Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 4
,
A
ugu
st
2015
, pp
. 75
0
~
75
8
I
S
SN
: 208
8-8
7
0
8
7
50
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Metal Mountable Ladder Feed
Line UHF-RFID Tag Antenna
Najwa Mohd
Faudz
i, Mohd
Tarmiz
i
Ali,
I
s
mar
a
ni
Isma
i
l, Hadi Juma
at
,
N
u
r
Hida
yah Mo
hd Suka
imi
Antenna R
e
sear
ch Group (ARG), Faculty
of
Electrical Eng
i
neerin
g (FKE),
Universiti Tekno
logi Mar
a
(UiTM)
, Shah Alam,
Selangor, Malaysia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 16, 2015
Rev
i
sed
Ap
r
20
, 20
15
Accepted
May 15, 2015
A microstrip dipole UHF-RFID tag ante
nna th
at can be mounted on metal
objec
t is presented in this pape
r.
The antenna, which has a v
e
r
y
simple
structure withou
t an
y
shorting p
i
n and s
hortin
g p
l
ate,
is composed of ladder
feed l
i
ne
, rec
t
an
gular loop
, c
a
pa
citiv
e t
i
p-load
in
g and T-m
a
tch s
t
ructur
e.
The
insertion of gro
und plane in th
e tag
antenna d
e
sign reduces the negative
im
pact of m
e
tal
object to
the p
e
rform
ance of t
h
e tag ant
e
nna
.
The tag is
designed to operate in the Malay
s
ia frequen
c
y
r
a
nge with
the center
frequency
of 92
1 MHz. Th
e p
e
rformance of
th
e tag is
evalu
a
ted through
s
i
m
u
lation and
m
eas
urem
ent i
n
term
s of impedance match
i
ng, antenna
refle
c
tion
co
effi
cien
t and
tag
re
ading r
a
nge.
Th
e m
eas
ured r
e
a
d
ing rang
e
obtain
e
d when the tag is in free
air
and on metal object is 2.3 m and 2.2 m
res
p
ect
ivel
y.
Keyword:
m
eander
Metal
micro
s
trip
p
a
tch
RFID
T
a
g
an
te
nn
a
T-m
a
tch
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Naj
w
a M
o
hd
F
a
udzi
,
An
ten
n
a
Research Group
(AR
G
), Facu
lty
of
Electrical E
ngi
neeri
n
g
(F
KE
),
Un
i
v
ersiti Tekn
o
l
o
g
i
Mara
(UiTM),
Sh
ah
Alam
, Selan
g
o
r, Malaysia.
Em
a
il: n
a
j
w
a_n
m
f@yah
o
o
.
co
m
1.
INTRODUCTION
In rece
nt
y
ears
,
R
a
di
o F
r
eq
ue
ncy
Ide
n
t
i
f
i
cat
i
on (R
F
I
D) t
e
c
h
n
o
l
o
gy
i
s
hi
g
h
l
y
dem
a
nded
i
n
vari
ous
ap
p
lication
s
; in
clud
ing
an
imal tag
g
i
ng
,
o
b
j
ect track
i
n
g, in
v
e
n
t
ory p
r
ocess and
also ite
m
-
lev
e
l-ta
g
g
i
ng.
There
f
ore,
rapi
d de
vel
o
pm
ent
i
n
t
h
e R
F
ID t
echn
o
l
o
gy
i
s
requi
red
.
The o
p
erat
i
n
g f
r
eq
u
e
ncy
of
UHF
-
R
FI
D
sy
st
em
i
s
bet
w
een 8
60
– 96
0
M
H
z wi
t
h
som
e
vari
ance i
n
f
r
eq
ue
ncy
from
regi
o
n
t
o
regi
on
depe
n
d
i
n
g on t
h
e
radi
o re
g
u
l
a
t
i
o
n
of t
h
at
re
gi
o
n
[
1
]
.
T
h
e c
o
m
ponent
t
h
at
pl
ay
s a vi
t
a
l
r
o
l
e
i
n
t
h
e R
F
I
D
sy
st
em
i
s
RFID
t
a
g
whi
c
h i
s
com
p
ose
d
of a
n
ant
e
nna a
nd a ch
i
p
. In
desi
gn
ing
th
e RFID tag
,
th
e si
ze of
the antenna and the
sen
s
itiv
ity o
f
th
e tag
to
t
h
e ob
j
ect it is attach
ed
t
o
n
e
ed
to
b
e
con
s
idered
[2
] [3
]. Th
e tag
will b
e
m
o
un
ted
o
n
th
e ob
j
ects
with
d
i
fferen
t k
i
nd
of m
a
terials
in
clu
d
i
n
g
m
e
ta
l. Howev
e
r, m
e
tal o
b
j
ect
will stron
g
l
y affect th
e
per
f
o
r
m
a
nce of t
h
e t
a
g due t
o
t
h
e si
gni
fi
ca
nt
chan
ges
in
th
e an
tenn
a imp
e
d
a
n
ce wh
en
it is
attach
ed
o
n
m
e
tal
object [4].
According to image theory c
once
p
t,
if a dipole tag antenna
is placed
in close proxim
ity to the m
e
ta
l
surface, a
n
ide
n
tical
m
i
rror image an
tenna is form
ed due
to the reflec
tion from
the
m
e
tal surface,
but the
cur
r
ent
fl
o
w
i
s
i
n
re
vers
e di
re
ct
i
on. C
o
nseq
u
e
nt
l
y
, t
h
e el
ect
rom
a
gnet
i
c
fi
el
ds
pr
o
duce
d
by
t
hose
ant
e
nna
s
wi
l
l
cancel each
other a
nd lea
d
to the re
duction of ra
diati
ng resistance
[5]. Pre
v
ious
resea
r
che
r
s ha
ve
propos
e
d
several tec
h
niques t
o
ove
rcome this proble
m
,
which
include
s inse
rting
a foam
spacer betwee
n t
h
e a
n
tenna
and
t
h
e m
e
t
a
l
object
wi
t
h
a
n
d
al
so by
usi
ng
m
e
t
a
m
a
t
e
ri
al
s fo
r e
x
am
pl
e El
ect
rom
a
gnet
i
c
B
a
nd
Ga
p
(EB
G
) a
n
d
Artificial Magn
etic Co
ndu
cto
r
(AMC)
[6
] [7
]. By u
s
i
n
g
t
h
ese technique
s
, the interf
eren
ce fro
m
th
e metall
ic
surface can
be
reduced, but the size of
t
h
e antenna will be increase
d
an
d the ante
nna becom
e
s
m
o
re bul
ky
.
Pri
n
t
e
d i
n
vert
e
d
-F
ant
e
nn
a (
P
IFA
)
i
s
al
s
o
c
o
m
m
onl
y
used
f
o
r m
e
t
a
l
ob
ject
t
a
ggi
ng
,
but
t
h
e fab
r
i
cat
i
o
n
c
o
st
o
f
t
h
e PIF
A
i
s
m
u
ch
hi
g
h
er
due
t
o
t
h
e exi
s
t
e
nc
e of sh
o
r
t
i
ng
p
l
at
e or sho
r
t
i
n
g
pi
n i
n
t
h
e ant
e
nna
desi
g
n
st
r
u
ct
ure
[8]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
75
0
–
75
8
7
51
In t
h
i
s
pape
r,
a
m
i
crost
r
i
p
di
pol
e a
n
t
e
n
n
a t
h
at
can be m
ount
e
d
o
n
m
e
t
a
l ob
ject
has
be
en p
r
o
p
o
se
d.
Th
is tag
an
tenn
a, wh
ich
is c
o
m
p
o
s
ed
of lad
d
e
r feed
line, rectangula
r
loop, T-m
a
tc
h and
ful
l
gr
ou
n
d
pl
ane, i
s
easy to design
and fa
bricate as the antenna s
t
ructure do
es n
o
t
cont
ai
n a
n
y
sho
r
t
i
n
g pl
at
e or vi
a h
o
l
e
bet
w
een
t
h
e pat
c
h a
n
d
gr
o
u
n
d
. T
h
e i
n
sert
i
o
n
of
ful
l
gro
u
nd
pl
an
e
i
n
t
h
e t
a
g a
n
t
e
nna
desi
gn
re
duce
s
t
h
e ne
g
a
t
i
v
e
im
pact
of m
e
tal
ob
ject
t
o
t
h
e per
f
o
r
m
a
nce of t
h
e t
a
g a
n
t
e
nna
, t
h
us m
a
ke i
t
sui
t
a
bl
e t
o
be
at
t
ached
on m
e
t
a
l
ob
ject
.
The
re
st
of
t
h
e
pa
pe
r i
s
c
o
n
d
u
ct
ed
as f
o
l
l
o
ws:
S
ect
i
on
2
descr
i
bes t
h
e a
n
t
e
n
n
a
desi
g
n
st
r
u
ct
ure,
Sect
i
on 3 e
xpl
ai
ns t
h
e sim
u
l
a
t
i
on an
d t
h
e m
easurem
ent
resul
t
and fi
nal
l
y
concl
u
si
o
n
s
and f
u
t
u
re w
o
r
k
s are
summ
arized in Section 4.
2.
A
N
T
EN
NA
DESIGN
STRUC
TUR
E
The
pr
o
p
o
s
ed
t
a
g ant
e
nn
a d
e
si
gn
, w
h
i
c
h i
s
cal
l
e
d m
e
t
a
l
m
ount
abl
e
l
a
d
d
er
fee
d
l
i
n
e t
a
g a
n
t
e
n
n
a
sho
w
s
som
e
i
m
provem
e
nt
fr
om
t
h
e pre
v
i
o
u
s
t
a
g a
n
t
e
n
n
a
d
e
si
gn
p
ubl
i
s
he
d i
n
[
9
]
,
i
n
t
e
r
m
s of si
ze an
d
gai
n
,
as
a resu
lt of i
n
sertin
g a cap
acitiv
e tip-lo
a
d
i
ng
stru
cture an
d
also
th
e
u
s
e
o
f
l
a
d
d
e
r
feed
lin
e in
stead
o
f
a mean
der
feed line respectively. Th
e copper layer traces on t
h
e
upper si
de of Rogers s
u
bs
trate form
ed s
e
veral
stru
ctures, in
cl
u
d
i
n
g
ladd
er feed
lin
e, rectan
gu
lar lo
o
p
, cap
acitiv
e tip-load
i
ng
an
d T-match
as illu
strated
in
Fig
u
re 1. Th
e
fu
ll g
r
o
und
p
l
an
e at th
e b
ack
o
f
th
e an
tenn
a
will act as a re
flecto
r
to
th
e an
tenn
a and
m
a
in
tain
the perform
a
nce of the ante
nna eve
n
when
attached on
metal object. T
h
e Rogers s
u
bstrate with the electric
perm
i
t
t
i
v
i
t
y
of 2.
2 an
d a t
a
ng
ent
l
o
ss
of
0.
0
0
0
9
has a sm
all
t
h
i
c
kness
wi
t
h
o
n
l
y
0.
8 m
m
.
At
t
h
e ce
nt
er
of t
h
e
coppe
r
traces,
a SOT
1
040 chi
p
in form
of strap from
NXP Semiconduct
o
r
with
the
im
pedance value of 14.8 -
j
127
.1
Ω
i
s
at
tached [
1
0]
. The o
v
eral
l
di
m
e
nsi
o
n o
f
t
h
e t
a
g ant
e
n
n
a i
s
53
x 28
x 0.
8
m
m
3
, whi
c
h i
s
25%
sm
al
l
e
r t
h
an t
h
e t
a
g ant
e
n
n
a
desi
g
n
i
n
[9]
.
Tabl
e 1 sh
ow
s t
h
e param
e
t
e
rs an
d di
m
e
nsi
ons
of t
h
e a
n
t
e
nn
a
structure.
(a)
(b
)
Fi
gu
re
1.
The
(
a
) si
m
u
l
a
t
e
d an
d
(b
)
fab
r
i
cat
ed
pr
o
pose
d
t
a
g
ant
e
n
n
a st
r
u
ct
u
r
e
Tabl
e 1. Param
e
t
e
rs
an
d Di
m
e
nsi
o
n of
Ta
g A
n
t
e
n
n
a
P
a
r
a
me
t
e
r
D
i
me
n
s
i
o
n
[
m
m]
P
a
r
a
me
t
e
r
D
i
me
n
s
i
o
n
[
m
m]
a 2
h
4
b 3
p
15
c 1
q
9
d 10
x
7.
4
e 8
y
5
f
0.
9
L
53
g 1.
5
W
28
Th
e cap
acitiv
e tip
lo
ad
ing
stru
cture, wh
ich
is a larg
e rad
i
at
in
g
area at th
e en
d
o
f
t
h
e feedin
g
lin
e, i
s
in
serted in
t
h
e
tag
an
ten
n
a
d
e
sig
n
t
o
redu
ce
th
e ov
erall d
i
mension
of the a
n
tenna.
Since
m
o
st of the c
h
arges
i
s
store
d
at the e
nd
of the feed line
dipole a
n
tenna, increa
sing t
h
e size
of
t
h
e structure near t
h
e ends will
in
crease th
e cap
acitan
ce
o
f
the an
ten
n
a
[11
]
. As a
resu
lt,
the reso
nan
t
frequ
en
cy
will b
e
sh
ifted to th
e l
o
wer
fre
que
ncy. T
o
increase the re
sonant freque
ncy back nea
r
to
th
e op
er
ating f
r
e
qu
en
cy
, the
size of the antenna
Ca
pac
i
tiv
e
Ti
p
-
L
o
ad
ing
T-Match
La
dd
er
li
ne
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
l Moun
tab
l
e La
dd
er Feed
Li
n
e
U
H
F-
RFI
D
Ta
g An
tenn
a
(
N
aj
w
a
M
o
hd
F
a
u
d
zi
)
75
2
will b
e
redu
ced
.
Moreo
v
e
r, t
h
e add
e
d
cap
acitan
ce is rou
g
h
l
y p
r
o
portio
nal to
th
e p
e
ri
meter o
f
th
e lo
ad
i
ng
sh
ap
e [1
]. Th
erefore,
b
y
us
ing L-sh
ap
ed
o
f
cap
acitiv
e tip
-l
oad
i
ng
stru
cture, th
e
p
e
rim
e
ter o
f
t
h
e lo
ad
ing
sh
ap
e
can
be m
o
re increased and
va
ried, co
m
p
ared to the
comm
on re
ctangular s
h
ape
,
thus i
n
crease the ca
paci
tance
o
f
th
e an
tenn
a.
It is
well kno
wn
t
h
at sm
all si
zed
an
tenn
a
wi
ll su
ffer
a sm
all antenna
gai
n
. But,
ot
her fact
or that ca
n
also affect the
gain
of t
h
e a
n
tenna
besi
des t
h
e ante
nn
a size, is th
e m
u
tu
al co
up
lin
g that
occurs
betwee
n the
meander line [12].
The c
u
rre
nt
s that fl
ow in the
opposite
direction
in t
h
e m
eander line
tends t
o
ca
nce
l
each
othe
r o
u
t as illustrated i
n
Fig
u
re
2 (a)
[1]
.
As a res
u
lt, th
e an
tenn
a rad
i
atio
n
resi
sta
n
ce
as well as the antenna
efficien
cy will b
e
d
e
creased
.
Sin
ce th
e an
ten
n
a
efficien
cy
is p
r
o
p
o
r
tion
a
l
to
th
e an
tenn
a g
a
in
,
d
ecreasin
g
t
h
e
an
tenn
a efficien
cy will d
ecrease th
e an
ten
n
a g
a
in
. In
o
r
der to
redu
ce the cu
rren
t
can
cellatio
n
b
e
tween
th
e
adjace
nt
arm
s
of t
h
e m
eander
l
i
n
es, t
h
e c
u
r
r
e
nt
s sh
o
u
l
d
be
avoi
ded t
o
fl
o
w
i
n
t
h
e
o
p
p
o
s
i
t
e
di
rect
i
on.
O
n
e o
f
t
h
e sol
u
t
i
o
ns i
s
by
usi
n
g l
a
dd
er sha
p
e fee
d
l
i
n
e i
n
st
ead o
f
m
eander
feed l
i
ne as sh
ow
n i
n
Fi
g
u
re
2 (
b
).
From
the fi
gure it ca
n
be see
n
, the
current
t
h
at fl
ows in th
e
op
posite d
i
rection
i
n
th
e ladd
er lin
e is
b
r
ou
gh
t
fu
rt
h
e
r
from
each other. This will re
duce the
possibility of the curre
nt to be can
celled out. As
a result, the antenna
efficien
cy can
b
e
im
p
r
ov
ed an
d th
e an
tenn
a
g
a
in
will b
e
increased, thu
s
in
crease th
e tag read
rang
e as
well.
(a)
(b
)
Figu
re
2.
Cu
rre
nt fl
ow
in t
h
e (
a
) m
eander
fee
d
line a
n
d
(b
) l
a
dde
r
feed
line
The T
-
m
a
tch structure is
formed by c
o
nne
c
ting a
s
h
ort
d
i
pol
e i
n
di
cat
ed
wi
t
h
param
e
t
e
r x
an
d y
t
o
th
e ladd
er feed lin
e to easily match
th
e im
p
e
d
a
n
c
e
o
f
t
h
e
an
tenn
a
with
t
h
e ch
ip im
p
e
d
a
n
ce
witho
u
t
altering
th
e wh
o
l
e
d
i
men
s
ion
o
f
t
h
e
an
tenn
a.
Sin
c
e th
e im
p
e
d
a
n
c
e o
f
t
h
e ch
ip
is h
i
gh
ly cap
acitiv
e, th
e an
t
e
n
n
a
i
m
p
e
d
a
n
ce
n
e
ed
s to
b
e
h
i
g
h
l
y
in
du
ctiv
e, so
th
at m
a
x
i
m
u
m
p
o
wer will b
e
tran
sferred
to
the ch
ip
. Th
e T-match
structure is c
o
m
posed
of a
se
ries and s
h
unt
inductance
as
i
llu
strated
in Fi
g
u
re
3
.
By altering
th
e v
e
rtical an
d
th
e ho
rizo
n
t
al
len
g
t
h of th
e
T-m
a
tch
,
th
e
v
a
lu
e
o
f
th
e series and
shu
n
t in
du
ctan
ce also
will b
e
chan
g
e
d.
Th
erefo
r
e, th
e
h
i
gh
ly in
du
ctiv
e an
te
nn
a can b
e
ach
i
ev
ed
on
ly b
y
alter
i
ng th
e leng
th of
x
an
d y p
a
r
a
meter
s
,
whi
l
e
ot
he
r par
a
m
e
t
e
rs
rem
a
i
n
u
n
cha
n
ged
.
Fi
gu
re
3.
Tag
a
n
t
e
n
n
a e
qui
val
e
nt
ci
rc
ui
t
wi
t
h
T-m
a
t
c
hi
ng t
e
chni
que
[
1
]
3.
SIMULATION AND MEAS
UREME
N
T RESULTS
3.
1.
An
t
e
nn
a I
m
p
e
da
n
ce
The m
easurement of a
n
tenna
im
pedance
has
been
ca
rried
out using a m
e
thod called Im
age Method
[8], [13]. To
utilize
this Im
age Meth
od, t
h
e antenna structure is divi
de
d
sym
m
e
trically in half and
m
ounted
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
75
0
–
75
8
7
53
on a large elec
trical ground
plane
that i
n
cludes t
h
e a
n
tenna fee
d
poi
nt
. Figure
4 (a
) s
hows the m
easure
m
ent
set
up o
f
t
h
e an
t
e
nna i
m
pedan
ce. The sy
m
m
e
t
r
i
c
hal
f
t
a
g ant
e
nna
was m
ount
ed o
n
a co
pp
er gr
o
u
n
d
pl
a
n
e wi
t
h
t
h
e di
m
e
nsi
on of 3
0
x 3
0
cm
2
. The antenna feeding point
was soldere
d
to the central
pi
n
of SM
A c
o
n
n
e
c
t
o
r at
t
h
e bac
k
o
f
t
h
e
gr
ou
n
d
pl
a
n
e,
whi
c
h has
bee
n
passe
d t
h
ro
u
gh a sm
al
l
hol
e i
n
t
h
e co
ppe
r
pl
at
e. The m
e
t
a
l
l
i
c
part
of the a
n
t
e
nna
on t
h
e sy
mme
tric plane
was als
o
so
ld
er
ed
t
o
th
e gr
oun
d p
l
an
e. Th
e
SMA
co
nn
ector
w
a
s
connected to t
h
e Vector Net
w
ork
An
alyzer (VNA) port through coa
x
ial
cab
le, wh
ich
was h
i
dd
en
und
er the
coppe
r
plate.
Fi
gu
re 4 (
b
) s
h
ows t
h
e si
m
u
l
a
t
e
d and m
easur
ed ant
e
n
n
a i
m
p
e
dance
of t
h
e p
r
o
p
o
sed t
a
g a
n
t
e
nna
wi
t
h
respect to t
h
e freque
ncy. From the gra
p
h,
it can be s
een t
h
at, at 921 MHz the m
easured antenna im
pe
dance
,
Z
m
eas
= 20.
4 + j2
9
0
.
5
Ω
, is slig
h
tly h
i
gh
er t
h
an
th
e sim
u
late
d
im
p
e
d
a
n
ce with
th
e v
a
lu
e
of Z
sim
= 1
4
.
1
+ j
126
Ω
, es
pecially in the
reactance pa
rt. T
h
e i
n
crease
of
res
i
stance and
re
actance
of t
h
e
m
easured a
n
t
e
nna
im
pedance i
s
m
o
st
proba
bl
y
due t
o
t
h
e s
o
l
d
er el
em
ent
that has been
us
ed to c
onnect the antenna wi
th the
g
r
ou
nd
p
l
an
e i
n
th
e im
ag
e
meth
od
. Th
e
so
l
d
er elem
en
t acts as a p
a
rasitic ele
m
en
t, wh
ich
d
e
teriorates th
e
ove
ral
l
i
m
pedance
of
t
h
e a
n
t
e
nna
, t
h
us
i
n
cre
a
se t
h
e
resistance as
well as re
actance
of t
h
e
antenna.
(a)
(b
)
Fi
gu
re
4.
A
n
t
e
nna
i
m
pedance
(a)
m
easurem
ent
set
u
p
(b
) si
m
u
l
a
t
e
d an
d m
easure
d
res
u
l
t
3.2.
Antenna Reflecti
o
n Coefficient,
S
11
The m
easure
m
ent of S
11
w
a
s carri
e
d
o
u
t
usi
n
g V
N
A
f
r
o
m
R
ohde &
Sh
warz a
n
d a ji
g.
The
ji
g
,
whi
c
h use
d
t
h
e
conce
p
t
o
f
baz
o
o
k
a
bal
u
n [
1
4
]
, was desi
gne
d
and
sim
u
late
d
first to
m
a
k
e
su
re t
h
at th
e j
i
g
was
ope
rat
e
d at
t
h
e
desi
re
d o
p
e
r
at
i
ng
fre
que
ncy
,
92
1 M
H
z as s
h
o
w
n i
n
Fi
gu
r
e
5 (a
). T
h
e
fa
bri
cat
ed
ji
g
sh
ow
n i
n
Fi
gu
re 5
(b
) w
a
s con
s
t
r
uct
e
d
usi
n
g a 5
0
Ω
fl
ex
ib
le RG3
1
6
co
ax
ial cab
le sh
ield
ed
with
Tan
FEP
j
a
ck
et, SMA
co
nn
ector
an
d
a r
e
sistor
w
ith
t
h
e
i
m
pedance val
u
e of
1
5
Ω
. The 15
Ω
loa
d
was inse
rted at the end
of t
h
e
jig i
n
or
der t
o
ens
u
re
t
h
at
t
h
e out
pu
t
im
pedance o
f
t
h
e ji
g i
s
ap
pr
oxi
m
a
t
e
l
y
t
h
e sam
e
as t
h
e chi
p
im
pedance
,
whi
c
h
i
s
14.
8
Ω
. Figure 5
(c) s
h
ows the sim
u
late
d and m
easured S
11
val
u
e of
t
h
e ji
g. T
h
e si
m
u
l
a
t
e
d ji
g ha
s wi
de
r
bandwidth as
com
p
ared t
o
the fa
bricat
ed
jig. T
h
e slight
diffe
re
nce in t
h
e S
11
value from
the
m
easured
a
n
d
si
m
u
lated
j
i
g
i
s
du
e to
th
e fab
r
icated
error o
f
t
h
e j
i
g a
n
d also the e
x
istence of
parasit
i
c ele
m
ent from the
so
ld
er
ing
pro
c
ess. Bo
th
t
h
e si
m
u
lated
an
d
measu
r
ed
j
i
gs
co
v
e
r
th
e
wh
ole U
H
F
r
a
ng
e, w
h
ich
is 86
0
–
960
MHz a
n
d the
results agree
well with
each
o
t
h
e
r.
The m
easurement setup
of S
11
i
s
sh
ow
n i
n
Fi
gu
re
6
(a),
w
h
e
r
e t
h
e
p
r
ot
ot
y
p
e
was c
o
nnect
e
d
t
o
t
h
e
ji
g
at one end, fol
l
owe
d
by a coaxial cable to the VNA
po
rt at the other e
n
d. The an
te
nna reflection
coefficient
was m
easu
r
ed
in
two cond
itio
n
s
,
wh
ich
a
r
e in free air a
n
d on copper
plat
e wi
t
h
t
h
e di
m
e
nsi
on of
3
0
x
3
0
cm
2
.
It can
be
o
b
se
rve
d
in
Fig
u
r
e
6
(b
) that t
h
e
sim
u
late
d as
wel
l
as m
easured
res
ona
nt
f
r
eq
ue
ncy
o
f
t
h
e t
a
g
attach
ed
on
m
e
tal is o
n
l
y sli
g
h
tly sh
ifted
from
th
e si
m
u
late
d a
n
d m
easure
d
ta
g in free ai
r re
spectively.
Thus,
th
is resu
lt proved
th
at t
h
is
p
r
op
o
s
ed tag
an
ten
n
a
is su
itab
l
e
for m
e
tal o
b
j
ect tag
g
i
ng
, as t
h
e i
m
p
e
d
a
nce
of th
e
antenna is not m
u
ch affected whe
n
the
tag is attached on metal. It can also
be seen that the
m
easured res
u
lt i
s
Freque
ncy (GHz
)
0.
90
0.9
2
0
.
94
0.
96
0.
98
Impedanc
e (ohm)
-50
0
0
50
0
100
0
150
0
Real (s
imulat
i
o
n)
Imagin
a
ry
(s
imulat
ion)
Real (meas
u
r
ement
)
Imagin
a
ry
(meas
u
r
ement
)
R
si
m
= 14.
1
Ω
R
m
eas
=
20.
4
Ω
X
me
a
s
= 290.
5
Ω
X
si
m
= 126
Ω
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
l Moun
tab
l
e La
dd
er Feed
Li
n
e
U
H
F-
RFI
D
Ta
g An
tenn
a
(
N
aj
w
a
M
o
hd
F
a
u
d
zi
)
75
4
slig
h
tly sh
ifted fro
m
th
e si
m
u
lated
resu
lts due to
th
e fabr
icated error
of the
antenna a
n
d the jig as
well as the
existence of pa
rasitic
ele
m
ent
from
the solde
r
ing process. Howe
ve
r, the
resona
nt freque
nc
y is stil
l acceptable
as it is still with
in
t
h
e
UHF
ran
g
e
.
(a)
(b
)
(c)
Fi
gu
re
5.
The
(
a
) si
m
u
l
a
t
e
d an
d
(b
) fab
r
icated jig
a
n
d (c)
t
h
e
S
11
resu
lt of si
m
u
lated
and
measu
r
ed j
i
g
(a)
(b
)
Fi
gu
re
6.
(a
) T
h
e m
easurem
ent
set
u
p
of
S
11
and (b) sim
u
lated a
n
d m
easured S
11
res
u
lt
3.
3.
A
n
ten
n
a
Gai
n
an
d Ra
d
i
ati
o
n
P
a
t
t
ern
Fi
gu
re 7 (
a
) an
d (
b
) s
h
o
w
s t
h
e sim
u
l
a
t
e
d radi
at
i
on
pat
t
e
rn
of t
h
e p
r
op
ose
d
t
a
g ant
e
nna i
n
p
o
l
a
r pl
ot
wh
en
th
e tag
is in
free air and o
n
m
e
tal o
b
j
ect. In
free ai
r, t
h
ere i
s
radi
at
i
o
n i
n
bac
k
wa
rd
di
rect
i
o
n beca
use
o
f
t
h
e di
ff
ract
i
o
n fr
om
t
h
e edge
of t
h
e
gr
ou
n
d
pl
ane,
whi
c
h i
s
al
so cal
l
e
d edge e
ffect
[
15]
. Ho
we
ver
,
w
h
en t
h
e
tag is attached on m
e
tal objec
t, the antenna radiation
pa
ttern bec
o
m
e
s
m
o
re directional as
the
m
e
tallic surface
will redu
ce th
e field
th
at d
i
ffracts fro
m
th
e e
d
g
e
of th
e
g
r
ou
nd
p
l
an
e, t
h
us enh
a
n
ce t
h
e
d
i
rectiv
ity o
f
t
h
e tag
ant
e
n
n
a.
At
9
21 M
H
z, t
h
e
real
i
zed gai
n
of t
h
e t
a
g i
s
-8.
97
dB
an
d -
9
.
15
dB
i
n
f
r
ee ai
r and
on
m
e
t
a
l
resp
ectiv
ely. Th
e n
e
g
a
tiv
e
g
a
in
of th
e an
ten
n
a
is
b
ecau
s
e o
f
t
h
e sm
all
sized
an
ten
n
a
, wh
ich
is d
e
fi
n
itely
sm
al
l
e
r t
h
an a
wavel
e
ngt
h at
t
h
e
ope
rat
i
n
g f
r
e
que
ncy
92
1
M
H
z.
F
r
eq
uency (GH
z
)
0
.
86
0.8
8
0
.
90
0.9
2
0
.
94
0.9
6
0
.
98
1.0
0
S
11
(dB)
-30
-25
-20
-15
-10
-5
0
fr
ee
ai
r (si
m
)
m
e
tal (
s
im
)
fr
ee
ai
r (m
ea
s)
met
a
l
(
m
ea
s)
921 M
Hz =
-
26.
9 dB
941 M
Hz =
-
17.
9 dB
923 M
Hz =
-
18.
9dB
943 M
Hz =
-
16.
4 dB
Fr
e
quency
(G
H
z
)
0.
4
0
.
6
0.
8
1
.
0
1.
2
1
.
4
S
11
(dB
)
-5
0
-4
0
-3
0
-2
0
-1
0
0
si
mul
a
ti
on
m
easure
m
ent
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
75
0
–
75
8
7
55
-2
2
-
2
0
-1
8
-
1
6
-1
4
-
1
2
-1
0
-
8
-2
2
-2
0
-1
8
-1
6
-1
4
-1
2
-1
0
-8
-2
2
-2
0
-1
8
-1
6
-1
4
-1
2
-1
0
-8
-2
2
-2
0
-1
8
-1
6
-1
4
-1
2
-1
0
-8
0
30
60
90
120
15
0
180
21
0
240
270
300
330
phi
=
0
phi
=
90
(a)
-40
-
35
-30
-
25
-20
-
1
5
-10
-40
-35
-30
-25
-20
-15
-10
-40
-35
-3
0
-25
-20
-15
-10
-40
-35
-30
-2
5
-20
-15
-10
0
30
60
90
12
0
150
180
210
24
0
270
300
330
phi =
0
phi =
90
(b
)
Fi
gu
re
7.
P
o
l
a
r
ra
di
at
i
on
pat
t
e
rn
o
f
t
h
e
p
r
op
o
s
ed t
a
g a
n
t
e
n
n
a
i
n
(a)
free
ai
r
an
d
(b
)
on
m
e
tal
Figure
8 s
h
ows the c
u
rre
n
t distribution
on
the s
u
rf
ace
of
the tag a
n
tenna. It ca
n
be se
en that t
h
e
cu
rren
t in
ten
s
i
t
y is h
i
g
h
at th
e lad
d
e
r feed
lin
e and
cap
acitiv
e tip
-load
i
ng
stru
cture. Th
e cu
rren
t also
d
i
str
i
bu
ted
eq
ually at
th
e o
t
h
e
r
r
a
d
i
ating
ele
m
en
t in
clu
d
i
ng
th
e r
ectangular
lo
op
. Th
is ag
r
ees
w
e
ll w
ith
the
th
eory o
f
d
i
p
o
l
e, wh
ere t
h
e anten
n
a
rad
i
ation is
m
a
x
i
m
u
m
a
t
th
e end
of th
e d
i
po
le,
wh
ich
is at th
e lad
d
e
r lin
e
an
d cap
acitiv
e
tip
-lo
a
d
i
ng
,
due to
a larg
e num
b
e
r o
f
ch
arg
e
s g
a
t
h
ered
th
ere.
Fi
gu
re
8.
C
u
rre
nt
di
st
ri
but
i
o
n
on
t
h
e
su
rface
of
t
h
e t
a
g a
n
t
e
nna
3.
4.
Re
ad
R
a
nge
The t
a
g
rea
d
i
ng
ra
nge
, w
h
i
c
h i
s
t
h
e m
a
xim
u
m
di
st
ance that the rea
d
er can detect
the tag,
wa
s
m
easured usi
n
g
Ev
o
-
U
H
F
2
2
00 rea
d
er
a
nd t
y
pe
B
ci
rcul
ar
l
y
pol
ari
zed
a
n
t
e
nna wi
t
h
t
h
e gai
n
val
u
e of 9
dB
i
.
Th
e tag
read
ing
rang
e can
be calcu
lated
u
s
in
g
th
e Friis eq
u
a
tion
in
(1
), wh
ere P
t
is the tran
sm
i
tted
p
o
wer
fr
om
RFID rea
d
er
, G
r/t
is th
e
g
a
in
fro
m
th
e
read
er and
th
e
tag
,
P
th
is th
e th
resho
l
d
po
wer an
d
τ
is t
h
e
p
o
wer
trans
f
er c
o
effic
i
ent [3] [16]. T
h
e power tra
n
s
f
er c
o
efficient,
τ
m
easures
how m
u
ch the antenna im
pedance is
match
e
d
to th
e
ch
ip
im
p
e
d
a
n
c
e and
it can
b
e
calcu
lated
b
y
usin
g th
e equ
a
tio
n in
(2
).
4
(1
)
4
|
|
2
(2
)
From
sim
u
l
a
t
i
on
, t
h
e m
a
xim
u
m
readi
ng
ran
g
e o
b
t
a
i
n
e
d
by
t
h
e pr
o
p
o
s
ed t
a
g ant
e
nna
des
i
gn i
s
3
.
2 m
i
n
free ai
r an
d
sl
i
ght
l
y
l
o
wer
on m
e
t
a
l obje
c
t
wi
t
h
t
h
e di
st
ance of
3.
1 m
as sho
w
n i
n
Fi
gu
re 9 (
a
). T
h
e t
a
g
readi
ng ra
n
g
e obt
ai
ne
d i
s
1
0
% hi
g
h
er t
h
a
n
t
h
e pre
v
i
o
us t
a
g ant
e
n
n
a de
si
gn i
n
[
9
]
as a resul
t
s
of u
s
i
n
g l
a
d
d
e
r
feed line
inste
a
d of m
eander feed li
ne i
n
t
h
e t
a
g ant
e
nna
desi
g
n
.
The m
easurem
ent of
the tag
readi
n
g range
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Meta
l
Moun
tab
l
e La
dd
er Feed
Li
n
e
U
H
F-
RFI
D
Ta
g An
tenn
a
(
N
aj
w
a
M
o
hd
F
a
u
d
zi
)
75
6
was carried
ou
t in
An
tenn
e Research
Group
lab
a
ro
tory. Figu
re
9
(b
)
shows th
e setup
fo
r
th
e tag
read
ing rang
e
measurem
ent. To m
easure the rea
d
ing ra
nge
, the tag
was sl
o
w
l
y
m
ove
d a
w
ay
fr
om
the reader and t
h
e
maxim
u
m
distance t
h
at the
reader can
detect the tag
wa
s
measured a
n
d
recorde
d
. T
h
e
sam
e
proce
d
ure was
rep
eated
to
v
e
rify th
e resu
lt.
Fro
m
m
easu
r
emen
t, th
e m
a
x
i
m
u
m
read
in
g
ran
g
e
ob
tain
ed
wh
en
t
h
e tag
was in
free air is 2.3
m
,
while on coppe
r
plate the
reading ra
ng
e is aro
und
2.2
m
.
In
co
m
p
ariso
n
t
o
th
e simu
latio
n
result, the m
e
asure
d
rea
d
in
g
range
has re
d
u
ced a
r
o
u
n
d
0.9
m
d
u
e
to
t
h
e in
ev
itab
l
e in
terferen
ce from th
e
su
rr
oun
d
i
ng
.
(a)
(b
)
Figu
re
9.
(a
) Si
m
u
lated rea
d
in
g
ran
g
e i
n
f
r
ee
air
and
on m
e
tal (b)
readi
n
g range
m
easurement setup
4.
CO
NCL
USI
O
N
M
i
crost
r
i
p
di
p
o
l
e
U
H
F
-
R
F
I
D
t
a
g a
n
t
e
n
n
a
,
w
h
i
c
h ca
n
be m
ount
e
d
o
n
m
e
t
a
l
objec
t
,
has
been
pr
o
pose
d
,
desi
gne
d an
d m
easure
d
. T
h
e si
m
p
l
e
st
ruct
u
r
e o
f
t
h
e t
a
g ant
e
n
n
a wi
t
h
out
a
n
y
sho
r
t
i
ng
pi
n a
nd
vi
a
hol
e m
a
kes i
t
easi
e
r t
o
fab
r
i
cat
e. The l
a
dde
r
feed l
i
n
e im
pl
em
ent
e
d i
n
t
h
e t
a
g ant
e
nna
d
e
si
gn h
a
s im
prove
d
th
e g
a
i
n
o
f
t
h
e
an
tenn
a, m
ean
wh
ile th
e cap
acitiv
e tip
lo
ad
i
n
g stru
ctu
r
e con
t
ribu
tes to th
e redu
ction
o
f
an
tenna
si
ze up t
o
2
5
%
fr
om
t
h
e previ
ous
desi
gn
. M
o
re
o
v
er, t
h
e e
x
i
s
t
e
nce of
g
r
o
u
nd
pl
ane
i
n
t
h
e
t
a
g ant
e
nna
d
e
si
gn
ab
le to
red
u
c
e
th
e sen
s
itiv
ity o
f
t
h
e tag
to
t
h
e m
e
tal o
b
j
ect
attach
ed
.
As a
resu
lt, t
h
e
reader can
detect th
e tag
u
p
to 2.2 m
wh
en
attach
ed on
m
e
tal o
b
j
ect. In
th
e fu
t
u
re, th
e m
easu
r
em
en
t o
f
tag
read
i
n
g rang
e
will be
carried out
out
doors in a large em
pty area to
re
duce
the i
n
terfe
rence
f
r
om
the s
u
r
r
o
u
n
d
in
g
.
ACKNOWLE
DGE
M
ENTS
The a
u
thors
would like t
o
conve
y
th
e
d
eep
est gratitu
d
e
to An
tenn
a Research
Gro
up (ARG),
Micro
w
av
e
Tech
no
log
y
Cen
t
re (MTC
) an
d
Un
i
v
ersiti Te
kn
o
l
o
g
i
Mara (UiTM) for
supp
ort an
d gu
id
an
ce.
REFERE
NC
ES
[1]
D.M. Dobkin,
T
h
e R
F
in R
F
ID:
Pas
s
i
ve UHF
R
F
ID in
Pr
act
i
ce
. United
States of
America, 2008
.
[2]
A.
Ferchichi,
G.
Ali, A.
Info,
S.
R. Frequency
,
and A. Ferchichi, “A
Novel Small Sierpenski Antenn
as”,
International Jo
urnal of
Electrical
and
Computer Engin
eering
(
I
JECE)
, vo
l. 3, n
o
. 4
,
pp
. 436–44
0, 2013
.
[3]
K.V.S. Rao, S.
Mem
b
er, P.V
Nikitin
, and S.F.
Lam
,
“
A
nte
nna
Design for UHF RFID Tags
:
A Review and a
P
r
acti
cal
Appli
c
ation
”
,
IEEE Trans. Antennas Pr
opag.
, vol. 53, n
o
. 12
, pp
. 3870–
3876, 2005
.
[4]
L.
Mo and H.
Zhang, “RFID
Antenna
Ne
ar t
h
e S
u
rfac
e
of
M
e
tal
”
,
in
International S
y
mposium on Microw
ave,
Antenna
,
Propagation and
EMC
Technolog
ies fo
r Wireless Com
m
unications
, 20
07, pp
. 803–806
.
[5]
M. Bolic, D. Simplot-R
y
l, and I. Stojmenovic,
RFID Systems: Research Trends and Challenges
. Wiley
,
2010, p.
552.
[6]
B.
Ga
o
a
nd M.M.
F.
Yue
n
,
“Pa
ssive
UHF
RFID
with Ferrite Electromagnetic Ba
n
d
Gap ( EBG )
Material for
Metal
Objects
Tra
c
kin
g
Capaci
tor Cap
aci
tor a”
, in
Electronic Components and Technology Conferen
ce
, 2008, pp. 1990–
1994.
[7]
M. Abu and
M.K.A. Rahim
,
“Si
ngle-band and Dual-band Artif
ici
a
l Magneti
c Conductor Ground Planes for Multi-
band Dipole Antenna”, vo
l. 21, n
o
. 4
,
pp
. 999–10
06, 2012
.
Freq
uen
c
y
(G
Hz)
0
.
8
6
0.8
8
0.9
0
0.92
0.94
0.96
0.98
1
.
0
0
Read range
, r (m)
0
1
2
3
4
fr
e
e
ai
r
met
a
l
r
= 3.
1
m
r
= 3.
2
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
75
0
–
75
8
7
57
[8]
H.
G.
Cho,
N.
R.
Labadie,
a
nd S.K. Sharma, “De
s
ign of an embedded-feed
t
y
p
e
m
i
crostrip patch
antenna for UHF
radio frequ
enc
y
identif
ic
ation
ta
g on m
e
tall
ic ob
jec
t
s”,
IET Micr
owaves, An
tenn
as Propag.
, vol. 4, no. 9
,
p. 123
2,
2010.
[9]
N.M. Faudzi, M.T.
Ali, I. Ismail,
H. Jumaat, a
nd
N.H.M. Sukaimi, “Metal Mount
able UHF-RFID
Tag Antenn
a with
Meander Feed Line and
Double
T-Match
”
,
in
International S
y
mposium on Technology Managem
e
nt and Em
ergin
g
Technologies
, 2
014.
[10]
NXP Semiconductor, “Product D
a
ta Sheet
SL3IC
S
1002/1202 UCODE G2XM and G2XL”, 2012.
[11]
T. Hu and C. Liu, “Design and Anal
y
s
is of UHF Tag Antenna
Structure”,
Chin
a-Japan Jt. Micr
ow. Conf. Proc.
, pp.
1–4, 2011
.
[12]
B.M. Irav
a
ni, “Electromagnetic
I
n
terfer
e
nce Red
u
ction using
EB
G structures
in
P
ackages
,
Enc
l
o
s
ures
, Cavit
i
es
a
nd
Antennas”, Univ
ersity
of
Ma
r
y
land, College Park
, 2007
.
[13]
Y. Tikhov
, Y. K
i
m, and Y. Min, “Compact Low
Cost Antenna f
o
r Passive RFID Transponder
”
,
in
IEEE Antenna
s
and Propagation
Society International S
y
mposium
, 2009, pp. 101
5–1018.
[14]
H. Arai, “
A
ntenna M
eas
urem
ent
s
for Ra
dio Handsets and Mobile Terminals”, in
Measurement of Mobile An
tenn
a
Systems
, Second
., Artech
House,
2013, p
.
230
.
[15]
M
.
F
.
Otero
and
R.G. Roj
a
s
,
“
A
n
a
l
y
s
i
s
and
Tr
eat
m
e
nt of
Edge
Ef
fects
on
th
e Rad
i
ation
P
a
tt
ern of
a M
i
cros
tr
ip P
a
t
c
h
Antennat
”
,
in
An
tennas and
Propagation So
ciety
I
n
ternational Symposium
, 1995,
pp. 1050–1053
.
[16]
T.A. Rahm
an, S. Kam
a
l, A. Rah
i
m
,
S.L. Rosa, a
nd E.P.C. Gen,
“
D
evel
opm
ent of RFID EPC Ge
n2 Tag for Multi
Acces
s
Control
S
y
s
t
em
”,
In
tern
ational Journal of
Electrical
an
d Computer En
gineering (
I
JEC
E
)
, vol. 3, no. 6
,
pp.
724–731, 2013
.
BIOGRAP
HI
ES OF
AUTH
ORS
Najw
a M
o
hd F
a
ud
z
i
was born in Kel
a
ntan
,
Mala
ysia
. She
rec
e
ived
the
B.Sc degr
ee
in
Electrical Engin
eering
from Hochschule Osnabru
eck, German
y
in 2012. Curren
t
ly
she furthers
her stud
y
in M.
Sc in Elec
tri
cal
Engine
ering at
Universiti T
e
kn
ologi Mara (UiT
M), Shah Alam
,
Malay
s
ia since 2012. Her research inter
e
sts in
clude RFID sy
stem, radi
o wave propagation and
antenn
as. She is
a m
e
m
b
er of IEEE
and now a
tta
ched with An
tenna R
e
sear
ch
Group (ARG),
UiTM.
Dr. Mohd Tarmiz
i Ali
receive
d the B. Eng. D
e
gree in e
l
e
c
tri
c
al engin
eering f
r
om
Univers
iti
Teknologi Mara (UiTM), Selan
gor, Malay
s
ia
in
1996 and
the M. Sc. degr
ee in electrical
engineering fro
m University
of Leeds, United
Kingdom, in 2002. He received th
e Ph.D degree in
electri
cal
engin
e
ering from
Universiti T
e
knolog
i
Malay
s
ia (UTM
), Johor, Malay
s
ia in 2010. H
e
has published o
v
er 100 journal
papers and conf
er
ences proceeding on various
topics related to
antenn
as, m
i
cro
w
aves and
el
ec
trom
agneti
c r
a
d
i
ation
an
al
ysis.
He a
l
so has f
illed
5 p
a
ten
t
applications on communication
ante
nn
as. Thus far, his publicati
ons have been cited 237 times,
and the H-index
is 8 (Source: Google Scholar).
Hi
s professorial interests in
clu
d
e the ar
eas of
communication
antenn
a design, rad
i
o astr
onomy
anten
n
as,
satelli
te antenn
as,
and
electromagnetic ra
diation analy
s
is.
Ismar
ani Ismai
l
rece
ived the B
Eng. Degree in
Elec
tric
al and
Ele
c
troni
cs
Engi
neering from
John Moores Un
iversity
,
Liv
e
rpo
o
l, UK. is a Senior
lectur
er at the Faculty
of Electrical and Ph.
D in Electronics Manufacturing
Engineering fro
m Un
ivers
i
t
y
of
S
a
lford, UK.
He
r m
a
in res
earch
inter
e
st is in RFI
D
s
y
stem, electr
onics product an
d s
y
stem dev
e
lo
pment, el
ectronic and
electr
ical
manufacturing
p
r
ocesses. She has published
in
a
num
ber
of
natio
nal and intern
ational journals
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Meta
l Moun
tab
l
e La
dd
er Feed
Li
n
e
U
H
F-
RFI
D
Ta
g An
tenn
a
(
N
aj
w
a
M
o
hd
F
a
u
d
zi
)
75
8
Hadi Jumaat
was born in Johor, Malay
s
ia. He complete
d his Diploma stud
y
in
Mara Poly
-
T
ech
College, Kuan
tan, Malay
s
ia in 2009.
Later, he
r
e
ceived
the B.Sc degr
ee in Electronics
Engineering fro
m
Universiti
Teknologi Mar
a
(
U
iT
M), Shah A
l
am
, Mal
a
y
s
ia i
n
2012. H
e
is
current
l
y
furthe
r
his
s
t
ud
y
in M
.
S
c
Ele
c
tri
cal
En
gineer
ing at Ui
T
M
, S
h
ah Alam
, M
a
la
y
s
ia s
i
n
ce
2012. His resear
ch inter
e
sts include plasma ante
nnas, LTCC and
microwave tech
nologies. He is
a member of IEEE Malay
s
ia
an
d now attached
with Antenna R
e
search Group (
A
RG) in UiTM,
Mala
y
s
ia
.
Nur
H
i
day
a
h M
o
hd Su
kaimi
was born in Joh
o
r Bahru, Malays
ia. She completed her Diploma
stud
y
in Univers
iti T
e
knologi M
a
ra (UiTM), Pen
a
ng,
Malay
s
i
a
in
2009. Lat
e
r, sh
e received th
e
B.Sc degr
ee
in
Electrical Engin
eering
from UiTM
, Shah Alam in 2012. Curr
ently
she furth
e
rs
her stud
y
in
M.Sc Electrical
Engineer
ing in
U
i
TM, Shah Alam, since 2012
. Her research
inter
e
s
t
s
include
LTCC, m
i
crowave and ant
e
nna
s
.
She is a
member of IEEE Malay
s
ia and now
attached
with
Antenna
Research
Group (ARG), in UiTM, Malay
s
ia.
Evaluation Warning : The document was created with Spire.PDF for Python.