r
e se
ve
ral
co
ncl
u
si
o
n
s
can
be m
a
de:
I.
Im
pact of soiling on
PV system
’s
perform
a
nce m
a
y diffe
r
from
place to
pl
ace due to the
diffe
re
nt
g
e
ograph
i
cal co
nd
itio
n.
It is best d
e
scrib
e
d
as site sp
ecific resu
lt.
II.
It
m
i
ght
be a c
h
al
l
e
nge t
o
st
u
d
y
t
h
e i
m
pact
of s
o
i
l
i
ng
o
n
P
V
sy
st
em
’s per
f
o
r
m
a
nce i
n
M
a
l
a
y
s
i
a
n cl
im
ate
because the
r
e
are always
nat
u
ral i
n
fl
uence
that m
a
y
cause the
fluct
u
ation of
so
la
r irradiance
suc
h
a
s
cl
ou
d f
o
rm
at
i
on an
d t
h
e ra
pi
d
chan
gi
n
g
t
u
rn
of h
o
t
an
d h
u
m
i
d
con
d
i
t
i
on.
These m
a
ke the dat
a
o
b
t
a
i
n
e
d
fr
om
out
d
o
o
r
P
V
sy
st
em
’s per
f
o
r
m
a
nce
m
oni
t
o
ring
bec
o
m
i
n
g
less acc
urate
and less
reliable.
II
I.
Soiling ca
n affect the
de
gra
d
ation
of
PV
m
odule output
curre
nt sign
ificantly but les
s
affecting the
out
put
v
o
l
t
a
ge.
IV.
At h
i
g
h
e
r irradian
ce lev
e
l, t
h
e effect
of so
ilin
g on
PV
system
’s p
e
rfo
r
m
a
n
ce b
e
co
m
e
s
mo
re
ob
v
i
ou
s for
silicon
type of m
odule.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
81
0 – 8
1
8
81
7
V.
Th
e o
t
h
e
r co
nditio
n
s
fro
m
th
e
n
a
tu
re su
ch
as th
e irrad
i
ation h
eat will d
e
finitely
wo
rsen
the so
ilin
g
effect
on
P
V
sy
st
em
’s pe
rf
orm
a
nce.
ACKNOWLE
DGE
M
ENTS
The a
u
t
h
ors
w
oul
d l
i
k
e t
o
e
x
press
t
h
ei
r
ap
p
r
eci
at
i
on
fo
r t
h
e su
pp
o
r
t
o
f
M
a
l
a
y
s
i
a
n M
i
ni
st
ry
of
Hi
ghe
r
Ed
ucat
i
on a
n
d
C
e
nt
re o
f
El
e
c
t
r
i
cal
Ener
gy
Sy
st
em
s
(CEES) of
Un
i
v
ersi
ti Tek
n
o
l
og
i Malaysia th
rou
g
h
th
e
f
und
ing
fro
m
Resear
ch Un
iver
sity G
r
an
t (GU
P
) Q.J1
300
00
.2
509
.0
7H5
4
.
REFERE
NC
ES
[1]
Kumar,
V.
N.
,
Design of Solar PV Cell Based Inverter for
Unbalanced and Distorted Industrial Loads.
Indonesian
Journal of
Electr
i
cal Eng
i
neering
and In
formatics
(IJEEI), 2015. 3(
2).
[2]
Mani, M. and R
.
Pilla
i,
Impact of dust on solar photovolta
ic (
PV)
perf
ormance: research status, challeng
es and
recommendation
s
.
Renew
a
ble an
d Sustainab
l
e
En
erg
y
Rev
i
ews, 2
010. 14(9): p. 31
24-3131.
[3]
Mekhilef
,
S., R
.
Saidur, and
M. Kamalisarvestani,
E
ffect of
dust, humidity
and air veloci
t
y on efficien
cy
of
photovolta
ic cells.
Renew
a
ble an
d Sustainab
l
e
En
erg
y
Rev
i
ews, 2
012. 16(5): p. 29
20-2925.
[4]
Ma
ssi Pa
va
n,
A.
,
A.
Me
lli
t,
and
D.
De Pieri,
The effect of soiling
on energy production for large-s
c
ale photo
v
olta
ic
plants.
Solar
En
erg
y
, 2011
.
85(5
)
: p. 1128-1136.
[5]
Kalogirou, S.A., R. Agathokl
eou
s
, and G. Panay
i
otou,
On-site PV
characterizatio
n and the effect
of soiling on thei
r
performance.
En
erg
y
, 2013
.
51: p
.
439-446
.
[6]
Zorrill
a-Cas
a
no
va, J
., e
t
al.
Ana
l
ysis of dust losse
s in photovoltaic modules
. in
World Renewable Energy Congress–
Sweden
. 2011.
[7]
D
a
rw
is
h, Z.A
.
, e
t
al
.,
Effect o
f
du
st pollutant
type
on photovolta
ic
performance.
Renewable
and Sustain
a
ble
Ener
g
y
Reviews, 2015
.
41: p. 735-744.
[8]
Elnoz
ah
y, A., e
t
al.
,
Performance of a PV module in
tegrated with standalone building in hot arid areas a
s
enhanced
by surface cooling and
cleaning
.
En
erg
y
and Bu
ildings
, 2015. 88: p
.
100
-109.
[9]
Haill
ant,
O.,
Accelerated w
e
ath
e
ring testing pr
inciples to estimate th
e serv
ice
life o
f
organic
PV modules.
Solar
Energ
y
Mater
i
als and Solar
Cells
, 2011
. 95(5): p.
1284-1292.
[10]
Sulaim
an, S.A.
,
et a
l
.
,
Influ
enc
e
of Dirt Ac
cumul
a
tion
on Performance of PV Pa
nels.
En
erg
y
Pro
cedia, 2014
. 50:
p.
50-56.
[11]
Cabanillas, R. and H. Munguía,
Dust accumula
tion
effect on
efficie
ncy of Si p
hotov
olta
ic modules.
Journal o
f
Renewable
and
Sustainable En
er
g
y
, 2011
. 3(4): p
.
043114
.
[12]
Nagapan, S., I.A
.
Rahman, and
A. Asmi,
Factors Contributing to Physical and
Non-Physica
l
Waste Generation
in
Construction Ind
u
stry.
Internatio
nal Journal of
Advances
in
Applied Sciences, 201
2. 1(1): p. 1-10
.
[13]
F
u
jiwara, F
., e
t
al.,
Spatia
l and chemical patt
e
rns of size fra
c
tionat
ed road dust collected i
n
a megacitiy.
Atmospheric En
vironment, 2011
. 45(8): p. 1497-
1505.
[14]
P
a
rk, Y
.
-B
.,
et
a
l
.,
Self-cleaning
effect
of
highly water-repellent microshell
stru
ctures for solar cell applications
.
Journal of M
a
ter
i
als Ch
emistr
y
,
2
011. 21(3): p. 63
3-636.
[15]
S
on,
J
., et al.
,
A practical sup
e
rhydroph
ilic self cleaning
and
antireflecti
ve s
u
rface for ou
td
oor photovolta
ic
applications.
Solar En
erg
y
Mater
i
als
and Solar Cells, 2012
. 98
: p
.
46-51.
[16]
Cano, J
.
, et
al
.
E
ffect of
til
t angle on soiling of ph
otovolta
ic modul
es
. in
Pho
t
ovolta
ic Specialis
t Con
f
er
enc
e
(
PVSC)
,
2014 IEEE 40
th
. 2014. IEEE.
[17]
Jiang, H., L. Lu, and K. Sun
,
Experimen
t
al investigation
of the
im
pact of a
i
rborne dust deposition on th
e
performance of s
o
lar photovo
ltaic (
PV)
modules.
Atmospheric En
vironment, 2011
. 45(25): p. 4299
-4304.
[18]
Schill,
C.
, S. B
r
achm
a
nn,
and
M. Koehl,
Impa
ct of soiling on
IV-cur
ves
and efficiency of
PV-modules.
Sola
r
Energ
y
, 2015. 1
12: p. 259-262.
[19]
Appe
l
s
,
R.
, e
t
al
.,
E
ffect
of
soilin
g on photo
v
olta
i
c
modules.
Solar
Energ
y
, 2013
. 9
6
: p. 283-291.
[20]
S
m
ith, M
.
K
., e
t
al.
,
Effects of
Natural and Manual Cle
aning o
n
Photovo
ltaic
Output.
Journal
of Solar Ener
g
y
Engineering, 20
13. 135(3): p. 03
4505.
[21]
Adinoy
i,
M.
J.
and S.
A.
Sa
id,
Effect of dust a
c
cumulation on th
e power
outputs
of solar photovoltaic modules.
Renewable
Ener
g
y
, 2013
. 60: p.
633-636.
[22]
S
I
D
I
, C.E.B.
E.
, et al
.,
Outdoor performance analysis of a mon
o
crys
tallin
e pho
tovolta
ic modul
e: Irradiance and
temperature
eff
e
ct on
e
xerget
i
c
e
ffic
ien
c
y
.
International Journal of
Ph
y
s
ic
al Sciences, 2015. 10(11):
p. 351-358
.
[23]
Konjare, S
.
S
.,
e
t
al
.
Efficien
cy improvem
ent of PV module b
y
way of
effective cool
ing-a review
. in
Industria
l
Instrumentation
and Control (
I
CIC)
, 2015 Interna
tional Con
f
eren
ce on
. 2015. IEEE.
[24]
Ketjo
y
,
N
.
and
M. Kon
y
u,
Stud
y of Dust Effect on Photovo
ltaic
Module for Photovolta
ic
Pow
e
r Plant.
En
er
g
y
Procedia, 2014
.
52: p. 431-437.
[25]
Kazem
, A.A.
,
M
.
T. Cha
i
ch
an,
and H.A. Kaz
e
m
,
Dust effect o
n
photovolta
ic u
tilizat
ion in Ira
q
: Review arti
cl
e.
Renewable and Sustainable
En
er
g
y
Reviews, 201
4. 37: p. 734-74
9.
[26]
Se
ma
oui,
S.
, et
a
l
.
Sand Effect o
n
Photovo
ltaic
Array
Efficiency in Algerian
Desert
. in
2nd
Intern
ational Congres
s
on Energy Effici
ency and
Energy Related
Materia
l
s (
E
NEFM2014
)
. 2015. Springer
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Experi
me
nt
-
b
a
s
ed St
u
d
y o
n
t
h
e
I
m
p
a
ct
of
S
o
i
l
i
ng on
PV Syst
em’s
Perf
o
r
m
a
nce
(
H
asi
m
ah
Ab
dul
R
a
hm
a
n
)
81
8
BIOGRAP
HI
ES OF
AUTH
ORS
Wan Juzaili bin Jam
il is a studen
t
, working and
pursuing his second Mast
er stud
y
under Centre
of El
ectr
i
cal
En
erg
y
S
y
st
em
s (CEES), Univ
ers
iti
Teknolog
i M
a
lay
s
i
a
(UTM).
He obtained h
i
s
B.Eng.
in Electrical Engin
eer
in
g from UTM
in 2007 and Master in Occup
a
tional Safety
&
Health
Managem
e
nt from
the s
a
m
e
institu
te in
2013. His r
e
search
inter
e
sts ar
e in
renewab
l
e
energ
y
, PV s
y
stem performance
monitoring, soiling impact
on
PV module and occup
a
tion
a
l
s
a
fet
y
&
h
eal
th
management.
Dr Hasimah Abdul Rahman is
an
Assoc. Prof. at Faculty
of Elec
trical Eng
i
neer
in
g and also th
e
Deput
y
D
i
rec
t
or
of Centre of
El
e
c
tri
cal
Energ
y
S
y
stem
s (CEES),
Universiti
Tekn
ologi Mal
a
y
s
i
a
(UTM). She obtained her B.Sc. in Electrical
and Electronic Engineer
ing from University
o
f
Aberdeen
, United Kingdom in 1
988, MSc in Energ
y
Studies from University
of Wales, College
of Cardiff in 1995 and PhD in
Electri
cal Eng
i
n
eering from
UniversitiT
eknolog
i
Malay
s
i
a
in
2012. She h
a
s
more than 20
y
e
ars of exp
e
rience
in
teaching
electrical engin
eer
ing courses and
supervision of more than 60 undergraduates and 6
post graduates students. She has authored and
co-author
ed for
more than 30
jo
urnal
and co
nfer
ence pap
e
rs. B
e
sides, she was in
volved
in Solar
Decath
l
on Chin
a
2013 com
p
eti
tio
n in designing
UTM-Solar House. She is
a m
e
m
b
er of Insti
t
ute
Ele
c
tri
cal
Ele
c
t
r
onic Engin
eer
(MIEEE). Re
gistered Gradua
te Mem
b
er of Institution of
Engineers Malay
s
ia (IEM)
. She holds a Certifi
cate in. Grid-PV (ISPQ-SEDA,
Malay
s
ia). Her
research
inter
e
st includ
es renewable en
erg
y
technolog
y
,
ener
g
y
eff
i
ciency
,
demand side
m
a
nagem
e
nt an
d its
env
i
ronm
enta
l im
pac
t
.
Her s
p
eci
ali
ze
area
of res
e
arc
h
is
on s
o
la
r
photovoltaic.
K
y
airu
l Azmi bin Baharin is a
PhD candidate working under CEES,
UTM. His research in
ter
e
sts
are gr
id-conn
ect
ed P
V
perform
a
n
ce
and s
o
l
a
r
en
erg
y
for
ecas
t
i
ng.
Evaluation Warning : The document was created with Spire.PDF for Python.