I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
201
7
,
p
p
.
2
2
2
3
~
2
2
3
1
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
4
.
p
p
2
2
2
3
-
2231
2223
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Fu
zz
y
Asso
cia
tio
n Rule
Mining
b
a
sed M
o
del t
o
Pre
dict
Studen
ts’
Perf
o
r
m
a
nce
Su
s
h
il K
u
m
a
r
Ver
m
a
1
,
R.
S.
T
ha
k
ur
2
,
S
ha
iles
h J
a
lo
re
e
3
1
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter A
p
p
li
c
a
ti
o
n
s,
S
A
T
I
V
id
ish
a
,
I
n
d
ia
2
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter A
p
p
li
c
a
ti
o
n
s
,
M
A
NIT
Bh
o
p
a
l
,
In
d
ia
3
De
p
tt
.
o
f
A
p
p
li
e
d
M
a
t
h
s an
d
Co
m
p
u
ter S
c
ien
c
e
,
S
AT
I
V
id
is
h
a
(
M
P
)
,
I
n
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
1
6
,
2
0
1
6
R
ev
i
s
ed
J
u
n
3
0
,
2
0
1
7
A
cc
ep
ted
J
u
l 1
4
,
2
0
1
7
T
h
e
m
a
jo
r
in
ten
ti
o
n
o
f
h
ig
h
e
r
e
d
u
c
a
ti
o
n
in
sti
tu
ti
o
n
s
is
to
su
p
p
ly
q
u
a
li
ty
e
d
u
c
a
ti
o
n
t
o
it
s
stu
d
e
n
ts.
On
e
a
p
p
ro
a
c
h
to
g
e
t
m
a
x
i
m
u
m
le
v
e
l
o
f
q
u
a
li
ty
in
h
ig
h
e
r
e
d
u
c
a
ti
o
n
sy
ste
m
is
b
y
d
isc
o
v
e
rin
g
k
n
o
w
led
g
e
f
o
r
p
re
d
icti
o
n
re
g
a
rd
in
g
th
e
in
ter
n
a
l
a
ss
e
ss
m
e
n
t
a
n
d
e
n
d
se
m
e
ste
r
e
x
a
m
in
a
ti
o
n
.
T
h
e
p
ro
jec
ted
w
o
rk
in
ten
d
s
to
a
p
p
r
o
a
c
h
th
is
o
b
jec
ti
v
e
b
y
ta
k
in
g
th
e
a
d
v
a
n
tag
e
o
f
f
u
z
z
y
in
f
e
r
e
n
c
e
tec
h
n
iq
u
e
to
c
las
sify
stu
d
e
n
t
sc
o
re
s
d
a
ta
a
c
c
o
rd
in
g
to
th
e
lev
e
l
o
f
th
e
ir
p
e
rf
o
rm
a
n
c
e
.
In
th
i
s
p
a
p
e
r,
st
u
d
e
n
t’s
p
e
rf
o
rm
a
n
c
e
is
e
v
a
lu
a
ted
u
sin
g
f
u
z
z
y
a
ss
o
c
iatio
n
ru
le
m
in
in
g
th
a
t
d
e
sc
rib
e
s
P
re
d
ictio
n
o
f
p
e
rf
o
r
m
a
n
c
e
o
f
th
e
stu
d
e
n
ts
a
t
th
e
e
n
d
o
f
th
e
se
m
e
ste
r,
o
n
th
e
b
a
sis
o
f
p
re
v
io
u
s
d
a
tab
a
se
li
k
e
A
tt
e
n
d
a
n
c
e
,
M
id
se
m
M
a
rk
s,
P
re
v
io
u
s
se
m
e
ste
r
m
a
rk
s
a
n
d
P
re
v
io
u
s
A
c
a
d
e
m
ic
R
e
c
o
rd
s
w
e
re
c
o
ll
e
c
te
d
f
ro
m
th
e
stu
d
e
n
t’s
p
re
v
io
u
s
d
a
tab
a
se
,
to
id
e
n
ti
f
y
th
o
se
stu
d
e
n
ts
w
h
ich
n
e
e
d
e
d
in
d
iv
i
d
u
a
l
a
tt
e
n
ti
o
n
t
o
d
e
c
re
a
se
fa
il
ra
ti
o
n
a
n
d
tak
in
g
su
i
tab
le ac
ti
o
n
f
o
r
t
h
e
n
e
x
t
se
m
e
ste
r
e
x
a
m
in
a
ti
o
n
.
K
ey
w
o
r
d
:
A
p
r
io
r
i
-
li
k
e
al
g
o
r
ith
m
C
las
s
i
f
icatio
n
E
d
u
ca
tio
n
d
ata
m
i
n
i
n
g
Fu
zz
y
ass
o
ciatio
n
m
in
i
n
g
Kn
o
w
led
g
e
d
is
co
v
er
in
g
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
in
g
A
uth
o
r
:
Su
s
h
il K
u
m
ar
Ver
m
a
,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
A
p
p
licatio
n
s
,
Sa
m
r
at
Ash
o
k
T
ec
h
n
o
lo
g
ical
I
in
s
t
itu
te
Vid
is
h
a
(
M.
P
.
)
,
I
n
d
ia
.
E
m
ail:
S
h
aile
s
h
_
j
alo
r
ee
@
r
ed
if
f
m
ai
l.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
r
a
d
itio
n
al
s
tatis
tical
tec
h
n
iq
u
es
a
n
d
d
ata
b
ase
m
an
a
g
e
m
e
n
t
to
o
ls
ar
e
a
p
p
licatio
n
o
r
ien
t
ed
an
d
ar
e
n
o
t
s
u
i
tab
le
f
o
r
an
al
y
s
i
s
o
f
lar
g
e
a
m
o
u
n
t
o
f
d
ata,
b
ec
au
s
e
in
th
e
w
o
r
ld
a
h
u
g
e
q
u
a
n
tit
y
o
f
d
ata
ar
e
c
o
llected
an
d
s
to
r
ed
d
ail
y
.
St
u
d
y
o
f
s
u
c
h
d
ata
is
an
i
m
p
o
r
tan
t
n
ee
d
.
T
h
is
n
ee
d
ca
n
b
e
f
u
l
f
ill
b
y
t
h
e
u
s
e
o
f
d
ata
m
in
in
g
[
1
]
.
Dat
a
m
i
n
i
n
g
h
a
s
b
ec
o
m
e
th
e
ar
ea
o
f
g
r
o
w
i
n
g
s
i
g
n
i
f
ican
ce
b
ec
au
s
e
it
h
e
lp
s
i
n
a
n
al
y
z
in
g
d
ata
an
d
s
u
m
m
ar
izin
g
it
i
n
to
u
s
ef
u
l
i
n
f
o
r
m
atio
n
.
T
h
e
n
o
tio
n
o
f
d
ata
m
in
i
n
g
is
th
e
tec
h
n
iq
u
e
o
f
ex
tr
ac
tin
g
p
r
ev
io
u
s
l
y
u
n
k
n
o
w
n
i
n
f
o
r
m
atio
n
w
it
h
t
h
e
w
id
es
t
r
elev
a
n
ce
f
r
o
m
d
ata
b
ase,
in
o
r
d
er
to
u
s
e
it
i
n
t
h
e
d
ec
is
io
n
m
ak
i
n
g
p
r
o
ce
s
s
[
2
]
.
Data
m
i
n
in
g
is
t
h
e
p
r
o
ce
s
s
o
f
ex
tr
ac
tin
g
p
r
ev
io
u
s
l
y
u
n
k
n
o
w
n
,
v
al
id
,
p
o
ten
tiall
y
u
s
e
f
u
l a
n
d
h
id
d
en
p
atter
n
s
f
r
o
m
lar
g
e
d
ataset
s
[
3
]
.
Data
m
in
i
n
g
i
s
a
n
e
w
co
n
ce
p
t
in
ed
u
ca
tio
n
d
o
m
ai
n
.
T
h
is
co
n
ce
p
t
ca
n
b
e
h
elp
f
u
l
a
s
a
w
o
r
k
o
f
b
r
id
g
e
b
et
w
ee
n
t
h
is
lack
s
o
f
k
n
o
w
l
ed
g
e.
Data
m
i
n
in
g
i
s
u
s
ed
t
o
ap
p
ly
t
w
o
d
if
f
er
en
t
p
r
o
ce
s
s
es
o
f
k
n
o
w
led
g
e
d
is
co
v
er
y
an
d
p
r
ed
ictio
n
.
Kn
o
w
led
g
e
d
is
co
v
er
y
p
r
o
v
id
es
i
n
f
o
r
m
atio
n
w
h
ic
h
h
a
s
a
r
ea
d
ab
le
f
o
r
m
an
d
th
e
co
n
ce
p
t
o
f
p
r
ed
ictio
n
g
i
v
es
t
h
e
p
r
ed
ictio
n
o
f
f
u
tu
r
e
e
v
en
t
s
[
4
]
.
Data
m
i
n
i
n
g
p
r
o
v
id
es
m
a
n
y
tec
h
n
iq
u
e
s
th
a
t
ca
n
b
e
u
s
ed
to
s
t
u
d
y
t
h
e
p
er
f
o
r
m
an
ce
o
f
s
t
u
d
en
ts
.
T
h
er
e
ar
e
in
cr
ea
s
i
n
g
r
esear
ch
i
n
ter
es
ts
i
n
ed
u
ca
tio
n
.
T
h
is
i
s
a
n
e
w
f
ield
,
ca
lled
“
ed
u
ca
ti
o
n
al
d
ata
m
i
n
in
g
”,
in
v
o
l
v
es
w
i
t
h
d
ev
elo
p
in
g
tec
h
n
iq
u
es
th
at
d
is
co
v
er
n
e
w
in
f
o
r
m
atio
n
f
r
o
m
t
h
e
d
ata
o
r
ig
in
a
tin
g
f
r
o
m
ed
u
ca
tio
n
a
l
en
v
ir
o
n
m
e
n
t
s
[
5
]
.
Data
m
in
i
n
g
tech
n
iq
u
es
ar
e
an
al
y
s
is
to
o
l t
h
at
ca
n
b
e
u
s
ed
to
ex
tr
ac
t
m
ea
n
in
g
f
u
l k
n
o
w
led
g
e
f
r
o
m
lar
g
e
d
ata
s
ets.
B
en
ef
it
s
o
f
E
d
u
ca
tio
n
al
Dat
a
m
i
n
in
g
ar
e
f
o
llo
w
i
n
g
[
1
-
6]
.
a.
I
m
p
r
o
v
in
g
th
e
s
t
u
d
en
t
’
s
p
er
f
o
r
m
an
ce
b
ased
o
n
e
x
tr
ac
ti
n
g
k
n
o
w
led
g
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
2
2
3
–
2
2
3
1
2224
b.
An
al
y
ze
d
s
tu
d
e
n
t a
ca
d
e
m
ic
d
a
ta
an
d
en
h
a
n
ce
t
h
e
q
u
alit
y
o
f
e
d
u
ca
tio
n
al
s
y
s
te
m
.
c.
I
m
p
r
o
v
in
g
s
t
u
d
en
t
’
s
lear
n
i
n
g
p
r
o
ce
s
s
.
d.
I
m
p
r
o
v
e
r
esear
ch
ca
p
ab
ilit
y
i
n
th
e
ed
u
ca
tio
n
a
l f
ield
.
e.
T
im
e
s
a
v
i
n
g
d
u
r
i
n
g
k
n
o
w
led
g
e
ex
tr
ac
tio
n
f
o
r
ed
u
ca
tio
n
al
f
ie
ld
.
f.
Mo
r
e
ef
f
ec
ti
v
e
s
h
ar
in
g
o
f
i
n
f
o
r
m
atio
n
i
n
ed
u
ca
tio
n
al
ar
ea
.
g.
Select
s
t
u
d
en
t
g
r
o
u
p
s
w
it
h
s
i
m
ilar
ch
ar
ac
ter
is
tics
a
n
d
r
ea
ctio
n
s
to
lear
n
i
n
g
s
tr
ate
g
ies.
h.
L
ac
k
o
f
d
ee
p
an
d
en
o
u
g
h
k
n
o
w
led
g
e
i
n
ed
u
ca
tio
n
al
s
y
s
te
m
m
a
y
p
r
ev
e
n
t
s
y
s
te
m
m
a
n
a
g
e
m
e
n
t
to
ac
h
iev
e
q
u
alit
y
o
b
j
ec
tiv
es,
Da
ta
m
i
n
i
n
g
d
o
t
h
e
w
o
r
k
o
f
b
r
id
g
e
f
o
r
t
h
is
k
n
o
w
led
g
e
g
ap
s
i
n
ed
u
ca
tio
n
s
y
s
te
m
.
i.
Data
m
i
n
in
g
tec
h
n
iq
u
es
ca
n
b
e
u
tili
ze
d
ef
f
ec
tiv
e
l
y
i
n
s
ele
ctin
g
co
u
r
s
e,
m
a
n
ag
in
g
an
d
i
m
p
r
o
v
in
g
s
tu
d
e
n
ts
’
atte
n
d
an
ce
,
p
r
o
v
id
in
g
th
e
k
n
o
w
led
g
e
f
o
r
s
u
p
p
le
m
e
n
tar
y
cla
s
s
es
w
h
er
e
n
ec
e
s
s
ar
y
.
j.
Data
m
in
in
g
is
u
s
ef
u
l
f
o
r
a
n
al
y
zi
n
g
s
t
u
d
en
ts
’
d
ata
f
o
r
p
r
ed
ictin
g
t
h
eir
lear
n
i
n
g
b
eh
a
v
io
r
an
d
to
w
ar
n
s
t
u
d
en
t
s
at
r
is
k
b
ef
o
r
e
th
e
ir
f
in
al
e
x
a
m
s
.
T
h
e
p
r
esen
t
w
o
r
k
i
n
te
n
d
s
to
ap
p
r
o
ac
h
th
is
o
b
j
ec
tiv
e
b
y
ta
k
in
g
t
h
e
ad
v
a
n
tag
e
o
f
f
u
zz
y
in
f
er
en
ce
tech
n
iq
u
e
i
n
o
r
d
er
to
class
if
y
s
tu
d
e
n
t
s
co
r
es
d
ata
ac
co
r
d
in
g
to
th
e
lev
el
o
f
t
h
eir
p
er
f
o
r
m
a
n
ce
.
I
n
th
is
p
ap
er
,
s
tu
d
e
n
t’
s
p
er
f
o
r
m
a
n
ce
is
ev
al
u
ated
u
s
i
n
g
f
u
zz
y
a
s
s
o
ciatio
n
r
u
le
m
i
n
in
g
.
Fo
r
f
u
zz
y
as
s
o
ciatio
n
m
i
n
i
n
g
w
e
u
s
ed
m
o
d
i
f
ied
A
p
r
io
r
i
lik
e
m
eth
o
d
w
h
ic
h
is
s
i
m
p
l
y
b
ased
o
n
m
atr
i
x
an
d
v
ec
to
r
m
u
ltip
li
ca
tio
n
ap
p
r
o
ac
h
an
d
en
s
u
r
es
t
h
at
all
p
atter
n
s
ca
n
be
d
is
co
v
er
ed
in
a
f
ast
m
a
n
n
er
.
T
h
is
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
.
Sec
tio
n
2
ex
p
lain
s
r
elate
d
w
o
r
k
i
n
ed
u
c
atio
n
eith
t
h
e
h
e
lp
o
f
d
ata
m
i
n
in
g
.
Sectio
n
3
ex
p
lain
s
r
u
le
s
g
en
er
ated
b
y
f
u
zz
y
ass
o
ciatio
n
m
i
n
i
n
g
.
Sectio
n
4
ex
p
lain
s
p
er
f
o
r
m
an
ce
p
ar
a
m
eter
s
.
Sectio
n
5
s
h
o
w
s
r
es
u
lt
s
an
d
s
ec
tio
n
6
i
s
co
n
clu
s
io
n
.
2.
L
I
T
E
R
AT
U
RE
R
E
VI
E
W
T
h
is
s
ec
tio
n
p
r
esen
t
s
v
ar
io
u
s
ex
is
t
in
g
w
o
r
k
s
i
n
t
h
e
ar
ea
o
f
e
d
u
ca
tio
n
al
d
ata
m
i
n
i
n
g
.
Mo
s
t
o
f
ex
i
s
ti
n
g
w
o
r
k
s
is
b
a
s
ed
o
n
m
ac
h
i
n
e
le
ar
n
in
g
a
n
d
m
i
n
i
n
g
tech
n
iq
u
es
.
I
n
2
0
0
0
H
a
n
a
nd
K
a
m
ber
[
6
]
d
escr
ib
es
d
ata
m
i
n
in
g
s
o
f
t
w
ar
e
th
a
t
allo
w
s
th
e
u
s
er
s
to
an
al
y
ze
d
ata
f
r
o
m
d
if
f
er
en
t
d
i
m
e
n
s
io
n
s
,
ca
teg
o
r
iz
e
it
an
d
s
u
m
m
ar
ize
th
e
r
elatio
n
s
h
ip
w
h
ich
ar
e
id
en
ti
f
ied
d
u
r
in
g
th
e
m
i
n
in
g
p
r
o
ce
s
s
.
T
h
e
y
ex
p
lai
n
ed
class
i
f
ic
atio
n
tech
n
iq
u
e
f
o
r
p
r
ed
ict
th
e
r
elate
d
s
u
b
j
ec
t
in
a
co
u
r
s
e
cu
r
r
icu
lu
m
.
T
h
is
in
f
o
r
m
at
io
n
ca
n
b
e
u
s
ed
to
im
p
r
o
v
e
th
e
s
y
l
lab
u
s
o
f
an
y
co
u
r
s
e
i
n
th
eir
ed
u
ca
tio
n
al
i
n
s
tit
u
te.
I
n
2
0
1
1
P
a
nd
ey
et
.
a
l.
[
7
]
ex
p
lain
ed
th
eir
s
tu
d
y
b
ased
o
n
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
6
0
s
t
u
d
en
t
s
.
T
h
e
y
u
s
ed
B
a
y
es c
lass
if
ica
tio
n
o
n
b
elo
n
g
s
to
ca
te
g
o
r
y
,
la
n
g
u
a
g
e
a
n
d
b
ac
k
g
r
o
u
n
d
d
etails
s
u
c
h
as
q
u
ali
f
icatio
n
.
T
h
e
y
w
er
e
f
o
u
n
d
t
h
a
t
w
h
et
h
er
n
e
w
s
t
u
d
en
t
s
w
ill
p
er
f
o
r
m
o
r
n
o
t.
I
n
2
0
1
2
Azha
r
Ra
uf
et
.
a
l.
[
8
]
s
u
g
g
es
ted
a
m
eth
o
d
k
n
o
w
n
as
k
-
m
ea
n
s
clu
s
ter
in
g
al
g
o
r
ith
m
f
o
r
s
tu
d
e
n
ts
’
d
ata,
it
ca
lc
u
late
s
in
itial
ce
n
tr
o
id
s
i
n
s
tead
o
f
r
a
n
d
o
m
s
elec
tio
n
,
d
u
e
to
w
h
ich
th
e
n
u
m
b
er
o
f
iter
atio
n
s
i
s
r
ed
u
ce
d
an
d
elap
s
ed
ti
m
e
is
i
m
p
r
o
v
ed
f
o
r
f
in
d
th
e
s
tu
d
en
t
s
’
cl
u
s
ter
.
I
n
2
0
0
5
K
ha
n
[
9
]
d
escr
ib
ed
a
p
er
f
o
r
m
an
ce
s
tu
d
y
o
n
4
0
0
s
tu
d
e
n
ts
s
elec
ted
f
r
o
m
th
e
s
en
io
r
s
ec
o
n
d
ar
y
s
c
h
o
o
l
o
f
Alig
ar
h
M
u
s
li
m
U
n
iv
er
s
it
y
,
Alig
ar
h
,
I
n
d
ia.
T
h
eir
o
b
j
ec
tiv
e
w
as
to
es
tab
lis
h
t
h
e
p
r
ed
ictiv
e
v
alu
e
o
f
d
if
f
e
r
en
t
m
ea
s
u
r
e
s
o
f
co
g
n
it
io
n
,
in
d
iv
id
u
alit
y
a
n
d
d
em
o
g
r
ap
h
ic
v
ar
iab
les
f
o
r
s
u
cc
ess
at
h
ig
h
er
s
ec
o
n
d
ar
y
le
v
el
in
s
c
ien
ce
s
tr
ea
m
.
T
h
is
w
a
s
b
ased
o
n
clu
s
ter
s
a
m
p
li
n
g
tech
n
iq
u
e
i
n
w
h
ic
h
t
h
e
all
p
o
p
u
latio
n
o
f
i
n
ter
es
t
was d
iv
id
ed
in
to
h
o
m
o
g
e
n
o
u
s
g
r
o
u
p
s
an
d
a
r
an
d
o
m
s
a
m
p
le
o
f
t
h
ese
g
r
o
u
p
s
w
as
s
elec
ted
f
o
r
f
u
r
th
er
a
n
al
y
s
i
s
.
T
h
ey
f
o
u
n
d
t
h
at
g
ir
l
s
w
it
h
h
i
g
h
s
o
cio
-
ec
o
n
o
m
ic
s
tatu
s
h
ad
r
elati
v
el
y
h
i
g
h
er
a
ca
d
em
ic
ac
h
ie
v
e
m
en
t
i
n
s
cie
n
ce
s
tr
ea
m
a
n
d
b
o
y
s
w
it
h
lo
w
s
o
cio
-
ec
o
n
o
m
ic
s
tatu
s
h
ad
r
elati
v
el
y
h
i
g
h
er
ac
ad
em
ic
ac
h
ie
v
e
m
en
t
in
g
en
e
r
al
s
tr
ea
m
.
I
n
2
0
0
7
G
a
lit
et
.
a
l.
[
1
0
]
g
av
e
a
ca
s
e
s
tu
d
y
t
h
at
u
s
e
s
t
u
d
en
t
s
d
ata
to
an
al
y
ze
th
eir
lear
n
i
n
g
b
eh
av
io
r
to
p
r
e
d
ict
th
e
r
esu
lts
an
d
to
w
ar
n
s
tu
d
e
n
ts
at
r
is
k
b
ef
o
r
e
th
eir
f
i
n
al
ex
a
m
s
.
3.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
e
f
u
zz
y
as
s
o
ciatio
n
r
u
le
m
i
n
in
g
i
s
d
iv
id
ed
in
to
t
h
r
ee
s
tep
s
.
Fu
zz
y
s
et
s
ar
e
g
e
n
er
ated
f
ir
s
t
,
f
o
llo
w
ed
b
y
d
is
co
v
er
in
g
f
u
zz
y
f
r
eq
u
e
n
t
I
te
m
s
ets
f
o
r
m
t
h
e
n
e
w
l
y
co
n
s
tr
u
cted
d
atab
ase
[
1
1
-
13]
.
Fin
all
y
,
f
u
zz
y
ass
o
ciatio
n
r
u
le
s
ar
e
g
e
n
er
ate
d
an
d
ev
al
u
ated
.
Fi
g
u
r
e
1
s
h
o
w
s
t
h
e
s
c
h
e
m
atic
v
ie
w
o
f
f
r
eq
u
en
t
clo
s
ed
ite
m
s
e
t
d
is
co
v
er
y
.
D
e
f
i
n
i
n
g
t
h
e
f
u
z
z
y
s
e
t
D
a
t
a
T
r
a
n
s
f
o
r
m
a
t
i
o
n
i
n
F
u
z
z
y
D
o
m
a
i
n
F
u
z
z
y
N
o
r
m
a
l
i
z
a
t
i
o
n
F
r
e
q
u
e
n
t
I
t
e
m
s
e
t
M
i
n
i
n
g
K
n
o
w
l
e
d
g
e
D
i
s
c
o
v
e
r
y
A
n
a
l
y
s
i
s
o
f
R
e
s
u
l
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
z
z
y
A
s
s
o
cia
tio
n
R
u
le
Min
in
g
b
a
s
ed
Mo
d
el
t
o
P
r
ed
ict
S
tu
d
en
ts
’
P
erfo
r
ma
n
ce
(
S
u
s
h
il K
u
ma
r
V
erma
)
2225
Fig
u
r
e
1
.
Sch
e
m
atic
v
ie
w
o
f
f
r
eq
u
en
t c
lo
s
ed
ite
m
s
et
d
i
s
co
v
er
y
3
.
1
.
Co
ns
t
ruct
ing
F
uzzy
Set
s
Du
r
in
g
th
e
m
i
n
in
g
attr
ib
u
te
s
w
er
e
co
n
s
id
er
ed
as
lin
g
u
i
s
tic
v
ar
iab
les
w
h
ich
i
n
clu
d
e
P
r
ev
io
u
s
A
ca
d
e
m
ic
R
ec
o
r
d
(
P
A
R
)
,
P
r
ev
io
u
s
Se
m
es
ter
Ma
r
k
s
(
P
SM)
,
Mid
s
e
m
Ma
r
k
s
(
M
SM)
,
Atten
d
an
ce
(
A
T
T
)
an
d
E
n
d
Se
m
ester
Ma
r
k
s
(
E
SM)
.
E
SM
is
th
e
o
u
tp
u
t
li
n
g
u
i
s
t
ic
v
ar
iab
le
a
n
d
o
th
er
s
s
er
v
e
as
i
n
p
u
t
l
in
g
u
is
tic
v
ar
iab
les.
Fo
r
ea
c
h
li
n
g
u
is
tic
v
ar
iab
le
f
u
zz
y
s
et
w
a
s
d
ef
in
e
d
.
T
h
is
co
m
p
r
is
es
o
f
lin
g
u
is
ti
c
v
al
u
es.
I
n
o
r
d
er
to
n
o
r
m
alize
t
h
e
d
ata
v
al
u
e,
f
u
zz
y
m
e
m
b
er
s
h
ip
ex
p
r
ess
io
n
s
ar
e
d
ef
in
ed
f
o
r
ea
ch
li
n
g
u
is
tic
v
al
u
e.
Fo
r
P
A
R
s
co
r
e
v
a
lu
e
(
let
J
)
f
u
zz
y
m
e
m
b
er
s
h
ip
e
x
p
r
ess
io
n
s
u
s
in
g
tr
ia
n
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
c
tio
n
(
tr
i
m
f
)
w
il
l b
e
as:
1
6
0
60
(
)
5
5
&
6
0
6
0
5
5
0
5
0
J
J
J
J
J
firs
t
J
65
6
0
&
6
5
6
5
6
0
1
4
5
&
6
0
()
se
c
40
4
0
&
4
5
4
5
4
0
0
J
JJ
JJ
J
ond
J
JJ
o
the
rwi
se
50
4
5
&
5
0
5
0
4
5
1
3
3
&
4
5
()
35
2
8
&
3
3
3
5
3
0
0
J
JJ
JJ
J
third
J
JJ
o
the
rwi
se
0
3
8
38
(
)
3
3
&
3
8
3
8
3
3
1
3
3
J
J
J
J
J
fa
il
J
Fo
r
P
SM
s
co
r
e
v
alu
e
(
let
K)
f
u
zz
y
m
e
m
b
er
s
h
ip
e
x
p
r
ess
io
n
s
u
s
i
n
g
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ct
io
n
(
tr
i
m
f
)
w
il
l b
e
as:
1
6
5
65
(
)
6
0
&
6
5
6
5
6
0
0
K
K
K
K
K
firs
t
o
th
e
rw
ise
70
6
5
&
7
0
7
0
6
5
1
5
5
&
6
5
()
se
c
50
5
0
&
5
5
5
5
5
0
0
K
KK
KK
K
ond
K
KK
o
the
rwi
se
60
5
5
&
6
0
6
0
5
5
1
4
0
&
5
5
()
35
3
5
&
4
0
4
0
3
5
0
K
KK
KK
K
third
K
KK
o
the
rwi
se
0
4
5
40
(
)
4
0
&
4
5
4
5
4
0
1
4
0
K
K
K
K
K
fa
il
K
Fo
r
A
T
T
s
co
r
e
v
alu
e
(
let
L
)
f
u
zz
y
m
e
m
b
er
s
h
ip
ex
p
r
ess
io
n
s
u
s
in
g
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
(
tr
i
m
f
)
w
il
l b
e
as:
1
8
0
80
(
)
7
5
&
8
0
8
0
7
5
0
L
L
L
L
L
good
o
h
te
rw
ise
85
8
0
&
8
5
8
5
8
0
1
6
0
&
8
0
()
50
5
5
&
6
0
6
0
5
0
0
L
LL
LL
L
a
v
e
ra
g
e
L
LL
o
the
rwi
se
0
6
5
60
(
)
6
0
&
6
5
6
5
6
0
1
6
0
L
L
L
L
L
poor
L
Fo
r
MSM
s
co
r
e
v
alu
e
(
let
M)
f
u
zz
y
m
e
m
b
er
s
h
ip
ex
p
r
es
s
io
n
s
u
s
in
g
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
(
tr
i
m
f
)
w
il
l b
e
as:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
2
2
3
–
2
2
3
1
2226
1
1
6
16
(
)
1
4
&
1
6
1
6
1
4
0
1
4
M
M
M
M
M
good
M
18
1
6
&
1
8
1
8
1
6
1
1
0
&
1
6
()
8
8
&
1
0
1
0
8
0
M
MM
MM
M
a
v
e
ra
g
e
M
MM
o
the
rwi
se
0
1
2
10
(
)
1
0
&
1
2
1
2
1
0
1
1
0
M
M
M
M
M
poor
M
Fo
r
E
SM
s
co
r
e
v
alu
e
(
let
N)
f
u
zz
y
m
e
m
b
er
s
h
ip
e
x
p
r
ess
io
n
s
u
s
i
n
g
tr
ian
g
u
lar
m
e
m
b
er
s
h
ip
f
u
n
ct
io
n
(
tr
i
m
f
)
w
il
l b
e
as:
1
6
5
65
(
)
6
0
&
6
5
6
5
6
0
0
N
N
N
N
N
firs
t
o
th
e
rw
ise
70
6
5
&
7
0
7
0
6
5
1
5
5
&
6
5
()
se
c
50
5
0
&
5
5
5
5
5
0
0
N
NN
NN
N
ond
N
NN
o
the
rwi
se
60
5
5
&
6
0
6
0
5
5
1
4
0
&
5
5
()
35
3
5
&
4
0
4
0
3
5
0
N
NN
NN
N
third
N
NN
o
the
rwi
se
0
4
5
40
(
)
4
0
&
4
5
4
5
4
0
1
4
0
N
N
N
N
N
fa
il
N
T
h
e
d
ec
is
io
n
o
n
t
h
e
r
ig
h
t
f
u
zz
y
s
et
s
is
cr
u
cial
f
o
r
t
h
e
s
u
cc
es
s
o
f
a
d
ata
m
i
n
i
n
g
p
r
o
j
ec
t,
th
e
r
ef
o
r
e
th
is
ea
s
y
m
et
h
o
d
is
n
o
t
ac
cu
r
ate
e
n
o
u
g
h
a
n
d
s
ets
s
h
o
u
ld
b
e
r
esear
ch
ed
m
o
r
e
ca
r
ef
u
ll
y
.
Ho
w
ev
er
,
it
w
ill
g
i
v
e
u
s
er
s
a
q
u
ick
s
tar
t
f
o
r
ex
p
er
i
m
e
n
ti
n
g
w
ith
t
h
e
id
ea
o
f
f
u
zz
y
ass
o
ciatio
n
r
u
les.
Fo
r
u
s
e
i
n
a
r
ea
l
p
r
o
j
ec
t,
f
u
zz
y
s
ets
w
il
l h
a
v
e
to
b
e
d
ef
in
ed
a
p
r
io
r
i o
r
a
m
o
r
e
s
o
p
h
is
tica
ted
alg
o
r
ith
m
h
a
s
to
b
e
u
s
ed
f
o
r
f
i
n
d
in
g
th
e
m
.
3
.
2
.
Co
ns
t
ruct
ing
a
Da
t
a
s
et
f
o
r
M
ini
ng
Af
ter
h
a
v
i
n
g
d
ef
i
n
ed
th
e
f
u
zz
y
s
ets,
a
n
e
w
d
ata
s
et
en
ab
li
n
g
th
e
m
in
i
n
g
o
f
f
u
zz
y
a
s
s
o
cia
tio
n
r
u
les
h
as to
b
e
co
n
s
tr
u
cted
o
u
t o
f
t
h
e
o
r
ig
in
al
d
ata.
T
h
is
p
r
o
ce
s
s
i
s
r
ath
er
s
i
m
p
le
a
n
d
i
n
tu
iti
v
e,
s
i
n
ce
t
h
e
v
alu
e
s
o
n
l
y
n
ee
d
to
b
e
f
itted
i
n
to
t
h
e
s
e
ts
.
Fo
r
ev
er
y
f
u
zz
y
s
et
t
h
at
w
e
h
a
v
e
p
r
ev
io
u
s
l
y
d
e
f
in
ed
,
t
h
er
e
i
s
o
n
e
co
lu
m
n
i
n
t
h
e
n
e
w
d
atab
ase
co
n
tai
n
in
g
t
h
e
g
r
ad
e
o
f
m
e
m
b
er
s
h
ip
o
f
t
h
e
s
i
n
g
le
i
te
m
s
to
th
e
s
p
ec
i
f
ic
s
et.
Fig
u
r
e
2
v
is
u
alize
s
th
e
p
r
o
ce
s
s
o
f
g
et
tin
g
t
h
e
m
e
m
b
er
s
h
ip
v
alu
e
s
o
f
a
d
ata
p
o
in
t to
d
if
f
er
en
t f
u
zz
y
s
ets.
As a
n
e
x
a
m
p
le,
w
e
w
ill
lo
o
k
a
t a
s
a
m
p
le
ed
u
ca
tio
n
al
d
atab
ase
r
ep
r
esen
ti
n
g
o
n
e
o
f
t
h
e
co
l
u
m
n
o
f
th
e
o
r
ig
in
al
d
atab
ase
i.e
.
MSM
:
t
={
1
7
,
1
8
,
1
4
,
1
7
,
1
9
,
1
5
,
1
5
1
2
,
8
,
1
4
}
th
r
ee
f
u
zz
y
s
et
s
h
a
v
e
b
ee
n
d
ef
in
ed
p
r
ev
io
u
s
l
y
ar
e:
g
o
o
d
={
1
6
,
2
0
}
,
av
er
ag
e=
{1
0
,
1
5
}
an
d
p
o
o
r
={
0
,
9
}.
T
h
e
r
o
w
w
ill
b
e
s
u
b
d
iv
id
ed
i
n
to
f
o
u
r
s
u
b
co
lo
u
m
n
,
o
n
e
f
o
r
ea
ch
f
u
zz
y
s
et.
T
h
e
n
e
w
tab
le
w
i
ll
o
n
l
y
co
n
tai
n
t
h
e
m
e
m
b
er
s
h
ip
v
alu
e
s
t
o
t
h
e
s
e
f
u
zz
y
s
et
s
(
s
ee
T
ab
le
1
).
Fig
u
r
e
2
.
Me
m
b
er
s
h
ip
o
f
a
n
I
t
e
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
z
z
y
A
s
s
o
cia
tio
n
R
u
le
Min
in
g
b
a
s
ed
Mo
d
el
t
o
P
r
ed
ict
S
tu
d
en
ts
’
P
erfo
r
ma
n
ce
(
S
u
s
h
il K
u
ma
r
V
erma
)
2227
T
ab
le
1
.
New
Data
b
ase
w
ith
o
u
t f
u
zz
y
n
o
r
m
a
lizatio
n
M
S
M
:
g
o
o
d
M
S
M
:
a
v
e
r
a
g
e
M
S
M
:
p
o
o
r
1
0
.
4
0
1
0
.
2
0
0
.
2
8
1
0
1
0
.
4
0
1
0
0
0
.
1
4
1
0
0
.
1
4
1
0
0
.
5
7
1
0
0
0
1
0
.
2
8
1
0
3
.
3
.
F
uzzy
No
r
m
a
liza
t
io
n
W
h
en
w
e
ar
e
d
ea
lin
g
w
it
h
q
u
a
n
titati
v
e
attr
ib
u
tes
m
ap
p
ed
to
f
u
zz
y
s
et
s
w
e
m
ig
h
t,
d
ep
en
d
in
g
o
n
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
,
f
i
n
d
th
a
t th
e
m
e
m
b
er
s
h
ip
v
al
u
es to
t
h
e
s
ets o
f
o
n
e
s
in
g
le
e
n
tit
y
d
o
es n
o
t a
d
d
u
p
to
o
n
e
.
T
h
e
en
tr
y
in
a
d
atab
ase
i
n
T
ab
le
1
s
er
v
es a
s
a
n
ex
a
m
p
le.
T
h
e
q
u
an
titati
v
e
attr
ib
u
te
M
S
M
r
ep
r
esen
ted
b
y
f
u
zz
y
s
et
s
,
c
o
n
tr
ib
u
tes
w
i
th
1
.
4
in
ca
s
e
o
f
f
ir
s
t r
o
w
an
d
s
i
m
ilar
w
it
h
o
th
er
r
o
w
s
.
I
t is u
n
r
ea
s
o
n
ab
le
f
o
r
o
n
e
tr
an
s
a
ctio
n
to
co
n
tr
ib
u
te
m
o
r
e
t
h
an
o
th
er
s
.
Her
e,
th
e
f
u
zz
y
n
o
r
m
aliza
tio
n
p
r
o
ce
s
s
ta
k
es p
lace
.
I
t
w
i
ll f
u
r
t
h
er
tr
an
s
f
o
r
m
t
h
e
tr
an
s
ac
tio
n
to
v
alu
e
s
o
f
MSM
th
a
t s
u
m
u
p
to
1
.
T
h
e
n
e
w
v
al
u
es c
a
n
b
e
ca
lcu
lated
ea
s
il
y
b
y
d
iv
id
i
n
g
th
e
v
al
u
e
o
f
a
s
i
n
g
le
ele
m
en
t b
y
t
h
e
s
u
m
o
f
all
th
e
f
u
zz
y
v
al
u
es c
o
r
r
esp
o
n
d
in
g
to
th
at
attr
ib
u
te.
T
ab
le
2
s
h
o
w
s
th
e
m
o
d
if
ied
d
atab
ase
af
ter
p
r
o
ce
s
s
in
g
o
f
f
u
zz
y
n
o
r
m
aliza
tio
n
.
T
ab
le
2.
New
Data
b
ase
W
it
h
Fu
zz
y
No
r
m
aliza
t
io
n
M
S
M
:
g
o
o
d
M
S
M
:
a
v
e
r
a
g
e
M
S
M
:
p
o
o
r
0
.
7
1
0
.
2
9
0
0
.
8
3
0
.
1
7
0
0
.
2
3
0
.
7
7
0
0
.
7
1
0
.
2
9
0
1
0
0
0
.
1
2
0
.
8
8
0
0
.
1
3
0
.
8
7
0
0
.
3
6
0
.
6
6
0
0
0
1
0
.
2
3
0
.
7
8
0
3
.
4
.
F
re
qu
ent
I
t
e
m
s
et
s
G
e
nera
t
io
n:
T
he
Aprio
ri
-
L
i
k
e
Alg
o
rit
h
m
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
h
as
s
i
m
ilar
p
h
ilo
s
o
p
h
y
as
t
h
e
A
p
r
io
r
i
T
I
D
,
w
h
ich
is
d
o
es
n
o
t
r
ev
is
it
th
e
o
r
ig
in
al
tab
le
o
f
d
ata,
f
o
r
co
m
p
u
ti
n
g
t
h
e
s
u
p
p
o
r
ts
lar
g
er
I
te
m
s
e
ts
,
b
u
t
tr
a
n
s
f
o
r
m
s
t
h
e
ta
b
le
as
it
g
o
es
alo
n
g
w
it
h
t
h
e
g
e
n
er
atio
n
o
f
th
e
k
-
I
te
m
s
et
s
,
Ou
r
p
r
o
ce
d
u
r
e
is
b
ased
o
n
a
s
i
m
p
le
an
d
ea
s
il
y
i
m
p
le
m
e
n
tab
le
m
atr
i
x
r
ep
r
esen
tatio
n
o
f
t
h
e
f
r
eq
u
en
t
I
te
m
s
et
s
.
T
h
e
id
ea
is
to
s
to
r
e
th
e
d
ata
a
n
d
I
te
m
s
et
s
i
n
v
ec
to
r
s
[
1
2
-
14]
.
T
h
en
,
s
i
m
p
le
m
atr
i
x
an
d
v
ec
to
r
m
u
ltip
licatio
n
o
p
er
atio
n
s
ca
n
b
e
ap
p
lied
t
o
ca
lcu
late
th
e
s
u
p
p
o
r
ts
o
f
I
tem
s
et
s
ef
f
icie
n
tl
y
.
Ste
p1
:
Firs
t
s
tep
is
to
g
e
n
er
at
e
th
e
1
-
f
r
eq
u
e
n
t
I
te
m
s
et
s
.
b
y
er
asin
g
t
h
e
co
l
u
m
n
s
r
elate
d
t
o
th
e
n
o
n
-
f
r
eq
u
e
n
t
ite
m
s
,
to
r
ed
u
ce
th
e
s
ize
o
f
a
B
ittab
le
an
d
i
m
p
r
o
v
e
th
e
p
er
f
o
r
m
an
ce
o
f
t
h
e
g
en
er
atio
n
p
r
o
ce
s
s
Ste
p2
:
I
n
th
e
n
ex
t
s
tep
th
e
r
o
w
s
w
h
ic
h
d
o
n
o
t
co
n
tai
n
f
r
eq
u
en
t
I
te
m
s
e
ts
(
th
e
s
u
m
o
f
t
h
e
r
o
w
is
ze
r
o
)
ar
e
also
d
elete
d
f
r
o
m
t
h
e
tab
le.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
2
2
3
–
2
2
3
1
2228
Ste
p3
:
I
n
t
h
is
s
tep
,
j
o
in
th
e
P
r
ev
io
u
s
f
r
eq
u
en
t
ite
m
s
et
(
k
-
1
)
to
g
en
er
ate
ca
n
d
id
ate
i
te
m
s
et
k
b
a
s
ed
o
n
t
h
e
ele
m
e
n
t
w
is
e
p
r
o
d
u
cts o
f
t
h
e
v
ec
to
r
s
co
r
r
e
s
p
o
n
d
in
g
to
th
e
p
r
ev
io
u
s
l
y
g
e
n
er
ated
(
k
-
1)
-
f
r
eq
u
en
t ite
m
s
et
s
.
Ste
p4
:
Nex
t,S
u
p
p
o
r
t
o
f
(
k
)
item
s
et
is
o
b
tain
ed
b
y
a
s
i
m
p
le
v
ec
to
r
p
r
o
d
u
ct
o
f
th
e
t
w
o
r
elat
ed
v
ec
to
r
s
b
ec
au
s
e
w
h
e
n
b
o
th
ite
m
s
ap
p
ea
r
in
a
g
iv
en
tr
an
s
ac
tio
n
t
h
e
p
r
o
d
u
ct
o
f
t
h
e
t
w
o
r
elate
d
ite
m
s
ca
n
b
e
r
ep
r
esen
ted
b
y
t
h
e
A
N
D
co
n
n
ec
tio
n
o
f
t
h
e
t
w
o
it
e
m
s
.
Ste
p5
:
R
o
w
s
th
at
ar
e
n
o
t
co
n
t
ain
i
n
g
a
n
y
f
r
eq
u
en
t
ite
m
s
et
s
(
th
e
s
u
m
o
f
th
e
r
o
w
i
s
ze
r
o
)
ar
e
also
d
elete
d
f
r
o
m
C
an
d
id
ate
ite
m
s
et
k
.
Ste
p6
:
T
h
is
p
r
o
ce
s
s
is
r
ep
ea
ted
u
n
til
a
s
o
n
l
y
th
o
s
e
(
k
-
1
)
it
e
m
s
et
s
w
il
l
b
e
j
o
in
ed
w
h
o
s
e
f
ir
s
t
k
−1
ite
m
s
ar
e
id
en
tical.
4.
P
E
RF
O
RM
ANCE
P
ARAM
E
T
E
RS
4
.
1
.
P
ro
ce
s
s
ing
T
i
m
e
P
r
o
ce
s
s
in
g
T
i
m
e
T
d
ef
in
es t
h
e
ti
m
e
r
eq
u
ir
ed
to
co
m
p
lete
t
h
e
ex
ec
u
t
io
n
o
f
p
r
o
p
o
s
ed
m
et
h
o
d
th
at
is
r
eq
u
ir
ed
b
y
Dec
is
io
n
tr
ee
an
d
Fu
zz
y
A
s
s
o
ciatio
n
Mi
n
i
n
g
p
r
o
ce
s
s
an
d
m
ea
s
u
r
ed
in
Seco
n
d
s
.
4
.
2
.
F
uzzy
Q
ua
lity
M
e
a
s
ures
I
n
o
r
d
er
to
en
ab
le
th
e
ev
alu
ati
o
n
o
f
a
f
u
zz
y
a
s
s
o
ciatio
n
r
u
le,
w
e
u
s
e
t
h
e
s
ta
n
d
ar
d
ap
p
r
o
ac
h
f
o
r
ca
lcu
lati
n
g
s
u
p
p
o
r
t a
n
d
co
n
f
id
en
ce
,
r
ep
lacin
g
t
h
e
s
et
-
t
h
eo
r
eti
c
o
p
er
atio
n
s
b
y
t
h
e
co
r
r
esp
o
n
d
in
g
f
u
zz
y
s
et
-
th
eo
r
etic
o
p
er
atio
n
s
[
1
2
-
14]
:
(
)
(
)
(
)
(
(
)
,
(
)
)
(
(
)
,
(
)
)
x
D
x
D
s
u
p
p
A
B
T
A
x
B
x
m
i
n
A
x
B
x
()
(
(
(
)
,
(
)
)
()
(
(
)
)
xD
yD
T
A
x
B
x
c
o
n
f
A
B
T
A
y
T
h
e
u
s
u
al
c
h
o
ice
f
o
r
th
e
t
-
n
o
r
m
is
t
h
e
m
in
i
m
u
m
,
y
et
t
h
e
p
r
o
d
u
ct
h
as a
l
s
o
b
ee
n
ap
p
lied
.
5.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
P
r
o
p
o
s
ed
tech
n
iq
u
e,
ar
e
i
m
p
l
e
m
en
ted
o
n
w
i
n
d
o
w
s
P
C
h
a
v
in
g
I
n
tel
2
.
4
GHz
p
r
o
ce
s
s
o
r
an
d
2
GB
R
A
M,
an
d
r
u
n
u
s
in
g
Ma
tlab
9
a.
W
e
h
av
e
co
n
s
id
e
r
ed
t
w
o
d
if
f
er
e
n
t
s
t
u
d
en
t
r
ec
o
r
d
s
d
ataset
o
b
tain
ed
f
r
o
m
Sa
m
r
at
A
s
h
o
k
T
ec
h
n
o
lo
g
ical
I
n
s
tit
u
te,
Vid
is
h
a,
(
Ma
d
h
y
a
P
r
ad
esh
)
o
f
co
u
r
s
e
MCA
(
Ma
s
ter
o
f
C
o
m
p
u
te
r
A
p
p
licatio
n
s
)
f
r
o
m
s
es
s
io
n
2
0
0
7
to
2
0
1
0
an
d
2
0
1
1
to
2
0
1
3
.
T
h
e
y
ar
e
d
ataset5
0
a
n
d
d
atas
et1
5
4
r
esp
ec
tiv
el
y
.
Size
o
f
th
e
d
ata
s
et5
0
is
5
0
s
tu
d
en
t
r
ec
o
r
d
w
h
ich
i
n
c
lu
d
es
n
a
m
e
,
s
c
h
o
lar
n
o
,
D
OB
,
1
0
th
,
1
2
th
,
P
A
R
,
MS
M,
A
T
T
,
E
SM
f
ield
s
.
Data
s
et1
5
4
co
n
tain
s
1
5
4
r
ec
o
r
d
s
o
f
o
th
er
MC
A
s
t
u
d
en
t
w
it
h
s
a
m
e
f
ield
co
m
m
o
n
.
I
n
th
is
ex
p
er
i
m
e
n
t d
atasets
ar
e
u
s
ed
to
id
en
tify
t
h
e
p
er
f
o
r
m
a
n
ce
o
f
s
tu
d
e
n
t.
T
ab
le
3
s
h
o
w
s
t
h
e
r
elatio
n
s
h
i
p
b
et
w
ee
n
t
h
e
m
in
i
m
u
m
s
u
p
p
o
r
t,
m
i
n
i
m
u
m
co
n
f
id
en
ce
,
e
x
e
cu
tio
n
ti
m
e
an
d
th
e
g
e
n
er
ated
r
u
le.
Fi
g
u
r
e
3
to
4
g
iv
es
th
e
g
r
ap
h
ical
r
ep
r
ese
n
tatio
n
o
f
m
in
i
m
u
m
s
u
p
p
o
r
t,
m
in
i
m
u
m
co
n
f
id
e
n
ce
,
ex
ec
u
tio
n
t
i
m
e
a
n
d
th
e
g
e
n
er
ated
r
u
le.
I
t
w
as
o
b
s
er
v
ed
th
at
t
h
e
e
x
ec
u
tio
n
ti
m
e
is
al
s
o
in
v
er
s
el
y
p
r
o
p
o
r
tio
n
al
to
m
i
n
i
m
u
m
s
u
p
p
o
r
t,
s
in
ce
it
in
cr
ea
s
es
as
m
i
n
i
m
u
m
s
u
p
p
o
r
t
d
ec
r
ea
s
es,
w
h
ich
co
n
f
ir
m
ed
in
cr
ea
s
e
in
s
y
s
te
m
co
m
p
lex
it
y
a
n
d
r
esp
o
n
s
e
ti
m
e
as
th
e
m
in
i
m
u
m
s
u
p
p
o
r
t
d
ec
r
ea
s
es
as
s
h
o
w
n
i
n
tab
le
I
I
I
.
W
ith
all
th
e
s
e
o
b
s
er
v
atio
n
s
i
t
s
h
o
w
s
t
h
at
to
h
av
e
a
les
s
co
m
p
lex
s
y
s
te
m
a
n
d
a
co
n
s
tr
u
ct
iv
e,
i
n
ter
esti
n
g
a
n
d
r
elev
an
t
p
atter
n
s
t
h
e
m
i
n
i
m
u
m
co
n
f
id
e
n
ce
a
n
d
s
u
p
p
o
r
t
s
h
o
u
ld
b
e
lar
g
e
e
n
o
u
g
h
to
tr
a
s
h
o
u
t
co
i
n
cid
en
ce
p
atter
n
s
.
Fig
u
r
e
3
s
h
o
w
s
t
h
e
r
elat
io
n
s
h
i
p
o
f
m
i
n
s
u
p
,
m
in
co
n
f
a
n
d
n
u
m
b
er
o
f
g
e
n
er
ated
r
u
le
s
.
Fig
u
r
e
4
s
h
o
w
s
th
e
r
elatio
n
s
h
ip
o
f
m
i
n
s
u
p
,
m
i
n
co
n
f
an
d
ex
ec
u
tio
n
T
i
m
e
.
W
e
s
h
o
w
th
at
th
e
e
f
f
ec
t
o
f
n
u
m
b
er
o
f
r
u
les
g
en
er
a
ted
an
d
e
x
ec
u
tio
n
ti
m
e
w
it
h
r
esp
ec
t to
m
i
n
s
u
p
p
an
d
m
i
n
co
n
f
r
esp
ec
tiv
e
l
y
.
Fro
m
Fi
g
u
r
e
3
,
Fi
g
u
r
e
4
,
w
e
ca
n
o
b
s
er
v
e
t
h
at
in
cr
ea
s
in
g
i
n
m
i
n
s
u
p
an
d
m
in
co
n
f
ca
u
s
e
s
d
ec
r
ea
s
in
g
i
n
th
e
e
x
ec
u
tio
n
ti
m
e
o
f
t
h
e
al
g
o
r
ith
m
b
ec
a
u
s
e
it c
a
u
s
e
s
r
ed
u
cti
o
n
o
f
d
ataset
s
ize
a
n
d
o
f
t
h
e
n
u
m
b
er
o
f
ca
n
d
id
ate
f
u
zz
y
i
te
m
s
ets.
I
n
t
h
ese
f
i
g
u
r
es,
w
e
s
h
o
w
t
h
e
n
u
m
b
er
o
f
r
u
le
s
g
e
n
er
ated
an
d
to
tal
ti
m
e
w
h
e
n
t
h
e
m
in
s
u
p
p
an
d
m
i
n
co
n
f
i
s
i
n
cr
ea
s
ed
.
I
n
cr
ea
s
i
n
g
t
h
e
n
u
m
b
er
o
f
p
ar
a
m
eter
v
alu
es
lead
s
to
d
ec
r
ea
s
in
g
n
u
m
b
er
o
f
r
u
le
s
,
m
o
s
t
o
f
w
h
ic
h
ar
e
c
r
ea
ted
in
th
e
s
ec
o
n
d
p
ass
.
I
n
o
u
r
alg
o
r
ith
m
,
t
h
e
n
u
m
b
er
o
f
t
h
e
ca
n
d
id
ate
i
te
m
s
e
ts
is
g
r
o
w
in
g
s
lo
w
l
y
in
co
m
p
ar
is
o
n
w
i
th
th
e
o
th
er
al
g
o
r
ith
m
.
A
co
r
r
elatio
n
ca
n
b
e
o
b
s
er
v
ed
b
et
w
ee
n
t
h
e
n
u
m
b
er
o
f
r
u
le
s
an
d
th
e
ex
ec
u
tio
n
ti
m
e
f
o
r
th
is
al
g
o
r
ith
m
.
T
h
e
ex
p
er
im
e
n
ta
l
r
esu
l
ts
s
h
o
w
t
h
at
th
e
r
u
n
n
i
n
g
ti
m
e
o
f
o
u
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
z
z
y
A
s
s
o
cia
tio
n
R
u
le
Min
in
g
b
a
s
ed
Mo
d
el
t
o
P
r
ed
ict
S
tu
d
en
ts
’
P
erfo
r
ma
n
ce
(
S
u
s
h
il K
u
ma
r
V
erma
)
2229
alg
o
r
ith
m
is
m
u
c
h
less
t
h
an
t
h
at
o
f
th
e
o
th
er
alg
o
r
ith
m
s
.
T
h
e
r
u
n
n
i
n
g
ti
m
e
o
f
t
h
e
alg
o
r
ith
m
s
is
d
eter
m
in
ed
b
y
th
e
n
u
m
b
er
o
f
p
ass
e
s
a
n
d
ex
e
cu
tio
n
t
i
m
e
o
f
ea
c
h
p
ass
.
Fo
r
o
u
r
alg
o
r
ith
m
,
t
h
e
n
u
m
b
er
o
f
p
ass
e
s
is
less
th
e
o
th
er
alg
o
r
ith
m
,
b
ec
au
s
e
it
r
em
o
v
e
s
m
a
n
y
ca
n
d
id
ate
ite
m
s
e
ts
.
W
ith
d
ec
r
ea
s
in
g
t
h
e
n
u
m
b
er
o
f
th
e
ca
n
d
id
ate
ite
m
s
ets,
t
h
e
s
ize
o
f
t
h
e
lar
g
e
s
t
f
r
eq
u
e
n
t
ite
m
s
et
r
ed
u
ce
s
,
w
h
ich
is
th
e
n
u
m
b
er
o
f
p
as
s
es
t
h
e
alg
o
r
ith
m
h
as
to
p
er
f
o
r
m
.
Fu
r
t
h
er
m
o
r
e,
t
h
e
ex
e
cu
tio
n
ti
m
e
o
f
ea
c
h
p
ass
e
s
is
l
ess
t
h
an
th
e
o
ld
al
g
o
r
ith
m
,
b
e
ca
u
s
e
o
f
r
ed
u
ctio
n
in
th
e
n
u
m
b
er
o
f
ca
lc
u
lati
n
g
o
p
er
atio
n
s
.
T
ab
le
3
.
P
er
f
o
r
m
a
n
ce
test
u
s
i
n
g
f
u
zz
y
a
s
s
o
ciatio
n
r
u
le
m
i
n
in
g
tech
n
iq
u
e
Fig
u
r
e
3
.
Gr
ap
h
ical
R
ep
r
esen
t
atio
s
n
o
f
E
f
f
ec
t o
f
Min
s
u
p
,
Min
co
n
f
o
n
Nu
m
b
er
o
f
r
u
les
Fig
u
r
e
4
Gr
ap
h
ical
r
ep
r
esen
tat
io
n
o
f
ef
f
ec
t o
f
m
i
n
s
u
p
,
m
i
n
co
n
f
o
n
T
i
m
e
T
ab
le
4
s
h
o
w
s
t
h
e
r
u
les
g
e
n
er
ated
b
y
f
u
zz
y
as
s
o
ciatio
n
r
u
le
m
in
in
g
i
n
d
ataset5
0
with
h
i
g
h
e
s
t
p
er
ce
n
tag
e
s
u
p
p
o
r
t
co
u
n
t
an
d
co
n
f
id
e
n
ce
.
W
e
ca
n
o
b
s
er
v
e
s
f
r
o
m
t
h
e
tab
le
t
h
at
if
th
e
s
t
u
d
en
t
w
a
s
f
a
il
i
n
la
s
t
s
e
m
e
s
ter
o
r
h
e
/
s
h
e
g
o
t
th
ir
d
d
iv
is
io
n
an
d
in
t
h
is
s
e
s
s
io
n
atten
d
a
n
ce
is
p
o
o
r
th
en
h
e
/
s
h
e
m
a
y
f
ail
i
n
u
p
co
m
i
n
g
s
e
m
e
s
ter
.
So
w
e
h
a
v
e
to
p
ay
ad
d
itio
n
a
l a
tten
tio
n
o
n
th
o
s
e
s
tu
d
e
n
ts
.
T
h
is
f
u
zz
y
m
in
i
n
g
r
es
u
lt,
r
e
v
ea
ls
t
h
e
ch
ar
ac
ter
i
s
tic
o
f
s
t
u
d
en
t
w
h
o
ar
e
li
k
el
y
to
r
ep
ea
t
o
r
lik
el
y
to
h
av
e
h
i
g
h
ac
ad
e
m
ic
r
ati
n
g
.
I
t
ca
n
also
s
er
v
e
as
a
p
r
ed
icti
v
e
m
o
d
el
to
th
e
ad
m
is
s
io
n
o
f
f
ice
in
a
n
in
s
tit
u
tio
n
to
k
n
o
w
t
h
e
p
er
f
o
r
m
an
ce
o
f
th
e
ir
in
tak
e
r
i
g
h
t
f
r
o
m
t
h
eir
y
ea
r
o
n
e.
W
ith
th
is
t
h
e
y
ca
n
d
eter
m
in
e
a
co
r
r
ec
tiv
e
M
i
n
S
u
p
p
M
i
n
C
o
n
f
N
o
.
o
f
R
u
l
e
s
T
i
me
(
S
)
D
a
t
a
se
t
5
0
D
a
t
a
se
t
1
5
4
D
a
t
a
se
t
50
D
a
t
a
se
t
1
5
4
0
5
%
4
0
%
19
10
0
.
5
7
5
5
5
1
.
6
4
1
6
0
5
%
6
0
%
16
08
0
.
4
3
2
5
5
1
.
6
3
2
1
0
5
%
8
0
%
8
03
0
.
4
3
2
5
7
1
.
6
2
1
5
0
5
%
1
0
0
%
6
01
0
.
4
1
3
2
4
1
.
6
0
0
7
1
0
%
4
0
%
3
06
0
.
2
3
8
4
7
1
.
1
0
8
8
1
0
%
6
0
%
1
04
0
.
2
3
1
9
8
1
.
0
5
1
5
1
0
%
8
0
%
1
02
0
.
2
2
8
7
6
1
.
0
4
5
6
1
0
%
1
0
0
%
1
00
0
.
2
1
4
5
7
1
.
0
0
8
7
1
5
%
4
0%
1
02
0
.
1
3
3
6
7
0
.
8
0
7
3
1
5
%
6
0
%
0
01
0
.
1
3
0
8
8
0
.
8
2
9
9
1
5
%
8
0
%
0
01
0
.
1
1
0
8
0
0
.
7
8
0
1
1
5
%
1
0
0
%
0
00
0
.
1
0
3
3
3
0
.
7
6
1
4
2
0
%
4
0
%
0
02
0
.
0
6
4
4
9
0
.
6
0
2
2
2
0
%
6
0
%
0
01
0
.
0
6
4
2
8
0
.
6
0
0
8
2
0
%
8
0
%
0
01
0
.
0
5
8
5
7
0
.
5
7
9
4
2
0
%
1
0
0
%
0
00
0
.
0
5
3
9
2
0
.
5
1
2
9
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
4
,
A
u
g
u
s
t
2
0
1
7
:
2
2
2
3
–
2
2
3
1
2230
m
ea
s
u
r
e
f
o
r
s
u
b
s
eq
u
e
n
t
ad
m
i
s
s
io
n
p
r
o
ce
s
s
es.
A
ls
o
,
t
h
is
w
il
l
s
er
v
e
as
g
u
id
an
ce
to
t
h
e
lev
el
ad
v
is
er
f
o
r
p
r
o
p
e
r
m
o
n
ito
r
i
n
g
a
n
d
ef
f
ec
ti
v
e
ad
v
i
ce
f
o
r
th
e
s
t
u
d
e
n
t
s
to
en
h
a
n
ce
th
eir
ac
ad
e
m
ic
p
er
f
o
r
m
a
n
ce
.
T
ab
le
4
.
R
u
le
Gen
er
ated
b
y
p
r
o
p
o
s
ed
D
T
FA
m
i
n
i
n
g
o
n
d
ataset5
0
S
.
N
o
.
R
u
l
e
s G
e
n
e
r
a
t
e
d
b
y
F
A
R
M
S
u
p
p
o
r
t
C
o
u
n
t
C
o
n
f
i
d
e
n
c
e
1
i
f
M
S
M
=
g
o
o
d
t
h
e
n
ES
M
=
f
i
r
s
t
8
0
.
5
7
2
i
f
P
A
R
=
f
i
r
st
a
n
d
i
f
M
S
M
=
g
o
o
d
t
h
e
n
ESM
=
f
i
r
st
5
1
3
if
A
TT
=
p
o
o
r
a
n
d
i
f
M
S
M
=
p
o
o
r
t
h
e
n
ESM
=
f
a
i
l
5
0
.
8
3
3
3
4
i
f
P
A
R
=
t
h
i
r
d
a
n
d
i
f
A
T
T
=
p
o
o
r
t
h
e
n
E
S
M
=
f
a
i
l
4
0
.
8
5
i
f
P
S
M
=
f
a
i
l
a
n
d
i
f
A
TT
=
p
o
o
r
t
h
e
n
E
S
M
=
f
a
i
l
3
1
6
i
f
P
S
M
=
f
i
r
st
a
n
d
i
f
M
S
M
=
g
o
o
d
t
h
e
n
ESM
=
f
i
r
st
3
1
7
i
f
P
S
M
=
t
h
i
r
d
a
n
d
i
f
A
TT
=
a
v
e
r
a
g
e
t
h
e
n
ES
M
=
t
h
i
r
d
3
0
.
7
5
8
i
f
P
A
R
=
t
h
i
r
d
a
n
d
i
f
M
S
M
=
p
o
o
r
t
h
e
n
ESM
=
f
a
i
l
3
0
.
6
9
i
f
P
A
R
=
t
h
i
r
d
a
n
d
i
f
A
T
T
=
p
o
o
r
a
n
d
i
f
M
S
M
=
p
o
o
r
t
h
e
n
ESM
=
f
a
i
l
3
0
.
6
10
i
f
P
S
M
=
f
a
i
l
t
h
e
n
ES
M
=
f
a
i
l
3
0
.
5
6.
CO
NCLU
SI
O
N
T
h
er
e
is
s
o
m
e
m
o
r
e
w
o
r
k
to
d
o
,
esp
ec
iall
y
o
n
Fu
zz
y
as
s
o
ciatio
n
m
in
i
n
g
al
g
o
r
ith
m
.
T
h
is
p
ap
er
p
r
ed
icts
th
e
p
er
f
o
r
m
an
ce
o
f
s
t
u
d
en
t
d
ata
o
n
t
h
e
b
a
s
is
o
f
A
p
r
io
r
i
-
lik
e
al
g
o
r
ith
m
w
h
ic
h
i
s
a
p
p
lied
o
n
f
u
zz
y
s
et.
T
h
is
s
tu
d
y
s
h
o
w
s
t
h
e
p
o
ten
tial
o
f
th
e
f
u
zz
y
ass
o
ciat
io
n
r
u
le
m
i
n
in
g
al
g
o
r
ith
m
f
o
r
en
h
a
n
ci
n
g
t
h
e
ef
f
ec
ti
v
en
e
s
s
o
f
ac
ad
e
m
ic
p
lan
n
er
s
a
n
d
lev
e
l
ad
v
is
er
s
i
n
h
ig
h
er
in
s
tit
u
tio
n
s
o
f
lear
n
i
n
g
.
T
h
e
an
al
y
s
is
w
a
s
d
o
n
e
o
n
s
t
u
d
en
t
s
o
f
Sa
m
r
at
A
s
h
o
k
T
ec
h
n
o
lo
g
ical
I
n
s
tit
u
te,
Vid
is
h
a
(
Ma
d
h
y
a
P
r
ad
esh
)
.
A
to
tal
n
u
m
b
er
o
f
5
0
tu
p
les
f
o
r
d
ataset5
0
an
d
1
5
4
tu
p
les
f
o
r
d
ataset1
5
4
ar
e
co
n
s
id
er
ed
as
a
ca
s
e
s
t
u
d
y
.
T
h
e
a
n
al
y
s
i
s
r
ev
ea
ls
s
o
m
e
h
id
d
e
n
p
atter
n
s
o
f
s
t
u
d
en
t
s
’
p
o
o
r
p
e
r
f
o
r
m
an
ce
w
h
ic
h
co
u
ld
s
er
v
e
as
b
ed
r
o
ck
f
o
r
ac
ad
em
ic
p
lan
n
er
s
in
m
ak
i
n
g
ac
ad
em
ic
d
ec
is
io
n
s
a
n
d
an
ai
d
in
th
e
cu
r
r
icu
l
u
m
r
e
-
s
tr
u
ct
u
r
in
g
a
n
d
m
o
d
if
icatio
n
w
it
h
a
v
ie
w
to
i
m
p
r
o
v
i
n
g
s
tu
d
e
n
ts
’
p
er
f
o
r
m
a
n
ce
an
d
r
ed
u
cin
g
f
ail
u
r
e
r
ate.
RE
F
E
R
E
NC
E
S
[
1
]
A
la
a
e
l
-
Ha
lee
s,
“
M
in
in
g
st
u
d
e
n
ts
d
a
ta t
o
a
n
a
ly
z
e
e
-
L
e
a
rn
in
g
b
e
h
a
v
io
r:
A
Ca
se
S
tu
d
y
”
,
2
0
0
9
.
.
[
2
]
S
.
T
.
Hijaz
i,
a
n
d
R
.
S
.
M
.
M
.
Na
q
v
i,
“
F
a
c
to
rs
a
ff
e
c
ti
n
g
stu
d
e
n
t‟s
p
e
rf
o
r
m
a
n
c
e
:
A
Ca
s
e
o
f
P
ri
v
a
te
Co
ll
e
g
e
s
”
,
Ba
n
g
la
d
e
sh
e
-
J
o
u
rn
a
l
o
f
S
o
c
io
l
o
g
y
,
Vo
l.
3
,
N
o
.
1
,
2
0
0
6
.
[
3
]
Q.
A
.
A
I
-
Ra
d
a
id
e
h
,
E.
W
.
A
I
-
S
h
a
w
a
k
fa
,
a
n
d
M
.
I.
A
I
-
Na
jj
a
r,
“
M
in
in
g
stu
d
e
n
t
d
a
t
a
u
si
n
g
d
e
c
isio
n
tre
e
s”
,
In
tern
a
ti
o
n
a
l
A
ra
b
Co
n
f
e
re
n
c
e
o
n
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
(
A
CI
T
'
2
0
0
6
),
Ya
rm
o
u
k
Un
iv
e
rsit
y
,
Jo
rd
a
n
,
2
0
0
6
.
[
4
]
C.
Ro
m
e
ro
,
S
.
V
e
n
tu
ra
(2
0
0
7
),
"
Ed
u
c
a
ti
o
n
a
l
d
a
ta
m
in
in
g
:
A
S
u
rv
e
y
f
ro
m
1
9
9
5
t
o
2
0
0
5
"
,
Exp
e
r
t
S
y
ste
ms
wit
h
Ap
p
li
c
a
ti
o
n
s
(
3
3
),
p
p
.
1
3
5
-
1
4
6
,
2
0
0
7
.
[
5
]
J.
Ha
n
a
n
d
M
.
Ka
m
b
e
r,
"
Da
ta M
in
in
g
:
C
o
n
c
e
p
ts
a
n
d
T
e
c
h
n
iq
u
e
s"
,
M
o
rg
a
n
Ka
u
fm
a
n
n
,
2
0
0
0
.
[
6
]
U.
K.
P
a
n
d
e
y
,
a
n
d
S
.
P
a
l,
"
Da
ta
M
in
in
g
:
A
p
re
d
ictio
n
o
f
p
e
rf
o
rm
e
r
o
r
u
n
d
e
rp
e
rf
o
rm
e
r
u
sin
g
c
las
si
f
ica
ti
o
n
"
,
(
IJ
CS
IT
)
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Co
mp
u
ter
S
c
ien
c
e
a
n
d
I
n
fo
r
ma
ti
o
n
T
e
c
h
n
o
lo
g
y
,
Vo
l.
2
,
p
p
.
6
8
6
-
6
9
0
,
IS
S
N:
0
9
7
5
-
9
6
4
6
,
2
0
1
1
.
[
7
]
A
z
h
a
r
Ra
u
f
,
S
h
e
e
b
a
,
“
En
h
a
n
c
e
d
K
-
M
e
a
n
Cl
u
ste
rin
g
A
lg
o
rit
h
m
to
Re
d
u
c
e
Nu
m
b
e
r
o
f
Itera
t
io
n
s
a
n
d
T
im
e
Co
m
p
lex
it
y
”
,
M
id
d
le
-
Ea
st Jo
u
rn
a
l
o
f
S
c
ien
ti
fi
c
Res
e
a
rc
h
,
Vo
l.
1
2
,
P
p
.
9
5
9
-
9
6
3
,
2
0
1
2
.
[
8
]
Z.
N.
Kh
a
n
,
"
S
c
h
o
las
ti
c
a
c
h
iev
e
m
e
n
t
o
f
h
ig
h
e
r
se
c
o
n
d
a
ry
stu
d
e
n
ts
in
sc
ien
c
e
stre
a
m
"
,
J
o
u
rn
a
l
o
f
S
o
c
ia
l
S
c
ien
c
e
s
,
V
o
l
.
1
,
No
.
2
,
p
p
.
8
4
-
8
7
,
2
0
0
5
.
[
9
]
G
a
li
t.
e
t.
a
l,
"
Ex
a
m
in
in
g
o
n
li
n
e
le
a
rn
in
g
p
r
o
c
e
ss
e
s
b
a
se
d
o
n
lo
g
f
il
e
s
a
n
a
l
y
sis:
a
c
a
se
stu
d
y
"
,
Re
se
a
rc
h
,
Re
f
lec
ti
o
n
a
n
d
In
n
o
v
a
ti
o
n
s i
n
In
teg
ra
ti
n
g
ICT
in
Ed
u
c
a
ti
o
n
,
2
0
0
7
.
[
1
0
]
P
.
Ek
lu
n
d
,
a
n
d
J.
Zh
o
u
,
"
Co
m
p
a
riso
n
o
f
L
e
a
rn
in
g
S
trate
g
ies
f
o
r
Ad
a
p
tatio
n
o
f
F
u
z
z
y
Co
n
tro
ll
e
r
P
a
ra
m
e
ters
-
F
u
z
z
y
S
e
ts
a
n
d
S
y
ste
m
s
"
,
p
p
.
3
2
1
-
3
3
3
,
1
9
9
9
.
[
1
1
]
T
izh
o
o
sh
,
"
F
u
z
z
y
I
m
a
g
e
P
ro
c
e
ss
i
n
g
”
©
Co
p
y
rig
h
t
S
p
ri
n
g
e
r,
p
p
.
5
1
-
5
5
,
1
9
9
7
.
[
1
2
]
Zad
e
h
,
L
.
A
,
"
F
u
z
z
y
S
e
ts"
,
Jo
u
rn
a
l
o
f
In
f
o
rm
a
ti
o
n
S
c
ien
c
e
s,
V
o
l
.
8
,
p
p
3
3
8
-
3
5
3
,
1
9
6
5
.
[
1
3
]
Zad
e
h
,
L
.
A
.
,
"
F
u
z
z
y
S
e
ts
a
s a Ba
s
is
f
o
r
a
T
h
e
o
r
y
o
f
P
o
ss
ib
il
it
y
"
,
F
u
z
z
y
S
e
ts
a
n
d
S
y
ste
m
s,
p
p
.
3
-
2
8
,
1
9
6
5
.
[
1
4
]
S
h
a
e
e
la
Ay
e
sh
a
,
T
a
sle
e
m
M
u
sta
f
a
,
A
h
sa
n
Ra
z
a
S
a
tt
a
r,
M
.
In
a
y
a
t
Kh
a
n
(
2
0
1
0
),
"
Da
ta
M
in
i
n
g
M
o
d
e
l
f
o
r
Hig
h
e
r
Ed
u
c
a
ti
o
n
S
y
ste
m
"
,
Eu
ro
p
e
n
J
o
u
rn
a
l
o
f
S
c
ien
ti
fi
c
Res
e
a
rc
h
,
V
o
l.
4
3
,
No
.
1
,
p
p
.
2
4
-
2
9
,
2
0
1
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
F
u
z
z
y
A
s
s
o
cia
tio
n
R
u
le
Min
in
g
b
a
s
ed
Mo
d
el
t
o
P
r
ed
ict
S
tu
d
en
ts
’
P
erfo
r
ma
n
ce
(
S
u
s
h
il K
u
ma
r
V
erma
)
2231
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
S
u
sh
il
K
u
m
a
r
v
e
r
m
a
is
a
n
A
s
sista
n
t
P
ro
f
e
ss
o
r
in
th
e
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
a
t
S
a
m
r
a
t
a
sh
o
k
tec
h
n
o
lo
g
ica
l
In
stit
u
te
V
i
d
ish
a
(M
P
)
.
Ob
tain
e
d
M
a
ste
r
d
e
g
re
e
(M
C
A
)
f
ro
m
R
G
P
V
Bh
o
p
a
l
in
2
0
0
3
a
n
d
P
h
.
D.
F
r
o
m
Ba
r
k
a
tu
ll
a
h
Un
iv
e
rsity
Bh
o
p
a
l
in
2
0
1
6
.
Re
se
a
rc
h
a
re
a
is
Da
ta
m
in
in
g
a
n
d
w
a
r
e
h
o
u
sin
g
.
P
u
b
li
sh
e
d
th
e
re
se
a
rc
h
p
a
p
e
r
in
th
e
f
ield
o
f
d
a
ta
m
in
in
g
in
v
a
rio
u
s
in
tern
a
ti
o
n
a
l
Jo
u
r
n
a
ls
a
n
d
a
tt
e
n
d
e
d
in
tern
a
ti
o
n
a
l.
E
-
m
a
il
:
su
sh
il
v
e
r
m
a
8
1
@g
m
a
il
.
c
o
m
Ra
m
je
e
v
a
n
S
in
g
h
T
h
a
k
u
r
is
a
n
A
s
so
c
iate
P
ro
f
e
ss
o
r
in
th
e
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter A
p
p
li
c
a
ti
o
n
s a
t
M
a
u
lan
a
A
z
a
d
N
a
ti
o
n
a
l
In
stit
u
te o
f
T
e
c
h
n
o
lo
g
y
,
Bh
o
p
a
l,
In
d
ia.
He
h
a
d
a
lo
n
g
c
a
rrier i
n
tea
c
h
in
g
a
n
d
re
se
a
rc
h
,
in
c
lu
d
in
g
T
h
re
e
Ye
a
r
T
e
a
c
h
in
g
in
th
e
De
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
a
t
Na
ti
o
n
a
l
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
,
T
iru
c
h
irap
a
ll
i,
T
a
m
il
n
a
d
u
,
In
d
ia.
A
t
P
re
s
e
n
t
h
e
is
g
u
id
i
n
g
se
v
e
ra
l
P
h
.
D.
Re
se
a
rc
h
S
c
h
o
lars
a
n
d
h
a
n
d
li
n
g
G
o
v
e
rn
m
e
n
t
Re
se
a
rc
h
P
ro
jec
ts
o
f
a
b
o
u
t
Rs.
On
e
Cro
re
.
He
h
a
s
p
u
b
li
sh
e
d
m
o
re
th
a
n
7
5
Re
se
a
rc
h
P
a
p
e
r
i
n
Na
ti
o
n
a
l,
I
n
tern
a
ti
o
n
a
l,
Jo
u
rn
a
ls
a
n
d
C
o
n
f
e
re
n
c
e
s.
He
h
a
s
v
isit
e
d
se
v
e
ra
l
Un
iv
e
rsiti
e
s in
USA
,
Ho
n
g
Ko
n
g
,
Ira
n
,
T
h
il
a
n
d
,
M
a
la
y
sia
,
a
n
d
S
in
g
a
p
o
re
.
E
-
m
a
il
:
ra
m
th
a
k
u
r2
0
0
0
@y
a
h
o
o
.
c
o
m
S
h
a
il
e
s
h
J
a
lo
r
e
e
is
a
n
A
ss
o
c
iat
e
P
r
o
f
e
ss
o
r
in
th
e
De
p
a
rtm
e
n
t
o
f
A
p
p
li
e
d
M
a
th
’s
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
a
t
S
a
m
ra
t
A
sh
o
k
T
e
c
h
n
o
lo
g
ica
l
In
stit
u
te
(S
.
A
.
T
.
I.
),
V
i
d
i
sh
a
,
In
d
ia.
He
e
a
rn
e
d
h
is
M
a
ste
r
De
g
re
e
f
ro
m
De
v
i
A
h
il
i
y
a
Un
iv
e
rsit
y
In
d
o
re
(M
.
P
.
)
in
1
9
9
1
a
n
d
P
h
.
D.
De
g
re
e
(
A
p
p
li
e
d
M
a
th
s
)
F
ro
m
Ba
r
k
a
tu
ll
a
h
Un
iv
e
rsi
t
y
,
B
h
o
p
a
l
(M
.
P
.
)
i
n
2
0
0
2
.
A
t
P
re
s
e
n
t
h
e
is
g
u
id
in
g
se
v
e
ra
l
P
h
.
D
.
Re
se
a
rc
h
S
c
h
o
lars
in
M
a
t
h
e
m
a
ti
c
s
a
n
d
Co
m
p
u
ter
S
c
ien
c
e
f
ield
.
He
h
a
s
p
u
b
li
sh
e
d
m
o
re
th
a
n
3
5
Re
se
a
rc
h
P
a
p
e
r
i
n
Na
ti
o
n
a
l,
I
n
te
rn
a
ti
o
n
a
l,
Jo
u
rn
a
ls
a
n
d
C
o
n
f
e
re
n
c
e
s.
His
a
re
a
s
o
f
in
tere
st
in
c
lu
d
e
S
p
e
c
ial
F
u
n
c
ti
o
n
,
Da
ta M
i
n
i
n
g
,
Da
ta W
a
r
e
h
o
u
sin
g
a
n
d
W
e
b
M
i
n
in
g
.
E
-
m
a
il
:
sh
a
il
e
sh
_
jalo
re
e
@re
d
iffma
il
.
c
o
m
Evaluation Warning : The document was created with Spire.PDF for Python.