Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 3
,
Ju
n
e
201
6, p
p
. 1
086
~ 10
95
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
3.9
656
1
086
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Perform
a
nce An
alysi
s
of Digit
a
l Modulat
ion for Coherent
Detection of OFDM Sch
e
me
on Radio over Fiber System
Fauz
a Kh
air, Fakh
riy Hari
o
P
,
I Wayan Mus
t
ika,
Budi
Seti
yanto
Department o
f
Electrical Engin
e
ering and
Informa
tion
Techno
log
y
, Gadjah Mad
a
University
, Indo
nesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Dec 7, 2015
Rev
i
sed
Feb
29
, 20
16
Accepted
Mar 11, 2016
Radio over
fib
e
r (RoF) s
y
stem with
the
co
herent d
e
tection
offers high
linearity
for
the transpar
ent tran
sport of high-f
r
equency
microw
ave signals,
and better
receiver sensit
ivity
compared with
in
tensity
-modulated dir
e
ct
detection s
y
stem
s. The purpose o
f
this pa
p
e
r is
to
anal
yz
e
the p
e
rf
orm
a
nce of
digital modulation for coherent detec
tion of or
thogonal frequ
ency
d
i
vision
m
u
ltiplexing (O
FDM)
schem
e
on RoF sy
st
em
at
10 Gbps up to 100 km
fiber
length
.
Th
e resu
lts show that
co
herent
d
e
tection
of OFDM
-RoF system
with
16 quadrature
amplitude modulation (16
-
QAM) has the value o
f
bit error
rate (B
ER) and t
h
e s
y
m
bol error
rate (SER)
is ve
r
y
low
and its c
onstella
tio
n
is better compar
ed with oth
e
r modula
tion fo
rmats (4-QAM, quadrature ph
ase
shift key
i
ng
(QPSK), 8-PSK and 16-
PSK), which BER 16-QAM is 0.053
and
SER is 15.7%.
The results also show
that BER value of 4-QAM and QPSK
rela
tive
l
y
sim
i
l
a
r to fiber length
varia
ti
ons. In general, an incr
eas
ing value of
the BER and S
E
R for each m
o
dulation form
at
is
alm
o
s
t
equal
to the fib
e
r
length of 60-70
km (Region I an
d II). Howe
ver, there is a sign
ificant in
creas
e
in the valu
e of BER in fiber len
g
th of 80-100 km (Region III. A and III. B)
for the modulation of 4-QAM, Q
PSK, 8-PSK, and 16-PSK.
Keyword:
BER
C
ohe
rent
Det
e
ct
i
o
n
Dig
ital Mod
u
l
atio
n
OF
DM
-Ro
F
SER
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Fauza Khair,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
an
d
In
f
o
rm
at
i
on Tec
h
nol
ogy
,
Gad
j
a
h
M
a
da
Uni
v
ersity
,
Jl
n. Gra
f
i
k
a
N
o
.
2
Kam
pus U
G
M
,
Yo
gy
ak
ar
t
a
Em
a
il: fau
za.kh
air.sie1
3@m
a
il.u
g
m
.ac.id
1.
INTRODUCTION
Th
e
wireless co
mm
u
n
i
catio
n
syste
m
requ
ires in
cr
e
a
sing
capacity and e
x
tensi
v
e a
dva
ntage. Ra
dio
ove
r fi
ber
(RoF) system
is u
s
eful to i
n
crea
se the acce
ss t
o
capacity wit
h
hi
gh s
u
bcarrier fre
quency for t
h
e
wireless system
[1]. Radio
over
fibe
r (Ro
F
) sy
stem
is an ap
p
r
op
ri
at
e co
m
b
i
n
at
i
on of a
fi
ber
o
p
t
i
c
l
i
nk an
d
radi
o wa
ves.
R
o
F i
n
a
wi
re
l
e
ss net
w
or
k i
s
t
h
e ne
xt
b
r
o
a
dba
n
d
wi
rel
e
ss ge
nerat
i
o
n
wi
t
h
hi
gh
-s
pee
d
dat
a
t
r
ansm
i
ssi
on,
whi
c
h i
n
creas
es hi
gh
ca
pac
i
t
y
chan
nel
o
f
ra
di
o
fr
eq
ue
ncy
(R
F
)
m
odul
at
i
o
n
[1]
,
[2
]
.
Th
e
m
odul
at
i
on co
ncept
o
f
fi
xe
d
com
m
uni
cat
i
on an
d m
obi
l
e
broa
d
b
an
d f
o
r o
p
t
i
cal
and wi
re
l
e
ss, i
t
can con
n
ect
by
usi
n
g
OF
DM
,
so t
h
at
use
o
f
i
t
, i
s
a
p
pr
op
ri
at
e, d
u
e t
o
i
t
s
m
a
ny
ap
pl
i
cat
i
ons
t
o
i
n
c
r
ease R
F
m
odul
at
i
o
n
.
The pe
rf
o
r
m
a
nce of R
o
F sy
st
em
depen
d
s
on
t
h
e opt
i
cal
m
o
dul
at
o
r
,
opt
i
cal
fi
ber c
h
an
nel
,
t
h
e p
o
we
r
l
e
vel
of l
a
ser a
nd R
F
,
no
n
-
l
i
n
ear o
p
t
i
cal
po
wer l
e
vel
,
bi
t
rat
e
and m
odul
at
i
on use
d
. T
h
e perf
o
r
m
a
nce
of R
o
F
sy
st
em
i
s
rel
a
t
e
d t
o
t
h
e m
odul
at
i
o
n f
o
rm
at
such as Q
A
M
or
PS
K and m
echani
s
m
up co
nve
rs
i
on E/
O
(electrical to optical) at the transm
itter (direct
m
odulator
or e
x
ternal
m
odulators
)
, and
also the m
ech
anism
down c
o
nversion O/E
(optica
l
to elect
rical)
at the receiver (cohe
r
ent
dete
c
tion or direct detection).
T
h
e
r
e
is
pre
v
ious resea
r
ch used OFDM technique for carrier 155
0nm
freq
u
enc
y
wi
t
h
di
rect
detection. It increases
si
gnal
R
F
t
r
a
n
sm
i
ssi
on pe
rf
o
r
m
a
nce wi
t
h
a 16
-Q
AM
c
o
n
s
t
e
l
l
a
t
i
on i
n
a si
ngl
e m
ode fi
ber
(SM
F
) [
2
]
whi
c
h
use
d
qua
d
r
at
ur
e
m
odul
at
o
r
7.
5 GHz a
nd t
h
e si
ngl
e opt
i
c
a
l
m
odul
at
or ga
ve hi
g
h
dat
a
r
a
t
e
t
r
ansm
i
ssi
on b
u
t
li
mited
to
sho
r
t d
i
stan
ces. The p
e
rform
a
n
ce o
f
t
h
e cod
e
d
-
OFDM in
M
u
ltim
o
d
e
fib
e
r
(M
MF) also
sho
w
s 16
-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce A
nal
ysi
s
of
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
f
o
r C
o
here
nt
D
e
t
ect
i
on
of
OF
DM
Sc
heme
o
n
..
.. (
F
au
za
K
h
ai
r)
1
087
QAM
, a
n
d 1
6
-
pha
se shi
f
t
ke
y
i
ng (
1
6
-
PS
K
)
t
echni
q
u
e rai
s
e t
h
e bi
t
rat
e
for m
e
di
um
-haul
t
r
ansm
i
ssi
on al
on
g
two
k
m
[3
]. Th
ere is facilitatio
n
to
d
e
fend
OFDM o
r
t
h
o
g
o
n
a
l sign
al in
th
e 4
-
QAM form
at fo
r th
e 7
.
5
GHz
carri
er
fre
q
u
en
cy
, i
t
uses an
o
p
t
i
cal
m
odul
at
or
, Li
N
b
M
ach
-Zeh
n
d
er m
o
d
u
l
a
t
o
r
(Li
N
b-
M
Z
M
)
[1]
,
t
h
e
OF
DM
sig
n
a
l can
p
a
ss th
roug
h
SM
F u
n
til 60
k
m
with
electrical a
m
p
lificatio
n
.
On
th
e
o
t
h
e
r h
a
n
d
, High
-l
ev
el
m
odul
at
i
on i
s
a sol
u
t
i
on t
o
i
n
crease t
h
e
bi
t
rat
e
. Hi
gh
-l
ev
el
m
odul
at
i
on
as 16
-Q
AM
h
a
s a bet
t
e
r spect
ral
si
gnal
e
ffi
ci
en
cy
t
h
an bi
na
ry
pha
se
s
h
i
f
t
key
i
ng (B
PS
K)
, 4-
QAM
a
n
d 8-
Q
A
M
[
4
]
-
[
6
]
,
al
t
h
o
u
g
h
r
o
bust
n
ess
o
f
system
decrease with the increasing
of
sym
bol data m
odul
ation. In additio
n, the use
of
MZM as an external
m
odul
at
or s
h
o
w
s m
o
re r
o
b
u
s
t
perf
o
r
m
a
nce com
p
ared
wi
t
h
t
h
at
of t
h
e
di
r
ect
m
odul
at
o
r
whe
n
i
m
pl
em
ent
e
d
with
OFDM mo
du
latio
n techn
i
qu
e,
wh
ile the d
i
rect
c
onn
ectio
n
b
e
tween
t
h
e
o
u
t
p
u
t
of t
h
e tran
sm
itter g
i
v
e
s an
err
o
r
vect
o
r
m
a
gni
t
u
de
(E
V
M
) o
f
0
.
4%
,
w
h
i
c
h i
s
al
m
o
st
per
f
ect
(a
n i
d
e
a
l
m
odul
at
o
r
w
oul
d ha
ve
0%,
and t
h
i
s
val
u
e i
n
creas
e
s
t
o
7.
9 %
o
v
e
r a
10
0
km
fi
ber l
i
nk
[
7
]
.
I
n
ad
di
t
i
on,
t
h
e
r
e i
s
al
so a
m
odel
i
n
g
sy
st
em
abo
u
t
a
no
vel I
n
ter
-
Carrier
Inte
rfe
r
e
nce (
I
CI
) r
e
ductio
n al
gorithm
s
cancelation under t
h
e va
rious c
h
annel
envi
ro
nm
ent
s
, t
o
achi
e
ve
hi
g
h
per
f
o
r
m
a
nce based o
n
t
h
e
OF
DM
o
p
t
i
cal
net
w
o
r
k
has al
rea
d
y
bee
n
co
nsi
d
er
e
d
in
th
e literature [8
],[9
].
There a
r
e also
m
a
ny types of researc
h
on t
h
e cohe
re
nt
de
t
ect
or sy
st
em
on t
h
e
radi
o o
v
er fi
ber
,
i
n
particula
r
, the
use of the loca
l oscillator opt
ical dow
n-c
onversi
on receiver.
Includ
ing the use
of m
i
lli
meter-
wave
(M
M
W
)
o
n
c
o
here
nt
radi
o-
ove
r-
fi
be
r (R
oF
)
has
b
een a
b
l
e
t
o
b
e
ap
pl
i
e
d t
o
a
n
opt
i
cal
a
n
d
radi
o
seam
l
e
ss net
w
or
k c
o
n
v
er
si
o
n
, t
h
e
res
u
l
t
s
sho
w
20
G
b
a
ud
QP
SK
has
a dat
a
rat
e
o
f
3
7
.
2
G
b
ps,
and t
h
e
t
r
ansm
i
ssi
on d
i
st
ance can
be
ext
e
n
d
ed
u
p
t
o
t
w
o km
un
d
e
r t
h
e
ope
rat
i
o
n o
f
10
-G
ba
ud
whe
n
a
hi
g
h
po
we
r
am
pl
i
f
i
e
r wi
t
h
hi
g
h
er
out
put
p
o
we
r o
f
2
0
dB
m
i
s
used [1
0]
.
Jud
g
i
n
g f
r
o
m
t
h
e effect
s
of c
h
r
o
m
a
t
i
c
di
spe
r
si
o
n
,
radi
o sy
st
em
s for
opt
i
cal
fi
be
r
m
odul
at
ed i
n
pha
se wi
t
h
c
o
h
e
rent
det
ect
i
o
n
can be an al
t
e
r
n
at
i
v
e f
o
r R
F
s
i
gnal
t
r
ansm
i
ssi
on t
o
opt
i
cal
fi
ber
f
o
r t
h
e u
s
e o
f
f
r
e
que
ncy
of
10
0 G
H
z, t
h
e
val
u
e o
f
t
h
e
QP
S
K
B
E
R
o
f
10
-4
can
be
achi
e
ve
d wi
t
h
t
h
e l
e
vel
of
un
der
16
dB
SN
R
wi
t
h
a
m
a
xi
m
u
m
val
u
e i
s
obt
ai
ne
d at
1
-
Gb
ps
on
fi
ber
l
e
ngt
h
o
f
80
km
. While
250 Mbps Bi
nary Phase
Shi
f
t Keying
(BPSK)
can tra
n
sm
it without e
r
rors at the
recei
ve
r
for
40
and
80
km
t
o
t
h
e SNR
cl
os
e t
o
zero [
11]
. The co
nfi
g
u
r
at
i
on o
f
t
h
e cohe
re
nt
det
ect
i
on m
echani
s
m
[1
1]
co
nsists of
an
alo
g
op
tical fr
on
t-
en
d and d
i
gital I
Q
m
i
x
e
r
,
w
h
er
e t
h
e
op
tical f
r
on
t-
end co
n
s
ists of
an op
tical
9
0
0
h
y
b
r
i
d
(phase sh
ifter), fou
r
balan
c
ed
pho
tod
e
tecto
r
s,
an
d
a lo
cal laser d
i
o
d
e
(op
tical lo
cal o
s
cillato
r). On
the othe
r ha
nd, the extraction of exact
diffe
r
ential phas
e
noise and the ef
fect of phase
noise cancelation are
success
f
ully de
m
onstrated
for a 10-Gb
aud
QPSK RoF signal for a digital-
signal
-
proce
s
sing-assisted optical
co
h
e
ren
t
d
e
tectio
n
of an
up
link
rad
i
o
-
ov
er-fi
b
e
r sign
al
with a lo
cal two
-
ton
e
lig
h
t
,
wh
ich is in
sen
s
itiv
e to
th
e
l
a
ser pha
se n
o
i
s
es [1
2]
. R
e
gar
d
i
n
g l
i
n
eari
t
y
, Opt
i
cal
ph
ase-
m
odul
at
ed (P
M
)
radi
o-
ove
r-
fi
ber
(R
oF
) l
i
n
ks ha
v
e
assi
st
ed wi
t
h
cohe
re
nt
det
e
c
t
i
on, a
n
d di
gi
t
a
l
si
gnal
pr
oc
essi
ng
(PM
-
C
o
h
)
of
fers
t
h
e
hi
g
h
l
i
n
ea
ri
t
y
fo
r t
h
e
tran
sp
aren
t tran
spor
t o
f
h
i
gh
-freq
u
e
n
c
y m
i
cr
o
w
av
e sign
als, an
d
b
e
tter receiv
er sen
s
itiv
ity th
an
with
in
t
e
n
s
ity
m
odul
at
ed
di
re
ct
det
ect
i
o
n
sy
st
em
s [1
3]
.
The
pu
r
pose
o
f
t
h
i
s
pa
pe
r i
s
t
o
anal
y
ze t
h
e
pe
rf
orm
a
nce o
f
c
ohe
re
nt
det
ect
i
o
n
o
f
OF
DM
-
R
oF sy
st
em
fo
r di
gi
t
a
l
m
odul
at
i
o
n va
ri
at
i
on at
1
0
G
b
ps
up t
o
1
00
km
fi
ber l
e
ngt
h.
B
a
sed o
n
t
h
e
pre
v
i
o
us re
sea
r
ch
, t
h
e
cohe
re
nt
det
ect
i
on o
f
O
F
DM
-
R
oF sy
st
em
uses a QAM
/
P
S
K
seq
u
e
n
ce wi
t
h
t
w
o o
p
t
i
cal
m
odul
at
or an
d
si
ngl
e
cont
i
n
u
o
u
s
wa
ve l
a
ser (C
W-
Laser) as o
p
t
i
cal
i
nput
at
t
h
e
t
r
ansm
i
t
t
e
r l
i
k
e i
n
research [
1
0]
, and f
o
ur
ba
l
a
nced
PIN
detector with phase shi
f
ter 900 an
d a local oscillator at
receiver as wel
l
as the configuration of cohe
rent
det
ect
i
on
on
pre
v
i
o
us r
e
sea
r
ch
[1
1]
. O
p
t
i
S
y
s
t
e
m
13 an
d O
p
t
i
F
i
b
e
r
2
soft
ware a
r
e
use
d
f
o
r si
m
u
l
a
t
i
on.
Sch
e
m
e
o
f
OFDM-RoF u
s
es
a lo
w p
a
ss co
si
n
e
ro
ll-off filter (LPCR
O
F) as a filter at OFDM stag
e ou
tpu
t
and
LiNb-MZM as
an
optical m
odulator.
Th
e
re
sults of sim
u
lation
will be dis
c
usse
d a
nd a
n
a
l
yzed covere
d
at the
OF
DM
out
put
;
R
F
t
o
opt
i
cal
upc
on
vert
e
r
(
R
TO) o
u
t
p
ut
,
opt
i
cal
l
o
o
p
o
u
t
p
ut
, o
p
t
i
cal
li
nk o
u
t
p
ut
, co
here
nt
detection output, and subsyste
m
receive
r, as
well as QAM/PSK, receive
d cons
tellation at the receiver.
It also
include
s the
va
lue of the
BE
R and
SER
for each m
o
dulation form
at, 4-
QAM,
16-QAM, QPSK, 8-PSK, and
16
-PS
K
.
2.
COHE
RENT
DETECTION
OF OFDM-ROF
SCHE
ME
C
ohe
rent
det
ect
i
on o
f
O
F
D
M
-R
oF sc
hem
e
consi
s
t
s
of
fi
ve pa
rt
s t
h
at
i
n
cl
ude
of
R
F
-OF
D
M
tran
sm
it
ter, RF to
op
tical u
p
-co
n
v
e
rter (RTO), th
e
op
ti
cal li
n
k
, op
tical to
RF do
wn
-
c
on
ver
t
er
(O
TR), an
d
R
F
OFDM recei
ver. T
h
is
OFDM-RoF schem
e
is prese
n
te
d in Fi
gure
1,
RF-OFDM t
r
a
n
sm
itter consists of
QAM
/
P
S
K
se
q
u
ence
ge
nerat
o
r t
o
gene
rat
e
a
bi
t
seq
u
ence
o
f
OF
DM
si
g
n
al
and
fl
o
w
e
d
by
di
ffe
re
nt
fre
q
u
e
ncy
from
each sub-carrier, i
n
which the
di
gital input s
o
ur
ce
) is ge
nerated
by the
pse
u
do ra
ndom
bit seque
nce
(PRBS)
gene
rator. OFDM
m
odulator is the im
porta
nt
part in the transm
itter schem
e
because OF
DM is
a
m
u
lt
i
-
carri
er t
r
ansm
i
ssi
on t
echni
que
,
whi
c
h
di
vi
de
s t
h
e a
v
a
i
l
a
bl
e spect
r
u
m
i
n
t
o
m
a
ny
carri
ers
,
eac
h o
n
e
bei
n
g
m
odul
at
ed
by
a l
o
w
rat
e
dat
a
st
ream
[14]
.
A
s
sh
o
w
n
i
n
Fi
g
u
re
1
,
t
h
e
i
n
put
dat
a
ca
n
be i
n
di
ffe
re
nt
m
odu
l
a
t
i
on
f
o
r
m
ats, M-
QA
M, an
d M-
PSK
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
10
8
6
– 10
95
1
088
Fi
gu
re
1.
B
l
oc
k
Di
ag
ram
of
Di
gi
t
a
l
M
o
dul
a
t
i
on
fo
r C
ohe
re
nt
Det
ect
i
o
n
of
OF
DM
-R
oF
S
c
hem
e
In t
h
e
base
ba
n
d
, t
h
e si
ngl
e c
a
rri
er m
o
d
u
l
a
t
i
ons a
r
e c
o
m
posed o
f
4
-
QAM
, 1
6
-
QAM
, QP
SK,
8-
PS
K,
and
1
6
-
PS
K.
T
h
e
base
ban
d
si
gnal
c
a
n
be
ex
press
e
d
as
1
,......,
1
,
0
:
N
m
m
X
, where
m
is t
h
e s
u
b-ca
rrie
r
i
nde
x an
d
N
is
the num
b
er of sub-ca
rrier
[13].
X(m)
are t
h
en m
odul
at
ed
ont
o o
r
t
h
o
g
o
n
a
l
freq
u
e
n
cy
di
vi
si
o
n
m
u
l
tip
lex
i
n
g
(OFDM)
S(
n)
g
i
ven by
[1
5]
:
1
0
/
2
1
)
(
N
m
N
mn
j
e
m
X
N
n
S
(1
)
Whe
r
e
n=
0,
1,
…
., N
-
1
i
s
t
h
e
t
i
m
e
dom
ai
n i
ndex
.
This system
uses a com
pone
nt of OFDM
OS12,
wh
e
r
e out
put I a
n
d Q
wi
ll be flowe
d
to each a low
p
a
ss-co
si
n
e
ro
ll-o
f
f filter (LP-CROF), wh
ere th
e v
a
lu
e of
ro
ll o
f
f factor r can
b
e
arran
g
e
d
fro
m
0
u
n
til 1
.
OF
DM m
odul
ation
results i
n
512 sub-carriers at M-
QAM/PSK position (QAM/PS
K
Ma
ry position) a
n
d
1024
poi
nt
s o
f
F
F
T.
Loss
o
f
p
o
w
e
r
can
be l
o
st
b
y
use an
el
ect
r
i
cal
gai
n
be
f
o
r
e
i
t
com
e
s t
o
the o
p
t
i
cal
m
odul
at
or
.
Sch
e
m
e
o
f
RF-OFDM tran
sm
i
tter si
m
u
latio
n
is sho
w
n
i
n
Fi
gu
re 2.
Figure
2. RF
OFDM T
r
ansm
itter and RT
O
RTO steps electrical to optical (E/O
) con
v
ersion
, wh
ere the o
p
tical
m
o
d
u
lato
r is u
s
ed
in th
is syste
m
m
o
d
e
l is
LiNb
-MZM. Th
is part is p
r
esen
ted
in
Fig
u
re 2
.
In
th
is step
, C
W
laser is u
s
ed
to
d
e
liv
er the sig
n
a
l
fro
m
co
n
tin
u
e
d
op
tical wav
e
s. Th
e laser phase n
o
i
se of CW
Laser is m
o
d
e
led
using
the p
r
o
b
a
b
ility d
e
n
s
ity
fu
nct
i
o
n:
fdt
e
fdt
f
4
2
.
2
1
(2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce A
nal
ysi
s
of
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
f
o
r C
o
here
nt
D
e
t
ect
i
on
of
OF
DM
Sc
heme
o
n
..
.. (
F
au
za
K
h
ai
r)
1
089
whe
r
e
is t
h
e
pha
se
diffe
re
nce bet
w
een two s
u
ccessi
ve ti
me instant
and
dt
is
th
e ti
me
d
i
scretizatio
n. A
Gaus
si
an
ran
d
o
m
vari
abl
e
f
o
r t
h
e
pha
se di
f
f
e
rence
bet
w
ee
n two s
u
ccessi
ve tim
e
instans
with zero m
ean and a
varia
n
ce equal
to
f
2
have
been
assum
e
d, wi
t
h
f
as th
e laser
lin
ewid
th. LiNb
-MZM is an
ex
tern
al
m
odulator whi
c
h is an im
portant co
m
ponent of high bit rate lightwave
system
s is placed betwee
n R
F
and
l
a
ser [
1
6]
. O
u
t
put
f
o
rm
ul
a of
opt
i
cal
fi
el
d
Li
Nb
M
Z
M
i
s
gi
ven
by
[
17]
:
DC
bias
RF
DC
bias
RF
V
v
j
V
t
v
j
V
v
j
V
t
v
j
IL
in
o
e
e
t
E
t
E
1
1
2
2
.
1
.
.
10
20
(3
)
whe
r
e
E
in
(t
)
is
th
e in
pu
t (optical sig
n
a
l),
IL
is th
e p
a
rameter in
sertion
lo
ss,
v
1
(t) a
nd
v
2
(t) are the in
pu
t
electrical volta
ge
fo
r t
h
e
up
p
e
r (
1
) a
n
d
lo
w
e
r (
2
) m
o
d
u
lator
arm
s
, v
bias1
(t
) a
n
d
v
bias2
(t) are th
e settin
g fo
r b
i
as
vol
t
a
ge
1
a
n
d
bi
as vol
t
a
ge
2,
RF
V
and
DC
V
ar
e t
h
e sw
itch
i
ng
m
o
dulatio
n
an
d b
i
as vo
ltag
e
, and
denot
e
d
t
h
e
p
o
wer
sp
littin
g
ratio
o
f
bo
th Y-Bran
ch
waveg
u
i
d
e
(a
ssu
m
ed
to b
e
symmetrical), an
d is
g
i
v
e
n
b
y
:
10
/
10
2
/
1
1
ExtRatio
r
r
(4
)
wh
ere Ex
tRatio
is link
e
d
to th
e
p
a
ram
e
ter Ex
tin
ctio
n ratio.
Th
e
d
e
sign
o
f
th
is syste
m
u
s
es lo
op
co
n
t
ro
l
for h
i
g
h
v
a
riatio
n
of
fib
e
r
op
tic with
wav
e
len
g
t
h
/tim
e
2
0
0
.
Op
tical freq
u
e
n
c
y filter u
s
ed
t
o
an
ti
cip
a
te lo
sses t
h
at cau
sed
b
y
n
o
i
se
fib
e
r scatterin
g
an
d
sig
n
a
l
d
i
sp
ersion
wh
en
it th
rou
g
h
on
fi
b
e
r. Th
e len
g
t
h
o
f
op
tical fib
e
r link
b
e
in
g sim
u
lated
is 10
to 100
km
with
at
t
e
nuat
i
o
n
0.
2
dB
/
k
m
.
Sche
m
e
of t
h
e
opt
i
c
al
l
i
nk ca
n
be s
h
o
w
n i
n
Fi
g
u
r
e
3.
SM
F
2
8
use
d
i
n
t
h
e
o
p
t
i
cal
fi
be
r,
whe
r
e t
h
e c
h
aracteristics im
porte
d from
OptiFiber
2 s
o
ftwa
re as
sh
ow
n
in
Fig
u
re
4
.
Fi
gu
re
3.
O
p
t
i
cal
Li
nk
Figure
4. Dis
p
ersion C
h
aract
eris
t
i
c
of
SM
F
28
(
O
pt
i
F
i
b
er
2)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
10
8
6
– 10
95
1
090
Opt
i
cal
t
o
R
F
do
w
n
-c
o
nve
rt
er (OTR
) i
s
kn
ow
n as an o
p
t
i
cal
det
ect
or. It
consi
s
t
s
o
f
fo
ur o
f
p
h
o
t
o
-
d
e
tecto
r
PIN
with
an
ex
ternal sou
r
ce
wh
ere it is p
r
od
u
c
ed
b
y
a lo
cal
o
s
cillato
r as sh
own in
Figu
re 5. In
t
h
i
s
step, C
W
lase
r is used as the
local oscillator. T
h
e PI
N
photodiode com
pone
nt is use
d
to convert an
optical
si
gnal
i
n
t
o
an
el
ect
ri
cal
curre
nt
base
d o
n
t
h
e devi
ce
’s res
p
o
n
si
vi
t
y
. The
i
n
com
i
ng o
p
t
i
cal
si
gnal
an
d
noi
se
b
i
n
s
are filtered
b
y
an
id
eal rectan
gu
lar filter to
re
du
ce th
e n
u
m
b
e
r o
f
sam
p
les
in
th
e e
l
ectrical sig
n
a
l. Th
e
n
e
w sam
p
le rate is d
e
fin
e
d
b
y
th
e
p
a
ram
e
ter sam
p
le rate. We can
d
e
fine
th
e cen
ter frequ
e
n
c
y and
calcu
late it
au
to
m
a
tical
ly
b
y
cen
tering
the filter at th
e o
p
tical
ch
ann
e
l with
m
a
x
i
m
u
m p
o
w
er. Moreo
v
e
r, th
e RF-OFDM
receiver is inverse from
a process in RF
-OFDM tra
n
sm
itter which c
o
nsists of
OF
DM dem
odulator a
n
d QAM
decode
r. Carrier freque
ncy signal as a re
sult of conver
si
on O/E
receive
d will be
de-m
ultiplexing to
get a
n
o
u
t
p
u
t
sign
al.
All o
u
t
pu
t will b
e
sho
w
n
as po
in
ts on
th
e d
i
ag
ram
sig
n
a
l co
n
s
tellatio
n
form b
e
fo
re co
m
i
n
g
o
n
th
e QAM sequ
en
ce
d
ecod
e
r. Sch
e
m
e
o
f
RF-OFDM tran
sm
it
ter si
m
u
l
a
tio
n
is p
r
esen
ted
in
Figure 5
.
Visu
alizatio
n of sim
u
latio
n
resu
lts u
s
es RF an
d op
tical
spec
trum
analyzer,
electrical
and
o
p
t
i
cal
po
we
r m
e
t
e
r,
an
d con
s
tellatio
n v
i
su
alizer.
Mo
reo
v
e
r, th
e
g
e
n
e
ral
p
a
ra
m
e
t
e
rs o
f
t
h
e si
m
u
l
a
t
i
on c
a
n
be
seen i
n
Ta
bl
e
1
.
Fi
gu
re 5.
OTR
wi
t
h
C
ohe
rent
Det
ect
i
on an
d R
F
OF
DM
R
e
cei
ver
Tabl
e
1.
Param
e
t
e
r o
f
C
ohe
re
nt
Det
ect
i
o
n
of
OF
DM
-R
oF
Para
m
e
ter Value
Bit Rate
10 Gbps
M
odulation Form
at
4-
QAM,
16-
QAM,
QPSK, 8-
PSK,
16-PSK
Sequence L
e
ngth
1638
4
Sam
p
le per Bit
8
Sa
m
p
le rate
80
GHz
Fr
equency
C
W
L
a
ser
193.
1 T
H
z
CW
L
a
se
r P
o
w
e
r
-
4
dBm
Extinction Ratio
60 dB
Switching Bias and RF Voltage
4 dB
SM
F 10-
100
km
Attenuation
0.
2 dB/k
m
Local Oscilla
tor P
o
wer
-2 dB
m
PI
N Responsivity
1 A/W
3.
SIM
U
LATI
O
N
RESULTS
AN
D A
NAL
Y
S
IS
Anal
y
s
i
s
o
f
t
h
e per
f
o
r
m
a
nce of eac
h m
odu
l
a
t
i
on f
o
rm
at
is vi
ewe
d
f
r
o
m
t
h
e p
o
we
r
out
put
at
eve
r
y
step of the
OFDM-RoF syste
m
and r
eceive
d c
onstellation at the recei
ver. On
the
side
of the tra
n
sm
itter, the
fundam
ental differe
nce
between eac
h m
o
dulation
form
at
lies in
sym
b
o
l
rate and
b
its p
e
r sym
b
o
l
, with
4
-
QAM
a
n
d
QP
SK,
w
h
i
c
h
ha
v
e
a sy
m
bol
rat
e
o
f
½
of
t
h
e
b
i
t
rat
e
of
2
bi
t
s
pe
r sy
m
bol
, w
h
i
l
e
1
6
-
Q
AM
and
1
6
-
PSK
pi
ck
sy
m
bol
rat
e
1/
4 o
f
bi
t
rat
e
wi
t
h
4
bi
t
s
pe
r sy
m
bol
, an
d 8
PS
K
wi
t
h
a sy
m
bol
rat
e
1/
3
o
f
t
h
e
bi
t
rat
e
with
3
b
its p
e
r sy
m
b
o
l
. Th
eoretically sy
m
b
o
l
rate 4-
Q
A
M
and
QPS
K
m
o
d
u
l
a
t
i
on a
r
e g
r
eat
er t
h
a
n
t
h
e
ot
her
.
The m
a
gnitude
of the
output
powe
r
of
each st
ep ca
n
be see
n
in Ta
ble 2.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce A
nal
ysi
s
of
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
f
o
r C
o
here
nt
D
e
t
ect
i
on
of
OF
DM
Sc
heme
o
n
..
.. (
F
au
za
K
h
ai
r)
1
091
Tabl
e
2.
Po
wer
St
age
O
u
t
p
ut
(
d
B
m
) for
Di
ffe
rent
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
F
o
r
m
at
at
Fi
ber Le
ngt
h
10
km
Stage/M
odulation Form
at
4-
QAM
16-
QAM
QPSK
8-
PSK
16-
PSK
OFDM 57.
049
64.
057
54.
055
54.
316
54.
004
RT
O -
26.
063
-
19.
427
-
29.
030
-
28.
835
-
29.
031
Optical L
oop
-
2
.
379
3.
731
-
4
.
766
-
4
.
620
-
4
.
765
Optical L
i
nk
6.
928
13.
574
3.
969
4.
175
3.
985
Coher
e
nt Detectio
n
-
12.
108
-
5
.
424
-
15.
061
-
14.
791
-
15.
089
Subsy
s
tem
Receiver
100.
99
7
107.
55
8
98.
024
97.
995
97.
975
As s
h
o
w
n i
n
T
a
bl
e 2,
1
6
-
Q
A
M
has t
h
e
gre
a
t
e
st
po
wer
ou
t
put
o
f
eac
h st
age com
p
are
d
t
o
t
h
e ot
her
m
odul
at
i
on.
O
n
t
h
e
OF
DM
st
age
out
put
,
16
-Q
AM
has
a p
o
w
e
r
val
u
e
o
u
t
p
ut
of
1
0
dB
i
s
g
r
eat
er
. T
h
i
s
si
gni
fi
ca
nt
di
ff
erence
val
u
e
was al
so seen
at
t
h
e out
p
u
t
o
f
opt
i
cal
l
i
nk a
nd c
ohe
re
nt
de
t
ect
i
on.
Whi
l
e
t
h
e 4-
QAM and QPSK relative ha
ve the sam
e
rated powe
r outp
ut of each stage. Diffe
rent
res
u
lts saw PSK form
at,
t
h
e opt
i
cal
out
put
p
o
w
er, a
n
d
l
i
nk l
oop
has a very
cl
ose ran
g
e, b
u
t
i
t
has a
con
s
i
d
era
b
l
e
ra
nge
whe
n
com
p
ar
e
d
t
o
co
he
rent
de
t
ect
i
on a
n
d
rec
e
i
v
er s
u
bsy
s
t
e
m
.
B
a
se
d
on
t
h
e
r
e
su
lts
r
eceiv
ed
t
h
e
po
w
e
r
o
f
4-
QA
M an
d 16-
QAM
are m
u
ch bet
t
e
r t
h
a
n
QPS
K
,
8-
PSK
,
and
16
-PS
K
.
As
for the
dec
r
ease in com
p
arison
to
th
e lon
g
fib
e
r
up t
o
10
0 km
can be see
n
i
n
Fi
gur
e 6. R
e
f
e
rri
n
g
t
o
Fi
g
u
r
e 6 sho
w
s t
h
at
t
h
e red
u
ct
i
on
i
n
po
we
r t
e
nds
t
o
be
linear, i
n
whic
h the
16
QAM receive
d power
is
the greatest.
Figure
6. Powe
r Out
put
versus Fibe
r
Le
ngth at
Cohe
rent De
tection
Receiver
Evaluation
of the
power recei
ved at the
recei
ver
be
base
d on
a
c
o
nstellation of form
s
received by
the
receiver and the value BER a
nd
SER m
easured. Com
p
ar
is
on
of BER and SER,
each
m
odulation form
at for
t
h
e fi
be
r l
e
n
g
t
h
vari
at
i
o
n, can
be seen i
n
Fi
g
u
r
es 7 a
nd
8.
As
fo
r the res
u
lts of c
o
n
s
tellation dia
g
ram
s
for
fibe
r
l
e
ngt
h
va
ri
at
i
o
n ca
n
be see
n
i
n
Fi
g
u
r
es
9 t
o
13
. B
a
se
d
on
Fi
gu
re
7,
t
h
e c
h
aract
eri
s
t
i
c
of
B
E
R
i
s
di
vi
de
d i
n
t
o
three re
gions.
In ge
neral, a
n
increas
e i
n
the value
of BER for each m
odula
tion form
at
is alm
o
st equal to the
fi
ber
l
e
n
g
t
h
o
f
60
-
7
0
km
(R
eg
i
o
n
I
an
d
II
).
H
o
we
ve
r, t
h
ere
i
s
a si
gni
fi
cant
i
n
crease
i
n
t
h
e
num
ber
o
f
B
E
R
f
o
r
a fi
ber l
e
n
g
t
h
of
80
-1
0
0
km
(R
egi
o
n I
I
I
.
A
and
II
I. B
)
f
o
r
t
h
e m
odul
at
i
o
n
of 4
QAM
, Q
PSK
, 8 PS
K a
nd
16
-
PSK
. It
al
so
sh
ows
t
h
at
t
h
e
16
Q
A
M
has a
B
E
R
val
u
e t
h
at
i
s
ve
ry
l
o
w c
o
m
p
ared t
o
ot
he
r m
odul
at
i
o
n
f
o
rm
at
s,
whi
c
h f
o
r t
h
e
f
i
ber l
e
n
g
t
h
of
10
0
km
; B
E
R
16
-Q
AM
i
s
0.
05
3.
It
al
so sh
ows t
h
at
t
h
e B
E
R
val
u
e o
f
4
-
QA
M
an
d QPSK relativ
ely si
m
i
lar to
fib
e
r leng
th variatio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
10
8
6
– 10
95
1
092
.
Fi
gu
re 7.
B
E
R
vers
us Fi
be
r
L
e
ngt
h
Sim
i
l
a
r t
o
t
h
e
val
u
e
o
f
SE
R
,
Fi
g
u
re
8
s
h
o
w
s t
h
at
16
QAM
ha
ve
S
E
R
val
u
e
s
a
r
e
ve
ry
sm
all
com
p
ared t
o
o
t
her m
odul
at
i
o
n f
o
rm
at
s, whi
c
h f
o
r t
h
e fi
be
r l
e
n
g
t
h
of
10
0 km
, 16
-Q
A
M
SER
fo
r 0
.
15
7,
or
15
.7
%. SER
v
a
l
u
e o
f
4
-
QA
M
and
QP
SK
nearl
y
t
h
e sam
e
rel
a
t
i
v
e t
o
fi
ber l
e
ngt
h
vari
at
i
ons.
I
n
ge
ne
ral
,
a
n
i
n
crease i
n
t
h
e
val
u
e
of
SER
fo
r eac
h m
odul
at
i
on
fo
rm
at i
s
alm
o
st
equ
a
l
t
o
t
h
e fi
ber
l
e
ngt
h o
f
60
-
70
km
(Regio
n I
an
d II
). Ho
we
ver,
there
is
a si
gnificant increase i
n
t
h
e
val
u
e
o
f
SER
i
n
fi
ber l
e
ngt
h o
f
80
-
1
0
0
km
(R
egi
o
n I
I
I
.
A
and
II
I. B
)
f
o
r t
h
e m
odul
at
i
o
n
of 4
Q
A
M
,
Q
PSK
, 8 P
S
K a
nd
16
-P
SK
. O
v
eral
l
use
of
1
6
Q
A
M
of
co
here
nt
det
ect
i
on
of
t
h
e
O
F
DM
-R
oF
sy
st
em
i
s
m
u
ch
bet
t
e
r com
p
are
d
t
o
t
h
e
ot
her
m
odul
at
i
o
n.
Fi
gu
re 8.
SER
vers
us Fi
be
r
l
e
ngt
h
Im
pair
m
e
nt power recei
ve
d at the receiver,
and th
e i
n
creas
e in the value
of the BER and SER has a
significa
nt infl
uence
on the constella
tion diagram
at receiver, es
pecially
in the receiver s
ubsystem. An
I
II
III.A
III.B
I II
III.A
III.B
0.
05
3
0.
15
7
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce A
nal
ysi
s
of
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
f
o
r C
o
here
nt
D
e
t
ect
i
on
of
OF
DM
Sc
heme
o
n
..
.. (
F
au
za
K
h
ai
r)
1
093
am
pl
i
t
ude ran
g
e
on t
h
e co
nst
e
l
l
a
t
i
on vi
sual
i
zer i
s
i
n
fl
ue
nce
d
by
t
h
e am
ount
of p
o
w
er rec
e
i
v
ed at
t
h
e rec
e
i
v
er.
The l
o
nge
r
the optical fibe
r, t
h
e
greate
r
the
reduc
tion in
po
wer so th
at th
e amp
litu
d
e
of t
h
e sm
al
l
co
nstellatio
n
.
Fig
u
r
e
s
9 to
13 show
a
d
e
cr
ease in
t
h
e
po
w
e
r of
fib
e
r leng
th v
a
riatio
n
.
By th
e
v
a
lu
e of t
h
e BER
and SER by
Figures 7
a
nd 8, it
appear
s
that for
the
le
ngt
h of fibe
r
10 km
to 60
km
, the constellation
for each
m
odul
at
i
on f
o
r
m
at
l
ooks ve
ry
ni
ce. H
o
we
ve
r, t
o
i
n
c
r
ease fi
ber l
e
n
g
t
h
u
p
t
o
7
0
-
8
0 km
, wi
t
h
t
h
e fi
g
u
re
1
2
ca
n
b
e
seen
t
h
at con
s
tellatio
n
b
e
gan
to
d
e
teriorate, th
e sy
m
b
o
l
co
nstellatio
n
wh
ere th
e
d
i
stan
ce is g
e
tting clo
s
er
and sm
aller am
plitude, a
nd
the greater t
h
e
noise
puls
es.
BER significa
ntly increase
d
value
occ
u
rs
for 4-
QAM
, QP
SK
, 8-P
S
K
a
n
d
1
6
-
PSK fo
r
the fib
e
r
len
g
th of 90
to
10
0
k
m
. It can
also
b
e
seen
in
th
e con
s
tellatio
n
d
i
agr
a
m
as sh
ow
n in
Figu
r
e
13
.
I
n
stead
, BER r
e
lativ
ely
small increase in
value t
o
16-QAM t
o
100
km
, also
seen
wi
t
h
t
h
e
r
e
sul
t
s
o
f
co
nst
e
l
l
a
t
i
on di
ag
ra
m
s
. So fo
r t
h
e
fi
ber l
e
ngt
h
of
10
0
km
, 16-
Q
A
M
has c
o
nst
e
l
l
a
t
i
o
n
bet
t
e
r
whe
n
co
m
p
ared t
o
ot
he
r m
odul
at
i
o
n
f
o
rm
at
s wi
t
h
t
h
e i
n
crea
se i
n
t
h
e
val
u
e
o
f
B
E
R
an
d
SER
i
s
sm
all
an
yway. Based
o
n
all
resu
lt
s, It also
sh
ows th
at th
is
OF
DM
-R
o
F
sc
he
m
e
wi
t
h
co
her
e
nt
det
ect
i
o
n i
s
bet
t
e
r
than previ
o
us research [10]
,[11], whe
r
e the bit rate can be a
c
hieve
d
on
10
G
b
p
s
16
QA
M
w
ith
th
e s
m
all
BER
and
SER
val
u
e
s
f
o
r l
o
ng
t
r
an
s
m
i
ssi
on u
p
t
o
1
0
0
km
SM
F.
a)
4-Q
A
M
b)
16-
QAM
c
)
QPS
K
d)
8-
PS
K
e
)
16
-P
SK
Fi
gu
re
9.
C
o
ns
t
e
l
l
a
t
i
on Vi
sual
i
zer f
o
r
Fi
be
r L
e
ngt
h
10
km
a
)
4-
Q
A
M
b)
16-Q
AM
c
)
QPS
K
d)
8-
PS
K
e
)
16-
PS
K
Fig
u
re
10
. C
o
nstellatio
n
Visualizer for
Fib
e
r Leng
th 30
k
m
a
)
4-
Q
A
M
b)
16-Q
AM
c
)
QPS
K
d)
8-P
S
K
e
)
1
6-PSK
Fig
u
re
11
. C
o
nstellatio
n
Visualizer for
Fib
e
r Leng
th 50
k
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
10
8
6
– 10
95
1
094
a)
4-Q
A
M
b)
16-
Q
AM
c
)
QP
SK
d)
8-PS
K
e
)
16-
PSK
Fig
u
re
12
. C
o
nstellatio
n
Visualizer for
Fib
e
r Leng
th 70
k
m
a
)
4-
QA
M
b)
16-Q
AM
c)
Q
P
SK
d)
8-PS
K
e)
16-
PSK
Fig
u
re
13
. C
o
nstellatio
n
Visualizer for
Fib
e
r Leng
th 100
km
4.
CO
NCL
USI
O
N
Th
e
resu
lts show th
at coh
e
rent d
e
tectio
n
of th
e
OF
DM
-R
o
F
sy
st
em
wi
t
h
16
-Q
AM
has
t
h
e val
u
e
of
th
e
b
it error
rate (BER) and th
e
sym
b
o
l
erro
r rate
(SER
) is
v
e
ry sm
al
l and
its co
nstellatio
n
b
e
tter
wh
en
com
p
ared wi
t
h
ot
her m
o
d
u
l
a
t
i
on f
o
rm
at
s (4
-Q
AM
, Q
P
S
K
,
8-P
S
K
,
an
d 1
6
-P
SK
),
whi
c
h
B
E
R
16-
Q
A
M
i
s
0.
05
3 a
nd
SER
are 1
5
.
7
%.
Th
e R
e
sul
t
s
also
show that the
valu
e of BER 4-QAM an
d
QPSK relativ
ely similar
t
o
fi
be
r l
e
n
g
t
h
vari
at
i
o
ns.
In
g
e
neral
,
a
n
i
n
cr
easi
ng
val
u
e
o
f
t
h
e B
E
R
an
d
SER
f
o
r eac
h
m
odul
at
i
on f
o
r
m
at
i
s
alm
o
st
equal
t
o
t
h
e
fi
be
r l
e
n
g
t
h
of
6
0
-
7
0 k
m
(R
egi
o
n I
and
II
).
How
e
v
e
r,
th
er
e is
a
significant increa
se
in the
val
u
e
of B
E
R
i
n
fi
ber l
e
n
g
t
h
of
80
-
1
0
0
km
(R
egi
o
n
II
I.
A and
II
I. B
)
f
o
r
t
h
e m
odul
at
i
o
n
of
4-
Q
A
M
,
Q
P
S
K
,
8
-
PSK, an
d 16-
PSK
.
REFERE
NC
ES
[1]
D. S. P. Karthikey
a
n,
“OFDM
Signal Im
provem
e
nt Using Radi
o over Fiber for W
i
reless Sy
stem
,”
IJCNWC
, vol. 3
,
pp. 287-291
, 20
13.
[2]
Y. W
ong,
et al
., “
P
erform
ance A
n
al
y
s
is
of the O
F
D
M
S
c
hem
e
for W
i
reles
s
over F
i
ber Comm
unication Link
,
”
IJCTE
, vo
l/issue: 4(5), pp. 807-8
11, 2012
.
[3]
S
.
M
a
hajan and
N
.
K
u
m
a
r, “P
erform
ance A
n
al
y
s
is
of
Coded OFDM
Signal for Radi
o over Fiber Transm
ission,”
IOSRJEE
E
, vol/issue: 1(1), pp. 4
9
-52, 2012
.
[4]
R. Karthik
e
y
a
n
and S. Prakasam
, “A
Review – OFDM-Ro
F
(
R
adio over Fi
b
e
r) S
y
stem
for
W
i
reless Network,”
IJRCCT
, vo
l/iss
u
e: 3(3)
, pp
. 344
-349, 2014
.
[5]
A. A. G. Sin,
“OFDM
M
odulatio
n Stud
y
for a R
a
dio-over-Fib
er S
y
stem
for W
i
reless LAN (IEEE 802.11a),”
IE
EE
,
pp. 1460-1464
,
2003.
[6]
A. Alateeq
and
M. Matin
, “Study
of
the BER p
e
rform
an
ce in
Ro
F-OFDM sy
stem
m
odulated b
y
QAM and PSK,”
IOSRJEN
, vol/issue: 3(3), pp
. 27
-32, 2013
.
[7]
S.
A.
Khwa
nda
h,
et a
l
.
, “Direct
and Extern
al
Intensity
Modulatio
n
in OFDM Ro
F Links,”
I
EEE P
hotonics
Journal
,
vol/issue:
7(4), p
p
. 1-10
, 2015
.
[8]
B. U. Rindhe,
et al
., “Im
p
lem
e
ntation of
Optical OFDM Ba
sed S
y
stem
for Optical Networks”,
IJ
E
C
E
(
International Jo
urnal of
Electr
ical and Computer Engin
eering
)
,
v
o
l/issue: 4
(
5), 20
14.
[9]
A.
H.
Sha
r
ie
f,
et al
.,
”An Im
proved ICI Self Can
cellation Schem
e
for OFDM Sy
st
em
s Under V
a
rious Chann
e
ls,”
International Jo
urnal of
Electr
ical and Computer Engin
eering
, vo
l/issue: 6
(
2), 201
6.
[10]
A. Kanno,
et al
., “
C
oherent radi
o-over-fiber
and
m
illim
eter-w
av
e ra
dio seam
less transm
ission system
for resilien
t
access networks,”
IEEE Photon
ics J.
, vol/issue: 4(
6), pp
. 2196–22
04, 2012
.
[11]
J.
J.
G. Torre
s
,
et
al.
, “Chrom
atic dispersion
effects in
a r
a
dio ov
er
fiber
s
y
stem
with PSK
m
odulation and
coher
e
nt
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce A
nal
ysi
s
of
Di
gi
t
a
l
M
o
d
u
l
a
t
i
o
n
f
o
r C
o
here
nt
D
e
t
ect
i
on
of
OF
DM
Sc
heme
o
n
..
.. (
F
au
za
K
h
ai
r)
1
095
dete
ction
,
”
Commun. Conf. (
C
OLCOM
)
, 2012 IEEE Co
lomb.
, vol. 1
,
pp
. 1–6
, 201
2.
[12]
T. K
u
ri
,
et
al.
,
“
L
as
er-P
has
e
-F
luctu
a
tion-Ins
e
n
s
itive O
p
t
i
ca
l C
oherent D
e
te
cti
on S
c
hem
e
for
Radio-over-F
ib
e
r
Sy
s
t
e
m
,
”
J. Ligh
t. Technol.
, vol/issue: 32(20), pp. 3803–3809, 201
4.
[13]
K.
Ki
t
a
y
a
ma
,
et al.
, “Digital Coh
e
rent T
echno
log
y
for Optical Fi
b
e
r and Radio-Ov
er-fiber
Transm
ission Sy
stem
s,”
Light. Technol. I
EEE
, vol/issue:
32(20), pp
. 3411
–3420, 2014
.
[14]
W
.
Shieh and I. Djordjevic, “O
F
D
M
for
O
p
tica
l
Com
m
unicatio
ns
,”
J. Light. Technol. I
EEE
, vo
l/issue: 27(3), p
p
.
456, 2009
.
[15]
T. Kan
e
san and
W
.
P. Ng, “Investigation
of Optical
Modulators in Optim
ized No
nlinear Com
p
ensated LTE Ro
F
Sy
s
t
e
m
,
”
Light. Technol Journal,
IEEE
, vo
l/issue: 32(10), pp. 194
4–1950, 2014
.
[16]
J. C. Cartledge, “Perform
ance of
10 Gb / s
Lightwav
e
S
y
stem
s Base
d on Lithium
Niobate Mach-Zehnder
Modulators with
As
y
m
m
e
tric Y-Branch W
a
v
e
guides,”
IEE
E
, vol/issue: 7(9), pp. 1
090-1092, 1995
.
[17]
H.
Ya
ng,
et
al
.,
“
E
valuat
ion of
Effec
t
s
of M
Z
M
N
onlinear
it
y on
Q
A
M
and O
F
DM
S
i
gnals
in Ro
F
Trans
m
itter,
”
IEEE
, pp
. 90-93
, 2008.
BIOGRAP
HI
ES OF
AUTH
ORS
Fauza Khair was born in Padang,
Indonesia, in
1990. He receiv
e
d the B
achelor
degree (2013
)
from
electrical
engineer
ing of A
ndalas University
, Padang
, Indo
nesia. Currently
, he is
a m
a
ster
student in
electr
i
cal, Gad
j
ah Ma
da University
, I
ndonesia. His cu
rrent r
e
sear
ch
is focused on
m
odulation tech
nique,
external
m
odulated-coh
er
ent d
e
tection
,
d
i
gital sign
al pr
ocessing an
d
nonlinearity
on Radio
ov
er
Fib
e
r
.
Second aut
h
or’s ph
Fakhriy
Har
i
o P was born in Mala
ng
, Indonesia, in 1984. He
received th
e Bachelor d
e
gree
(2008) and M.Eng degree
(2010
) from
Brawijaya Un
iversity
, In
donesia. Now, h
e
is on the PhD
P
r
ogram
at G
a
djah M
a
da U
n
iver
s
i
t
y
. H
i
s
current
research
is focused on nonlinearity
f
i
ber
,
phase
dithering
,
SBS
and Ram
a
n Scattering.
I W
a
y
a
n M
u
s
t
i
k
a. H
e
re
ceiv
e
d
the B.Eng
.
deg
r
ee in e
l
ec
tri
cal
engineer
ing fro
m
U
n
ivers
itas
Gadjah Mad
a
, I
ndonesia, in
200
5, and
th
e M.En
g. degr
ee in
co
m
puter engin
eer
ing from
King
M
ongkut’s Institute of
T
echnolog
y
Ladkr
abang
(KM
I
TL),
Tha
iland
, in
2008,
and th
e Ph.D
.
degree in infor
m
atics from
Ky
oto University
,
Japa
n, in 2011. He is currently
a Lectur
er at
Universitas Gadjah M
a
da. He
was a Student Activities Adviso
r
of IEEE Indonesia Section in
2014 and he
is
currently
a Secr
etar
y
of
IEEE I
ndonesia Sectio
n. His rese
arch interests in
clud
e
sm
art sy
stem
s, m
achine-to-m
achine com
m
unica
tions,
and reso
urce m
a
nagem
e
nt in cognitive
radio
and heter
ogeneous networ
ks with a particular
em
phasi
s
on spectrum
sh
aring
and gam
e
theor
y
. He received the Young
Research
er’s Encouragem
ent A
w
ard from
IEEE VTS Japan in
2010 and Stud
en
t Paper
Award fr
om
IEEE Kansai S
ection in
2011. He is
a m
e
m
b
er
of the IEEE.
Budi Setiy
a
nto
.
He received the B.Eng. degr
ee
(1989) and M.Eng. degree
(2005) in electrical
engineering fro
m
Universitas Gadjah Mada,
I
ndonesia He h
a
s been a senior lectur
er and
res
earch
er in
th
e el
ectr
i
c
a
l eng
i
neering
and inf
o
rm
ation te
chno
log
y
d
e
par
t
m
e
nt
, G
a
djah M
a
d
a
U
n
ivers
i
t
y
.
H
i
s
r
e
s
earch
in
teres
t
s
are
in
co
m
m
unication, signal pr
oce
ssing, and electronics.
Evaluation Warning : The document was created with Spire.PDF for Python.