Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
5, No. 6, Decem
ber
2015, pp. 1407~
1
416
I
S
SN
: 208
8-8
7
0
8
1
407
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Geographical Forwarding Me
thods in Vehicular Ad hoc
Network
s
Kashi
f
Nas
eer
Qures
hi, Abdul
Hanan Abdu
llah, Anw
a
r Mirz
a,
Raja Waseem
Anwar
Faculty
of Computing, Universiti
Teknol
ogi Malay
s
ia, Skudai,
Johor, Malay
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 26, 2015
Rev
i
sed
Ju
l 18
,
20
15
Accepte
d Aug 1, 2015
Vehicular ad ho
c networks ar
e
new
and emerging techno
log
y
and special
class of mobile ad hoc networks
that provide wireless communication
between veh
i
cles without an
y
fixed in
frastructur
e. Geograph
i
cal routing has
appear
ed as
one
of the m
o
s
t
s
c
alab
le and com
p
eten
t routing s
c
hem
e
s
for
vehicu
lar n
e
tw
orks. A number of str
a
teg
i
es
have been
pr
oposed for
forwarding the
packets in geog
raphical
dir
ectio
n of the destination, wher
e
information of
d
i
rect neighbors is gain
ed
through
navig
a
tion
a
l ser
v
ices. Due
to d
y
nam
i
call
y
changing
topolo
g
ies and h
i
gh m
obilit
y
neighbor
inform
atio
n
becom
e
outdat
e
d
.
To addres
s
thes
e com
m
on issues in network different ty
p
e
s
of forwarding s
t
rategies h
a
ve
been
proposed
. In this r
e
view paper
,
we
concen
trat
e on beacon
l
ess forwarding m
e
thods and their forwardi
ng m
e
thods
in de
tai
l
.
Keyword:
For
w
a
r
di
ng
Geographical
Gree
dy
Ro
u
ting
VA
NET
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Kashi
f
Naseer
Qu
res
h
i,
Facu
lty of Com
p
u
tin
g
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia,
Sku
d
a
i, Joh
o
r
Malaysia.
Em
a
il: k
a
sh
ifnq
@g
m
a
il.co
m
1.
INTRODUCTION
The
ve
hi
cul
a
r
A
d
hoc
net
w
or
k i
s
a
sel
f
-
o
r
g
a
n
i
zed,
di
st
ri
b
u
t
e
d a
n
d
hi
ghl
y
m
obi
l
e
n
e
t
w
o
r
k
t
h
at
facilitates u
b
i
qu
ito
us conn
ectiv
ity b
e
tween
v
e
h
i
cles.
Th
e
ap
p
lication
s
of v
e
h
i
cu
lar
Ad h
o
c
n
e
t
w
orks are
classifyin
g
i
n
to
two
b
a
sic typ
e
s;
safety an
d
g
e
n
e
ral d
a
ta
rou
tin
g ap
p
lication
s
. Th
e g
e
n
e
ral ro
u
ting
appl
i
cat
i
o
ns
pr
ovi
de
one
-t
o
-
o
n
e a
n
d
o
n
e
-
t
o
-al
l
dat
a
br
oa
dcast
i
n
g f
o
r
d
i
ffere
nt
se
rvi
c
es suc
h
a
s
f
o
r
r
out
e
pl
an
ni
n
g
, e
n
t
e
rt
ai
nm
ent
and
fo
r si
m
p
l
e
co
m
m
uni
cat
i
on.
In
safet
y
a
ppl
i
cat
i
ons,
t
h
e
da
t
a
i
s
br
oa
dcast
i
ng i
n
one
-to-all m
a
n
n
ers a
n
d in
pre
d
efi
n
ed
re
gion suc
h
as fo
r lane changing as
sistance,
electronic
bra
k
e light and
ro
ad
co
nd
ition
ap
p
lication
s
. Th
ese ap
p
lication
s
n
eed prio
rity an
d d
e
liv
ery
in
a sh
ort tim
e
esp
ecially for
u
r
g
e
n
t
situations li
ke
vehicle c
o
llision, acci
de
nt
det
ection, etc
.
[1].
The wi
rel
e
ss c
o
m
m
uni
cat
i
on bet
w
ee
n ve
hi
cl
es perf
o
r
m
e
d by
m
eans of
DSR
C
(
D
edi
c
at
ed Sh
ort
-
Range Comm
unication) standard
protoc
ol at MAC (
m
ed
ium access control) layer and
operates on 5.9
GHz
.
The
ve
hicles are dissem
i
nating t
h
e
packet
s pe
riodica
lly
after ev
ery
30
0 m
s
with
geo
g
rap
h
i
cal location
i
n
f
o
rm
at
i
on vi
a gl
ob
al
posi
t
i
oni
n
g
sy
st
em
(GP
S
).
GPS
i
s
broa
dl
y
avai
l
a
bl
e an
d con
s
i
d
er as e
ssent
i
a
l
au
to
m
o
tiv
e equ
i
p
m
en
t in
stalled
in
v
e
h
i
cles. In
n
e
two
r
k,
the ve
hicle nodes select a suitable candidate for
forward
i
ng
th
e p
a
ck
ets and
acco
m
p
lish
th
e
m
u
l
tip
le d
a
ta
deliveries. Beca
use
of VANET
unique feat
ure
s
, the
net
w
or
k has
be
en su
ffe
red
fr
o
m
di
ffere
nt
i
ssues rel
a
t
e
d
t
o
r
out
i
n
g, c
h
a
nne
l
cong
est
i
on a
n
d i
n
dat
a
f
o
r
w
a
r
di
ng
strategies, etc. Vehicula
r c
o
m
m
uni
cat
i
on chan
nel
s
su
ffe
red f
r
om
si
gnal
scat
t
e
ri
ng and re
fl
ect
i
o
n
s
,
whi
c
h
m
o
rtify sig
n
a
l q
u
a
lity an
d
streng
th
.
Also
,
th
e h
i
gh
m
o
b
ility
p
a
ttern
s are
m
o
re d
y
n
a
mic with
h
i
g
h
fad
i
ng
co
nd
itio
ns and
cau
se of
j
o
i
n
t co
rrelated
sh
adow fad
i
ng
effects. In
con
g
e
sted areas, th
e
v
e
h
i
cles can
te
m
p
orary
di
sco
n
n
ect
ed
wi
t
h
near
nei
g
h
b
o
rs
ve
hi
cl
e
s
beca
use
o
f
dy
nam
i
c chan
gi
n
g
a
n
d
f
r
e
q
uent
st
at
i
c
an
d
den
s
e
co
nfigu
r
ation. To
h
a
nd
le th
ese issu
es in
v
e
h
i
cu
lar ad
hoc
net
w
or
ks di
f
f
e
r
ent
t
y
pe of r
o
ut
i
ng
pr
ot
oc
ol
s
have
been
pr
op
ose
d
suc
h
a
s
t
o
p
o
l
ogy
base
d,
cl
ust
e
r,
geocast
and
geo
g
ra
p
h
i
cal
base
d.
H
o
weve
r,
ge
o
g
ra
phi
cal
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1407 –
1416
1
408
base
d r
o
ut
i
n
g
pr
ot
oc
ol
s ar
e p
r
ed
om
i
n
ant
an
d fea
s
i
b
l
e
beca
use t
h
e
s
e
pr
ot
o
c
ol
s o
b
t
a
i
n
i
n
f
o
rm
at
i
on f
r
om
a st
reet
m
a
p and f
r
om
navi
gat
i
o
nal
servi
ces
. Thes
e prot
oc
ol
s ar
e used t
o
av
oi
d t
h
e br
oa
dcas
t
st
orm
pro
b
l
e
m
s
i
n
net
w
or
k.
Each
ve
hi
cl
e n
ode
i
s
awa
r
e o
f
i
t
s
ow
n
p
o
si
t
i
on t
h
r
o
ug
h
GPS
d
e
vi
ces a
nd
wi
t
h
a m
u
l
t
i
hop
m
a
nn
e
r
the fa
rthest
ve
hicle select as
a forwar
der
i
n
br
oa
dcast
ra
n
g
e
[
2
]
.
The f
u
nct
i
onal
i
t
y
of geo
g
r
a
p
h
i
c
base
d r
out
i
ng
pr
ot
oc
ol
s di
vi
de
d i
n
t
o
t
h
ree m
a
i
n
catego
r
i
e
s:
pa
t
h
sel
ect
i
on, f
o
rw
ardi
ng a
nd
rec
ove
ry
. T
h
e pat
h
sel
ect
i
on i
s
not
m
a
ndat
o
ry
but
i
f
any
pr
o
t
ocol
use t
h
i
s
m
e
t
hod
so i
t
i
s
count
as an ad
vant
a
g
e. If
pr
ot
oc
ol
f
a
i
l
t
o
fi
nd r
o
a
d
pat
h
t
h
en se
l
ect
for
w
ar
di
n
g
st
rat
e
gy
an
d
sel
e
ct
nei
g
hb
o
r
n
ode
t
o
fo
rw
ar
d dat
a
packet
[
3
]
,
[
4
]
.
C
o
m
m
onl
y for
pat
h
sel
ect
i
on t
w
o st
rat
e
g
i
es used
, t
h
e fi
rst
on
e
i
s
based
o
n
Di
j
k
st
ra al
g
o
r
i
t
h
m
[5]
an
d t
h
e
se
con
d
one i
s
ba
sed
on
ne
xt
j
u
nct
i
on
o
r
i
n
t
e
r
s
ect
i
on [
6
]
.
T
h
e fi
rst
strateg
y
h
a
s some p
r
ob
lem
s
i
n
term
o
f
o
v
e
rh
ead
an
d
reduced
av
ailab
ility. Nex
t
jun
c
tio
n
selection
is b
e
tter
opt
i
o
n
fo
r co
n
t
rol
net
w
o
r
k
o
v
er
hea
d
b
u
t
be
cause
of t
r
a
ffi
c d
e
nsity
m
e
tr
ic, th
e ro
ad
select with
h
i
gh
traffi
c
density instead of less ve
hi
cle roa
d
. T
h
e
second st
rate
gy is forwarding as a si
gn
ifican
t ph
as
e for
every
geo
g
r
ap
hi
cal
base
d
ro
ut
i
n
g
p
r
ot
ocol
,
whi
c
h i
s
di
sc
usse
d i
n
det
a
i
l
i
n
ne
xt
sect
i
o
ns
. T
h
e l
a
st
st
ra
t
e
gy
i
s
reco
very
m
ode
, i
t
i
s
use
d
wh
e
n
ot
he
r f
o
r
w
a
r
di
n
g
st
rat
e
gi
es
i
n
t
o
a l
o
cal
m
a
xi
m
u
m
or l
o
cal
o
p
t
i
m
u
m
si
t
u
at
i
ons,
whe
r
e t
h
e s
o
u
r
ce vehi
cl
e n
o
d
e
i
s
cl
oser t
o
d
e
st
i
n
at
i
on n
o
d
e
and
nei
g
hb
or
s
no
des an
d de
s
t
i
n
at
i
on n
o
d
e i
s
not
reachable by one hop. On
e of m
o
st used strategy is right hand ru
le traverse graphs [3
]
.
For neighbor node
discovery,
t
h
e nodes peri
odic
a
lly
broa
dcast beacon
m
e
ssa
ges,
but due to ve
hic
u
la
r ne
twork
properti
es the
n
e
igh
bor list i
s
o
u
t
d
a
ted
and
th
e selectio
n
of n
e
x
t
cand
i
d
a
te nod
e is d
i
fficu
lt. To
so
lv
e th
is issue
m
a
n
y
beaconless a
p
proac
h
es
have
bee
n
propose
d
a
n
d show
better perform
a
n
ce in ve
hicul
a
r net
w
ork. T
h
e m
a
in
o
b
j
ectiv
e of th
i
s
rev
i
ew is to
hig
h
ligh
t
th
ese ap
pr
oaches
and
discuss
their operation a
n
d fe
atures.
Thi
s
revi
e
w
i
s
based o
n
f
o
r
w
ar
di
n
g
st
rat
e
gi
es use
d
i
n
v
e
hi
cul
a
r a
d
h
o
c
net
w
o
r
ks. T
h
e sect
i
on 2
descri
bes t
h
e com
pone
nt
and
archi
t
ect
u
r
e an
d p
o
p
u
l
a
r ap
pl
i
cat
i
ons o
f
ve
hi
cul
a
r ad h
o
c n
e
t
w
o
r
ks
. The s
ect
i
o
n
3
p
r
esen
ts t
h
e
ex
istin
g fo
rward
i
ng
ap
pro
ach
es. Th
e last sect
io
n
illu
strates th
e
d
i
scu
s
sion
an
d con
c
lusion
.
2.
CO
MP
ONE
N
TS AN
D A
R
C
HITECT
U
R
E
OF VA
NET
S
The net
w
o
r
k
has som
e
com
ponent
s f
o
r
com
m
uni
cat
i
on an
d est
a
bl
i
s
h t
h
e co
nne
ct
i
on bet
w
ee
n
i
n
fra
st
ruct
ure
and
vehi
cl
e
no
des
.
The
r
e
are t
h
ree m
a
i
n
com
pone
n
t
s i
n
VAN
E
Ts archi
t
ect
u
r
e:
AUs
(Ap
p
lication
un
its), OB
Us (On
bo
ard
un
its)
an
d
RSUs (R
oad
sid
e
un
its)
[7
].
Th
e
A
U
s
an
d
O
B
U
s
ar
e used
for
consum
er services and instal
led in
ve
hicles. The RSUs ac
t as a router
t
o
pr
ovi
de t
h
ese
servi
ces t
o
m
ovi
n
g
v
e
h
i
cle nod
es in
n
e
two
r
k
thro
ugh
IEEE 802
.1
1p
stand
a
rd. On
b
o
a
rd
un
its h
a
v
e
cap
ab
i
lity
to
co
mm
u
n
icate
with
o
t
h
e
r v
e
h
i
cles as well as
with
road
sid
e
u
n
it and
app
licatio
n
un
it. On
b
o
a
rd
u
n
its are u
s
ed
fo
r IP mo
b
ility
m
a
nagem
e
nt
, pr
ocessi
ng
an
d
dat
a
c
o
l
l
ect
i
o
ns.
A
p
pl
i
cat
i
ons
u
n
i
t
s
are
se
parat
e
de
vi
ces
o
r
m
a
y
be i
n
t
e
grat
e
d
wi
t
h
on
b
o
ar
d
uni
t
use
d
t
o
c
o
m
m
uni
cat
e wi
t
h
r
o
a
d
si
de
uni
t
.
The
r
o
ad
si
d
e
u
n
i
t
s
are i
n
st
al
l
e
d an
d
depl
o
y
e
d o
n
roa
d
si
de wi
t
h
radi
o com
m
uni
cat
i
o
n co
ve
rage f
o
r
vehi
c
l
es. The dedi
cat
ed sho
r
t
ra
nge c
o
m
m
unicat
i
o
n
(DSR
C
)
i
s
use
d
t
o
pr
ovi
de c
o
m
m
uni
cat
i
on bet
w
ee
n ve
hi
cl
es and
IEEE
80
2.
1
1p i
s
us
ed am
ong
ot
he
r r
o
ad
si
de uni
t
s
an
d
on b
o
ar
d u
n
i
t
s. Fi
gu
re 1 s
h
o
w
s t
h
e va
ri
ous c
o
m
pone
n
t
s of ge
neral
i
zed arc
h
i
t
ect
ure of
VA
NETs
.
Fi
gu
re
1.
V
A
N
ET A
r
c
h
i
t
ect
ur
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Geo
g
r
a
p
h
i
c
al
Forw
ardi
ng
M
e
t
h
o
d
s i
n
Ve
hi
cul
a
r
Ad
h
o
c N
e
t
w
orks (
K
as
hi
f
N
a
seer
Q
u
res
h
i
)
1
409
The a
ppl
i
cat
i
o
ns
of
vehi
c
u
l
a
r net
w
o
r
k
s
can be
b
r
oa
d
l
y
cat
egori
zed
i
n
t
o
t
w
o t
y
pes
nam
e
ly
in
fo
tain
m
e
n
t
a
n
d
safety applicatio
n
s
. Under in
fo
tain
m
e
n
t
app
licatio
ns categ
ory maj
o
r app
lication
s
are
b
r
o
a
d
castin
g i
n
fo
rm
atio
n
abo
u
t
n
e
ar
p
e
tro
l
pu
m
p
in
fo
rm
atio
n
,
restau
ran
t
seat av
ailabilit
y, m
o
v
i
es ti
min
g
s
,
food and
sale offers, etc.
The sec
o
n
d
categ
o
ry is safety ap
p
lication
s
,
wh
ere v
e
hicles d
i
ssem
i
n
a
te th
e
inform
ation about c
o
llision a
voi
dance
,
acci
dent
detection and
other sa
fety
related inform
ation. The
below
Tabl
e 1
s
h
o
w
s
som
e
im
port
a
n
t
appl
i
cat
i
o
ns wi
t
h
descri
pt
i
o
n.
Tabl
e 1. Ve
hi
cul
a
r
a
p
pl
i
cat
i
ons
S/No Applications
Description
1
Aler
t
Applications
I
n
these ty
pes of applications,
RS
U gener
a
tes alert
m
e
ssages such as warning about vi
olatin
g
the tr
affic signal,
stop sign
m
ovem
e
nt assi
stance and blind
m
e
rge detection
,
etc.
2 Vehicle
M
a
intenance
Applications
These applications are rel
a
ted with vehicle di
agnostic a
nd
m
a
intenance su
ch as safety
recall
notice and just in tim
e
repair notificati
on.
3
Saf
e
ty
Se
rvices
In these applicatio
ns, the driver
recei
ved inf
o
r
m
ation ab
out e
m
ergenc
y veh
i
cle wa
rning, signal
pr
eem
p
tion and post-
cr
ash war
n
ings.
4
Sign
E
x
tension
Differ
e
nt ty
pes of
signs inv
o
lved in
this category suc
h
as curv
e speed warning, low bridge
war
ning,
wr
ong way
aler
t
and am
ber
aler
t.
3.
RELATED WORK
The
ge
og
ra
phi
cal
or
p
o
si
t
i
o
n
-
base
d
r
out
i
n
g
p
r
ot
ocol
s
we
r
e
de
vel
o
pe
d f
o
r
wi
rel
e
ss m
o
b
i
l
e
ad
hoc
,
sen
s
o
r
and
for p
a
ck
et rad
i
o
n
e
two
r
k
s
i
n
1
9
8
0
s
[8
], [9
].
Th
e
first
p
o
sitio
n b
a
sed pro
t
oco
l
was
p
r
o
posed
b
y
Taka
gi
an
d
Kl
enn
r
ock i
n
19
84
wi
t
h
t
h
e c
o
ncept
of
p
r
og
r
e
ss t
o
t
h
e de
st
i
n
at
i
on
[
10]
.
I
n
19
8
7
t
h
e i
m
pr
o
v
e
d
versi
on
p
r
o
p
o
s
e
d by
Fi
n
n
,
w
h
i
c
h i
s
base
d o
n
ge
o
g
ra
p
h
i
cal
di
st
ance t
o
t
h
e dest
i
n
at
i
o
n
n
ode
. T
h
ere a
r
e
som
e
st
rat
e
gi
es pr
o
p
o
se
d base
d on
di
rect
i
o
n
an
g
u
l
a
r de
vi
a
tio
n, wh
ich is
refer to lin
e
b
e
tween
d
e
stin
ation
and
forwa
r
der node [11]. T
h
ere a
r
e som
e
hybrid approac
h
es prop
ose
d
and us
ed both m
e
thods DRE
A
M (Distance
Ro
u
ting
Effect
Alg
o
rith
m
fo
r Mo
b
ility), and
DHGR (D
yn
amic Hyb
r
id
Geo
g
rap
h
i
c Rou
tin
g)[12
]
. Th
ese typ
e
s
of m
e
thods are
based on position info
rm
ation for route fi
nding
and select the next hop
to forward the packe
t
t
o
wa
rd
t
h
e
des
t
i
n
at
i
on
by
geo
g
ra
p
h
i
cal
di
rec
t
i
on.
The
r
e a
r
e
f
o
u
r
m
a
i
n
st
ra
t
e
gi
es f
o
r
f
o
r
w
ardi
ng
t
h
e
pac
k
et
i
n
geo
g
r
ap
hi
cal
b
a
sed ro
ut
i
n
g pr
ot
oc
ol
s
s
h
o
w
s
i
n
Fi
g
u
r
e 2.
Fi
gu
re
2.
F
o
r
w
ardi
ng
St
rat
e
gi
es
The one of
the
effecti
v
e way of
forwarding the
pac
k
et
is gr
eed
y
app
r
o
a
ch
[
1
3
]
, w
h
er
e so
ur
ce no
de
select th
e n
e
igh
bor no
d
e
wh
ich
is n
e
ar with d
e
stin
ation node.
Hello m
e
ss
age car
ry the s
o
urce node current
p
o
s
ition
and
destin
atio
n
p
o
s
i
tio
n
and
fo
rward
th
e
p
a
ck
et b
u
t
it is n
o
t
mean
th
at always p
o
s
ition
based
pr
ot
oc
ol
sel
ect
an adeq
uat
e
v
e
hi
cl
e no
de. T
h
e sel
ect
i
on o
f
cl
oser n
ode
w
i
t
h
t
h
e dest
i
n
at
i
on n
o
t
m
ean it
i
s
a
best route or s
u
ccess
f
ully reaches destin
ation. If the path is used in this
s
t
rategy, norm
a
lly
it refers to gree
dy
alo
n
g
th
e p
a
th [6
], wh
ere nod
e selectio
n
is b
a
sed
on
ro
ad
to
n
e
x
t
jun
c
tio
n
and
selected
p
a
th. Bu
t still
th
is
enha
nce
d
m
e
t
hod s
u
ffe
red
fr
o
m
i
n
suf
f
i
c
i
e
nt
sel
ect
i
on o
f
f
o
rwa
r
di
ng
n
ode
due t
o
p
r
opa
g
a
t
i
on an
d
no
de
hi
g
h
m
obi
l
i
t
y
i
ssues i
n
net
w
or
k.
There a
r
e som
e
ot
her
gre
e
dy
app
r
oac
h
es
p
r
o
p
o
sed
wi
t
h
som
e
rest
ri
ct
i
ons t
o
add
r
esse
d a
nd
ove
rc
om
e t
h
ese i
ssues.
Som
e
of t
h
em
sol
v
ed t
h
e
pr
o
p
ag
at
i
on
p
r
o
b
l
e
m
s
i
n
ju
nct
i
o
ns a
n
d
base
d
on
pri
o
ri
t
y
no
de exi
s
t
i
n
ce
nt
er o
f
a j
u
nct
i
on.
Al
t
h
ou
g
h
there are s
o
m
e
issues rela
ted to restricted
gree
dy
ap
pro
ach su
ch
as co
mm
u
n
i
catio
n
bo
ttlen
eck. Th
e bo
ttlen
e
ck
m
ean
s if
prio
rity jun
c
tio
n
n
o
d
e
is a
n
e
igh
bor
o
f
sending
node or ve
hicle
node
m
oving
slow and
stop and
becom
e
a priority
junction
node and
receive
all the
in
co
m
i
n
g
tr
af
f
i
c. A
n
o
t
her
limitatio
n
is selec
tio
n
of
n
e
ighbo
r
for
fo
rw
ard
i
n
g
th
e
p
a
ck
et, w
h
ich
is
m
o
v
i
n
g
t
o
th
e d
e
stin
ation o
r
p
r
iority j
unctio
n
nod
e. This restricti
on al
so su
ffe
re
d f
r
o
m
so
m
e
error
s
i
n
net
w
or
k s
u
ch as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1407 –
1416
1
410
sel
ect
i
ng a
ne
x
t
ju
nct
i
o
n
wh
e
n
ot
he
r a
d
jace
nt
r
o
a
d
s a
r
e
w
i
t
hout
ve
hi
cl
es an
d
packet
wi
l
l
t
r
avel
bac
k
on
t
h
e
sam
e
road an
d
l
e
ss freq
u
e
n
cy
pr
o
b
l
e
m
arose.
Thi
s
app
r
oach
i
s
cal
l
e
d im
pr
ove
d g
r
ee
dy
. The i
m
prove
d gree
dy
app
r
oach o
v
e
r
com
e
s
t
h
e i
ssue of gre
e
dy
ap
pr
oac
h
whe
n
v
e
hi
cl
es st
op t
o
fol
l
o
w r
e
d si
g
n
al
s and m
i
ght
be i
n
tende
ncy to se
nd t
h
e pac
k
et to opposite dire
ction nod
es. B
ecause im
proved greedy
a
p
proach is
only routes
the pac
k
ets
vi
a traveling
ve
hicles toward
the desti
n
a
tio
n and
so
lv
ed
t
h
is issu
e.
T
o
address t
h
ese
issues,
researc
h
er
s pr
op
ose
d
di
f
f
ere
n
t
t
y
pes of so
l
u
t
i
ons f
o
r f
o
r
w
ar
di
n
g
t
h
e p
acket
t
o
t
h
e dest
i
n
at
i
on. I
n
bel
o
w
sect
i
on,
we
di
s
c
uss
p
o
p
u
l
a
r
g
e
og
ra
phi
cal
fo
r
w
ar
di
n
g
m
e
t
h
o
d
s.
3.
1. Geo
g
r
a
ph
i
c
al
Forw
ardi
ng Me
th
ods
The
ge
og
rap
h
i
cal
fo
rwa
r
di
n
g
m
e
t
hod
s
does
n
o
t
pe
rf
o
r
m
wel
l
i
f
i
t
can
n
o
t
fi
nd
t
h
e
ne
x
t
ho
p
beca
use
of
t
a
ki
n
g
wr
on
g deci
si
on
at
i
n
t
e
rsect
i
o
ns, d
u
e
t
o
hi
g
h
vel
o
ci
t
y
and
l
o
n
g
er
del
a
y
i
n
net
w
or
ks.
The
sel
e
c
t
i
on o
f
next
ho
p,
w
h
i
c
h i
s
nea
r
wi
t
h
dest
i
n
at
i
o
n ve
hi
cl
e n
ode m
a
y
sel
ect
a l
ong
er pat
h
t
h
at
d
o
e
s n
o
t
g
o
t
o
wa
rds t
h
e
d
e
stin
ation
.
In
th
is situ
atio
n, t
h
e recov
e
ry strateg
y
p
r
o
p
o
s
ed
by
[
3
]
an
d [1
3
]
based o
n
pl
an
ner g
r
ap
h, b
u
t
t
h
ese
strategies are
not ef
fi
cient in
pre
v
e
n
tive ve
hicular en
vironment, whe
r
e large
obstacl
es (buildi
n
gs, tree
s, etc.)
obst
r
uct
t
h
e t
r
a
n
sm
i
ssi
on si
g
n
a
l
s
. Va
ri
o
u
s a
p
pr
oac
h
es
pr
o
p
o
se
d t
o
o
v
erc
o
m
e
t
h
ese p
r
o
b
l
e
m
s
, w
h
ere a
v
e
hi
cl
e
node broadcast
beacon m
e
ssa
ge to decide
the location of its direct neighbor
s
.
Each
node
stores and m
a
intains
d
i
rect neigh
bor inform
atio
n
in
a tab
l
e, wh
ile th
e veh
i
cles
are in
sp
eed
s
so
th
e in
form
a
tio
n
is
o
u
t
d
a
ted
and
cause
of
pac
k
e
t
s dr
op
pi
n
g
.
Al
so t
h
e sa
vi
ng i
n
f
o
rm
at
i
on i
n
t
a
bl
es an
d m
a
i
n
t
a
i
n
ence l
ead t
o
net
w
o
r
k o
v
e
r
head
and c
o
nsum
e reso
urces as
we
l
l
as di
st
urb t
h
e sl
eepi
n
g cycles and e
ffect t
h
e VANET c
o
mmunication.
Some
othe
r propose
d
schem
e
s [14]
-[16] based
on receiver-
side re
lay elec
tion and use one or more tha
n
one criteria
fo
r f
o
rwa
r
di
ng
fo
r c
h
o
o
si
ng
next
best
ho
p.
These
schem
e
s d
o
not
c
o
n
s
i
d
er l
o
w c
o
n
n
ect
i
o
n
t
i
m
e
am
ong
v
e
h
i
cles, erro
r-pron
e wi
reless ch
ann
e
ls, and
op
ti
m
a
l
wireless rang
e. So
m
e
issu
es still ex
istin
g
in
th
ese
ap
pro
ach
es su
ch
as sub
-
op
ti
mality
o
f
p
a
ck
et forward
i
ng
, overh
ead
in
n
e
t
w
o
r
k
,
p
ack
et drop
p
i
n
g
, ro
u
t
e failu
re,
an
d r
e
p
a
ir
noti
fi
cation. T
o
address
these
issues
in
ve
hicu
lar n
e
t
w
or
k, r
e
sear
ch
ers pr
opo
sed
d
i
f
f
e
r
e
nt
approaches
for pac
k
et
forwa
r
ding s
u
c
h
as
beacon a
n
d bea
c
onless
based
strategies.
To take t
h
e
propert
i
es of
vehi
c
u
l
a
r
net
w
o
r
k t
h
e bea
c
onl
ess a
p
pr
o
aches are c
o
n
s
ider m
o
st appropriate and
suitable for
vehicular
network. T
h
es
e approac
h
es
do
not
se
nd the beacon or Hello
m
e
ssages to
find the nei
g
hbor a
nd forwarder
no
de
i
n
net
w
or
k.
The m
a
i
n
ob
je
ct
i
v
e o
f
t
h
i
s
re
vi
ew i
s
t
o
di
sc
uss t
h
e
beaco
n
l
ess ge
og
ra
phi
cal
fo
rwa
r
di
n
g
ap
pr
oac
h
es,
w
h
ich
ar
e m
o
stly u
s
ed fo
r fo
rw
ard
i
ng
t
h
e d
a
ta
with
Hello
messag
e
s.
3.
2. B
e
ac
onl
e
s
s
D
a
t
a
F
o
rw
a
r
di
ng
Scheme
s
For Neighbor
discovery, ge
ogra
ph
ical routi
n
g protoc
ols
s
e
nd pe
riodic
beacon or
hello m
e
ssages to
update its own and neighbor inform
ation in the network. Through th
ese beacon pe
riodic
m
e
ssages, the
vehicle
nodes
update a
n
d m
a
intain its list of neighbors.
If t
h
e
neighbor lis
t is outd
ated the ve
hicle node
faced
pr
o
b
l
e
m
i
n
t
o
sel
ect
opt
i
m
al
node a
s
a ne
xt
c
a
ndi
dat
e
o
r
m
a
y
sel
ect
a node
whi
c
h i
s
nea
r
wi
t
h
ra
di
o
ran
g
e a
n
d
will
m
o
v
e
o
u
t
fro
m
rad
i
o
rang
e. To
so
l
v
e this issu
e th
e b
e
aco
n
l
ess ap
pro
a
ch
ed
h
a
ve b
e
en
propo
sed. In
b
e
low
section t
h
e m
o
st effective
and efficient
beac
onless
routing strategies
are discuss.
3.
2.
1. C
o
nt
ent
i
on-b
ase
d
B
e
a
c
onl
e
ss Pac
k
et
Forw
ardi
n
g
Al
g
o
ri
thm
(
C
B
B
PF)
Thi
s
i
s
anot
her
geo
g
ra
p
h
i
cal
base
d beac
onl
e
ss fo
rwa
r
di
ng
al
go
ri
t
h
m
[17]
wi
t
h
co
nt
ent
i
o
n-
base
d ne
xt
ho
p sel
ect
i
o
n
.
C
B
B
PF cont
ai
ns t
h
ree t
y
pes of
packet
s:
re
q
u
est
,
re
pl
y
,
an
d dat
a
. Fi
rst
t
h
e pr
ot
oc
ol
h
o
l
d
s t
h
e
d
a
ta p
a
ck
et and
o
n
l
y
b
r
o
a
d
c
ast requ
est con
t
ro
l
p
a
ck
et and
wait fo
r t
h
e
rep
l
y, th
is
p
a
ck
et co
n
t
ai
n
p
o
s
itio
n of
forwa
r
ding
a
n
d destination node. Whe
n
neighbor nodes
receive
re
que
s
t pac
k
et the
n
they c
h
eck the closer
n
o
d
e
wit
h
th
e
d
e
stin
ation
and if an
y n
e
igh
bor find
th
is
so
it will b
eco
m
e
a
forward
i
ng
nod
e. Th
e su
ccess n
o
d
e
br
oa
dcast
re
pl
y
cont
rol
pac
k
et
wi
t
h
repl
y
d
e
st
i
n
at
i
on
fi
el
d
,
t
h
e
n
s
o
urce
n
ode
f
o
r
w
a
r
d
t
h
e dat
a
.
If
t
h
e
n
e
i
g
h
b
o
r
n
o
d
e
d
o
e
s
n
o
t
find
th
e nod
e th
en
after a set ti
m
e
it d
r
o
p
the requ
est p
a
cket an
d
go
to
its in
itial sta
t
e. In
the
case of l
o
cal
m
a
xim
u
m
C
B
B
PF use
d
st
or
e and car
ry
st
r
a
t
e
gy
based
on
t
h
e cont
e
n
t
i
o
n
next
-
h
op sel
e
ct
i
on. I
n
t
h
i
s
st
rat
e
gy
, t
h
e t
i
m
e
r val
u
es
of al
l
can
di
dat
e
s n
odes a
r
e a
d
ju
st
ed
wi
t
h
di
st
ance o
f
t
w
o
no
des a
nd
p
o
si
t
i
ons o
f
cur
r
ent
f
o
r
w
a
r
der an
d de
st
i
n
at
i
on nei
g
h
b
o
r
. Aut
h
o
r
eval
u
a
t
e
d t
h
e pr
o
p
o
s
ed p
r
ot
ocol
i
n
spa
r
se an
d den
s
e
envi
ro
nm
ent
and
anal
y
zed
t
h
e pe
rf
orm
a
nce i
n
t
e
rm
s of e
n
d-t
o
-e
nd
del
a
y
,
pac
k
et
del
i
v
e
r
y
rat
i
o
a
n
d a
v
erage
st
ore a
n
d ca
rry
t
i
m
e
.
3.
2.
2. Geo
g
r
a
phi
c
R
a
n
d
om
Forw
ar
di
ng
(
G
eR
aF)
Michele Zorzi, et al., [18] pro
p
o
s
ed
a sch
e
me, wh
ich
is si
milar with
CBF, wh
ere th
e RTS ( requ
est-
t
o
-se
n
d
an
d C
T
S (cl
e
a
r-t
o-se
nd
) M
A
C
han
d
sh
ake
m
e
t
hod
i
s
use
d
t
o
c
o
n
t
rol
du
pl
i
cat
e f
o
r
w
ar
di
n
g
i
s
s
u
e wi
t
h
beaconless a
pproac
h
i
n
stead
of full m
e
ssage. T
h
e sc
he
m
e
is base
d
on
geogra
phi
cal location a
n
d ra
ndom
ly
sel
ect
i
on of t
h
e n
ode
s an
d
rel
y
on n
ode
s by
cont
e
n
t
i
o
n bet
w
ee
n rec
e
i
v
ers. T
h
e a
u
t
h
or ass
u
m
e
d som
e
p
a
ram
e
ters to
ev
alu
a
te th
e sch
e
m
e
with
ex
istin
g
appr
oac
h
es such as e
v
e
r
y
no
de k
n
o
w
i
t
s
own
po
si
t
i
on an
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Geo
g
r
a
p
h
i
c
al
Forw
ardi
ng
M
e
t
h
o
d
s i
n
Ve
hi
cul
a
r
Ad
h
o
c N
e
t
w
orks (
K
as
hi
f
N
a
seer
Q
u
res
h
i
)
1
411
sin
k
no
de po
si
tio
n
.
Th
e node in
itially b
r
o
a
d
cast th
e own
ad
dress
w
ith
l
o
catio
n of t
h
e
p
r
oj
ected
d
e
sti
n
atio
n.
All nei
g
hbor node
s a
r
e
receiving the m
e
ssage, assess th
e
pa
cket
a
n
d
check
own position with destination
a
nd
trying to
beha
ve as a relay. This pac
k
et is RTS fra
m
e
a
nd
waits for receive a reply
with CTS fra
m
e. The
sel
ect
i
on of t
h
e rel
a
y
node i
s
based o
n
di
vi
di
n
g
t
h
e co
ver
a
ge area i
n
t
o
r
e
l
a
y
regi
on an
d n
o
n
-rel
a
y
re
gi
o
n
a
n
d
n
on-
r
e
lay no
des ar
e no
t selected
fo
r
r
e
lay. In a case of hi
gh
reply, the
optim
al forwa
r
ding node is selec
t
ed for
forward
i
ng
th
e d
a
ta p
ack
et to th
e n
e
ig
hbo
rs. Th
e p
a
ck
et con
t
ain
s
bro
a
d
c
ast ad
d
r
ess, transmitter
lo
catio
n
and
fin
a
l
d
e
stin
ation
lo
cation
.
Auth
or ev
alu
a
ted th
is sch
e
m
e
i
n
te
r
m
s
o
f
a
v
er
a
g
e nu
mb
e
r
of
h
o
p
s
and
av
aila
b
l
e
neighbors to reach the destination. Ho
weve
r, this schem
e
avoi
ds som
e
im
portant para
meters such as
packe
t
del
i
v
ery
rat
i
o
a
nd e
n
d
-
t
o
-en
d
del
a
y
.
An
ot
he
r
weak
ness o
f
th
is sch
e
m
e
is
d
u
p
licate
m
e
ss
ag
e retran
sm
is
sio
n
at
t
h
e sam
e
t
i
m
e
and
cau
se
of e
nha
nci
n
g t
h
e
d
a
t
a
packet deli
very at t
h
e
dest
ination
node.
3.
2.
3. Gu
ara
n
teed Del
i
v
er
y B
e
aco
n
l
e
ss
F
o
rw
ardi
ng
(
G
D
B
F)
Chawla et al., [14]
propose
d
beaconless s
c
hem
e
based
on RTS/CTS
hands
h
a
k
e m
e
chanism
and
bi
ased
t
i
m
e
out
t
o
s
e
l
ect
bes
t
ne
xt
h
o
p
.
T
h
e
pr
o
p
o
s
ed
s
c
hem
e
i
s
wo
r
k
i
n
g
wi
t
h
t
w
o
m
odes
gree
d
y
an
d
reco
very
, t
h
r
o
ug
h
gree
dy
m
ode cl
oser
n
o
d
e
wi
t
h
de
st
i
n
at
i
on
resp
o
nd
fi
rst
an
d i
n
reco
very
m
ode t
h
e
no
d
e
selected
w
ith
sh
or
ted ti
m
e
o
u
t
and
n
ear with
sou
r
ce node, and
o
t
h
e
r
nig
h
b
our
s
n
o
d
e
can
cel CTS
p
ack
ets
au
to
m
a
tical
ly,
if th
e con
n
ecti
o
n
with
so
urce n
o
d
e
is
no
t par
t
o
f
t
h
e G
a
br
iel g
r
ap
h.
W
h
en
ano
t
h
e
r
n
e
i
g
hbo
r
no
de re
cei
ves
dat
a
pac
k
et
s f
r
o
m
t
h
e source
no
de t
h
e
n
t
h
e
y
cancel
m
e
ssages.
GDB
F s
c
hem
e
showe
d
bet
t
e
r
per
f
o
r
m
a
nce usi
ng IE
EE 8
0
2
.
11 M
A
C
l
a
y
e
r i
n
t
e
rm
s of l
o
w
over
h
ea
d an
d gua
ra
nt
eed del
i
very
. H
o
wev
e
r
,
t
h
i
s
sch
e
m
e
u
s
ed sin
g
l
e criteria t
o
m
easu
r
e t
h
e waiting
tim
e-
o
u
t
, wh
ich
is
n
o
t
enou
gh
for
h
i
gh
- p
e
rforman
c
e
vehi
c
u
l
a
r net
w
or
ks.
3.2.4. Priority-based Receiv
er-Side Relay Election
Sc
he
me
Eg
oh et
al
.
,
[
2
1]
pr
o
p
o
s
ed a
schem
e
based
on
p
r
iority criteria with
least rem
a
in
in
g
distan
ce and
gene
ral
i
zed m
a
ppi
ng f
u
nct
i
o
n
for
geo
g
ra
p
h
i
c
al
for
w
ar
di
n
g
.
Th
e sch
e
m
e
co
n
s
id
ering
relativ
e p
r
i
o
rity b
e
tween
th
e elig
ib
le rel
a
y n
o
d
e
an
d
tak
e
th
e least remain
in
g
d
i
st
ance fro
m
d
e
stin
atio
n
.
Th
e
relativ
e prio
rity of
elig
ib
le
no
des a
r
e co
n
t
rol
l
e
d
by
m
a
ppi
ng s
h
a
p
e p
a
ram
e
t
e
rs and
sui
t
a
bl
e f
o
r
achi
e
vi
n
g
t
h
e
best
rel
a
y
el
ect
i
o
n
perform
a
nce. The sc
hem
e
only uses distanc
e
from
the tr
ansmitter to receiver as a
single criteria and calculat
e
th
e waitin
g
time. Distan
ce is determin
ed
b
y
th
e po
ten
tial n
e
x
t
h
o
p
s
an
d
th
e d
e
stin
atio
n
n
o
d
e
. Au
thor an
alyzed
th
e pro
t
o
c
o
l
p
e
rfo
r
m
a
n
ce th
rou
g
h
p
r
ob
ab
ilist
i
c an
alysis and sho
w
ed
b
e
tter ach
iev
e
m
e
n
t
s
in
th
e
d
e
lay of on
e
election attem
p
t, election
failure
pr
oba
bility and effective
de
lay for su
ccessful
relay election process.
3.2.5. Mul
t
i-Criteria Receiver-
Side Relay Election
Sc
he
me
Eg
oh
et
al
.,
[1
5]
p
r
o
p
o
sed
t
w
o cri
t
e
ri
a,
w
h
i
c
h ar
e ba
sed
o
n
fo
rwa
r
di
n
g
no
de sel
ect
i
o
ns:
ho
p
pr
o
g
res
s
(greed
i
n
ess) and
reach
a
b
ility (lin
k
qu
ality) to
d
ecid
e
wa
iting ti
m
e
fo
r selectio
n
th
e
b
e
st n
e
x
t
h
o
p
.
Th
e sch
e
m
e
uses m
u
l
t
i
param
e
t
e
rs
m
a
ppi
ng f
u
nct
i
o
n t
o
m
e
rge t
h
e al
l deci
si
on p
r
oc
ess i
n
t
o
a si
ng
l
e
vi
rt
ual
cri
t
e
ri
o
n
t
o
cat
ego
r
i
ze t
h
e
pre
d
i
c
t
a
bl
e rel
a
y
candi
dat
e
s
.
Ho
we
ver,
pr
o
pos
ed a
p
p
r
oac
h
i
s
feasi
b
l
e
f
o
r
radi
o t
r
an
s
m
i
ssi
on
range follows a
fi
xed ci
r
c
ul
a
r
radi
us an
d
n
o
t
ap
pr
op
ri
at
e fo
r V
A
N
ET o
b
st
acl
es en
vi
ro
nm
ent
.
Som
e
ot
he
r
schem
e
s [22] proposed
with
m
u
lti-criteria r
eceiver-side se
lf-election t
o
reduce t
h
e traf
fi
c ove
rhead
ge
nerated
by
peri
odi
c b
e
acon m
e
ssages
and i
n
fl
ue
nce
the IEEE 802.11 RTS/CTS
fram
e
exchange instead of se
nde
r
election sc
heme. T
h
e
receive
r self-election s
c
hem
e
is used
to select best
next
hop, a
n
d
keep away from
the
im
pl
i
c
i
t
broa
d
cast
of t
h
e be
acon m
e
ssage i
n
geo
g
r
ap
hi
ca
l
for
w
ar
di
n
g
i
n
co
nge
st
ed n
e
t
w
o
r
ks
. The
schem
e
uses t
h
re
e key
param
e
t
e
rs for wai
t
i
ng f
u
nct
i
on:
f
o
r
w
ar
d p
r
o
g
re
ss, o
p
t
i
m
al
t
r
ansm
i
ssi
on
rang
e, an
d re
cei
ve
d
po
we
r.
Ho
we
ver
,
t
h
ese st
at
i
c
wei
g
ht
s are
not
s
u
i
t
a
bl
e
fo
r ra
pi
dl
y
a
n
d dy
nam
i
call
y
cha
ngi
ng
ve
h
i
cul
a
r
envi
ro
nm
ent
.
3.
2.
6.
I
m
pl
i
c
i
t
Geo
g
ra
phi
cal
Forw
ar
di
ng
This sc
hem
e
proposed by
Son et al., [21] a
n
d ba
sed on t
h
e integration
of
beaconless routing with
IEEE 802.11
MAC layer. In
this schem
e
, th
e node holds the packet with
known destinati
on a
nd
broa
dca
s
t the
d
a
ta p
a
ck
et an
d
no
t aw
ar
e
o
f
its n
e
i
g
hbor
s nod
es. Befo
r
e
f
o
rw
ard
i
ng
th
e
p
a
ck
et,
ev
er
y
n
e
igh
bor
nod
e
co
m
p
u
t
es a small tran
sm
issio
n
tim
e-o
u
t
and
d
e
p
e
nd
s
o
n
its
p
o
s
ition
relativ
e with
d
e
stin
at
io
n
and
last nod
e.
If
th
e nod
e is sit
u
ated
at
b
e
st
p
o
s
ition
t
h
en it in
trodu
ce th
e sho
r
t
d
e
lay an
d retran
sm
it
th
e p
a
ck
et
fi
rs
t. Th
e
resi
d
u
al
n
ode
cancel
s t
h
e sc
hed
u
l
e
d
pac
k
e
t
aft
e
r pe
rcei
vi
ng t
h
i
s
t
r
ansm
i
ssi
on.
Th
o
u
g
h
,
i
f
som
e
nei
g
hb
o
r
s
with
forward
prog
ress m
a
y n
o
t h
ear th
e m
e
ssag
e
th
ey can retran
sm
it.
3.
2.
7.
Sel
ect
a
nd Pr
ote
s
t B
a
sed B
e
ac
onl
e
s
s
Forw
ardi
n
g
In t
h
i
s
schem
e
aut
h
or
, [
2
2]
pr
op
ose
d
a sel
ect
and
p
r
ot
est
be
aconl
ess
f
o
r
w
a
r
di
ng sc
hem
e
that
ena
b
l
e
s
reactiv
e face ro
u
ting
with
g
u
arantee
d
delive
r
y. T
h
e forwa
r
der
n
ode
t
r
i
g
ge
rs t
h
e c
o
nt
ent
i
on
p
r
oce
ss,
w
h
ere t
h
e
probable nei
g
hbors of planner gra
ph m
i
ght be answer. Then the protes
t messages are
used to accurate wrong
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1407 –
1416
1
412
d
ecision
s. Th
e
sch
e
m
e
h
a
s two
po
ten
tials
to
d
eal
with beac
onless
recove
ry iss
u
es
: select and protes
t
approaches
. T
h
e select approach is
base
d on beac
onles
s
f
o
r
w
ar
der
pl
a
n
ari
zat
i
on (B
FP)
a
n
d
p
r
ot
est
s
a
p
p
r
oac
h
i
s
base
d
o
n
An
gul
a
r
r
e
l
a
y
i
ng.
The
sel
ect
ap
p
r
oac
h
c
o
nst
r
uc
t
a l
o
cal
pl
an
n
e
r s
u
b
g
r
ap
h,
a
n
d
u
s
e
fo
r a
f
t
e
rwa
r
d
s
by face routing protoc
ol, as
shown in Fi
gure 3(a
)
, whe
r
e node F send
s a
n
RTS pac
k
et and contention betwee
n
candi
dat
e
n
o
d
e
s
be
gi
n.
It
i
s
o
p
p
o
si
t
e
f
r
om
g
r
eedy
fo
rwa
r
di
ng
,
whe
r
e al
l
no
de
wi
t
h
i
n
t
r
ansm
i
ssi
on ra
n
g
e are
l
i
k
el
y
cont
en
d
e
rs an
d t
h
e t
i
m
eout
i
s
ba
sed
o
n
t
h
e
di
st
ance
of
fo
rwa
r
der
n
o
t
t
h
e dest
i
n
at
i
o
n
.
The
n
ca
ndi
dat
e
C
is suppressed,
suc
h
as it has t
o
cancel the sc
heduled
re
pl
y
i
f
an
ot
he
r can
di
dat
e
C
1
si
t
u
at
e
d
at
Ga
bri
e
l
ed
ges.
Thi
s
i
s
d
u
e t
o
sup
p
r
esse
d n
ode
s are wi
t
n
e
ss i
n
co
nt
ra
di
ct
i
on o
f
ot
her
candi
dat
e
s. C
ons
eq
ue
nt
l
y
, t
h
r
o
ug
h
pr
ot
est
m
e
ssages t
h
e
resul
t
i
n
g
gra
p
h
obt
ai
n
m
o
re edges
co
m
p
ared t
o
Gab
r
i
e
l
su
bg
ra
ph a
n
d
i
n
c
o
r
r
ect
de
ci
si
on
s
might be c
o
rrected. T
h
ese
messages are
essential ev
e
n
i
f
an
ot
he
r s
u
b
g
r
ap
h c
o
n
s
t
r
uct
e
d,
pl
an
ne
r an
d
con
n
ect
ed
p
r
ox
im
it
y
grap
h ca
n
be c
o
n
s
t
r
uct
e
d
wi
t
h
o
u
t
pr
ot
e
s
t
s
.
Fi
gu
re
3.
Sel
e
c
t
-an
d
-P
r
o
t
e
st
b
a
sed
beac
onl
es
s f
o
r
w
ar
di
n
g
s
c
hem
e
The A
n
gul
a
r
R
e
l
a
y
i
ng i
s
st
art
i
ng
fr
om
R
T
S pac
k
et
s, w
h
i
c
h are t
r
a
n
sm
i
t
t
h
ro
u
gh
f
o
r
w
a
r
de
r n
o
d
e F
and
co
nt
ai
n t
h
e fo
r
w
ar
der a
n
d
pre
v
i
o
us
ho
p
p
o
si
t
i
on a
n
d r
ecove
ry
di
rect
i
o
n
.
T
h
e ca
ndi
dat
e
n
o
d
e a
n
s
w
er i
s
b
a
sed
o
n
ang
e
l b
e
tween
p
r
evio
u
s
hop
,
d
e
lay fun
c
tion
,
and
p
o
s
ition
o
f
can
d
i
d
a
te an
d fo
rward
e
r
n
o
d
e
s. Th
e
first nod
e C rep
lies cou
n
t
er-clo
ckwise wit
h
ou
t
fi
nal
can
di
dat
e
a
nd
ot
h
e
r can
di
dat
e
s
are l
o
cat
ed
wi
t
h
i
n
t
h
e
Garbriel circle
over (F, C
)
with
large
r
dela
y. Suc
h
a
ca
ndidate node
m
a
y be se
nd a
protest agai
nst t
h
e
fi
rst
d
ecision
an
d au
to
m
a
tical
ly s
e
lect f
o
r can
d
i
d
a
te nod
e.
I
f
need
ed th
is
d
e
cisio
n
ag
ain corr
ected
t
h
ro
ugh m
o
r
e
p
r
o
t
est
m
e
ssag
e
s u
n
til n
o
p
r
otest issu
ed
for
furth
e
r p
r
o
cess. Th
en
th
e last can
d
i
d
a
te select fo
r n
e
x
t
ho
p an
d
g
e
ts th
e m
e
ssa
g
e
f
r
o
m
th
e f
o
rw
ard
e
r, as show
n in
Figu
r
e
3(
b)
.
3.
2.
8.
Ne
xt
H
o
p F
o
rw
ardi
n
g
Me
th
od
In t
h
is
propos
ed [23] forwardi
ng m
e
thod e
v
ery
node
broadcast
beacon
m
e
ssages wit
h
its own
ID
and own
position inform
ation. After
receivi
ng
this hello message
from
neighbor node
s,
eac
h vehicle
node
cor
r
ect
s t
h
e l
o
cat
i
on i
n
f
o
rm
at
i
on
of i
t
s
nei
g
h
b
o
r
n
ode
s.
Aut
h
o
r
c
o
m
p
ared
p
r
o
p
o
sed
schem
e
wi
t
h
gree
dy
fo
rwa
r
di
n
g
m
e
t
h
o
d
w
h
ere
a sende
r n
ode
sel
ect
s node
for
fo
rwa
r
di
ng t
h
e
pac
k
et
whi
c
h i
s
ne
ar wi
t
h
d
e
stin
ation
,
b
u
t th
e n
u
m
b
e
r
of hop
fro
m
so
urce nod
e will
be
m
i
n
i
m
i
zed
a
n
d
fo
rward
i
ng
d
i
stan
ce o
f
on
e
h
o
p
is
large. Author
analyzed t
h
at
i
f
t
h
e
di
st
ance
o
f
one
ho
p i
s
l
a
r
g
er
t
h
a
n
pr
o
p
agat
i
o
n l
o
ss o
r
i
n
crea
se
s, t
h
e
n
tran
sm
issio
n
qu
ality in
th
e form
o
f
p
ack
et
erro
r rate
d
e
g
r
ad
ed. To
add
r
ess th
ese prob
lem
s
, au
th
or su
gg
ested
t
h
at
sel
ect
i
on i
s
base
d o
n
by
sel
ect
i
ng t
h
at
n
e
i
g
h
b
o
r
no
de
whi
c
h i
s
wi
t
h
i
n
a p
r
e
d
efi
n
ed
m
a
xim
u
m
for
w
ar
di
n
g
d
i
stan
ce as shown in b
e
l
o
w Fig
u
re
4
(
b
)
. The sch
e
m
e
al
so
co
nsid
er tran
smissio
n
q
u
a
lity o
f
th
e wireless lin
k,
because the
pa
th losses de
pe
nd
on t
h
e
forwa
r
di
ng
distan
ce
. For tra
n
sm
ission quality, the
term
ETT (expected
transm
ission time) [24] is use
d
to assess the
quality.
Basically the ETT is a functio
n of bandwidt
h of the link
an
d th
e lo
ss rate. If th
e p
a
ck
et erro
r rate is hig
h
t
h
e ETT i
n
creased. Th
en
th
e nex
t
ho
p will b
e
selected
u
s
i
ng
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Geo
g
r
a
p
h
i
c
al
Forw
ardi
ng
M
e
t
h
o
d
s i
n
Ve
hi
cul
a
r
Ad
h
o
c N
e
t
w
orks (
K
as
hi
f
N
a
seer
Q
u
res
h
i
)
1
413
lin
k
m
e
tric d
e
no
ted
b
y
EPD an
d con
t
ain
t
r
ansmissio
n
qu
ality
an
d fo
rward
i
n
g
d
i
stan
ce.
It
relates with
pro
g
ress
d
i
stan
ce
d
per
u
n
it tim
e. Fr
om th
e in
f
o
r
m
at
io
n
o
f
t
h
e
d
e
stin
atio
n n
e
i
g
hbor
, an
d
send
er no
d
e
s,
d
is calcu
lated
fo
r every
ne
xt
-
h
o
p
can
di
dat
e
no
de. E
v
ery
n
ode c
o
r
r
ect
s t
h
e nei
g
h
b
o
r i
n
f
o
rm
at
i
on peri
o
d
i
cal
l
y
t
h
rou
g
h
hel
l
o
m
e
ssages
a
n
d
packet
er
ro
r ra
t
e
m
easure
d
a
n
d rep
o
rt
e
d
. Th
e
pac
k
et
c
ont
ai
ns n
ode
I
D
, E
TT,
a
n
d
EP
D,
whe
r
e
ID is co
m
e
fro
m
h
e
llo
messag
e
s and
prog
ress d
i
stan
ce is calcu
lated
b
y
lo
catio
n
in
fo
rmatio
n
o
f
th
e send
er
no
de.
Aut
h
o
r
eval
uat
e
d t
h
e pr
o
pose
d
sche
m
e
perfo
rm
ance and sh
o
w
e
d
t
h
at
t
h
e sch
e
m
e
i
s
bet
t
e
r i
n
hi
g
h
th
ro
ugh
pu
t an
d in
p
ack
et
d
e
livery ratio
.
Fi
gu
re 4.
Ne
xt
-
h
o
p
f
o
r
w
ar
di
n
g
m
e
t
hod
3
.
2
.
9
.
Intellig
ent Bea
c
onless
Routing
In
[2
5
]
, an
i
n
tellig
en
t b
eacon
less (IB)
g
e
og
raph
ical rou
tin
g algo
rith
m
t
o
en
ab
le t
h
e
v
e
h
i
cles t
o
fo
rwa
r
d pac
k
e
t
al
on
g t
h
e
ci
t
y
st
reet
effi
ci
ent
l
y
. The
p
r
ot
oc
ol
i
s
ba
se
d
on
ref
o
rm
ed
80
2.
1
1
re
q
u
e
st
-t
o-
sen
d
/
c
l
ear-t
o
-
s
e
nd
(R
T
S
/
C
TS)
fram
e
s wi
t
h
s
o
urce
an
d
dest
i
n
at
i
o
n
di
s
t
ance, si
gnal
s
t
ren
g
t
h
a
n
d
di
rect
i
o
n
m
e
t
r
i
c
s. For s
t
abl
e
and rel
i
a
bl
e pack
et
fo
r
w
ar
di
n
g
can
di
dat
e
no
de c
o
n
s
i
d
er rel
a
t
i
v
e
di
rect
i
o
n an
d po
we
r
sig
n
a
l t
o
elect
itself in
tellig
ently. Th
e sim
u
l
a
tio
n
resu
lts sh
ow t
h
e IB
pro
t
o
c
o
l
po
sitiv
e resp
on
se i
n
term
s o
f
avera
g
e del
a
y
,
packet
del
i
v
e
r
y
rat
i
o
i
n
ur
ba
n vehi
c
u
l
a
r
sc
en
ari
o
.
3.
2.
10
. B
e
aco
n
l
e
ss on
De
man
d
Str
a
teg
y
(B
OSS)
An
ot
he
r ef
f
o
rt
of
beac
onl
es
s ro
ut
i
n
g
pr
ot
ocol
t
a
ken
by
Sanc
hez et
a
l
., [
26]
,
w
h
ere
t
h
e aut
h
o
r
pr
o
pose
d
beac
onl
ess
on
dem
a
nd st
rat
e
gy
fo
r wi
rel
e
ss se
ns
or
net
w
or
k (B
OSS
)
. T
h
e p
r
o
t
ocol
uses t
h
re
e way
han
d
s
h
a
k
e sch
e
m
e
R
T
S/
C
T
S and
D
D
F
D
as
a di
scret
e
t
i
m
er-assi
gnm
ent
fu
nct
i
o
n. T
h
i
s
fu
nct
i
o
n di
vi
d
e
d t
h
e
neighbor area
into s
ub a
r
ea
s according to progress t
o
ward
destination. T
h
e DDFD is used t
o
decreas
e
co
llisio
n
s
am
o
n
g
an
swers
during
selectio
n
p
h
a
ses.
Th
e main
co
n
t
ri
b
u
t
i
o
n
o
f
pro
t
o
c
o
l
i
s
th
e add
itio
n
o
f
fu
ll
dat
a
pac
k
et
an
d co
nsi
d
er act
i
v
e an
d
passi
ve
ackn
o
w
l
e
d
g
m
e
nt
m
echani
s
m
s
. H
o
we
ve
r,
pr
ot
oc
ol
achi
e
ve
d hi
g
h
packet
del
i
v
e
r
y
an
d rat
i
o
whi
l
e
ha
vi
n
g
l
o
w b
a
nd
wi
dt
h
c
o
n
s
um
pt
i
on.
3.
2.
11
. L
I
AIT
HON
Au
t
h
ors in
[27
]
p
r
o
p
o
s
ed
a lo
catio
n
aware
m
u
ltip
ath
v
i
d
e
o
stream
in
g sch
e
m
e
(LIAITHON) fo
r
ur
ba
n ve
hi
cul
a
r net
w
o
r
k
bas
e
d o
n
l
o
cat
i
o
n
i
n
fo
rm
at
i
on f
o
r
di
sco
v
e
r
t
h
e opt
i
m
al
rout
e. It
i
s
a m
u
l
t
i
p
at
h
receiver based protocol
for
mini
mize the collision, congestion
through the
packets
reduction i
n
lengt
h
com
p
ared t
o
si
ngl
e pat
h
p
r
ot
o
c
ol
. The
deg
r
e
e
of cl
ose
n
e
ss
and sel
ect
i
o
n o
f
fo
rw
ar
di
n
g
zone a
r
e use
d
f
o
r rel
a
y
n
o
d
e
fo
r t
r
an
smit
tin
g
th
e p
a
ck
ets for th
e in
t
e
rv
al
o
f
reservatio
n
tim
e to
ward th
e
d
e
stin
atio
n
.
Th
e fo
rward
i
ng
n
o
d
e
selection is b
a
sed
on
g
e
ograph
i
cal ad
v
a
n
ce,
lin
k
stab
ility
an
d
deg
r
ee of
clo
s
en
ess. Th
e d
e
gree
of
closenes
s is responsi
ble for
discoveri
ng t
w
o relativel
y
sh
ort
pat
h
s wi
t
h
m
i
nim
a
l rout
e
cou
p
l
i
n
g ef
fect
. The
p
r
o
t
o
c
o
l
d
o
e
s n
o
t
add
r
ess
t
h
e
im
p
act
o
f
d
i
stribu
tin
g
m
u
ltip
le
v
i
d
e
o
flows in
n
e
two
r
k
,
in
th
e p
r
esen
ce of
m
o
re
flow trav
ersi
n
g
in
sam
e
co
mmu
n
i
catio
n range
the
c
o
upling effects occ
u
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1407 –
1416
1
414
3.
2.
12
. VIRT
US
Cristiano et al., [28] propose
d
a
resilient location awa
r
e video un
icast schem
e
(VIRTUS) reactive
unicast recei
ving
base
d prot
ocol for se
lection policy of rel
a
ying nodes. Prot
ocol uses the current a
nd
future
lo
catio
n
with
th
e h
e
lp
o
f
three facto
r
s
forward
i
ng
zo
n
e
d
e
fi
n
itio
n
,
reserv
ation
ti
m
e
e
s
ti
m
a
t
i
o
n
and
waitin
g
t
i
m
e
cal
cul
a
t
i
o
n
wi
t
h
t
h
e
hel
p
of
B
a
y
e
si
an st
at
e est
i
m
a
ti
on.
The l
i
m
it
at
i
on of t
h
i
s
pr
ot
oc
ol
i
s
co
nst
a
nt
val
u
e
of
fo
rwa
r
di
n
g
zo
ne di
r
ect
ed t
o
war
d
t
h
e
dest
i
n
at
i
on a
n
d n
o
t
sui
t
a
bl
e f
o
r
u
r
ba
n en
vi
r
o
nm
ent
beca
use
v
e
hi
cl
e
nodes
are m
ovi
ng along the
road.
3.
2.
13
. B
e
aco
n
l
e
ss Opp
o
r
t
un
i
s
ti
c R
o
u
t
i
n
g
Denis et al., [29] proposed a
beaconless opport
unis
tic routing (LinGo)
protoc
ol based on link quality
an
d b
eacon
less app
r
o
a
ch
for
m
o
b
ile
m
u
lti
med
i
a in
tern
et
o
f
th
ing
s
.
Th
e pro
t
o
c
o
l
work
i
n
g on
m
u
ltip
le
metrics
su
ch
as lin
k quality, g
e
og
rap
h
ical lo
catio
n an
d en
erg
y
.
Au
t
h
or
p
r
op
osed a cro
ss layer app
r
o
a
ch
in
cl
u
d
e
MAC
an
d
fo
rward
i
ng
fun
c
tio
n
a
lities and
assu
m
e
t
h
e CSMA/C
A
mech
an
ism
rel
i
es o
n
b
eaco
n
l
ess m
e
th
od
wit
h
two
ope
rat
i
o
nal
m
o
des:
co
nt
ent
i
o
n
and back b
o
n
e
based fo
r
w
ar
di
n
g
.
F
o
r fo
r
w
ardi
ng pr
ot
oc
o
l
used DFD f
u
nct
i
o
n
in
clu
d
i
n
g
lin
k qu
ality, g
e
ograph
i
cal in
formatio
n
and
re
main
in
g
en
ergy. Th
e
en
erg
y
is no
t an issu
e in
vehi
c
u
l
a
r
net
w
or
ks a
n
d Li
nG
o i
s
desi
g
n
e
d
f
o
r
m
obi
l
e
appl
i
cat
i
ons.
3.
2.
14
.
B
e
aco
n
l
e
ss
R
o
uti
n
g f
o
r Vehi
cul
a
r
E
n
vi
ro
nmen
t
Ped
r
o et
al
., [
3
0]
pr
op
ose
d
be
aconl
ess
ro
ut
i
n
g p
r
ot
ocol
f
o
r
vehi
c
u
l
a
r en
vi
r
onm
ent
(B
R
A
VE)
base
d
on s
p
atial awarenes
s and beaconless
ge
ogra
phic forwa
r
di
ng. The
spatial awarenes
s refe
rs to all
o
wi
ng
interm
ediate node
s cha
nge i
n
itial plan based on vie
w
of
street
m
a
p and
local info
rm
ation. The tra
j
ect
ory of
t
h
e pac
k
et
c
o
m
put
e at
every
f
o
r
w
ar
di
n
g
n
o
d
e a
n
d
ne
xt
j
u
nct
i
o
n
sel
ect
i
o
n i
s
base
d
on
Di
j
k
st
ra
sh
ort
e
st
pat
h
al
go
ri
t
h
m
.
Pro
t
ocol
use
fo
u
r
t
y
pes of m
e
ssages dat
e
,
res
p
ons
e, sel
ect
an
d ack
. The
pr
ot
oc
ol
use st
o
r
e and
fo
rwa
r
d st
rat
e
gy
i
n
st
ea
d
of
r
ecove
ry
m
ode.
The
p
r
ot
ocol
per
f
o
r
m
a
nce i
s
bet
t
e
r i
n
t
e
rm
s o
f
packet
del
i
very
rat
i
o
a
n
d
pac
k
et
dr
o
ppi
ng
i
n
case o
f
hi
g
h
de
nsi
t
y
. O
n
t
h
e
o
t
her
ha
nd
t
h
e l
e
ss de
nsi
t
y
si
t
u
at
i
on
has
hi
g
h
end
t
o
en
d d
e
lay an
d
n
e
two
r
k
ov
erhead
.
3
.
2
.
1
5
. Bea
c
onless Geog
ra
phic Multiple
Routing
Ping et al., [31] propose
d a
b
eaconless ge
ogra
phic m
u
ltip
ath routin
g protoc
ol (B
GM) to c
o
nstruct
m
a
xim
u
m
nod
e di
sj
oi
nt
m
u
l
t
i
p
l
e
pat
h
s.
In t
h
i
s
pr
ot
oc
ol
ea
ch n
ode sel
ect
m
u
lt
i
p
l
e
pat
h
s fo
r f
o
r
w
ar
d t
h
e dat
a
packet
s
wi
t
h
i
n
di
sj
oi
nt
su
bz
on
e di
vi
de
d t
h
r
o
u
gh a di
vi
si
o
n
al
go
ri
t
h
m
.
B
e
fore sen
d
i
n
g t
h
e packet
s
o
u
r
ce no
d
e
cal
cul
a
t
e
di
st
ance t
o
war
d
de
st
i
n
at
i
on a
n
d
cal
cul
a
t
e
su
b
zone
s ba
sed
o
n
num
ber
of
acqui
red
pat
h
s
an
d
coefficient of
each curve
for zone
di
vision. The
n
, s
o
urce
node rec
o
rd
the location inform
ation of itself,
destination and coefficient of
curves into a packet head
a
n
d
for
w
ar
d t
h
e da
t
a
packet
t
o
ne
xt
no
de. F
o
r
w
a
r
di
n
g
strategy find node
-disjoint m
u
ltiple
paths in network wit
h
high nod
e density and m
a
xim
i
ze node
-disjoi
n
t
m
u
l
tip
le p
a
th
s
in
n
e
t
w
ork
s
with
ou
t b
eacon
ing
.
4.
DIS
C
USSI
ON
Di
ffe
re
nt
t
y
pes
of
r
out
i
ng pr
ot
oc
ol
s have
bee
n
p
r
op
ose
d
t
o
ha
ndl
e v
e
hi
cul
a
r ad h
o
c net
w
o
r
k
envi
ro
nm
ent
such a
s
t
o
pol
og
y
based
[3
2]
, c
l
ust
e
r,
geoc
a
s
t
and
ge
og
ra
phi
cal
based
[3
3]
ro
ut
i
n
g p
r
ot
oc
ol
s. A
s
di
scuss
e
d i
n
t
h
e i
n
t
r
o
d
u
ct
i
o
n
,
t
h
at
geo
g
r
ap
hi
cal
ro
ut
i
ng
pr
o
t
ocol
s
of
fer a s
u
i
t
a
bl
e sol
u
t
i
o
n t
o
han
d
l
e
f
r
e
que
nt
ro
ut
e
brea
ks
a
n
d
hi
g
h
er
del
a
y
i
n
vehi
c
u
l
a
r
ad
h
o
c
net
w
or
k.
H
o
we
ve
r, i
f
t
h
ese
p
r
ot
ocol
s d
o
n
o
t
fi
nd
t
h
e
ne
xt
ho
p
beca
use
of
wr
o
ng
deci
si
o
n
i
n
ur
ba
n e
n
v
i
ro
nm
ent
,
whe
r
e va
ri
o
u
s
di
f
f
e
rent
t
y
pe
of
o
b
st
acl
es exi
s
t
s
,
dea
d
-
en
d
ro
ad
s ex
ist an
d
du
e to
hig
h
m
o
b
ility
t
h
e lo
ng
er d
e
lay in
co
ng
ested n
e
twork
no
ticed
. So
m
e
ti
me
clo
s
er
no
de
wi
t
h
des
t
i
n
at
i
on m
a
y
sel
ect
t
h
at
do
es not
go t
o
w
a
rd t
h
e
dest
i
n
at
i
on.
Di
ffe
re
n
t
t
y
pes of rec
ove
ry
ap
pro
ach
es pro
p
o
s
ed
, wh
ich are
b
a
sed
o
n
p
l
ann
e
r grap
h
b
u
t
du
e to ob
st
acles th
ese are still su
ffered
an
d no
t
effect
i
v
e i
n
r
e
st
ri
ct
i
v
e ve
hi
cul
a
r
net
w
or
k
s
. Va
ri
o
u
s t
y
pes
of
ge
og
ra
phi
cal
f
o
rwa
r
di
n
g
ap
p
r
oac
h
es are
propose
d
to ta
ckle these
problem
s
with periodically broadcast beacon
messages a
n
d be
aconless a
p
proaches
.
From
t
h
e beacon
hel
l
o
m
e
ssages co
ns
um
es
reso
u
r
ces an
d di
st
ur
b sl
eepi
n
g cy
cl
es. The di
scuss
e
d f
o
r
w
ardi
ng
app
r
oaches
ha
ve sh
ort
c
om
i
n
g d
u
e t
o
sup
-
opt
i
m
al
ly
and l
eads t
o
pack
et
dro
ppi
ng a
nd ca
use of
n
e
t
w
o
r
k
ove
rhead [34]. To address
these challenge
s
beaconle
ss approaches
have been
propos
e
d and discus
sed in
above se
ctions
. The
s
e a
p
proa
ches a
r
e efficient to c
o
nt
ro
l
th
e v
e
h
i
cu
lar p
r
o
p
e
rties
and
wo
rk
well
in
n
e
twork.
Th
ese b
eaco
n
l
ess
app
r
o
a
ch
es
wo
rk
ing
with
lin
k
q
u
a
lity,
tr
an
sm
issio
n
rang
e, and
d
i
rectio
n prop
erties fo
r
find
t
h
e o
p
t
i
m
a
l
for
w
ar
der
n
ode i
n
net
w
or
k. T
h
es
e
m
e
t
hods a
r
e
wo
rki
n
g o
n
M
A
C
l
a
y
e
r w
h
er
e t
h
ey
use R
T
S/
C
T
S
p
ack
ets with
so
m
e
m
e
trics to
ch
eck th
e
b
e
st
n
e
igh
bor no
d
e
,
wh
ich h
a
s goo
d link
q
u
a
lity and with
i
n
t
r
ansm
i
ssi
on r
a
nge a
n
d di
rec
t
i
on t
o
war
d
t
h
e dest
i
n
at
i
o
n.
These m
e
t
r
i
c
s are m
o
re pract
i
cal
t
o
fi
nd t
h
e best
ro
ut
e an
d rel
a
y
node i
n
ve
hi
cul
a
r net
w
o
r
k.
Thr
o
u
g
h
t
h
es
e dat
a
fo
rwa
r
d
i
ng ap
p
r
oac
h
e
s
t
h
e appl
i
cat
i
ons
o
f
in
tellig
en
t transp
ortatio
n syste
m
will b
e
m
o
re efficien
t and
p
r
ov
id
e con
v
e
n
i
en
ce t
o
trav
elers [35
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Geo
g
r
a
p
h
i
c
al
Forw
ardi
ng
M
e
t
h
o
d
s i
n
Ve
hi
cul
a
r
Ad
h
o
c N
e
t
w
orks (
K
as
hi
f
N
a
seer
Q
u
res
h
i
)
1
415
5.
CO
NCL
USI
O
N
In t
h
i
s
pa
pe
r,
we de
scri
be t
h
e m
o
st
im
port
a
nt
ge
o
g
ra
phi
ca
l
for
w
a
r
di
ng m
e
t
h
o
d
s
fo
r ve
hi
cul
a
r a
d
hoc
n
e
two
r
k
s
and
t
h
eir
op
eration
.
Du
e t
o
d
y
n
a
mic ch
an
g
i
n
g
top
o
l
o
g
y
and
h
i
gh
m
o
b
ility o
f
v
e
h
i
cles t
h
e
n
e
twork
still faced different net
w
ork related i
ssues. Every
protoc
ol
has own st
rategy
for forwa
r
ding the
packet in the
net
w
or
k.
In
t
h
i
s
pa
per,
we
di
scusse
d m
o
st
i
m
port
a
nt
f
o
r
w
ardi
ng m
e
t
hod
s ap
pl
i
e
d i
n
di
ffe
rent
geo
g
r
a
phi
cal
ro
ut
i
n
g pr
ot
oc
ol
s. Thi
s
st
u
d
y
i
s
a fi
rst
st
ep for t
h
e re
searc
h
er t
o
im
pro
v
e t
h
e f
o
r
w
ar
di
n
g
m
e
t
hods a
nd
n
e
t
w
o
r
k
effi
ci
ency
fo
r vehi
c
u
l
a
r
a
d
h
o
c net
w
or
k.
ACKNOWLE
DGE
M
ENTS
Th
is research
is su
ppo
rted
b
y
th
e Min
i
stry o
f
Edu
catio
n
M
a
laysia (MOE) an
d
in
co
llaboratio
n
wit
h
Research
Manag
e
m
e
n
t
Cen
t
re (RMC) Un
iversiti Tek
n
o
l
og
i Malaysia (UTM).
Th
is
pap
e
r is fun
d
e
d b
y
th
e
G
U
P
G
r
an
t (vote Q
.
J13
000
0.25
28
.06
H
00
).
REFERE
NC
ES
[1]
Kavitha K, B
a
g
ubali A, Sha
lini
L, ed
itors.
V2V
wireless communication proto
c
o
l
for rear-end c
o
llision avo
i
dan
ce
on highways with stringent pr
opagation dela
y
. Advanc
es
in Recent
Techn
o
logies
in Co
m
m
unication a
nd
Computing, 200
9 ARTCom'
09 I
n
terna
tional Con
f
erence on
; 2009
: IEEE.
[2]
Huang J, Huan
g Y, Wang J,
“Vehicle
D
e
nsity
b
a
sed Forwar
ding Protocol
f
o
r Safety
M
e
ssage Bro
a
dcast in
VANET”.
[3]
Karp B,
Kung H-T,
editors
.
GPSR: Gre
e
d
y pe
rim
e
te
r state
l
e
ss routing for wire
le
ss ne
twork
s
. Proceedings of
the 6th
annual internatio
nal
confer
ence o
n
Mob
ile computing
and n
e
twork
i
ng; 2000: ACM.
[4]
Rao S
.
A
., P
a
i M
., Bous
s
e
djra M
., M
ouzna J.,
“
G
PSR-L: Gre
e
d
y
per
i
m
e
ter s
t
at
eless routing with lifet
im
e for
VANETS”,
ITS Telecommunica
tions,
2008 ITST
2008
8th In
terna
tional Con
f
eren
ce on,
2008.
[5]
Locher
t C., H
a
r
t
ens
t
ein H
.
, Ti
an J
., F
u
s
s
l
er H
., H
e
rm
ann D
., and
M
a
uve M
., “
A
routing s
t
rat
e
g
y
f
o
r vehicul
a
r ad h
o
c
networks
in city
environments”,
I
n
telligent Vehicles Sympos
ium, 2
003 Proceedings
IEEE,
2003.
[6]
Jerbi M., Senouci S. M., Meraih
i R., Gh
amri-Doudane Y., “An improved vehicular
ad hoc routin
g protocol for city
environments”,
Communications, 2007
ICC'07 I
EEE
Internation
a
l Conference o
n
,
2007
.
[7]
Al-Sultan S., Al-Doori M. M., Al-Ba
y
a
tti A.
H., Zedan H.
, “
A
com
p
rehe
nsive surve
y
on vehicu
lar Ad Hoc
network”,
Journ
a
l of network an
d computer
applications
, Vol. 37
, pp
. 380-92
, 20
14.
[8]
Finn G. G., “Ro
u
ting
and
addres
sing problems
in
larg
e m
e
tropo
lit
an-scal
e
intern
et
works”,
DTIC Document
, 1987.
[9]
Basagni S., Chlamtac I
., S
y
rotiuk V.
R., Woodward B. A., “A distance r
outing effect
algor
ithm for mobility
(DREAM)”,
Pr
oceed
ings of
th
e 4th
annual
ACM/IE
EE
inte
rnational
confe
r
ence on
Mobi
l
e
comput
ing a
nd
networking
,
199
8.
[10]
Takag
i
H., Kleinrock L.,
“Optimal transmission ranges for randomly
dis
t
ributed p
ack
et radio terminals.
Communications”,
IEEE Transactions on
, Vol. 3
2
, No. 3, pp. 246
-257, 1984
.
[11]
K
r
anakis
E.
, S
i
n
gh H
., U
rruti
a J
.
,
“
C
om
pass routing on geometric
networks”,
In
Proc 11 th Canadian Conference o
n
Computational Geometry,
Citeseer, 1999.
[12]
Chen M., Leung
V. C., Mao S.,
Xiao
Y., and Ch
lamtac I., “H
y
b
r
i
d geogr
aphi
c ro
uting for f
l
exib
le en
erg
y
—delay
tradeoff
”,
Vehicular Technolog
y,
IEEE Transactions on
. Vol. 58
,
No. 9, pp. 4976-
4988, 2009
.
[13]
Locher
t C
.
,
M
a
u
v
e M
.
, F
üßler
H
.,
and H
a
rtens
t
ei
n H.,
“
G
eograph
i
c rou
ting
in
cit
y
s
cenar
ios
”
,
ACM SIGMOBILE
Mobile Computing and
Communications
Review
,
Vol. 9
,
No. 1, pp
. 69-72
, 2005
.
[14]
Chawla M., Goel N., Kalaich
e
l
v
an
K., Nay
a
k A., and Stojm
e
novic I., “Be
aconless position based routing with
guaranteed
deliv
e
r
y
for
wireless
ad
-hoc
and sens
or networks,”
Ad-Hoc Networking: Springer,
pp
. 61-70
, 2006
.
[15]
Egoh K. and De S., “A m
u
lti-criteri
a receiv
er-si
d
e rel
a
y
el
ect
ion
approach in wir
e
less ad hoc net
w
orks”,
Mili
tary
Communications Conferen
ce, 20
06 MILCOM 2006 IEEE,
2006.
[16]
Füßler H., Mauve M., Hartenstein H
., K
ä
s
e
m
a
nn M
., and V
o
llm
er D
., “
M
obico
m
poster: location-
based routing for
vehicu
lar ad-ho
c
networks”,
AC
M SIGMOBILE
Mobile Comput
ing and Commun
i
cations Review,
Vol. 7, No. 1, 4
7
-
49, 2003
.
[17]
Asgari M., Ism
a
il M., and Alsa
qour R., Reli
abl
e
Cont
entio
n-ba
sed Beaconl
ess Packet Forwardi
ng Algorithm
for
VANET Streets”,
Procedia
Tech
nology
. Vol. 11,
pp. 1011-1017
,
2013.
[18]
Zorzi M. and R
a
o R. R., “Geo
graphic r
a
ndom
forwardi
ng (GeRaF) for ad hoc and sensor networks: m
u
ltih
op
perform
ance
”,
Mobile Computing,
IEEE Transactions on
, Vol. 2
,
No. 4, pp.337-3
48, 2003
.
[19]
Egoh K. and De S., “Priority
-
bas
e
d receiver-sid
e
re
lay
election in
wireless ad
hoc
sensor networks”,
Proceedings o
f
the 2006
international
conference on W
i
re
less co
mmunications a
nd mobile comp
uting,
2006.
[20]
Nzouonta J., R
a
jgure N., Wang
G.,
and Bo
rcea
C., “VANET ro
uting on
city
road
s using real-time
vehicu
lar
traffic
information”,
Vehicular Technology,
I
E
EE Transactions on
, Vol.
58, No. 7, pp. 36
09-3626, 2009
.
[21]
Son S., Blum B
., He T., and Stankovi
c J., “IGF: A state-free r
obust communi
c
a
tion proto
c
ol f
o
r wireless sensor
networks”,
Tec
Report Depart C
o
mput Sci Univ
Virginia
, 2003
.
[22]
Kalosha H., Nay
a
k A., Ruhrup
S., and Stojmenovic I
.,
“Select-and-pro
t
est-b
a
sed
beaconless
georouting with
guaranteed deliver
y
in wi
r
e
less sensor
networks”,
INFOCOM 2008 The
27th Conference on Computer
Communications IEEE,
2008.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1407 –
1416
1
416
[23]
Okada H., Takano A., Mase K., “A propo
sal of link metric
for
next-hop forwar
ding methods in vehicular ad ho
c
networks”,
Consumer Communications and N
e
tw
orki
ng Conferen
ce, 2009 CCNC
2009 6th I
E
EE,
2009.
[24]
Draves R., Padh
y
e
J., Zi
ll B., “Routing in
m
u
lti-r
a
dio, m
u
lti-hop
wireless m
e
sh n
e
tworks”,
Proceedings of the 10th
annual international con
f
eren
ce
on Mobile
computing and
netwo
r
king,
2004
.
[25]
Ghafoor K. Z, A
bu Bakar K.,
Lloret J., Khokhar
R. H., L
ee K. C
., “Intellig
ent beaconl
ess geographical forwardin
g
for urban
vehicu
lar
environments
,”
Wire
le
ss ne
twork
s
,
Vol. 19
, No
. 3
,
pp
. 345-362
, 2013.
[26]
Sa
nc
he
z
J.
A.,
Ma
rin-Pe
re
z
R.
, Ruiz
P.
M.
,
“BOSS:
Beacon-less on demand strateg
y
for geographic routing
inwireless senso
r
networks”,
Mo
bile Adho
c and Sensor Systems, 2007
MASS 2007 IEEE Internatonal Conferen
ce
on,
2007
.
[27]
Wang R., Rezen
d
e C., R
a
mos H. S., Pazz
i R. W., Boukerch
e
A.,
Loureiro
A.
A.
F., “LIAITHON: A lo
cation-aware
m
u
ltipath vid
e
o
stream
ing sche
m
e
for urban ve
hicul
a
r networks
”,
Computers a
nd Communications (
I
SCC
)
,
201
2
IEEE Symposiu
m on,
2012
.
[28]
Rezend
e
C.
, Ra
m
o
s H. S
., P
azzi
R.W
., Bouk
erc
h
e A., F
r
er
y A.
C.,
Loureiro
A.
A. F
., “
V
irtus:
A resilien
t
lo
cat
i
on-
aware v
i
deo
unicast sch
e
me for
vehicu
lar n
e
twor
ks”,
Communica
tions (
I
CC)
, 2012 IEEE
International Conference
on,
2012
.
[29]
Rosário D., Zhao Z., Santos A.,
Braun T., C
e
rqu
e
ira E.,
“A beaconless Opportunistic Ro
u
ting b
a
sed on a cross-layer
approach
for eff
i
cien
t video
dissemination in
m
o
b
ile m
u
lt
im
edia I
o
T appl
ica
tions”
,
Computer Com
m
unications
, V
o
l.
45, pp
. 21-31
, 2
014.
[30]
Ruiz P
.
M
., Cabrera V
., M
a
rti
n
ez J
.
A
., and
Ros
F
.
J
., “
Br
ave
: Beacon-less routing algorithm for vehicular
environments”,
Mobile Adhoc a
nd Sensor Systems (
M
ASS
)
,
2010 IEEE 7
t
h International Con
f
erence on
,
2010
.
[31]
Dong P., Qian
H., W
e
i X
.,
La
n S., Pu
C., “
A
Beacon
-
Less G
e
ographi
c Mult
i
p
ath Rout
ing Protocol for
Ad Hoc
Networks”,
Mob
ile
Networks
and
Applications,
V
o
l. 18
, No
. 4
,
pp
. 500-512, 2013.
[32]
Qureshi K.
N.
, Abdullah H.,
“TOPOLO
GY
BA
SED ROUT
ING PROTOC
OL
S FOR V
A
N
ET AND THEIR
CO
M
P
ARIS
ON W
I
TH
M
A
N
ET”,
Journal of
Theoretical and
A
pplied In
formation Technolog
y
, V
o
l. 58
, N
o
.
3,
2013.
[33]
Qureshi K. N.,
Abdullah A. H.,
and Yusof R., “Position-ba
sed
Routing Protoco
l
s of Ve
hicular
Ad Hoc Networks &
Applicab
ilit
y in
T
y
p
i
c
a
l Ro
ad Si
t
u
ation
”
,
Life Science Journal,
V
o
l. 10
, N
o
. 4
,
20
13.
[34]
Qureshi K.
N.
and Abdullah A.
H.
,
“L
ocalization-Based S
y
stem Challenge
s in Vehicular Ad Hoc Network
s
:
Survey
”,
Smart Computing
Review,
Vol. 4
,
No
.
6, pp
. 515-528
,
2014.
[35]
Qureshi K. N.
andAbdullah A.
H., “
A
surv
e
y
on intellig
ent
transporta
tion system
s”,
Midd
le-East Journal of
Scien
tifi
c Resear
ch,
Vol. 15
, No
.
5, pp
. 629-642
,
2013.
BIOGRAP
HI
ES
OF AUTH
ORS
Kashif Nase
er
Qur
e
s
hi
is
a
P
h
.D
candid
a
t
e
a
t
the
d
e
partm
e
n
t
of
Com
puter
S
y
s
t
em
s
and
Communications in University
o
f
Technolog
y
M
a
lay
s
ia (UTM).
He has r
eceived
his MS Degree
in Information Technolog
y
in
2012 from I
M
Sciences Peshawar Pakistan and MCS
degree
in 2003
from Baluch
istan University Qu
etta Pakistan. He has eight
y
e
ars of
experience in
conducting prof
essional tr
ai
nin
g
s (CCNA, MCSE, MC
ITP, Web
Designing,
Graphic Designing) and computer
wireless and wired networks
and he is Microsoft
(M
CS
E, M
C
ITP
)
and CIS
C
O (CCNA) certified
.
He has
b
een as
a revi
ew
er for var
i
ous
reputab
le
academic Journals. As a pa
r
t
of
th
is
paper
,
he is
working on
lo
calization
based
challenges in vehicu
lar ad hoc
networks applications. He is
th
e author of several papers
in th
e fi
elds
of vehi
cula
r a
d
hoc
n
e
twor
ks, W
i
reless Se
nsor Networks and Inte
llig
ent
Transportation S
y
stem.
Abd
u
l H
a
na
n
Ab
dullah
is
a Professor
at University
of Technolog
y
Malay
s
ia. He
obtain
e
d his Ph
.D. degree fro
m
Aston
Univ
er
sity
in Birmingham, United Kingdom
in
1995. From 20
04 to 2011, he has been the dean
at th
e Facu
lty
of
Computer Science and
Information S
y
stems. Currently he
is h
eadin
g Pervasiv
e C
o
mputing Research
Group,
a
research group under K-Econom
y
Resear
ch Allian
ces
in Malay
s
i
a
. His research interests
includ
e wireless sensor networks, mobile ad hoc
networks,
network security
,
intern
et of
things,
veh
i
cular ad
ho
c
netw
orks and n
e
xt g
e
n
e
ration networks.
Evaluation Warning : The document was created with Spire.PDF for Python.