I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
201
6
,
p
p
.
3
2
8
3
~
3
2
9
2
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
2
2
5
1
3283
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
M
ini
m
i
z
i
ng
Ener
g
y
Cons
u
m
pt
io
n
by
Ta
sk
Cons
o
lid
a
tion
in
Clo
ud Cen
ters w
ith
O
pti
m
i
zed
Res
o
urce Ut
i
li
z
a
tion
M
a
hend
ra
K
u
m
a
r
G
o
uris
a
ri
a
1
,
S.
S.
P
a
t
r
a
2
,
P
.
M
.
K
hil
a
r
3
1
S
c
h
o
o
l
o
f
Co
m
p
u
ter
E
n
g
in
e
e
rin
g
,
KIIT
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
In
d
ia
2
S
c
h
o
o
l
o
f
Co
m
p
u
ter A
p
p
li
c
a
ti
o
n
,
KIIT
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
In
d
ia
3
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter S
c
ien
c
e
a
n
d
E
n
g
in
e
e
rin
g
,
NIT
,
Ro
u
rk
e
la,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
u
n
2
1
,
2
0
1
6
R
ev
i
s
ed
Sep
1
8
,
2
0
1
6
A
cc
ep
ted
Oct
0
2
,
2
0
1
6
C
lo
u
d
co
m
p
u
ti
n
g
i
s
an
e
m
er
g
in
g
f
ield
o
f
co
m
p
u
tat
io
n
.
As
th
e
d
ata
ce
n
ter
s
co
n
s
u
m
e
lar
g
e
a
m
o
u
n
t
o
f
p
o
w
er
,
it
i
n
cr
ea
s
e
s
t
h
e
s
y
s
te
m
o
v
er
h
ea
d
s
a
s
w
el
l
as
t
h
e
ca
r
b
o
n
d
io
x
id
e
e
m
is
s
io
n
in
cr
ea
s
e
s
d
r
asti
ca
ll
y
.
T
h
e
m
ai
n
ai
m
is
t
o
m
a
x
i
m
ize
t
h
e
r
eso
u
r
ce
u
tili
za
tio
n
b
y
m
i
n
i
m
izi
n
g
t
h
e
p
o
w
er
co
n
s
u
m
p
ti
o
n
.
Ho
w
e
v
er
,
th
e
g
r
ea
te
s
t
u
s
a
g
es
o
f
r
eso
u
r
ce
s
d
o
es
n
o
t
m
ea
n
t
h
at
th
er
e
h
as
b
ee
n
a
r
ig
h
t
u
s
e
o
f
en
er
g
y
.
V
ar
io
u
s
r
eso
u
r
ce
s
w
h
ic
h
ar
e
i
d
le,
also
co
n
s
u
m
e
s
a
s
i
g
n
if
ica
n
t
a
m
o
u
n
t
o
f
en
er
g
y
.
So
w
e
h
a
v
e
to
k
ee
p
m
in
i
m
u
m
r
eso
u
r
ce
s
id
le
.
C
u
r
r
en
t
s
tu
d
ie
s
h
a
v
e
s
h
o
w
n
th
a
t
th
e
p
o
w
er
co
n
s
u
m
p
tio
n
d
u
e
t
o
u
n
u
s
ed
co
m
p
u
ti
n
g
r
eso
u
r
ce
s
is
n
ea
r
l
y
1
to
2
0
%.
So
,
th
e
u
n
u
s
ed
r
eso
u
r
ce
s
h
av
e
b
ee
n
as
s
ig
n
ed
w
it
h
s
o
m
e
o
f
th
e
tas
k
s
to
u
til
ize
th
e
u
n
u
s
ed
p
er
io
d
.
I
n
th
e
p
r
esen
t
p
ap
er
,
it
h
as
b
ee
n
s
u
g
g
ested
th
a
t
t
h
e
en
er
g
y
s
av
i
n
g
w
it
h
tas
k
co
n
s
o
lid
atio
n
w
h
ich
h
as
b
ee
n
s
av
ed
t
h
e
en
er
g
y
b
y
m
i
n
i
m
izi
n
g
t
h
e
n
u
m
b
er
o
f
id
le
r
eso
u
r
ce
s
in
a
clo
u
d
co
m
p
u
ti
n
g
en
v
ir
o
n
m
e
n
t.
I
t
h
as
b
ee
n
ac
h
iev
ed
f
ar
-
r
ea
ch
i
n
g
e
x
p
er
i
m
e
n
ts
to
q
u
an
ti
f
y
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
.
T
h
e
s
a
m
e
h
a
s
also
b
ee
n
co
m
p
ar
ed
w
it
h
t
h
e
FC
F
SMax
Util
a
n
d
E
n
er
g
y
a
war
e
T
ask
C
o
n
s
o
lid
atio
n
(
E
T
C
)
alg
o
r
ith
m
.
T
h
e
o
u
tco
m
e
s
h
a
v
e
s
h
o
wn
th
a
t
th
e
s
u
g
g
e
s
ted
alg
o
r
ith
m
s
u
r
p
ass
t
h
e
FC
F
SMa
x
Util
an
d
E
T
C
alg
o
r
ith
m
in
ter
m
s
o
f
t
h
e
C
P
U
u
tili
za
tio
n
a
n
d
en
er
g
y
co
n
s
u
m
p
tio
n
.
K
ey
w
o
r
d
:
C
P
U
u
tili
za
t
io
n
E
n
er
g
y
c
o
n
s
u
m
p
tio
n
I
d
le
VM
T
ask
co
n
s
o
lid
atio
n
Vir
tu
aliza
t
io
n
VM
s
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
S.S.
P
atr
a,
Sch
o
o
l o
f
C
o
m
p
u
ter
A
p
p
licati
o
n
,
KI
I
T
Un
iv
er
s
i
t
y
,
B
h
u
b
an
e
s
w
ar
,
Od
is
h
a,
I
n
d
ia.
E
m
ail: s
u
d
h
a
n
s
h
u
p
atr
a@
g
m
ai
l.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
Data
co
m
m
u
n
icatio
n
s
p
la
y
s
a
cr
u
cial
ele
m
e
n
t
o
f
o
u
r
d
ail
y
li
v
es
an
d
also
in
t
h
e
co
m
p
u
tatio
n
.
Mo
s
t
o
f
o
u
r
p
r
ac
tices
d
ep
en
d
s
o
n
g
ath
er
in
g
i
n
f
o
r
m
atio
n
t
h
r
o
u
g
h
t
h
e
clien
t
-
s
er
v
er
an
d
d
is
tr
ib
u
ted
p
ar
ad
ig
m
[
1
]
.
No
w
a
d
ay
s
,
clien
t
d
e
m
a
n
d
s
h
a
v
e
tr
e
m
en
d
o
u
s
l
y
in
cr
ea
s
ed
in
ter
m
s
o
f
th
e
n
u
m
b
er
o
f
r
eq
u
es
ts
.
T
o
ca
ter
to
th
e
co
n
s
is
ten
t
a
m
o
u
n
t
o
f
r
eq
u
e
s
t
s
,
co
m
p
u
ta
tio
n
al
ca
p
ac
itie
s
a
n
d
f
ac
i
liti
es
m
u
s
t
b
e
co
n
s
tan
tl
y
r
ev
ie
w
ed
an
d
i
m
p
r
o
v
ed
.
T
o
r
em
ain
co
m
p
et
itiv
e,
t
h
e
p
r
o
p
o
r
ti
o
n
al
n
o
n
n
e
g
li
g
ib
le
a
m
o
u
n
t
o
f
t
h
e
r
eq
u
ir
ed
en
er
g
y
h
a
s
b
ee
n
o
f
ten
le
f
t b
eh
i
n
d
.
R
ec
en
t
ad
v
o
ca
c
y
a
n
d
ti
g
h
tl
y
co
u
p
led
w
it
h
e
n
er
g
y
co
n
s
u
m
p
tio
n
ca
lled
g
r
ee
n
o
r
s
u
s
tai
n
ab
le
co
m
p
u
ti
n
g
h
a
s
r
ec
ei
v
ed
co
n
s
id
er
ab
le
atten
tio
n
i
n
t
h
e
f
ie
ld
o
f
co
m
p
u
tatio
n
as
th
er
e
i
s
a
h
u
g
e
n
ee
d
o
f
m
i
n
i
m
izi
n
g
t
h
e
en
er
g
y
co
n
s
u
m
p
tio
n
.
T
h
e
s
co
p
e
o
f
s
u
s
tai
n
ab
le
co
m
p
u
t
in
g
g
o
es
b
e
y
o
n
d
th
e
m
ai
n
co
m
p
u
ti
n
g
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
, N
o
.
6
,
Dec
em
b
er
2
0
1
6
:
3
283
–
3
29
2
3284
co
m
p
o
n
e
n
t
s
,
ex
p
a
n
d
in
g
i
n
to
a
m
u
ch
lar
g
er
r
an
g
e
o
f
r
eso
u
r
c
es
ass
o
ciate
d
w
i
th
au
x
iliar
y
e
q
u
ip
m
e
n
t,
s
u
c
h
as
th
e
w
ater
u
s
ed
f
o
r
co
o
lin
g
a
n
d
th
e
p
h
y
s
ical/
f
lo
o
r
s
p
ac
e
o
cc
u
p
ied
b
y
th
e
r
eso
u
r
ce
s
[
1
4
]
.
I
n
C
lo
u
d
co
m
p
u
ti
n
g
,
en
er
g
y
c
o
n
s
u
m
p
tio
n
a
n
d
r
eso
u
r
ce
u
til
i
za
tio
n
ar
e
s
tr
o
n
g
l
y
co
u
p
led
.
S
p
ec
if
icall
y
,
r
eso
u
r
ce
s
w
it
h
a
lo
w
u
tili
za
tio
n
r
ate
s
till
co
n
s
u
m
e
an
u
n
ac
ce
p
tab
le
a
m
o
u
n
t
o
f
en
er
g
y
co
m
p
ar
ed
to
th
e
en
er
g
y
co
n
s
u
m
p
tio
n
o
f
a
f
u
ll
y
u
tili
ze
d
o
r
s
u
f
f
icien
t
l
y
lo
ad
ed
C
lo
u
d
co
m
p
u
ti
n
g
[
1
0
]
.
A
cc
o
r
d
in
g
to
r
ec
en
t st
u
d
ies
[2
-
5
]
av
er
ag
e
r
eso
u
r
ce
u
ti
liz
atio
n
i
n
m
o
s
t
d
ata
ce
n
ter
s
c
an
b
e
as
lo
w
a
s
2
0
%,
an
d
t
h
e
av
er
a
g
e
e
n
er
g
y
co
n
s
u
m
p
tio
n
o
f
id
le
r
eso
u
r
ce
s
ca
n
b
e
as
h
i
g
h
as
6
0
%
(
o
r
p
ea
k
p
o
w
er
)
[
3
]
.
T
o
in
cr
ea
s
e
r
eso
u
r
ce
u
til
izatio
n
,
task
co
n
s
o
lid
atio
n
i
s
a
n
e
f
f
ec
tiv
e
tech
n
iq
u
e,
g
r
ea
tl
y
e
n
ab
le
d
b
y
v
ir
tu
al
izatio
n
tech
n
o
lo
g
i
es,
w
h
ich
f
ac
ilit
ate
th
e
co
n
c
u
r
r
en
t e
x
ec
u
tio
n
o
f
s
e
v
er
al
tas
k
s
a
n
d
,
in
tu
r
n
,
r
ed
u
ce
en
er
g
y
co
n
s
u
m
p
t
io
n
[
4
]
.
P
o
w
er
m
a
n
ag
e
m
e
n
t
h
as
b
ee
n
b
r
o
ad
ly
clas
s
i
f
ied
i
n
to
s
tatic
a
n
d
d
y
n
a
m
ic
m
an
a
g
e
m
e
n
t.
Sta
tic
p
o
w
e
r
an
ag
e
m
e
n
t
h
a
s
b
ee
n
d
ea
lin
g
w
it
h
f
ix
ed
p
o
w
er
an
d
d
y
n
a
m
i
c
p
o
w
er
m
a
n
ag
e
m
e
n
t
s
w
i
th
d
y
n
a
m
ic
b
eh
a
v
io
r
s
f
o
r
ad
d
itio
n
al
d
eg
r
ee
o
f
ca
p
ab
ilit
y
in
v
ir
tu
al
ized
d
ata
c
en
ter
s
[
6
]
.
I
n
f
r
astru
ct
u
r
e
-
as
-
a
-
Ser
v
ice
(
I
aa
S),
P
latf
o
r
m
-
as
-
a
-
Ser
v
ice
(
P
aa
S),
So
f
t
w
ar
e
-
as
-
a
-
Ser
v
ice
(
Saa
S)
a
n
d
Data
b
ase
-
as
-
a
-
Ser
v
ice
(
Daa
S)
ar
e
th
e
f
o
u
r
le
v
els
o
f
ac
ce
s
s
i
n
w
h
ic
h
clo
u
d
s
ar
e
d
e
p
lo
y
ed
f
o
r
th
e
clie
n
ts
.
T
h
e
ta
s
k
h
as o
r
i
g
in
a
ted
b
y
t
h
e
d
i
f
f
er
e
n
t
t
y
p
e
o
f
cu
s
to
m
er
s
ac
co
r
d
in
g
to
t
h
eir
r
eq
u
ir
e
m
e
n
ts
.
T
h
er
e
ar
e
s
e
v
er
al
h
e
u
r
is
tic
alg
o
r
it
h
m
s
p
r
o
p
o
s
ed
f
o
r
l
o
ca
l
clo
u
d
f
o
r
t
h
e
ce
n
tr
alize
d
co
n
tr
o
ller
w
h
ich
h
as
b
ee
n
p
o
w
er
a
w
ar
e.
B
ased
o
n
th
e
s
y
s
te
m
s
tr
u
ct
u
r
e
a
n
d
th
e
ch
ar
ac
ter
i
s
tics
o
f
th
e
clo
u
d
i
n
f
r
as
tr
u
ct
u
r
e
s
,
a
f
u
n
ctio
n
b
et
w
ee
n
t
h
e
r
eso
u
r
ce
s
o
f
clo
u
d
a
n
d
t
h
e
co
m
b
i
n
ato
r
ia
l
allo
ca
tio
n
tas
k
h
as
b
ee
n
p
r
o
p
o
s
ed
,
as a
n
ec
o
n
o
m
i
cs b
ased
o
p
tim
iza
tio
n
m
o
d
el
[
1
3
]
.
T
h
e
v
ir
tu
aliza
t
io
n
co
n
ce
p
t
e
n
c
ap
s
u
lates
th
e
n
u
m
er
o
u
s
s
er
v
ic
es
th
at
h
a
v
e
m
e
t
th
e
u
s
er
n
ee
d
s
in
clo
u
d
co
m
p
u
t
i
n
g
s
ce
n
ar
io
[
7
]
.
VM
s
h
a
v
e
b
ee
n
d
esi
g
n
ed
to
r
u
n
o
n
v
ar
io
u
s
s
er
v
er
s
w
h
ic
h
p
r
o
v
id
e
th
e
m
u
l
tip
le
Op
er
atin
g
s
y
s
te
m
en
v
ir
o
n
m
e
n
ts
f
o
r
d
if
f
er
en
t
ap
p
licatio
n
s
.
P
ar
ticu
lar
l
y
,
ex
ec
u
ti
n
g
a
n
ap
p
licatio
n
w
h
ic
h
r
eq
u
ir
es
r
eso
u
r
ce
s
h
as
b
ee
n
m
ad
e
a
v
ailab
le
f
o
r
r
eso
u
r
c
e
p
r
o
v
is
io
n
i
n
g
a
n
d
VM
p
r
o
v
is
io
n
i
n
g
.
R
e
s
o
u
r
ce
p
r
o
v
is
io
n
i
n
g
is
s
c
h
ed
u
lin
g
t
h
e
r
eq
u
ests
f
o
r
th
e
p
h
y
s
ical
r
eso
u
r
ce
s
w
h
er
e
-
a
s
VM
p
r
o
v
i
s
io
n
i
n
g
cr
ea
te
s
t
h
e
in
s
ta
n
ce
o
f
VM
s
as r
eq
u
ir
ed
b
y
th
e
d
i
f
f
er
e
n
t a
p
p
licatio
n
s
[
8
]
.
Ser
v
er
o
r
w
o
r
k
lo
ad
co
n
s
o
lid
a
tio
n
is
t
h
e
m
ain
ai
m
o
f
th
e
ta
s
k
co
n
s
o
lid
atio
n
p
r
o
b
lem
.
I
t
allo
w
s
t
h
e
s
er
v
er
s
o
n
a
s
in
g
le
p
h
y
s
ica
l
s
er
v
er
f
o
r
m
i
n
i
m
izat
io
n
o
f
e
n
er
g
y
co
n
s
u
m
ed
b
y
a
clo
u
d
d
ata
ce
n
ter
.
I
n
th
e
p
r
esen
t
p
ap
er
,
th
e
task
co
n
s
o
lid
atio
n
p
r
o
b
lem
h
as
b
ee
n
ad
d
r
ess
ed
to
ass
ig
n
n
task
s
t
o
a
s
et
o
f
d
if
f
er
en
t
r
eso
u
r
ce
s
a
n
d
t
h
e
u
tili
za
t
io
n
o
f
n
o
d
es
an
d
d
i
s
tr
ib
u
ted
VM
s
ar
e
m
ai
n
tai
n
ed
b
y
e
n
er
g
y
e
f
f
icien
c
y
an
d
lo
a
d
m
an
a
g
e
m
e
n
t.
T
h
e
av
a
ilab
ilit
y
o
f
co
m
p
u
ter
n
o
d
es
d
u
r
in
g
th
e
p
o
w
er
co
n
s
u
m
ed
b
y
th
e
clo
u
d
is
th
e
p
r
i
m
e
co
n
ce
r
n
o
f
t
h
e
d
ev
elo
p
ed
alg
o
r
ith
m
[
9
-
1
0
]
.
I
n
th
i
s
p
ap
er
,
th
e
g
r
ee
d
y
h
eu
r
is
tic
al
g
o
r
ith
m
h
as
b
ee
n
e
v
al
u
ated
an
d
i
m
p
le
m
en
ted
f
o
r
th
r
ee
b
asic
task
co
n
s
o
lid
atio
n
s
w
h
ic
h
as
s
i
g
n
t
ask
s
to
th
e
p
h
y
s
ical
s
er
v
er
s
f
o
r
m
i
n
i
m
izi
n
g
th
e
to
tal
e
n
er
g
y
co
n
s
u
m
ed
.
T
h
e
p
r
o
p
o
s
ed
h
eu
r
is
t
ic
is
to
m
i
n
i
m
ize
t
h
e
n
u
m
b
er
o
f
id
le
VM
s
an
d
m
in
i
m
ize
th
e
n
u
m
b
er
o
f
id
le
VM
s
to
as
m
i
n
i
m
u
m
as
p
o
s
s
ib
le.
I
t
h
a
s
a
ls
o
b
ee
n
s
h
o
w
n
t
h
at
t
h
e
p
er
f
o
r
m
an
ce
i
m
p
r
o
v
e
m
e
n
t
is
b
ased
o
n
d
i
f
f
er
en
t
tas
k
s
.
Sectio
n
2
d
ef
i
n
e
s
th
e
g
e
n
er
al
m
o
d
el
o
f
clo
u
d
co
m
p
u
ti
n
g
en
v
ir
o
n
m
en
t,
en
er
g
y
co
n
s
u
m
p
t
io
n
an
d
ta
s
k
m
o
d
el
o
f
th
e
s
y
s
te
m
.
W
e
h
av
e
f
ir
m
l
y
d
ef
i
n
ed
t
h
e
p
r
o
b
le
m
o
f
e
n
er
g
y
m
i
n
i
m
izat
io
n
b
ased
o
n
t
h
e
s
y
s
te
m
m
o
d
el
.
Sectio
n
3
d
ea
ls
w
i
th
th
e
u
s
ed
h
eu
r
i
s
tic
al
g
o
r
ith
m
a
n
d
t
h
e
alg
o
r
ith
m
s
ar
e
ill
u
s
tr
ated
b
y
m
ea
n
s
o
f
an
ex
a
m
p
le
i
n
Sectio
n
4
.
Sectio
n
5
ill
u
s
tr
ates
th
e
s
et
u
p
f
o
r
t
h
e
s
i
m
u
latio
n
an
d
an
a
l
y
ze
s
t
h
e
r
e
s
u
l
ts
g
e
n
er
ated
b
y
s
i
m
u
lat
io
n
.
Fin
all
y
,
t
h
e
co
n
cl
u
s
io
n
s
h
a
v
e
b
ee
n
d
escr
ib
ed
in
Sectio
n
6
.
2
.
CL
O
UD
SY
ST
E
M
M
O
DE
L
T
h
e
cu
r
r
en
t
s
ec
tio
n
d
ep
icts
t
h
e
clo
u
d
an
d
its
f
u
n
ctio
n
w
i
th
t
h
e
en
er
g
y
m
o
d
els.
I
t
also
d
ef
i
n
es
t
h
e
j
o
b
co
n
s
o
lid
atio
n
p
r
o
b
le
m
.
T
h
e
h
i
g
h
lev
el
ar
c
h
itect
u
r
e
o
f
th
e
clo
u
d
s
y
s
te
m
is
s
h
o
w
n
in
F
ig
u
r
e
1
[
1
1
]
.
Vir
tu
aliza
t
io
n
allo
w
s
t
h
e
clo
u
d
p
r
o
v
id
er
s
to
cr
ea
te
a
s
et
o
f
VM
s
o
n
a
s
in
g
le
p
h
y
s
ical
m
a
ch
in
e
t
h
at
i
m
p
r
o
v
e
s
th
e
R
et
u
r
n
o
n
I
n
v
est
m
e
n
t
(
R
OI
)
.
T
h
e
en
er
g
y
co
n
s
u
m
p
t
io
n
m
a
y
b
e
r
ed
u
ce
d
b
y
s
w
itch
in
g
o
f
f
t
h
e
id
le
n
o
d
es,
w
h
ic
h
eli
m
in
a
tes t
h
e
id
le
p
o
w
er
co
n
s
u
m
p
tio
n
o
f
t
h
e
g
iv
e
n
s
y
s
te
m
[
1
2
]
.
I
n
th
e
p
r
esen
t
w
o
r
k
,
th
e
tar
g
e
t
s
y
s
te
m
h
as
b
ee
n
u
s
ed
w
h
ich
co
n
s
is
ts
o
f
a
s
et
N
o
f
r
r
eso
u
r
ce
s
w
h
ic
h
ca
n
b
e
i
n
ter
co
n
n
ec
ted
i
n
th
e
s
en
s
e
th
a
t a
co
m
m
o
n
r
o
u
te
e
x
i
s
ts
b
et
w
ee
n
w
h
ic
h
e
v
er
t
w
o
i
n
d
i
v
id
u
al
r
eso
u
r
ce
s
as
s
h
o
w
n
in
F
ig
u
r
e
2
.
I
t
ass
u
m
e
s
th
at
t
h
e
r
eso
u
r
ce
s
ar
e
id
en
ti
ca
l
in
ter
m
s
o
f
t
h
eir
p
o
ten
tial
o
f
co
m
p
u
ti
n
g
.
T
h
e
v
ir
tu
a
lizatio
n
tech
n
o
lo
g
ie
s
j
u
s
tif
ie
s
t
h
is
.
T
h
e
p
r
esen
t
s
t
u
d
y
h
as
h
o
w
ev
er
n
o
t
co
n
s
id
er
ed
th
e
f
ed
er
ated
clo
u
d
en
v
ir
o
n
m
e
n
t
i
n
w
h
ich
t
h
e
d
at
a
ce
n
ter
s
ca
n
b
e
p
lace
d
at
d
if
f
er
en
t
p
h
y
s
ical
lo
ca
tio
n
s
an
d
th
e
clie
n
t
r
eq
u
est
s
m
a
y
b
e
p
r
o
ce
s
s
ed
at
v
ar
io
u
s
g
eo
g
r
ap
h
ical
lo
ca
tio
n
s
.
Fig
u
r
e
3
s
h
o
w
s
th
e
e
n
er
g
y
c
o
n
s
u
m
p
tio
n
h
a
s
r
is
e
n
b
y
5
6
%
b
y
d
ata
ce
n
ter
s
f
r
o
m
2
0
0
5
to
2
0
1
0
w
o
r
ld
w
id
e.
Fu
r
t
h
er
m
o
r
e,
C
O
2
em
is
s
io
n
s
o
f
t
h
e
I
C
T
in
d
u
s
tr
ies
ar
e
cu
r
r
en
tl
y
ap
p
r
o
x
i
m
a
te
d
to
b
e
2
%
o
f
th
e
g
lo
b
al
e
m
is
s
io
n
s
.
I
t
h
as
b
ee
n
o
b
s
er
v
ed
th
at
g
lo
b
al
e
m
i
s
s
io
n
s
ar
e
eq
u
i
v
ale
n
t
to
th
e
e
m
is
s
i
o
n
s
o
f
t
h
e
a
v
iatio
n
in
d
u
s
tr
ies.
T
h
e
en
er
g
y
m
o
d
el
i
s
co
n
ce
p
tu
al
ized
o
n
t
h
e
b
asis
t
h
at
e
n
er
g
y
co
n
s
u
m
p
tio
n
h
a
s
a
lin
ea
r
r
elatio
n
s
h
ip
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Min
imiz
in
g
E
n
erg
y
C
o
n
s
u
mp
tio
n
b
y
Ta
s
k
C
o
n
s
o
lid
a
tio
n
in
C
lo
u
d
….
(
Ma
h
en
d
r
a
K
u
ma
r
G
o
u
r
is
a
r
ia
)
3285
wi
t
h
p
r
o
ce
s
s
o
r
u
tili
za
tio
n
[
1
1
]
.
Fig
u
r
e.
1
.
C
lo
u
d
S
y
s
te
m
A
r
c
h
i
tectu
r
e
[
1
1
]
Fig
u
r
e.
2
.
T
h
e
clo
u
d
Mo
d
el
[
8
]
Fig
u
r
e
3
.
T
h
e
W
o
r
ld
w
id
e
Data
C
e
n
tr
e
E
n
er
g
y
C
o
n
s
u
m
p
tio
n
(
2
0
0
0
-
2
0
1
0
)
[
1
1
]
T
h
is
m
ea
n
s
t
h
at
f
o
r
a
p
ar
tic
u
lar
ta
s
k
,
th
e
p
r
o
ce
s
s
in
g
ti
m
e
o
f
a
tas
k
a
n
d
t
h
e
p
r
o
ce
s
s
o
r
u
tili
za
tio
n
ar
e
th
e
r
eq
u
ir
ed
p
ar
am
eter
s
to
d
eter
m
in
e
t
h
e
en
er
g
y
co
n
s
u
m
p
t
io
n
f
o
r
th
at
tas
k
.
T
h
e
u
tili
za
t
io
n
Z
i
is
d
ef
i
n
ed
as
f
o
r
a
r
eso
u
r
ce
r
i
at
an
y
g
iv
e
n
ti
m
e,
,
1
t
i
i
j
j
Zz
(
1
)
I
n
(
1
)
it h
as b
ee
n
o
b
s
er
v
ed
th
a
t t
is
ass
ig
n
ed
as
t
h
e
n
u
m
b
er
o
f
tas
k
s
r
u
n
n
i
n
g
at
th
e
c
u
r
r
en
t
ti
m
e
w
h
er
e
as
s
tan
d
s
f
o
r
th
e
r
eso
u
r
ce
u
s
a
g
e
o
f
t
h
e
ta
s
k
t
j
.
T
h
e
en
er
g
y
co
n
s
u
m
p
tio
n
E
i
o
f
a
r
eso
u
r
ce
r
i
at
a
g
i
v
en
ti
m
e
i
s
d
er
iv
ed
as
m
a
x
m
i
n
m
i
n
()
ii
EZ
(
2
)
,
ij
z
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
, N
o
.
6
,
Dec
em
b
er
2
0
1
6
:
3
283
–
3
29
2
3286
I
n
(
2
)
it
h
as
ass
i
g
n
ed
as
m
a
x
is
m
ea
n
in
g
f
o
r
th
e
en
er
g
y
co
n
s
u
m
p
tio
n
at
1
0
0
%
u
tili
za
tio
n
o
r
p
ea
k
lo
ad
an
d
m
i
n
is
as
s
ig
n
i
n
g
th
e
m
in
i
m
u
m
e
n
er
g
y
co
n
s
u
m
p
tio
n
as
lo
w
as
1
%
co
n
s
u
m
p
tio
n
o
r
in
d
y
n
a
m
ic
m
o
d
e
.
I
n
t
h
is
p
ap
er
,
it
h
as
ass
u
m
e
d
th
a
t
th
e
r
eso
u
r
ce
s
i
n
th
e
o
b
j
ec
tiv
e
ar
r
an
g
e
m
en
t
ar
e
co
m
p
r
is
ed
o
f
an
ef
f
icien
t
p
o
w
er
s
av
in
g
m
e
th
o
d
in
f
av
o
r
o
f
an
i
n
ac
ti
v
e
ti
m
e
s
lo
t.
P
ar
ticu
lar
ly
,
t
h
e
en
er
g
y
u
s
e
o
f
an
i
n
ac
ti
v
e
s
o
u
r
ce
at
an
y
s
p
e
cif
ied
ti
m
e
h
as
b
ee
n
s
et
to
1
0
%
o
f
m
i
n
.
A
cc
o
r
d
in
g
to
t
h
e
en
er
g
y
co
n
s
u
m
p
tio
n
,
th
e
VM
s
ca
n
b
e
b
r
o
ad
ly
class
if
ied
i
n
to
s
ix
l
ev
els,
th
e
id
le
s
tate
a
n
d
o
th
er
f
i
v
e
lev
el
s
o
f
C
P
U
u
tili
za
tio
n
s
w
h
ic
h
h
as
s
h
o
w
n
in
Fi
g
u
r
e
4
.
I
n
th
e
p
r
ese
n
t
s
t
u
d
y
,
t
h
e
tas
k
co
n
s
o
lid
atio
n
alg
o
r
ith
m
as
s
i
g
n
s
a
s
et
M
o
f
m
t
ask
s
to
a
s
et
N
o
f
n
clo
u
d
r
eso
u
r
ce
s
w
it
h
o
u
t
v
io
l
at
in
g
th
e
ti
m
e
co
n
s
tr
ai
n
ts
to
m
i
n
i
m
ize
en
er
g
y
co
n
s
u
m
p
tio
n
an
d
to
m
a
x
i
m
ize
r
eso
u
r
ce
u
tili
za
tio
n
.
Fig
u
r
e
4
.
Fiv
e
Le
v
el
s
o
f
C
P
U
Util
izat
io
n
[
9
]
3
.
T
ASK
CO
NSO
L
I
DA
T
I
O
N
H
E
URIS
T
I
C
AL
G
O
RI
T
H
M
T
ask
allo
ca
tio
n
is
a
NP
-
Har
d
p
r
o
b
lem
i
n
t
h
e
clo
u
d
.
Heu
r
i
s
ti
c
an
d
m
eta
-
h
e
u
r
is
tic
al
g
o
r
ith
m
s
ar
e
t
h
e
t
w
o
u
s
e
f
u
l
a
n
d
ef
f
icie
n
t
tec
h
n
o
lo
g
ies
f
o
r
s
c
h
ed
u
li
n
g
in
clo
u
d
d
u
e
to
th
e
ab
ilit
y
to
d
is
tr
ib
u
te
an
d
d
eliv
er
t
h
e
o
p
tim
ized
s
o
lu
tio
n
s
.
I
n
th
i
s
s
ec
tio
n
,
w
e
p
r
ese
n
t
t
h
e
p
r
o
p
o
s
ed
task
co
n
s
o
lid
atio
n
alg
o
r
ith
m
a
n
d
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
p
r
o
p
o
s
ed
a
lg
o
r
ith
m
h
as b
ee
n
co
m
p
ar
ed
w
it
h
t
h
e
ex
is
ti
n
g
E
C
T
C
an
d
F
C
FS
Ma
x
Ut
il e
n
er
g
y
co
n
s
cio
u
s
tas
k
co
n
s
o
lid
atio
n
alg
o
r
ith
m
s
.
3
.
1
F
CF
S
M
a
x
Ut
il
w
it
h
M
ini
m
iza
t
io
n o
f
I
dle V
M
As
th
e
id
le
r
eso
u
r
ce
s
al
s
o
co
n
s
u
m
e
p
o
w
er
,
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
al
w
a
y
s
m
i
n
i
m
izes
t
h
e
n
u
m
b
er
o
f
id
le
r
eso
u
r
ce
s
b
y
allo
ca
ti
n
g
a
tas
k
at
a
n
in
s
ta
n
ce
to
a
VM
w
h
ic
h
is
c
u
r
r
en
tl
y
id
le.
I
f
n
o
m
ac
h
in
e
i
s
id
le
it
i
m
p
le
m
en
t
s
F
C
FS
Ma
x
Ut
il a
lg
o
r
ith
m
.
T
h
e
p
s
eu
d
o
co
d
es o
f
all
th
e
al
g
o
r
ith
m
s
ar
e
as
f
o
llo
ws:
3
.
2
E
CT
C
w
it
h M
ini
m
iza
t
io
n o
f
I
dle V
M
As
th
e
id
le
r
eso
u
r
ce
s
al
s
o
co
n
s
u
m
e
p
o
w
er
,
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
al
w
a
y
s
m
i
n
i
m
izes
t
h
e
n
u
m
b
er
o
f
id
le
r
eso
u
r
ce
s
b
y
allo
ca
ti
n
g
a
tas
k
at
a
n
in
s
ta
n
ce
to
a
VM
w
h
ic
h
is
c
u
r
r
en
tl
y
id
le.
I
f
n
o
m
ac
h
in
e
is
id
le
it
i
m
p
le
m
en
t
s
E
C
T
C
alg
o
r
it
h
m
.
T
h
e
p
s
eu
d
o
co
d
es o
f
all
th
e
alg
o
r
ith
m
s
ar
e
as
f
o
llo
w
s
:
F
CF
SM
a
x
Ut
il Alg
o
rit
h
m
I
n
p
u
t :
T
ask
Ma
tr
ix
(
T
ask
I
d
,
Ar
r
iv
al
T
im
e,
Utilizatio
n
,
E
x
ec
u
tio
n
T
i
m
e)
Ou
tp
u
t :
A
llo
ca
tio
n
T
ab
le
(
T
a
s
k
I
d
,
Ma
ch
i
n
e
I
d
,
Star
t T
im
e,
E
n
d
T
im
e,
Util
izatio
n
)
[
m
in
A
r
r
i
v
alT
i
m
e
m
ax
A
r
r
i
v
al
T
im
e]
=
Fin
d
Mi
n
i
m
u
m
Ar
r
i
v
alT
i
m
eM
a
x
i
m
u
m
Ar
r
i
v
alT
i
m
e(
m
at)
ti
m
e=
m
i
n
A
r
r
iv
alT
i
m
e
w
h
ile
(
ti
m
e
<=
m
a
x
A
r
r
i
v
alT
im
e)
do
T
ask
lis
t =
GetT
ask
s
at
A
r
r
i
v
alT
i
m
e(
m
at
,
ti
m
e)
s
o
r
t th
e
tas
k
lis
t in
a
s
ce
n
d
i
n
g
o
r
d
er
o
f
ar
r
iv
al
f
o
r
ea
ch
tas
k
in
ta
s
k
lis
t
do
f
i
n
d
th
e
VM
w
h
ic
h
h
as c
u
r
r
en
tl
y
h
ig
h
est
C
P
U
Utilizatio
n
Ass
i
g
n
th
e
ta
s
k
to
t
h
e
VM
an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Min
imiz
in
g
E
n
erg
y
C
o
n
s
u
mp
tio
n
b
y
Ta
s
k
C
o
n
s
o
lid
a
tio
n
in
C
lo
u
d
….
(
Ma
h
en
d
r
a
K
u
ma
r
G
o
u
r
is
a
r
ia
)
3287
u
p
d
ate
th
e
A
llo
ca
tio
n
tab
le
ti
m
e=
ti
m
e
+1
E
n
d
A
l
g
o
r
ith
m
E
CT
C
Alg
o
rit
h
m
I
n
p
u
t :
T
ask
Ma
tr
ix
(
T
ask
I
d
,
Ar
r
iv
al
T
im
e,
Utilizatio
n
,
E
x
ec
u
tio
n
T
i
m
e)
Ou
tp
u
t :
A
llo
ca
tio
n
T
ab
le
(
T
a
s
k
I
d
,
Ma
ch
i
n
e
I
d
,
Star
t T
im
e,
E
n
d
T
im
e,
Util
izatio
n
)
f
o
r
ea
ch
tas
k
in
ta
s
k
lis
t d
o
f
o
r
ea
ch
v
m
i
n
v
m
li
s
t d
o
m
ax
=
-
1
E
=
E
n
er
g
y
C
o
n
s
u
m
ed
I
n
clu
d
i
n
g
T
h
eT
ask
(
task
,
v
m
)
//A
l
lo
ca
te
th
e
tas
k
i
n
to
th
e
V
M
to
th
e
m
ax
i
m
u
m
en
er
g
y
e
f
f
icie
n
t
if
E
>
m
a
x
m
ax
=E
allo
ca
ted
V
m
=V
m
en
d
if
en
d
f
o
r
if
allo
ca
ted
V
m
!
=N
U
L
L
allo
ca
te
task
to
allo
ca
ted
VM
Up
d
ate
th
e
A
l
lo
c
tab
le
en
d
if
en
d
f
o
r
E
n
d
A
l
g
o
r
ith
m
F
CF
SM
a
x
Ut
il w
it
h
M
ini
m
iz
a
t
io
n o
f
I
dle V
M
I
n
p
u
t :
T
ask
Ma
tr
ix
(
T
ask
I
d
,
Ar
r
iv
al
T
im
e,
Utilizatio
n
,
E
x
ec
u
t
io
n
T
i
m
e)
Ou
tp
u
t :
A
llo
ca
tio
n
T
ab
le
(
T
a
s
k
I
d
,
Ma
ch
i
n
e
I
d
,
Star
t
T
im
e,
E
n
d
T
i
m
e,
Utilizat
io
n
)
[
m
in
A
r
r
i
v
alT
i
m
e
m
ax
A
r
r
i
v
al
T
im
e]
=
Fin
d
Mi
n
i
m
u
m
Ar
r
i
v
alT
i
m
eM
a
x
i
m
u
m
Ar
r
i
v
alT
i
m
e(
m
at)
ti
m
e=
m
i
n
A
r
r
iv
alT
i
m
e
w
h
ile
(
ti
m
e
<=
m
a
x
A
r
r
i
v
alT
im
e)
do
T
ask
lis
t =
GetT
ask
s
at
A
r
r
i
v
alT
i
m
e(
m
at,
ti
m
e)
s
o
r
t th
e
tas
k
lis
t in
a
s
ce
n
d
i
n
g
o
r
d
er
o
f
ar
r
iv
al
f
o
r
ea
ch
tas
k
in
ta
s
k
l
is
t d
o
f
o
r
ea
ch
V
m
i
n
V
m
li
s
t d
o
if
C
P
UUti
lizatio
n
(
V
m
)
==
0
allo
ca
ted
V
m
=V
m
r
etu
r
n
else
f
i
n
d
th
e
VM
w
h
ic
h
h
as
cu
r
r
en
tl
y
h
ig
h
es
t CP
U
Utilizatio
n
Ass
i
g
n
th
e
ta
s
k
to
t
h
e
VM
an
d
u
p
d
ate
th
e
A
llo
ca
tio
n
tab
le
en
d
if
ti
m
e=
ti
m
e
+1
E
n
d
A
l
g
o
r
ith
m
E
CT
C
w
it
h
M
ini
m
iza
t
io
n o
f
I
dle V
M
In
p
u
t :
T
ask
Ma
tr
ix
(
T
ask
I
d
,
Ar
r
iv
al
T
im
e,
Utilizatio
n
,
E
x
ec
u
tio
n
T
i
m
e)
Ou
tp
u
t :
A
llo
ca
tio
n
T
ab
le
(
T
a
s
k
I
d
,
Ma
ch
i
n
e
I
d
,
Star
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
, N
o
.
6
,
Dec
em
b
er
2
0
1
6
:
3
283
–
3
29
2
3288
T
im
e,
E
n
d
T
i
m
e,
Utiliza
tio
n
)
f
o
r
ea
ch
tas
k
in
ta
s
k
lis
t d
o
f
o
r
ea
ch
V
m
i
n
V
m
li
s
t d
o
if
C
P
UU
ti
lizatio
n
(
V
m
)
==
0
allo
ca
ted
V
m
=V
m
r
etu
r
n
else
m
ax
=
-
1
E
=
E
n
er
g
y
C
o
n
s
u
m
ed
I
n
cl
u
d
in
g
T
h
eT
ask
(
task
,
V
m
)
//Allo
ca
te
th
e
ta
s
k
i
n
to
th
e
V
M
to
w
h
ic
h
it
w
ill b
e
m
a
x
i
m
u
m
e
n
er
g
y
ef
f
icien
t
if
E
>
m
a
x
m
ax
=E
allo
ca
te
d
V
m
=V
m
en
d
if
en
d
f
o
r
if
allo
ca
ted
V
m
!
=N
U
L
L
allo
ca
te
task
to
allo
ca
ted
VM
Up
d
ate
th
e
A
l
lo
c
tab
le
en
d
if
en
d
f
o
r
4
.
AN
I
L
L
UST
RAT
I
O
N
C
o
n
s
id
er
a
s
et
o
f
1
0
VM
s
V=
{V1
,
V2
,
.
.
.
V1
0
}
an
d
a
s
et
o
f
2
0
in
d
ep
en
d
en
t
task
s
T
={
T
1
,
T
2
,
T
3
,
.
.
T
2
0
}
in
w
h
ic
h
ea
c
h
ta
s
k
T
i
h
as
4
tu
p
les
{T
ask
I
d
,
A
r
r
iv
a
l
T
i
m
e
,
P
r
o
ce
s
s
in
g
T
im
e,
C
P
U
Ut
il
izatio
n
}.
W
e
h
av
e
co
n
s
id
er
ed
th
e
th
r
es
h
o
ld
v
alu
e
o
f
C
P
U
u
tili
za
tio
n
as
1
0
0
%.
T
h
e
task
tab
le
h
as
b
ee
n
s
h
o
w
n
in
T
ab
le
1
.
T
h
e
task
allo
ca
tio
n
tab
le
f
o
r
v
ar
i
o
u
s
alg
o
r
it
h
m
s
s
u
ch
as
Ma
x
Ma
x
Util,
E
C
T
C
an
d
o
u
r
p
r
o
p
o
s
ed
alg
o
r
ith
m
ar
e
s
h
o
w
n
in
T
ab
les
2
,
3
,
4
an
d
5
r
esp
ec
tiv
el
y
.
T
ab
le
1
.
E
x
am
p
le
o
f
T
ask
T
ab
le
T
a
sk
Id
A
r
r
i
v
a
l
T
i
me
P
r
o
c
e
ssi
n
g
T
i
me
U
t
i
l
i
z
a
t
i
o
n
1
1
12
54
2
1
5
62
3
1
7
31
4
1
12
51
5
1
9
67
6
2
8
59
7
2
11
57
8
2
8
31
9
2
10
54
10
2
10
66
11
2
17
61
12
3
17
45
13
3
13
43
14
3
9
59
15
3
7
13
16
3
12
40
17
4
12
63
18
4
11
22
19
4
6
18
20
4
14
33
T
ab
le
2
.
T
ask
A
llo
ca
tio
n
T
ab
l
e
u
s
i
n
g
FC
F
SMax
u
ti
l
A
lg
o
r
it
h
m
T
a
sk
Id
M
a
c
h
i
n
e
Id
S
t
a
r
t
T
i
me
En
d
T
i
me
U
t
i
l
i
z
a
t
i
o
n
1
1
1
12
54
2
2
1
5
62
3
3
1
7
31
4
4
1
12
51
5
5
1
9
67
6
6
2
9
59
7
7
2
12
57
8
3
2
9
31
9
8
2
11
54
10
9
2
11
66
11
10
2
18
61
12
2
6
22
45
13
3
10
22
43
14
5
10
18
59
15
7
3
9
13
16
6
10
21
40
17
8
12
23
63
18
2
6
16
22
19
4
4
9
18
20
9
12
25
33
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Min
imiz
in
g
E
n
erg
y
C
o
n
s
u
mp
tio
n
b
y
Ta
s
k
C
o
n
s
o
lid
a
tio
n
in
C
lo
u
d
….
(
Ma
h
en
d
r
a
K
u
ma
r
G
o
u
r
is
a
r
ia
)
3289
T
ab
le
3
.
T
ask
A
llo
ca
tio
n
T
ab
l
e
u
s
i
n
g
E
C
T
C
A
l
g
o
r
ith
m
T
ab
le
4
.
T
ask
A
llo
ca
tio
n
T
ab
l
e
u
s
i
n
g
t
h
e
P
r
o
p
o
s
ed
Min
i
m
izatio
n
o
f
I
d
le
VM
Alg
o
r
ith
m
u
s
i
n
g
E
C
T
C
T
a
sk
Id
M
a
c
h
i
n
e
Id
S
t
a
r
t
T
i
me
En
d
T
i
me
U
t
i
l
i
z
a
t
i
o
n
1
1
1
12
54
2
2
1
5
62
3
1
1
7
31
4
3
1
12
51
5
4
1
9
67
6
5
2
9
59
7
6
2
12
57
8
3
2
9
31
9
7
2
11
54
10
8
2
11
66
11
9
2
18
61
12
7
3
19
45
13
6
3
15
43
14
10
3
11
59
15
1
3
9
13
16
10
3
14
40
17
2
6
17
63
18
9
4
14
22
19
3
4
9
18
20
8
4
17
33
T
a
sk
Id
M
a
c
h
i
n
e
Id
S
t
a
r
t
T
i
me
En
d
T
i
me
U
t
i
l
i
z
a
t
i
o
n
1
1
1
12
54
2
2
1
5
62
3
3
1
7
31
4
4
1
12
51
5
5
1
9
67
6
6
2
9
59
7
7
2
12
57
8
8
2
9
31
9
9
2
11
54
10
10
2
11
66
11
8
2
18
61
12
1
3
19
45
13
4
3
15
43
14
3
3
11
59
15
5
3
9
13
16
7
3
1
4
40
17
2
6
17
63
18
9
4
14
22
19
5
4
9
18
20
10
4
17
33
T
ab
le
5
.
T
ask
A
llo
ca
tio
n
T
ab
l
e
u
s
i
n
g
t
h
e
P
r
o
p
o
s
ed
Min
i
m
iz
atio
n
o
f
I
d
le
VM
A
l
g
o
r
ith
m
u
s
i
n
g
MA
X
UT
I
L
T
a
sk
Id
M
a
c
h
i
n
e
Id
S
t
a
r
t
T
i
me
En
d
T
i
me
U
t
i
l
i
z
a
t
i
o
n
1
1
1
12
54
2
2
1
5
62
3
3
1
7
31
4
4
1
12
51
5
5
1
9
67
6
6
2
9
59
7
7
2
12
57
8
8
2
9
31
9
9
2
11
54
10
10
2
11
66
11
2
6
22
61
12
3
8
24
45
13
5
10
22
43
14
6
10
18
59
15
7
3
9
13
16
8
10
21
40
17
9
12
23
63
18
3
8
18
22
19
4
4
9
18
20
10
12
25
33
5
.
SI
M
UL
AT
I
O
N
RE
SU
L
T
S
T
h
e
b
eh
av
io
r
o
f
th
r
ee
tas
k
c
o
n
s
o
lid
atio
n
h
e
u
r
is
tic
w
it
h
1
0
0
0
task
s
h
as
b
ee
n
s
i
m
u
lated
h
er
e.
T
h
e
task
s
ar
e
b
o
u
g
h
t
o
u
t
f
o
r
d
if
f
e
r
en
t
g
r
o
u
p
s
o
f
VM
s
w
it
h
t
h
e
u
s
e
o
f
i
n
co
m
p
atib
le
E
T
C
alg
o
r
ith
m
[
6
]
.
Ma
tlab
2012
s
o
f
t
w
ar
e
h
a
s
b
ee
n
u
s
ed
f
o
r
s
i
m
u
latio
n
f
o
r
1
0
0
0
task
s
.
T
h
e
task
s
ar
r
i
v
e
at
t
h
e
ce
n
tr
al
s
er
v
er
q
u
e
u
e
w
it
h
a
r
ate
o
f
λ
h
a
v
in
g
u
n
l
i
m
ited
b
u
f
f
er
s
ize
.
It
ha
s
ta
k
e
n
th
e
ar
r
i
v
al
in
ter
v
al
b
et
w
ee
n
th
e
ta
s
k
s
as
1
an
d
th
e
tas
k
ar
r
iv
al
r
ate
to
b
e
3
0
in
t
h
e
p
r
e
s
en
t
s
t
u
d
ies.
T
h
e
tas
k
co
n
s
o
li
d
atio
n
al
g
o
r
ith
m
s
be
h
a
v
io
r
s
a
r
e
d
e
m
o
n
s
tr
ated
f
o
r
1
0
an
d
1
5
VM
s
in
F
ig
u
r
es
5
,
6
r
esp
ec
tiv
el
y
.
T
h
e
co
n
s
u
m
p
ti
o
n
o
f
en
er
g
y
o
n
1
5
VM
s
b
y
v
ar
y
in
g
th
e
ta
s
k
s
iz
e
f
r
o
m
5
0
0
to
1
5
0
0
h
as b
ee
n
s
h
o
w
n
in
F
ig
u
r
e
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
, N
o
.
6
,
Dec
em
b
er
2
0
1
6
:
3
283
–
3
29
2
3290
Fig
.
5
.
C
P
U
Utilizatio
n
C
o
m
p
ar
is
o
n
f
o
r
1
0
0
0
T
ask
s
o
n
1
0
VM
s
Fig
u
r
e
6
.
C
P
U
Utilizatio
n
C
o
m
p
ar
i
s
io
n
f
o
r
1
0
0
0
T
ak
s
o
n
1
0
VM
s
Fig
u
r
e
7
.
E
n
er
g
y
C
o
n
s
u
m
p
tio
n
f
o
r
Nu
m
b
er
o
f
T
ask
s
o
n
1
5
VM
s
.
6
.
CO
NCLUS
I
O
N
T
h
e
s
i
m
u
latio
n
e
x
p
er
i
m
en
t
s
h
av
e
b
ee
n
s
u
cc
es
s
f
u
ll
y
ca
r
r
ie
d
o
u
t
w
h
ic
h
e
x
a
m
in
e
s
th
e
b
eh
av
io
r
o
f
h
eu
r
i
s
tic
tas
k
co
n
s
o
li
d
atio
n
alg
o
r
ith
m
s
.
I
t
h
as
also
b
ee
n
o
p
tim
ized
f
o
r
en
er
g
y
co
n
s
u
m
p
tio
n
i
n
a
clo
u
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Min
imiz
in
g
E
n
erg
y
C
o
n
s
u
mp
tio
n
b
y
Ta
s
k
C
o
n
s
o
lid
a
tio
n
in
C
lo
u
d
….
(
Ma
h
en
d
r
a
K
u
ma
r
G
o
u
r
is
a
r
ia
)
3291
en
v
ir
o
n
m
e
n
t.
T
h
e
p
er
f
o
r
m
a
n
c
e
an
al
y
s
is
h
as
b
ee
n
d
e
m
o
n
s
tr
a
ted
f
o
r
th
e
v
ar
io
u
s
tas
k
co
n
s
o
l
id
atio
n
alg
o
r
it
h
m
s
f
o
r
th
e
E
T
C
m
atr
i
x
.
T
h
e
r
es
u
lts
d
r
a
w
n
s
h
o
w
s
t
h
at
th
e
p
r
o
p
o
s
ed
alg
o
r
it
h
m
h
a
s
s
a
v
ed
t
h
e
en
er
g
y
as
co
m
p
ar
ed
to
th
e
ex
i
s
ti
n
g
al
g
o
r
ith
m
s
.
RE
F
E
R
E
NC
E
S
[1
]
D.
G
rig
o
ra
s,
“
A
d
v
a
n
c
e
d
e
n
v
iro
n
m
e
n
ts,
to
o
ls,
a
n
d
a
p
p
li
c
a
ti
o
n
s f
o
r
c
lu
ste
r
c
o
m
p
u
ti
n
g
,
”
NAT
O A
d
v
a
n
c
e
d
Res
e
a
rc
h
W
o
rk
sh
o
p
,
IW
CC
2
0
0
1
,
M
a
n
g
a
li
a
,
Ro
m
a
n
ia,
S
e
p
tem
b
e
r
2
0
0
1
,
L
e
c
t
u
re
No
t
e
s in
Co
mp
u
ter
S
c
ien
c
e
,
2
3
2
6
,
S
p
rin
g
e
r,
2
0
0
2
.
[2
]
C.
L
e
f
u
rg
y
,
X
.
W
a
n
g
,
a
n
d
M
.
W
a
re
,
“
S
e
rv
e
r
-
lev
e
l
p
o
w
e
r
c
o
n
tro
l,
”
in
Pro
c
4
t
h
IEE
E
In
ter
n
a
ti
o
n
a
l
C
o
n
fer
e
n
c
e
o
n
Au
to
n
o
mic
C
o
mp
u
ti
n
g
(
ICAC
’0
7
)
,
Ja
c
k
so
n
v
il
le,
F
L
,
USA
,
Ju
n
e
2
0
0
7
,
p
p
.
4
.
[3
]
L
.
Ba
rro
so
a
n
d
U.
Ho
l
z
le,
“
T
h
e
c
a
se
f
o
r
e
n
e
rg
y
-
p
ro
p
o
rt
io
n
a
l
c
o
m
p
u
ti
n
g
,
”
IEE
E
Co
m
p
u
ter
,
4
0
(
1
2
)
,
2
0
0
7
,
p
p
.
3
3
-
3
7
.
[4
]
P
.
Bo
h
re
r,
E.
El
n
o
z
a
h
y
,
T
.
Ke
ll
e
r,
M
.
Kistler,
C
.
L
e
f
u
rg
y
,
a
n
d
R.
Ra
ja
m
o
n
y
,
“
T
h
e
c
a
se
f
o
r
p
o
w
e
r
m
a
n
a
g
e
m
e
n
t
in
w
e
b
se
r
v
e
rs,”
Po
we
r A
wa
re
Co
mp
u
ti
n
g
,
Klu
w
e
r
A
c
a
d
e
m
i
c
P
u
b
li
sh
e
rs,2
0
0
2
,
p
p
.
2
6
1
–
2
8
9
.
[5
]
X
.
F
a
n
,
X
.
-
D
.
W
e
b
e
r,
a
n
d
L
.
A
.
Ba
rro
so
,
“
P
o
w
e
r
p
ro
v
isio
n
i
n
g
f
o
r
a
w
a
re
h
o
u
se
-
siz
e
d
c
o
m
p
u
ter,” i
n
P
ro
c
3
4
t
h
a
n
n
u
a
l
I
n
ter
n
a
t
io
n
a
l
S
y
mp
o
si
u
m o
n
C
o
m
p
u
ter
Arc
h
it
e
c
t
u
re
(
IS
CA
’0
7
)
,
2
0
0
7
,
p
p
1
3
–
23.
[6
]
W
e
n
,
G
a
o
ji
n
,
Ju
e
Ho
n
g
,
Ch
e
n
g
z
h
o
n
g
Xu
,
P
a
v
a
n
Ba
laji,
S
h
e
n
g
z
h
o
n
g
F
e
n
g
,
a
n
d
P
in
g
c
h
u
a
n
g
Jia
n
g
.
"
En
e
rg
y
-
a
wa
re
h
iera
rc
h
ica
l
sc
h
e
d
u
li
n
g
o
f
a
p
p
li
c
a
ti
o
n
s
in
larg
e
sc
a
le d
a
ta ce
n
ters
.
"
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
C
lo
u
d
a
n
d
S
e
rv
ice
Co
mp
u
ti
n
g
(
CS
C)
2
0
1
1
,
p
p
.
1
5
8
-
1
6
5
.
IEE
E,
2
0
1
1
.
[7
]
Kim
,
K
y
o
n
g
Ho
o
n
,
Ra
jk
u
m
a
r
Bu
y
y
a
,
a
n
d
Jo
n
g
Kim
.
"
P
o
w
e
r
Aw
a
re
S
c
h
e
d
u
li
n
g
o
f
Ba
g
-
of
-
T
a
s
k
s
Ap
p
li
c
a
ti
o
n
s
w
it
h
De
a
d
li
n
e
Co
n
stra
i
n
ts
o
n
D
V
S
-
e
n
a
b
led
Cl
u
ste
rs."
In
CCGRID
,
v
o
l
.
7
,
p
p
.
5
4
1
-
5
4
8
.
2
0
0
7
.
[8
]
L
e
e
,
Yo
u
n
g
Ch
o
o
n
,
a
n
d
A
lb
e
rt
Y.
Zo
m
a
y
a
.
"
En
e
rg
y
e
ff
icie
n
t
u
ti
li
z
a
ti
o
n
o
f
re
so
u
rc
e
s in
c
lo
u
d
c
o
m
p
u
ti
n
g
sy
ste
m
s."
T
h
e
J
o
u
r
n
a
l
o
f
S
u
p
e
rc
o
mp
u
ti
n
g
,
v
o
l.
2
,
p
p
.
2
6
8
-
2
8
0
,
2
0
1
2
.
[9
]
Hs
u
,
Ch
in
g
-
Hs
ien
,
S
h
ih
-
C
h
a
n
g
Ch
e
n
,
Ch
i
h
-
Ch
u
n
L
e
e
,
Hs
i
-
Y
a
Ch
a
n
g
,
Ku
a
n
-
Ch
o
u
L
a
i,
Ku
a
n
-
Ch
i
n
g
L
i,
a
n
d
Ch
u
n
m
in
g
Ro
n
g
.
"
En
e
rg
y
-
a
wa
r
e
tas
k
c
o
n
so
li
d
a
ti
o
n
tec
h
n
i
q
u
e
f
o
r
c
l
o
u
d
c
o
m
p
u
ti
n
g
.
"
In
Clo
u
d
C
o
mp
u
ti
n
g
T
e
c
h
n
o
l
o
g
y
a
n
d
S
c
ien
c
e
(
Clo
u
d
Co
m)
,
2
0
1
1
IEE
E
T
h
ird
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
,
p
p
.
1
1
5
-
1
2
1
,
2
0
1
1
.
[1
0
]
S
rik
a
n
taia
h
,
S
h
e
k
h
a
r,
Am
a
n
Ka
n
sa
l,
a
n
d
F
e
n
g
Z
h
a
o
.
"
En
e
rg
y
a
wa
re
c
o
n
so
li
d
a
ti
o
n
f
o
r
c
lo
u
d
c
o
m
p
u
ti
n
g
.
"
In
P
r
o
c
e
e
d
in
g
s o
f
th
e
2
0
0
8
c
o
n
fer
e
n
c
e
o
n
P
o
we
r a
wa
re
c
o
m
p
u
ti
n
g
a
n
d
sy
ste
ms
,
v
o
l.
1
0
,
p
p
.
1
-
5
.
2
0
0
8
.
[1
1
]
Ko
o
m
e
y
,
Jo
n
a
th
a
n
.
"
G
ro
w
th
in
d
a
ta ce
n
ter ele
c
tri
c
it
y
u
se
2
0
0
5
to
2
0
1
0
.
"
A
re
p
o
rt
b
y
An
a
lytica
l
Pre
ss
,
T
h
e
Ne
w
Y
o
rk
T
ime
s
,
2
0
1
1
.
[1
2
]
Hs
u
,
Ch
i
n
g
-
Hs
ien
,
Ke
n
n
D.
S
lag
ter,
S
h
ih
-
C
h
a
n
g
Ch
e
n
,
a
n
d
Ye
h
-
Ch
in
g
Ch
u
n
g
.
"
Op
ti
m
izin
g
e
n
e
rg
y
c
o
n
su
m
p
ti
o
n
w
it
h
tas
k
c
o
n
so
li
d
a
ti
o
n
in
c
l
o
u
d
s
.
"
In
fo
rm
a
ti
o
n
S
c
ien
c
e
s
,
v
o
l.
2
5
8
,
p
p
.
4
5
2
-
4
6
2
,
2
0
1
4
.
[1
3
]
Aw
a
d
a
Uc
h
e
c
h
u
k
w
u
,
Ke
q
iu
L
i,
Ya
n
m
in
g
S
h
e
n
.
"
En
e
rg
y
c
o
n
su
m
p
ti
o
n
i
n
Cl
o
u
d
Co
m
p
u
ti
n
g
Da
ta
Ce
n
ters
.
"
In
te
rn
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
Cl
o
u
d
Co
mp
u
t
in
g
a
n
d
S
e
rv
ice
s
S
c
ien
c
e
s
(
I
J
-
CL
OS
ER
)
,
v
o
l.
3
,
N
o
.
3
,
p
p
.
1
4
5
-
1
6
2
,
Ju
n
e
2
0
1
4
.
[1
4
]
A
n
g
li
L
iu
,
"
T
h
e
o
rit
ica
l
A
n
a
l
y
sis
o
n
S
c
a
le
-
d
o
w
n
Aw
a
re
S
e
r
v
ice
A
ll
o
c
a
ti
o
i
n
i
n
Clo
u
d
S
to
ra
g
e
S
y
ste
m
s."
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
E
lec
trica
l
a
n
d
C
o
mp
u
ter
En
g
in
e
e
rin
g
(
IJ
ECE
)
,
v
o
l.
3
,
No
.
1
,
p
p
.
2
1
-
2
9
,
F
e
b
r
u
a
ry
2
0
1
3
.
B
I
O
G
RAP
H
I
I
E
S O
F
AUTH
O
RS
M
a
h
e
n
d
r
a
K
u
m
a
r
G
o
u
r
isa
r
ia
i
s
p
re
se
n
tl
y
w
o
rk
in
g
a
s
a
n
A
ss
ist
a
n
t
P
ro
f
e
ss
o
r
in
th
e
S
c
h
o
o
l
o
f
Co
m
p
u
ter
En
g
in
e
e
rin
g
a
t
KIIT
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
Od
ish
a
.
He
h
a
s
re
c
e
i
v
e
d
h
is
M
a
ste
r
d
e
g
re
e
in
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
f
ro
m
In
d
ira
Ga
n
d
h
i
Na
ti
o
n
a
l
Op
e
n
Un
iv
e
rsit
y
,
Ne
w
De
lh
i
a
n
d
M
.
T
e
c
h
in
Co
m
p
u
ter
S
c
ien
c
e
a
n
d
En
g
in
e
e
rin
g
f
ro
m
Bij
u
P
a
tn
a
i
k
Un
iv
e
rsit
y
o
f
T
e
c
h
n
o
lo
g
y
-
Ro
u
rk
e
la.
He
is
p
u
rsi
n
g
h
is
P
h
.
D
.
f
ro
m
KII
T
Un
iv
e
rsit
y
.
He
h
a
s
p
u
b
li
sh
e
d
a
r
o
u
n
d
1
0
re
se
a
rc
h
p
a
p
e
rs
in
d
if
f
e
re
n
t
in
tern
a
ti
o
n
a
l
j
o
u
r
n
a
ls
a
n
d
c
o
n
f
re
n
c
e
s
o
f
re
p
u
te.
His
a
re
a
o
f
re
s
e
a
rc
h
in
c
lu
e
d
e
s
Clo
u
d
C
o
m
p
u
ti
n
g
,
Da
ta
M
in
ig
,
S
o
f
t
Co
m
p
u
ti
n
g
a
n
d
In
tern
e
t
a
n
d
W
e
b
T
e
c
h
n
o
l
o
g
y
.
He
is
a
m
e
m
b
e
r
o
f
I
A
EN
G
,
U
A
CEE
a
n
d
li
f
e
m
e
m
b
e
r
o
f
IS
T
E,
CS
I
a
n
d
I
S
CA
.
S
u
d
h
a
n
s
u
S
h
e
k
h
a
t
Pa
tr
a
is
c
u
rre
n
tl
y
a
n
A
ss
o
c
iate
P
ro
f
e
ss
o
r
in
th
e
S
c
h
o
o
l
o
f
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
,
KIIT
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
In
d
ia.
He
re
c
e
iv
e
d
h
is
M
a
ste
r
d
e
g
r
e
e
in
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
f
ro
m
M
o
ti
lal
Ne
h
ru
Na
ti
o
n
a
l
In
stit
u
te
o
f
Te
c
h
n
o
l
o
g
y
,
A
ll
a
h
a
b
a
d
,
In
d
ia,
M
.
T
e
c
h
(Co
m
p
u
ter
S
c
ien
c
e
&
En
g
g
)
f
ro
m
Utk
a
l
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
In
d
ia
a
n
d
P
h
.
D.
in
Co
m
p
u
ter S
c
ien
c
e
f
ro
m
KII
T
Un
iv
e
rsit
y
,
Bh
u
b
a
n
e
sw
a
r,
In
d
ia.
His
re
se
a
rc
h
in
tere
sts in
c
lu
d
e
g
rid
c
o
m
p
u
ti
n
g
,
Clo
u
d
Co
m
p
u
ti
n
g
,
A
lg
o
rit
h
m
s.
He
i
s
a
li
f
e
m
e
m
b
e
r
o
f
In
d
ian
S
o
c
iety
f
o
r
T
e
c
h
n
ica
l
Ed
u
c
a
ti
o
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
, N
o
.
6
,
Dec
em
b
er
2
0
1
6
:
3
283
–
3
29
2
3292
Pa
b
itr
a
M
o
h
a
n
K
h
il
a
r
is
c
u
rre
n
tl
y
a
n
A
ss
istan
t
P
r
o
f
e
ss
o
r
in
t
h
e
De
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter
En
g
in
e
e
rin
g
,
NIT
,
Ro
u
rk
e
la
,
In
d
ia.
He
re
c
e
iv
e
d
h
is
M
a
ste
r
d
e
g
r
e
e
in
Co
m
p
u
ter
S
c
ien
c
e
a
n
d
En
g
in
e
e
rin
g
f
ro
m
NIT
Ro
u
rk
e
la
a
n
d
P
h
.
D.
i
n
C
o
m
p
u
ter
S
c
ien
c
e
a
n
d
E
n
g
in
e
e
rin
g
f
ro
m
IIT
,
Kh
a
ra
g
p
u
r,
In
d
ia.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
P
a
re
ll
e
l
a
n
d
D
istri
b
u
te
d
P
r
o
c
e
ss
in
g
,
F
a
u
lt
-
T
o
lera
n
c
e
Co
m
p
u
ti
n
g
,
Cl
u
ste
r
a
n
d
g
rid
c
o
m
p
u
ti
n
g
,
W
irele
ss
Ad
h
o
c
Ne
tw
o
rk
s,
P
e
rf
o
rm
a
n
c
e
Ev
a
lu
a
ti
o
n
o
f
Distrib
u
ted
Ne
tw
o
rk
s
a
n
d
Distrib
u
ted
Em
b
e
d
d
e
d
S
y
ste
m
.
He
is
a
m
e
m
b
e
r
o
f
M
IEE
E,
M
IE,
M
CS
I,
M
IS
T
E,
M
OEC,
M
OIT
S
,
M
IET
E,
M
I
S
CA
.
Evaluation Warning : The document was created with Spire.PDF for Python.