I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
7
5
7
~2
765
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
5
.
pp
2
7
5
7
-
2
765
2757
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Effec
tive Lo
a
d Ba
la
nce Sched
uling
Sche
m
es
for H
ete
ro
g
eneo
us
Distribu
ted
Sy
st
e
m
Z
e
ba
K
ha
n
1
,
M
a
hf
o
o
z
Ala
m
2
,
Ra
za
Abba
s
H
a
idri
3
1
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter S
c
ien
c
e
&
En
g
in
e
e
rin
g
,
In
sti
tu
te
o
f
T
e
c
h
n
o
lo
g
y
&
M
a
n
a
g
e
m
e
n
t,
A
li
g
a
rh
,
In
d
ia
2
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter S
c
ie
n
c
e
,
A
l
-
Ba
rk
a
a
t
Co
ll
e
g
e
o
f
G
ra
d
u
a
te S
tu
d
ies
,
A
li
g
a
rh
,
In
d
ia
3
S
c
h
o
o
l
o
f
Co
m
p
u
ter &
S
y
ste
m
s
S
c
ien
c
e
s,
Ja
w
a
h
a
rlal
Ne
h
ru
Un
iv
e
rsit
y
,
Ne
w
De
lh
i,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
10
,
2
0
1
7
R
ev
i
s
ed
J
u
n
3
,
2
0
1
7
A
cc
ep
ted
Sep
11
,
2
0
1
7
Im
p
o
rtan
c
e
o
f
d
istri
b
u
ted
sy
ste
m
s
f
o
r
d
istri
b
u
ti
n
g
th
e
w
o
rk
lo
a
d
o
n
th
e
p
ro
c
e
ss
o
rs
is
g
lo
b
a
ll
y
a
c
c
e
p
ted
.
It
is
a
n
a
g
re
e
d
fa
c
t
th
a
t
d
iv
id
e
s
a
n
d
c
o
n
q
u
e
rs
is
th
e
e
ff
e
c
ti
v
e
str
a
teg
y
f
o
r
lo
a
d
b
a
lan
c
in
g
p
ro
b
lem
s.
In
to
d
a
y
’s
ti
m
e
,
lo
a
d
b
a
lan
c
in
g
is
th
e
m
a
jo
r
issu
e
f
o
r
sc
h
e
d
u
li
n
g
a
lg
o
rit
h
m
su
c
h
a
s
in
P
a
ra
ll
e
l
a
n
d
Distrib
u
te
d
S
y
ste
m
s
in
c
lu
d
in
g
Grid
a
n
d
Clo
u
d
Co
m
p
u
ti
n
g
a
n
d
m
a
n
y
m
o
re
.
L
o
a
d
Ba
lan
c
in
g
is
th
e
p
h
e
n
o
m
e
n
a
o
f
sp
re
a
d
in
g
o
r
d
istri
b
u
ti
n
g
th
e
w
o
rk
lo
a
d
a
m
o
n
g
th
e
p
r
o
c
e
ss
o
rs
so
th
a
t
a
ll
p
ro
c
e
ss
o
rs
k
e
e
p
b
u
sy
f
o
r
a
ll
th
e
ti
m
e
,
in
o
rd
e
r
to
p
re
v
e
n
t
id
e
a
l
ti
m
e
o
f
p
ro
c
e
ss
o
rs.
In
th
is
w
o
rk
,
p
re
se
n
ts
a
lo
a
d
b
a
lan
c
in
g
a
lg
o
rit
h
m
f
o
r
h
e
tero
g
e
n
e
o
u
s
d
istri
b
u
ted
sy
ste
m
(He
DS)
w
it
h
a
i
m
o
f
m
in
i
m
izin
g
th
e
lo
a
d
im
b
a
lan
c
e
f
a
c
to
r
(L
IF
).
T
h
e
p
r
o
p
o
se
d
a
l
g
o
rit
h
m
is
u
sin
g
o
p
ti
m
iza
ti
o
n
tec
h
n
i
q
u
e
s
su
c
h
a
s
M
a
x
-
M
a
x
a
n
d
M
in
-
M
a
x
stra
teg
y
a
n
d
a
p
p
li
e
d
o
n
F
o
ld
e
d
Cr
o
ss
e
d
Cu
b
e
(F
CC)
n
e
tw
o
rk
.
M
a
k
e
sp
a
n
,
sp
e
e
d
u
p
a
n
d
a
v
e
ra
g
e
re
so
u
rc
e
u
ti
li
z
a
ti
o
n
a
re
a
l
so
e
v
a
lu
a
ted
f
o
r
p
e
rf
o
rm
a
n
c
e
m
a
t
rice
s.
T
h
e
e
x
p
e
ri
m
e
n
tal
re
su
lt
s
o
f
th
e
p
ro
p
o
se
d
a
lg
o
rit
h
m
s
h
a
v
e
sh
o
we
d
b
e
tt
e
r
in
c
o
m
p
a
riso
n
to
w
it
h
p
re
v
io
u
s w
o
rk
u
n
d
e
r
v
a
rio
u
s tes
t
c
o
n
d
it
i
o
n
s.
K
ey
w
o
r
d
s
:
Dis
tr
ib
u
ted
s
y
s
te
m
Hete
r
o
g
en
eo
u
s
s
y
s
te
m
L
I
F
L
o
ad
b
alan
cin
g
R
eso
u
r
ce
u
tili
za
tio
n
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Ma
h
f
o
o
z
A
la
m
,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
Scie
n
ce
,
Al
-
B
ar
k
aa
t
C
o
lleg
e
o
f
Gr
ad
u
a
te
Stu
d
ies
,
An
o
o
p
s
h
a
h
r
R
o
ad
,
A
li
g
ar
h
,
I
n
d
ia.
T
el:+9
1
-
9
6
3
4
4
2
3
9
8
2
.
E
m
ail:
m
a
h
f
o
o
za
la
m
.
a
m
u
@
g
m
ail.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Dis
tr
ib
u
ted
S
y
s
te
m
(
D
S)
is
a
f
o
r
m
i
n
w
h
ich
Har
d
w
ar
e
an
d
So
f
t
w
ar
e
co
m
p
o
n
en
t
s
s
i
tu
ated
at
co
m
p
u
ter
n
et
w
o
r
k
co
m
m
u
n
ic
atio
n
m
an
a
g
e
t
h
eir
ac
tio
n
s
o
n
l
y
b
y
p
as
s
i
n
g
m
e
s
s
a
g
e.
DS
is
f
ast
e
m
er
g
i
n
g
f
ield
,
it
k
ee
p
s
e
v
o
lv
i
n
g
a
n
d
c
h
an
g
i
n
g
to
m
ee
t
u
s
er
d
e
m
a
n
d
s
.
T
h
e
g
o
als
o
f
DS
ar
e
m
ak
in
g
r
e
s
o
u
r
ce
s
ac
ce
s
s
ib
le,
d
is
t
r
ib
u
tio
n
tr
an
s
p
ar
en
c
y
,
o
p
en
,
s
ca
lab
le,
co
m
m
u
n
icat
io
n
an
d
co
o
r
d
in
atio
n
etc.
A
d
is
tr
ib
u
ted
s
y
s
te
m
i
s
d
escr
ib
ed
as
co
llectio
n
o
f
e
ith
er
h
o
m
o
g
e
n
eo
u
s
s
y
s
t
e
m
o
r
h
eter
o
g
en
eo
u
s
s
y
s
te
m
[
1
-
2
]
.
Ho
m
o
g
e
n
eo
u
s
Dis
tr
ib
u
ted
S
y
s
te
m
(
Ho
DS)
is
th
at
d
is
tr
ib
u
ted
s
y
s
te
m
w
h
er
e
co
llectio
n
s
o
f
id
en
tical
p
r
o
ce
s
s
o
r
s
ar
e
lin
k
ed
to
a
h
ig
h
s
p
ee
d
n
e
t
w
o
r
k
f
o
r
co
m
p
l
etin
g
s
o
m
e
tas
k
s
.
I
d
en
tical
p
r
o
ce
s
s
o
r
s
i
n
t
h
e
s
e
n
s
e
th
at
all
p
r
o
ce
s
s
o
r
s
p
o
s
s
es
s
ed
s
a
m
e
co
m
p
u
tatio
n
a
l
s
p
ee
d
,
co
m
p
lex
i
t
y
,
ca
ch
e
s
ize,
eq
u
i
v
ale
n
t
f
r
eq
u
e
n
cies
a
n
d
f
u
n
ctio
n
s
etc.
T
h
e
b
en
ef
it
o
f
Ho
DS
is
th
at
t
h
e
co
m
m
u
n
icati
o
n
an
d
co
m
p
u
tatio
n
co
s
t
ar
e
co
n
s
ta
n
t
in
a
n
y
t
y
p
e
o
f
tas
k
s
c
h
ed
u
lin
g
al
g
o
r
ith
m
.
Hete
r
o
g
en
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
(
HeD
S)
is
th
a
t
DS
w
h
en
all
p
r
o
ce
s
s
o
r
s
w
o
r
k
d
i
f
f
e
r
en
t
co
m
p
u
tat
io
n
a
l
s
p
ee
d
,
co
m
p
lex
it
y
,
ca
c
h
e
s
ize,
f
r
eq
u
en
cie
s
an
d
f
u
n
ctio
n
etc.
,
ar
e
co
n
n
ec
ted
w
i
th
d
i
f
f
er
e
n
t
s
p
ee
d
lin
k
s
i
n
o
r
d
er
to
co
m
p
leti
n
g
t
h
o
s
e
tas
k
s
o
r
s
o
lv
in
g
p
r
o
b
le
m
s
w
h
ich
n
e
ed
s
d
if
f
er
e
n
t
n
o
n
id
e
n
tical
p
r
o
ce
s
s
o
r
s
.
So
,
f
o
r
i
m
p
le
m
en
t
in
g
HeD
S
i
s
to
v
er
y
d
i
f
f
icu
l
t
as
co
m
p
ar
ed
to
Ho
DS
[
3
-
4
]
.
Dis
tr
ib
u
ted
S
y
s
t
e
m
is
i
m
p
o
r
ta
n
t
to
d
is
tr
ib
u
ti
n
g
t
h
e
w
o
r
k
lo
ad
o
n
th
e
p
r
o
ce
s
s
o
r
s
[
5
]
.
T
h
e
d
i
s
tr
ib
u
ted
o
f
lo
ad
s
to
th
e
p
r
o
ce
s
s
i
n
g
ele
m
en
t
is
b
asicall
y
k
n
o
w
n
as
lo
ad
b
alan
cin
g
p
r
o
b
le
m
.
Ho
w
ev
er
,
L
o
ad
b
alan
cin
g
alg
o
r
it
h
m
i
s
p
la
y
s
a
i
m
p
o
r
tan
t
r
o
le
in
h
o
m
o
g
en
eo
u
s
an
d
h
eter
o
g
e
n
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
i
n
o
r
d
er
to
d
is
tr
ib
u
tio
n
o
f
th
e
task
s
w
it
h
b
etter
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
5
7
–
2
7
6
5
2758
p
er
f
o
r
m
a
n
ce
i
n
ter
m
s
o
f
m
i
n
i
m
izi
n
g
L
I
F,
ex
ec
u
tio
n
ti
m
e,
m
i
g
r
atio
n
ti
m
e,
m
ax
i
m
izin
g
s
p
ee
d
u
p
an
d
m
a
n
y
m
o
r
e.
T
o
d
ay
,
ta
s
k
s
s
ch
ed
u
li
n
g
is
t
h
e
m
aj
o
r
is
s
u
e
to
b
e
c
o
n
s
id
er
ed
f
o
r
th
e
r
esear
ch
er
s
an
d
v
ar
io
u
s
ta
s
k
s
s
ch
ed
u
lin
g
m
et
h
o
d
ar
e
n
ee
d
ed
in
h
eter
o
g
e
n
eo
u
s
d
is
tr
ib
u
te
d
s
y
s
te
m
.
T
h
is
ta
s
k
s
s
c
h
ed
u
l
i
n
g
ca
n
b
e
d
o
n
e
b
o
th
th
e
D
S
t
h
at
i
s
Ho
DS
an
d
He
DS.
I
t
ca
n
b
e
ca
teg
o
r
ized
i
n
t
o
d
ep
en
d
en
t
(
i.e
.
,
Dir
ec
ted
Ac
y
clic
Gr
ap
h
)
an
d
in
d
ep
en
d
en
t
tas
k
s
c
h
ed
u
l
in
g
.
I
n
in
d
ep
en
d
e
n
t
ta
s
k
s
s
c
h
ed
u
li
n
g
,
s
ch
ed
u
li
n
g
o
f
ta
s
k
s
ca
n
b
e
r
u
n
w
ith
o
u
t
a
n
y
d
ep
en
d
en
cies
o
f
all
o
th
er
tas
k
s
,
h
er
e
task
s
ca
n
b
e
p
r
o
ce
s
s
ed
w
h
eth
er
o
th
er
tas
k
s
f
i
n
is
h
ed
o
r
n
o
t
[
6
-
8
]
.
T
h
er
e
ar
e
v
ar
io
u
s
in
d
ep
en
d
en
t
task
s
ch
ed
u
lin
g
alg
o
r
it
h
m
s
s
u
ch
a
s
Min
-
Mi
n
[
9
]
,
Ma
x
-
Min
[
9
-
1
0
]
,
O
p
p
o
r
tu
n
i
s
tic
L
o
ad
B
alan
cin
g
[
1
0
-
1
1
]
,
Dy
n
a
m
ic
L
o
ad
B
alan
cin
g
Stra
te
g
y
(
D
L
B
S)
[
2
]
,
a
h
eu
r
is
tic
b
ased
lo
ad
b
alan
ce
d
s
ch
ed
u
lin
g
m
o
d
el
[
1
2
]
alg
o
r
it
h
m
etc.
I
n
t
h
is
p
ap
er
,
o
u
r
co
n
tr
ib
u
tio
n
s
ar
e
en
h
a
n
ce
m
en
t
o
f
th
e
p
r
ev
io
u
s
w
o
r
k
[
2
]
an
d
p
r
o
p
o
s
i
n
g
lo
ad
b
alan
cin
g
s
c
h
e
m
e
f
o
r
h
eter
o
g
e
n
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
i
s
u
s
i
n
g
o
p
ti
m
izatio
n
tech
n
iq
u
e
s
s
u
c
h
a
s
Ma
x
-
Ma
x
an
d
Mi
n
-
Ma
x
s
tr
ateg
y
o
n
t
h
e
F
C
C
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
.
I
n
s
ec
tio
n
2
,
it
d
escr
ib
es
t
h
e
p
r
o
b
lem
f
o
r
m
u
lat
io
n
a
n
d
p
r
ese
n
ts
th
e
p
r
o
p
o
s
ed
lo
ad
b
alan
cin
g
alg
o
r
it
h
m
n
a
m
ed
as
I
n
d
ep
en
d
en
t
T
ask
Sc
h
ed
u
l
in
g
w
it
h
L
o
ad
B
alan
ci
n
g
u
s
i
n
g
t
w
o
tec
h
n
iq
u
e
s
Ma
x
-
Ma
x
an
d
Min
-
Ma
x
f
o
r
h
eter
o
g
e
n
eo
u
s
d
is
tr
ib
u
ted
s
y
s
t
e
m
w
it
h
illu
s
tr
atio
n
.
I
n
s
ec
t
io
n
3
p
r
esen
ts
th
e
r
es
u
lts
a
n
d
an
al
y
s
i
s
f
o
r
th
i
s
w
o
r
k
.
Fi
n
all
y
p
r
esen
ts
t
h
e
co
n
cl
u
d
ed
p
ap
er
w
it
h
f
u
t
u
r
e
w
o
r
k
i
n
s
ec
t
io
n
4
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
T
h
e
p
r
o
p
o
s
ed
w
o
r
k
co
n
s
id
er
s
lo
ad
b
alan
c
in
g
a
b
atch
o
f
in
d
ep
en
d
en
t
tas
k
s
w
h
er
e
ea
c
h
ta
s
k
h
as
d
is
s
i
m
ilar
ex
p
ec
ted
ti
m
e
to
co
m
p
u
te
v
al
u
e
i
n
o
r
d
er
to
m
i
n
i
m
ize
t
h
e
L
I
F
o
n
t
h
e
F
C
C
n
et
w
o
r
k
.
T
h
e
F
C
C
i
s
a
b
est
m
u
lt
ip
r
o
ce
s
s
o
r
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
(
MI
N)
a
s
co
m
p
ar
ed
w
it
h
o
th
er
MI
Ns
in
ter
m
s
o
f
d
ia
m
eter
[
1
3
]
.
T
h
e
b
alan
cin
g
o
f
lo
ad
is
u
s
ed
to
lo
ad
b
alan
ce
r
s
ch
ed
u
ler
f
o
r
th
e
p
r
o
p
o
s
ed
w
o
r
k
a
s
s
h
o
wn
in
Fi
g
u
r
e1
.
L
o
ad
B
alan
ce
r
p
lace
s
a
v
ita
l
r
o
le
in
f
u
l
f
illi
n
g
th
e
r
eq
u
est
o
f
t
h
e
clien
t
s
th
r
o
u
g
h
s
er
v
er
s
(
i.e
.
,
FC
C
I
n
ter
co
n
n
ec
tio
n
Net
w
o
r
k
)
an
d
f
o
r
th
is
w
o
r
k
lo
ad
b
alan
ce
r
r
o
u
tes
r
eq
u
e
s
ts
to
th
o
s
e
s
er
v
er
s
,
w
h
ic
h
h
as
t
h
e
ca
p
ab
ilit
y
o
f
d
o
i
n
g
its
j
o
b
in
an
e
f
f
ec
ti
v
e
w
a
y
th
a
t
is
m
ax
i
m
izatio
n
o
f
s
p
ee
d
,
m
ax
i
m
u
m
u
til
izatio
n
o
f
ca
p
ac
it
y
an
d
ca
n
f
u
l
f
i
ll
t
h
e
clien
t
’
s
r
eq
u
est
s
.
Fo
r
th
e
p
r
o
p
o
s
ed
lo
ad
b
alan
cin
g
al
g
o
r
ith
m
ar
e
u
s
i
n
g
F
C
C
n
e
t
w
o
r
k
as
s
e
r
v
er
w
h
ic
h
h
a
v
e
n
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
.
I
n
t
h
is
w
o
r
k
lo
ad
b
alan
ce
r
c
h
ec
k
s
,
wh
ich
p
r
o
ce
s
s
o
r
s
ar
e
o
v
er
lo
ad
e
d
an
d
u
n
d
er
lo
ad
ed
.
Af
ter
d
eter
m
i
n
i
n
g
o
v
er
lo
ad
ed
an
d
u
n
d
er
lo
ad
ed
p
r
o
ce
s
s
o
r
s
lo
ad
b
alan
ce
r
s
en
d
s
tas
k
s
f
r
o
m
o
v
er
lo
ad
ed
to
u
n
d
er
lo
ad
ed
p
r
o
ce
s
s
o
r
in
o
r
d
e
r
to
m
o
d
er
atin
g
t
h
e
p
r
o
ce
s
s
o
r
s
.
T
h
u
s
,
all
th
e
p
r
o
ce
s
s
o
r
s
in
F
C
C
i
n
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
ar
e
ap
p
r
o
x
im
ate
l
y
m
o
d
er
ates
b
y
m
i
g
r
atin
g
th
e
lo
a
d
f
r
o
m
o
v
er
lo
ad
ed
to
u
n
d
er
lo
ad
ed
p
r
o
ce
s
s
o
r
if
th
e
co
n
n
ec
tio
n
ex
is
t
b
et
w
ee
n
th
e
p
r
o
ce
s
s
o
r
s
.
T
h
e
d
etail
o
f
th
e
s
ch
ed
u
ler
is
d
is
c
u
s
s
ed
in
t
h
e
n
e
x
t
s
ec
tio
n
.
T
h
e
lo
ad
b
alan
cin
g
al
g
o
r
ith
m
s
i
s
p
r
o
p
o
s
ed
to
s
ch
ed
u
les
a
b
atch
o
f
in
d
ep
en
d
en
t
tas
k
s
f
o
r
HeD
S
w
h
er
ea
s
ac
h
ie
v
i
n
g
m
i
n
i
m
u
m
L
I
F,
m
a
k
e
s
p
an
,
m
a
x
i
m
u
m
s
p
ee
d
u
p
a
n
d
r
eso
u
r
ce
u
tili
za
t
io
n
.
Fig
u
r
e
1
.
Sch
ed
u
ler
m
o
d
el
w
it
h
L
o
ad
B
alan
ce
r
an
d
F
C
C
3
n
e
t
w
o
r
k
L
et
u
s
co
n
s
id
er
th
a
t
t
h
e
FC
C
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
u
n
d
e
r
ass
u
m
p
tio
n
s
h
as
N
p
r
o
ce
s
s
o
r
s
.
T
h
e
s
et
o
f
p
r
o
ce
s
s
o
r
s
ar
e
=
{
0
,
1
,
2
,
…
…
.
.
,
−
1
}
s
u
ch
t
h
a
t
{
=
2
∀
∈
&
≥
4
}
w
h
er
e
Z
is
a
n
at
u
r
al
n
u
m
b
er
.
T
h
e
b
atch
o
f
in
d
e
p
en
d
en
t
tas
k
s
ar
e
=
{
1
,
2
,
3
,
…
…
…
.
.
,
}
r
an
d
o
m
l
y
allo
ca
ted
o
n
th
e
p
r
o
ce
s
s
o
r
s
{
:
0
≤
≤
−
1
}
an
d
ea
ch
tas
k
h
a
s
d
is
s
i
m
ilar
ex
p
ec
ted
ti
m
e
to
co
m
p
u
te
{
:
=
1
,
2
,
…
…
.
,
&
=
0
,
1
,
…
…
.
,
−
1
}
.
I
n
th
is
p
ar
t
it
s
h
o
w
s
th
e
v
ar
io
u
s
co
m
p
o
n
en
ts
in
ter
co
n
n
ec
ted
to
th
e
p
r
o
p
o
s
ed
w
o
r
k
li
k
e
n
o
tatio
n
u
s
ed
w
h
ic
h
ar
e
as
f
o
llo
w
s
:
N
is
th
e
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
s
in
th
e
FC
C
n
et
w
o
r
k
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N
: 2
0
8
8
-
8708
E
ffective
Lo
a
d
B
a
la
n
ce
S
ch
e
d
u
lin
g
S
c
h
eme
s
fo
r
Hete
r
o
g
en
eo
u
s
Dis
tr
ib
u
ted
S
ystem
(
Zeb
a
K
h
a
n
)
2759
an
d
is
s
et
o
f
tas
k
s
w
h
er
e
a
s
P
m
is
u
s
ed
f
o
r
m
th
p
r
o
ce
s
s
o
r
.
E
T
C
ij
a
n
d
L
E
P
m
ar
e
th
e
E
x
p
ec
ted
T
im
e
to
C
o
m
p
u
te
o
f
i
th
ta
s
k
o
n
j
th
p
r
o
ce
s
s
o
r
an
d
L
o
ad
o
n
E
ac
h
m
t
h
p
r
o
ce
s
s
o
r
r
esp
ec
tiv
el
y
.
OL
,
UL
,
MO
D
,
MO
L
a
n
d
MU
L
ar
e
o
v
er
lo
ad
ed
,
u
n
d
er
l
o
ad
ed
,
m
o
d
er
ate,
m
a
x
i
m
u
m
o
v
er
lo
ad
ed
an
d
m
a
x
i
m
u
m
u
n
d
er
lo
ad
ed
p
r
o
ce
s
s
o
r
r
esp
ec
tiv
el
y
w
h
er
ea
s
CC
,
IL
,
TL
an
d
L
I
F
c
h
ec
k
co
n
n
ec
ti
v
it
y
,
id
ea
l,
to
tal
lo
ad
an
d
lo
ad
i
m
b
ala
n
ce
f
ac
to
r
r
esp
ec
tiv
el
y
.
SMT
,
E
MT
an
d
MT
,
ar
e
u
s
ed
f
o
r
s
tar
t
m
i
g
r
atio
n
,
en
d
m
i
g
r
atio
n
a
n
d
m
i
g
r
atio
n
ti
m
e.
MS
an
d
R
U
ar
e
m
a
k
esp
a
n
an
d
a
v
er
ag
e
r
eso
u
r
ce
u
til
izatio
n
r
esp
ec
ti
v
el
y
.
T
h
e
b
atch
o
f
i
n
d
ep
en
d
en
t
tas
k
i
s
r
an
d
o
m
l
y
allo
ca
ted
o
n
t
h
e
p
r
o
ce
s
s
o
r
s
.
A
f
ter
allo
ca
tio
n
o
f
tas
k
,
t
h
e
s
c
h
ed
u
ler
co
m
p
u
te
s
t
h
e
lo
ad
o
n
ea
c
h
P
m
b
y
s
u
m
m
atio
n
o
f
all
ex
p
ec
ted
ti
m
e
to
co
m
p
u
te
o
f
i
th
tas
k
s
o
n
j
th
p
r
o
ce
s
s
o
r
.
T
h
e
lo
ad
o
n
ea
ch
P
m
is
ca
lcu
lated
as
=
∑
,
=
1
&
(
→
)
(
1
)
I
d
ea
l lo
ad
s
h
o
w
s
t
h
e
av
er
a
g
e
l
o
ad
s
h
o
u
ld
o
n
ea
ch
p
r
o
ce
s
s
o
r
as p
o
s
s
ib
le
w
h
ic
h
is
ca
lc
u
lated
b
y
eq
u
at
io
n
(
2
)
=
=
∑
−
1
=
0
(
2
)
T
h
e
o
v
er
lo
ad
ed
,
u
n
d
er
lo
ad
e
d
an
d
m
o
d
er
ate
p
r
o
ce
s
s
o
r
s
ar
e
co
m
p
ar
ed
w
it
h
id
ea
l
lo
ad
.
T
h
e
o
v
er
lo
ad
ed
u
n
d
er
lo
ad
ed
an
d
m
o
d
er
ate
p
r
o
ce
s
s
o
r
s
ca
n
b
e
ca
lcu
lated
as
{
(
>
)
.
,
(
)
(
<
)
.
,
(
)
(
=
)
.
,
(
)
(
3
)
T
h
e
lo
ad
d
is
tr
ib
u
tio
n
o
f
tas
k
s
is
f
ir
s
tl
y
f
r
o
m
m
a
x
i
m
u
m
OL
(
MO
L
)
to
m
a
x
i
m
u
m
UL
(
M
UL
)
p
r
o
ce
s
s
o
r
.
T
h
e
MO
L
an
d
MU
L
p
r
o
ce
s
s
o
r
is
co
m
p
u
ted
as
{
>
ma
x
0
≤
≤
{
(
)
}
<
ma
x
0
≤
≤
{
(
)
}
(
4
)
T
h
e
FC
C
i
n
ter
co
n
n
ec
tio
n
n
e
t
w
o
r
k
is
a
c
u
b
e
s
h
ap
e
n
et
w
o
r
k
.
T
h
e
d
eg
r
ee
o
f
ea
c
h
p
r
o
ce
s
s
o
r
is
f
o
u
r
.
Fo
r
ch
ec
k
in
g
co
n
n
ec
tio
n
a
m
o
n
g
t
h
e
p
r
o
ce
s
s
o
r
s
ar
e
u
s
ed
to
ad
j
ac
en
cy
m
a
tr
ix
(
A
d
j
)
.
Sin
ce
,
its
n
et
w
o
r
k
cu
b
e
s
h
ap
e
s
o
th
e
n
u
m
b
er
o
f
r
o
w
s
(
R
)
an
d
co
lu
m
n
s
(
C
)
w
ill
b
e
eq
u
al.
T
o
ch
ec
k
co
n
n
ec
t
iv
i
t
y
b
et
w
ee
n
a
n
y
t
w
o
p
r
o
ce
s
s
o
r
s
i
s
d
ef
in
ed
as
[
]
[
]
=
{
1
,
0
,
(
5
)
T
h
e
L
I
F is
i
m
p
o
r
ta
n
t p
ar
a
m
ete
r
f
o
r
b
alan
cin
g
o
f
lo
ad
.
T
h
e
L
I
F is
ca
lcu
lated
a
s
=
−
(
6
)
T
h
e
m
ig
r
atio
n
ti
m
e
i
s
t
h
e
ti
m
e
to
m
o
v
e
o
f
t
h
e
tas
k
s
f
r
o
m
o
n
e
p
r
o
ce
s
s
o
r
to
a
n
o
th
er
p
r
o
ce
s
s
o
r
.
Mig
r
atio
n
ti
m
e
i
s
al
w
a
y
s
less
f
o
r
g
i
v
e
b
etter
p
er
f
o
r
m
a
n
ce
o
f
th
e
s
y
s
te
m
.
T
h
e
m
ig
r
atio
n
ti
m
e
ca
n
b
e
est
i
m
a
ted
as
=
−
(
7
)
Ma
k
esp
a
n
is
th
e
to
tal
co
m
p
le
tio
n
ti
m
e
o
f
lates
t
tas
k
a
m
o
n
g
all
t
h
e
p
r
o
ce
s
s
o
r
s
i
n
t
h
e
s
y
s
te
m
.
T
h
e
m
ak
e
s
p
an
ca
n
b
e
ca
lcu
lated
as
=
ma
x
0
≤
≤
−
1
(
8
)
Sp
ee
d
u
p
is
d
e
f
in
ed
a
s
t
h
e
r
ati
o
o
f
t
h
e
ti
m
e
ta
k
e
n
b
y
j
o
b
in
s
er
ial
m
a
n
n
er
to
t
h
e
ti
m
e
ta
k
e
n
b
y
j
o
b
in
p
ar
allel.
T
h
e
s
p
ee
d
u
p
o
f
th
e
d
i
s
tr
ib
u
t
ed
s
y
s
te
m
is
ca
lc
u
lated
as
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
5
7
–
2
7
6
5
2760
=
(
9
)
T
h
e
allo
ca
tio
n
o
f
r
eso
u
r
ce
s
f
o
r
co
m
p
letio
n
/ta
s
k
s
s
h
o
u
ld
b
e
ef
f
ec
ti
v
e
an
d
o
p
ti
m
ized
.
T
h
e
av
er
ag
e
r
eso
u
r
ce
u
tili
za
tio
n
o
f
th
e
h
e
t
er
o
g
en
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
f
o
r
th
e
b
atch
o
f
i
n
d
ep
en
d
en
t
ta
s
k
s
f
o
r
a
g
i
v
en
allo
ca
tio
n
ca
n
b
e
co
m
p
u
ted
as
=
×
(
1
0
)
I
n
t
h
is
s
ec
tio
n
,
w
e
p
r
esen
t
th
e
a
lo
ad
b
alan
ci
n
g
s
c
h
e
m
es
I
T
SL
B
(
Ma
x
-
Ma
x
)
a
n
d
I
T
SL
B
(
Min
-
Ma
x
)
w
it
h
o
b
j
ec
tiv
e
o
f
m
in
i
m
izin
g
th
e
L
I
F
an
d
co
m
p
u
tin
g
th
e
m
ak
e
s
p
an
,
s
p
ee
d
u
p
an
d
r
eso
u
r
ce
u
tili
za
t
io
n
f
o
r
p
er
f
o
r
m
a
n
ce
ev
al
u
atio
n
.
T
h
e
o
b
j
ec
tiv
e
o
f
th
is
alg
o
r
it
h
m
s
is
to
im
p
r
o
v
e
o
u
r
p
r
ev
io
u
s
w
o
r
k
i.e
.
DL
B
S
alg
o
r
ith
m
[
2
]
.
T
h
e
DL
B
S
alg
o
r
ith
m
w
o
r
k
ed
f
o
r
h
o
m
o
g
e
n
eo
u
s
s
y
s
te
m
it
m
ea
n
s
all
t
ask
s
h
a
v
e
id
en
tica
l
ex
ec
u
t
io
n
ti
m
e.
So
,
it
is
ea
s
y
to
r
ed
u
ce
th
e
lo
ad
im
b
ala
n
c
e
f
ac
to
r
.
B
u
t,
th
e
p
r
o
p
o
s
ed
w
o
r
k
is
d
esig
n
ed
f
o
r
h
eter
o
g
e
n
eo
u
s
d
i
s
tr
ib
u
ted
s
y
s
te
m
o
n
th
e
s
a
m
e
m
u
l
tip
r
o
ce
s
s
o
r
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
.
Ou
r
ap
p
r
o
ac
h
is
to
r
ed
u
ce
th
e
L
I
F
d
esp
ite
t
h
at
ea
ch
ta
s
k
h
a
s
d
is
s
i
m
ilar
e
x
ec
u
ti
o
n
ti
m
e.
T
o
p
er
f
o
r
m
f
o
r
t
h
is
w
o
r
k
th
e
L
I
F
ca
n
b
e
r
e
w
r
itte
n
o
f
eq
u
at
io
n
(
1
)
as
=
−
1
Sin
ce
,
‘
1
’
i
s
a
co
n
s
tan
t
f
ac
to
r
.
So
,
L
I
F
is
d
ep
en
d
e
n
t
o
n
M
OL
an
d
I
L
.
B
u
t
I
L
is
a
ls
o
co
n
s
tan
t
v
ar
iab
le
th
r
o
u
g
h
o
u
t a
ll iter
atio
n
.
T
h
er
ef
o
r
e,
f
o
r
m
in
i
m
u
m
L
I
F
m
u
s
t d
ep
en
d
en
t o
n
MO
L
.
=
Du
e
to
th
i
s
r
ea
s
o
n
,
f
ir
s
tl
y
,
lo
ad
tr
an
s
f
er
s
h
o
u
ld
b
e
f
r
o
m
m
ax
i
m
u
m
o
v
er
lo
ad
ed
p
r
o
ce
s
s
o
r
b
ec
au
s
e
l
ess
er
MO
L
w
ill
g
i
v
e
less
er
L
I
F.
T
h
er
ef
o
r
e,
it is
n
e
w
o
p
ti
m
iz
atio
n
p
r
o
b
lem
i
s
MO
L
.
∝
T
h
u
s
,
th
e
p
r
o
p
o
s
ed
I
T
SL
B
alg
o
r
ith
m
i
s
a
n
e
w
s
tr
ateg
y
f
o
r
m
in
i
m
izatio
n
o
f
L
I
F.
2
.
1
.
I
T
SL
B
(
M
a
x
-
M
a
x
)
W
o
r
k
in
g
o
f
I
T
SL
B
(
Ma
x
-
Ma
x
)
al
g
o
r
ith
m
in
i
tiates
w
it
h
g
e
n
er
atio
n
o
f
r
an
d
o
m
tas
k
s
,
w
h
ic
h
allo
ca
te
s
th
e
p
r
o
ce
s
s
o
r
s
i
n
r
a
n
d
o
m
l
y
f
a
s
h
io
n
w
it
h
d
i
s
s
i
m
ilar
E
T
C
o
f
task
s
.
T
h
e
s
c
h
ed
u
ler
s
o
r
ts
t
h
e
E
T
C
o
f
all
ta
s
k
s
i
n
ascen
d
i
n
g
o
r
d
er
o
n
ea
ch
p
r
o
ce
s
s
o
r
an
d
co
m
p
u
tes
L
E
P
.
C
o
m
p
u
te
s
T
L
an
d
I
L
o
f
t
h
e
s
y
s
te
m
an
d
th
e
n
in
d
en
ti
f
ie
s
t
h
e
OL
,
U
L
a
n
d
MO
D
b
y
co
m
p
ar
is
o
n
w
it
h
t
h
e
I
L
.
Af
ter
ca
lc
u
lati
n
g
all
t
h
ese
O
L
a
n
d
U
L
,
s
ch
ed
u
l
er
d
eter
m
i
n
es
MO
L
a
n
d
MU
L
th
e
n
ch
ec
k
s
f
o
r
co
n
n
ec
t
iv
i
t
y
b
et
w
ee
n
t
h
e
MO
L
an
d
MU
L
,
if
th
e
co
n
n
ec
tio
n
f
o
u
n
d
b
et
w
ee
n
th
e
MO
L
a
n
d
MU
L
,
m
i
g
r
atio
n
ti
m
e
s
tar
ts
.
T
h
e
lo
ad
is
tr
an
s
f
er
r
ed
th
r
o
u
g
h
lo
ad
b
alan
ce
r
(
i.e
.
,
alr
ea
d
y
s
h
o
w
n
in
Fig
u
r
e
1
)
f
r
o
m
th
e
MO
L
w
h
ic
h
w
i
ll
h
a
v
e
m
ax
i
m
u
m
E
T
C
v
alu
e
o
f
th
e
tas
k
an
d
g
o
es
to
MU
L
th
e
n
m
ap
p
ed
b
etw
ee
n
th
e
s
e
p
r
o
ce
s
s
o
r
s
.
No
w
,
n
e
x
t
lo
ad
tr
an
s
f
er
tak
e
p
lace
b
etw
ee
n
MO
L
an
d
MU
L
,
i
f
t
h
e
MU
L
h
a
s
s
u
f
f
icie
n
t
ca
p
ac
it
y
f
o
r
r
ec
eiv
i
n
g
th
e
n
e
x
t
h
i
g
h
est
E
T
C
v
al
u
e,
o
th
er
w
i
s
e
it
w
il
l
tr
an
s
f
er
to
an
o
t
h
er
MU
L
a
n
d
co
n
tin
u
es
t
ill
t
h
e
ca
p
ac
it
y
e
x
h
au
s
ted
.
A
f
ter
ac
co
m
p
l
is
h
m
e
n
t
o
f
f
ir
s
t
M
OL
w
e
tak
e
s
ec
o
n
d
MO
L
an
d
t
h
i
s
p
r
o
ce
s
s
co
n
ti
n
u
e
s
li
k
e
f
o
r
m
er
p
r
o
ce
s
s
an
d
s
o
o
n
.
W
h
e
n
a
ll
th
e
lo
ad
tr
an
s
f
er
f
i
n
is
h
ed
th
e
n
m
i
g
r
atio
n
ti
m
e
s
to
p
s
.
I
f
th
e
s
ch
ed
u
ler
d
o
es
n
o
t
f
o
u
n
d
co
n
n
ec
tio
n
b
et
w
ee
n
MO
L
an
d
MU
L
th
e
n
w
il
l
g
o
f
o
r
n
e
x
t
MU
L
a
n
d
th
e
n
ch
ec
k
s
co
n
n
ec
ti
v
it
y
b
et
w
ee
n
th
e
s
e
t
w
o
p
r
o
ce
s
s
o
r
s
,
an
d
co
n
n
ec
ti
v
it
y
ex
is
ti
n
g
,
m
i
g
r
atio
n
w
ill
ta
k
es
p
lace
f
r
o
m
MO
L
to
MU
L
,
an
d
t
h
is
s
te
p
w
ill
r
ep
ea
t
ag
ai
n
an
d
ag
ai
n
u
n
t
il
an
d
u
n
le
s
s
all
th
e
a
v
ailab
le
p
r
o
ce
s
s
o
r
s
b
ec
o
m
e
ap
p
r
o
x
i
m
a
tel
y
m
o
d
er
ated
an
d
m
ig
r
atio
n
ti
m
e
e
n
d
s
.
T
h
e
p
s
e
u
d
o
co
d
e
o
f
I
T
SL
B
alg
o
r
ith
m
i
s
g
i
v
e
n
b
y
f
o
llo
w
i
n
g
s
tep
s
:
1.
Gen
er
ate
r
an
d
o
m
E
T
C
m
atr
ic
es
2.
So
r
t E
T
C
in
ascen
d
in
g
o
r
d
er
3.
C
o
m
p
u
te
th
e
L
E
P
an
d
I
d
ea
L
o
ad
u
s
in
g
eq
u
at
io
n
s
(
1
&
2
)
4.
C
o
m
p
u
te
OL
,
U
L
a
n
d
MO
D
u
s
in
g
eq
u
atio
n
(
3
)
5.
E
v
alu
a
te
MO
L
an
d
MU
L
f
r
o
m
a
s
et
O
L
&
U
L
r
esp
ec
tiv
el
y
u
s
i
n
g
eq
u
atio
n
(
4
)
6.
C
h
ec
k
co
n
n
ec
tio
n
u
s
i
n
g
eq
u
at
io
n
(
5
)
7.
f
o
r
P
:=0
t
o
n
do
if
C
C
==
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N
: 2
0
8
8
-
8708
E
ffective
Lo
a
d
B
a
la
n
ce
S
ch
e
d
u
lin
g
S
c
h
eme
s
fo
r
Hete
r
o
g
en
eo
u
s
Dis
tr
ib
u
ted
S
ystem
(
Zeb
a
K
h
a
n
)
2761
Star
t
m
i
g
r
atio
n
ti
m
e
Mig
r
atio
n
s
tar
t u
s
in
g
Ma
x
-
Ma
x
s
tr
ate
g
y
Mig
r
atio
n
s
tar
t u
s
i
n
g
Mi
n
-
Ma
x
s
tr
ate
g
y
//
f
o
r
s
ec
tio
n
2
.
2
Ma
p
p
in
g
(
)
// Up
d
ate
L
E
P
E
n
d
m
i
g
r
atio
n
ti
m
e
else
Dete
r
m
i
n
e
n
e
x
t M
UL
R
ep
ea
t step
8
end
if
end
f
o
r
8.
R
ep
ea
t step
s
6
-
8
u
n
it M
O
L
&
MU
L
i
s
n
o
t e
m
p
t
y
9.
C
o
m
p
u
te
L
I
F,
MT
,
Ma
k
esp
an
,
Sp
ee
d
u
p
an
d
R
U
u
s
in
g
eq
u
at
i
o
n
s
(
6
,
7
,
8
,
9
&
1
0
)
As
th
i
s
T
ab
le
1
is
g
en
er
ated
b
y
I
T
SL
B
alg
o
r
it
h
m
f
o
r
9
2
n
u
m
b
er
s
o
f
task
s
o
n
FC
C
3
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
.
T
h
e
F
C
C
3
i
n
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
h
a
s
8
p
r
o
ce
s
s
o
r
s
a
n
d
3
2
co
n
n
ec
tio
n
s
ex
is
t
a
m
o
n
g
th
e
s
e
p
r
o
ce
s
s
o
r
s
.
B
y
D
L
B
S
al
g
o
r
i
t
h
m
f
o
r
t
h
is
ill
u
s
tr
atio
n
L
I
F
is
4
5
.
4
5
%
.
I
T
SL
B
(
Ma
x
-
Ma
x
)
al
g
o
r
ith
m
is
g
en
er
ated
s
a
m
e
n
u
m
b
er
o
f
r
an
d
o
m
ta
s
k
s
a
n
d
allo
ca
ted
s
a
m
e
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
s
b
u
t
ea
ch
tas
k
s
h
a
v
i
n
g
d
is
s
i
m
ilar
E
T
C
v
al
u
e
an
d
t
h
es
e
E
T
C
v
alu
e
ar
e
also
g
en
er
ate
d
r
an
d
o
m
l
y
b
y
th
e
s
c
h
ed
u
ler
.
Fo
r
b
etter
v
ie
w
th
e
illu
s
tr
atio
n
o
f
I
T
SL
B
(
Ma
x
-
M
ax
)
alg
o
r
ith
m
a
s
s
h
o
w
n
i
n
T
ab
le
1
.
T
ab
le
1
.
I
n
itial R
an
d
o
m
Ge
n
er
atio
n
T
ask
s
Ma
tr
i
x
b
y
I
T
SL
B
P
m
T
ET
C
V
a
l
u
e
s
P0
5
0
.
1
2
5
5
6
.
3
5
8
1
9
.
3
3
0
8
0
.
8
7
4
5
8
.
5
0
0
P1
10
4
7
.
9
8
7
3
5
.
0
2
9
8
9
.
5
9
6
8
2
.
2
8
4
7
4
.
6
6
0
1
7
.
4
1
0
8
5
.
8
9
4
7
1
.
050
5
1
.
3
5
3
3
0
.
3
9
9
P2
20
1.
49
9
.
1
4
3
6
.
44
1
4
.
73
1
6
.
58
9
8
.
85
4
4
.
56
1
1
.
90
0
.
4
66
0
.
8
91
3
7
.
78
5
3
.
16
5
7
.
11
6
0
.
17
6
0
.
71
1
6
.
62
6
6
.
30
4
5
.
07
3
5
.
21
5
.
7
03
P3
3
6
0
.
7
6
8
7
8
.
3
3
1
8
0
.
2
6
0
P4
17
5
1
.
9
8
8
3
0
.
1
95
8
7
.
5
97
7
2
.
6
67
9
5
.
5
90
9
2
.
5
71
5
3
.
9
35
1
4
.
2
33
4
6
.
2
08
2
3
.
5
32
8
6
.
2
23
20
.9
60
7
7
.
9
65
8
4
.
3
65
9
9
.
6
79
9
9
.
9
69
6
1
.
1
49
P5
11
3
9
.
2
4
3
2
6
.
6
2
1
2
9
.
7
2
8
8
4
.
0
1
4
2
.
3
7
4
3
7
.
5
8
6
9
.
2
6
2
6
7
.
7
2
0
5
.
6
2
1
0
.
8
7
8
9
1
.
8
7
9
P6
14
2
7
.
5
8
8
2
7
.
2
8
5
8
.
7
9
6
9
.
1
1
8
3
.
7
6
7
2
.
6
4
4
8
.
4
9
2
0
.
5
3
7
4
.
3
7
4
6
.
8
4
4
5
.
7
9
9
4
.
9
1
7
4
.
4
4
1
0
.
8
2
P7
12
5
9
.
9
0
4
3
8
.
5
2
3
7
3
.
5
0
0
6
0
.
8
9
6
5
7
.
2
4
0
36
.
1
3
3
1
5
.
1
5
5
2
2
.
5
1
0
4
2
.
5
1
5
8
0
.
2
8
8
5
1
.
7
1
9
8
.
9
9
8
Fo
r
th
e
an
al
y
s
is
o
f
th
e
p
r
o
p
o
s
ed
I
T
SL
B
(
Ma
x
-
Ma
x
)
a
lg
o
r
ith
m
,
a
f
ter
r
an
d
o
m
g
en
er
atio
n
o
f
E
T
C
v
alu
e
s
f
o
r
ta
s
k
s
o
n
t
h
e
p
r
o
ce
s
s
o
r
s
,
s
c
h
ed
u
ler
s
s
o
r
ts
t
h
e
all
E
T
C
v
alu
e
s
f
o
r
ea
c
h
p
r
o
ce
s
s
o
r
s
in
an
asce
n
d
in
g
o
r
d
er
th
en
s
ch
ed
u
ler
ca
lcu
late
s
th
e
L
E
P
f
o
r
ea
ch
p
r
o
ce
s
s
o
r
w
h
ich
ar
e
2
1
5
.
1
8
7
,
5
8
5
.
6
6
2
,
6
7
2
.
9
7
3
,
2
1
9
.
3
5
9
,
1
0
9
8
.
8
2
6
,
3
9
4
.
9
2
6
,
7
5
5
.
4
2
2
an
d
6
3
7
.
3
7
2
r
esp
ec
tiv
ely
.
T
h
e
to
tal
lo
ad
an
d
id
ea
l
lo
ad
c
alcu
lated
b
y
as
p
er
eq
u
atio
n
(
2
)
w
h
ic
h
i
s
4
5
7
9
.
7
2
7
an
d
5
7
2
.
4
6
5
.
Sch
ed
u
ler
a
ls
o
id
en
ti
f
ies
th
a
t
p
r
o
ce
s
s
o
r
P
1
,
P
2
,
P
4
,
P
6
an
d
P
7
ar
e
o
v
er
lo
ad
ed
b
y
1
3
.
1
9
7
,
1
0
0
.
5
0
8
,
5
2
6
.
3
6
1
,
1
8
2
.
9
5
7
an
d
6
4
.
9
0
7
r
esp
ec
tiv
el
y
an
d
p
r
o
ce
s
s
o
r
s
P
0
,
P3
an
d
P5
ar
e
u
n
d
er
lo
ad
ed
b
y
3
5
7
.
2
7
8
,
3
5
3
.
1
0
6
an
d
1
7
7
.
5
3
9
r
esp
ec
ti
v
el
y
.
T
h
e
n
s
c
h
ed
u
ler
ca
lc
u
lat
es
MO
L
an
d
MU
L
p
r
o
ce
s
s
o
r
s
w
h
ic
h
ar
e
P
4
an
d
P
0
.
A
f
ter
ch
ec
k
i
n
g
f
o
r
co
n
n
e
ctiv
it
y
b
et
w
ee
n
P
4
a
n
d
P
0
p
r
o
ce
s
s
o
r
s
s
c
h
ed
u
ler
f
o
u
n
d
th
at
th
er
e
i
s
n
o
co
n
n
e
ctio
n
b
et
w
ee
n
th
e
P
4
an
d
P
0
,
th
en
f
i
n
d
n
e
x
t
M
U
L
i.e
.
,
is
P
3
.
I
n
P
4
an
d
P
3
p
r
o
ce
s
s
o
r
s
ex
is
ts
co
n
n
ec
tio
n
an
d
t
h
en
lo
ad
tr
an
s
f
e
r
b
e
g
in
s
.
P
4
an
d
P
3
ar
e
o
v
er
lo
ad
ed
a
n
d
u
n
d
er
lo
ad
ed
b
y
5
2
6
.
3
6
1
an
d
3
5
3
.
1
0
6
r
esp
ec
tiv
el
y
.
S
in
ce
P
4
h
as
n
e
x
t
m
a
x
i
m
u
m
lo
ad
an
d
P
3
h
as
m
i
n
i
m
u
m
lo
ad
to
tak
e,
th
at
’
s
w
h
y
m
i
g
r
atio
n
b
et
w
ee
n
P
4
an
d
P
3
w
ill
n
o
t
ta
k
es
p
lace
i
n
t
h
is
s
itu
a
tio
n
,
s
o
i
n
t
h
i
s
ca
s
e
P
3
b
ec
o
m
e
s
p
ar
tiall
y
m
o
d
er
ated
b
y
5
1
4
.
5
9
7
.
T
h
er
ef
o
r
e,
s
ch
ed
u
ler
d
eter
m
i
n
es
n
ex
t
MU
L
p
r
o
ce
s
s
o
r
th
at
is
P
5
,
n
o
w
s
ch
ed
u
ler
ch
ec
k
s
co
n
n
ec
tiv
i
t
y
b
et
w
ee
n
P
4
an
d
P
5
,
if
co
n
n
ec
ti
v
it
y
e
x
i
s
ts
b
et
w
ee
n
t
h
ese
t
w
o
p
r
o
ce
s
s
o
r
s
P
4
an
d
P
5
th
en
m
i
g
r
atio
n
w
ill
tak
e
s
p
lace
f
r
o
m
P
4
to
P
5
.
Si
m
i
lar
l
y
,
it’s
co
n
ti
n
u
e
as
p
er
I
T
SL
B
(
Ma
x
-
M
ax
)
s
c
h
e
m
es.
Af
te
r
th
at,
I
T
SL
B
(
Ma
x
-
Ma
x
)
alg
o
r
i
th
m
ca
lcu
la
tes
L
I
F is
2
4
.
2
0
%
as sh
o
w
n
i
n
T
ab
le
2
.
T
h
o
u
g
h
w
e
h
a
v
e
u
s
ed
I
T
SL
B
(
Ma
x
-
Ma
x
)
alg
o
r
it
h
m
f
o
r
h
eter
o
g
e
n
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
en
v
ir
o
n
m
e
n
t
s
till
w
e
ar
e
ac
h
i
ev
in
g
le
s
s
er
L
I
F
as
2
4
.
2
0
%
as
co
m
p
ar
is
o
n
to
D
L
B
S
alg
o
r
i
th
m
.
T
h
e
m
ig
r
at
io
n
ti
m
e
a
n
d
m
a
k
esp
an
o
f
I
T
SL
B
(
Ma
x
-
Ma
x
)
ar
e
2
m
s
ec
an
d
7
1
1
.
0
1
7
m
s
ec
r
esp
ec
tiv
el
y
.
Sp
ee
d
u
p
=4
5
7
9
.
7
2
7
/7
1
1
.
0
1
7
=
6
.
4
4
an
d
R
eso
u
r
ce
u
tili
za
t
io
n
=(
(
4
5
7
9
.
7
2
7
)
/(
7
1
1
.
0
1
7
*
8
)
)
*
1
0
0
=
8
0
.
5
1
%.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
5
7
–
2
7
6
5
2762
Ta
b
le
2
.
C
o
m
p
lete
Mi
g
r
atio
n
Ma
tr
ix
u
s
i
n
g
I
T
SL
B
(
Ma
x
-
Ma
x
)
P
m
T
ET
C
V
a
l
u
e
s
P0
08
0
.
1
2
5
1
9
.
3
3
0
5
6
.
3
5
8
5
8
.
5
0
0
8
0
.
8
7
4
9
8
.
8
5
2
9
4
.
9
1
5
8
3
.
7
6
1
P1
10
1
7
.
4
1
0
3
0
.
3
9
9
3
5
.
0
2
9
4
7
.
9
8
7
5
1
.
3
5
3
7
1
.
0
5
0
7
4
.
6
6
0
8
2
.
2
8
4
8
5
.
8
9
4
8
9
.
5
9
6
P2
19
0
.
4
66
0
.
8
91
1
.
4
98
5
.
7
03
9
.
1
40
1
1
.
9
08
14
.7
31
1
6
.
5
89
1
6
.
6
23
3
7
.
7
8
8
3
5
.
21
3
6
.
44
4
4
.
56
4
5
.
07
5
3
.
16
5
7
.
11
6
0
.
17
6
0
.
71
6
6
.
3
0
4
P3
06
6
0
.
7
6
8
7
8
.
3
3
1
8
0
.
2
6
0
9
9
.
9
6
9
9
9
.
6
7
9
9
5
.
5
9
0
P4
13
1
4
.
2
3
3
2
0
.
9
6
2
3
.
5
3
2
3
0
.
1
9
5
4
6
.
2
0
8
5
1
.
9
8
8
5
3
.
9
35
6
1
.
1
49
7
2
.
6
6
7
7
7
.
9
6
5
8
4
.
3
6
5
8
6
.
2
2
3
8
7
.
5
9
7
P5
12
0
.
8
7
8
2
.
3
7
4
5
.
6
2
1
9
.
2
6
2
2
6
.
6
2
1
2
9
.
7
2
8
3
7
.
5
8
6
3
9
.
2
4
3
6
7
.
7
2
0
8
4
.
0
1
4
9
1
.
8
7
9
9
2
.
5
7
1
P6
12
1
0
.
8
2
7
2
0
.
5
3
5
2
7
.
2
8
9
2
7
.
5
8
8
4
5
.
7
9
6
4
6
.
8
4
5
4
8
.
4
9
3
5
8
.
7
9
0
6
9
.
1
1
8
7
2
.
6
4
9
7
4
.
3
7
3
7
4
.
4
4
3
P7
12
1
5
.
1
5
5
2
2
.
5
1
0
3
6
.
1
3
3
3
8
.
5
2
3
4
2
.
5
1
5
5
1
.
7
1
0
5
7
.
2
4
0
5
9
.
9
0
4
6
0
.
8
9
6
7
3
.
5
0
0
8
0
.
2
8
8
9
8
.
9
9
8
2
.
2
.
I
T
SL
B
(M
in
-
M
a
x
)
W
o
r
k
in
g
o
f
I
T
SL
B
(
Min
-
Ma
x
)
s
tr
ateg
y
is
s
a
m
e
a
s
o
f
I
T
SLB
(
Ma
x
-
Ma
x
)
b
u
t
t
h
e
o
n
l
y
d
i
f
f
er
en
ce
i
s
m
i
g
r
atio
n
,
w
h
ic
h
ta
k
e
p
lace
f
r
o
m
MO
L
to
MU
L
.
T
h
e
lo
ad
i
s
tr
an
s
f
er
r
ed
(
i.e
.
,
m
ig
r
atio
n
o
f
t
h
e
ta
s
k
)
f
r
o
m
t
h
e
MO
L
w
h
ic
h
w
i
ll
h
a
v
e
m
i
n
i
m
u
m
to
m
a
x
i
m
u
m
E
T
C
v
al
u
e
o
f
t
h
e
tas
k
alter
n
ati
v
el
y
.
Fro
m
I
T
SL
B
(
Min
-
Ma
x
)
alg
o
r
ith
m
i
s
also
ac
h
ie
v
i
n
g
le
s
s
er
L
I
F
as
2
4
.
8
4
%
as
co
m
p
ar
is
o
n
to
DL
B
S
al
g
o
r
ith
m
.
T
h
e
m
i
g
r
atio
n
ti
m
e
a
n
d
m
ak
e
s
p
an
o
f
I
T
SL
B
(
Min
-
Ma
x
)
ar
e
2
m
s
ec
an
d
7
1
4
.
6
6
8
m
s
ec
r
esp
ec
tiv
el
y
.
Sp
ee
d
u
p
=4
5
7
9
.
7
2
7
/7
1
4
.
6
6
8
=
6
.
4
0
an
d
R
eso
u
r
ce
u
tili
z
atio
n
=(
(
4
5
7
9
.
7
2
7
)
/(
7
1
4
.
6
6
8
*
8
)
)
*
1
0
0
=
8
0
.
1
0
%.
Af
ter
co
m
p
ar
i
n
g
t
h
e
r
es
u
lt
o
f
th
ese
t
w
o
s
tr
ateg
ie
s
,
t
h
at
is
I
T
SL
B
(
Ma
x
-
Ma
x
)
a
n
d
I
T
SL
B
(
Min
-
Ma
x
)
in
ter
m
s
o
f
p
er
f
o
r
m
a
n
ce
m
atr
ices
s
u
c
h
as
L
I
F,
s
p
ee
d
u
p
,
m
ak
esp
an
a
n
d
r
eso
u
r
ce
u
tili
za
t
i
o
n
.
T
h
e
a
n
al
y
s
i
s
o
f
I
T
SL
B
(
Ma
x
-
Ma
x
)
al
g
o
r
ith
m
g
i
v
es
b
etter
v
al
u
es
2
4
.
2
%,
7
1
1
.
0
1
7
m
s
ec
an
d
8
0
.
5
1
%
o
f
L
I
F,
m
a
k
esp
an
an
d
r
eso
u
r
ce
u
ti
lizatio
n
r
esp
ec
tiv
el
y
b
u
t
I
T
SL
B
(
Min
-
Ma
x
)
al
g
o
r
ith
m
g
i
v
es
b
etter
v
al
u
e
6
.
4
0
u
n
it
o
f
ti
m
e
o
f
s
p
ee
d
u
p
.
T
h
e
m
i
g
r
atio
n
ti
m
e
o
f
b
o
th
I
T
SL
B
(
Max
-
Ma
x
)
an
d
I
T
SL
B
(
Min
-
Ma
x
)
ar
e
eq
u
al
b
u
t
b
etter
th
a
n
DL
B
S a
l
g
o
r
ith
m
.
3.
RE
SU
L
T
S AN
D
AN
AL
Y
SI
S
T
o
s
i
m
u
la
te
an
d
co
m
p
u
te
th
e
p
er
f
o
r
m
a
n
ce
o
f
I
T
SL
B
(
Ma
x
-
Ma
x
)
an
d
I
T
SL
B
(
Min
-
Ma
x
)
i
s
to
d
esig
n
o
n
s
o
f
t
w
ar
e
C
o
d
e:
B
lo
ck
s
i
n
C
la
n
g
u
a
g
e
u
s
i
n
g
I
n
te
l
C
o
r
e
i
5
-
6
2
0
0
,
x
6
4
-
b
ased
p
r
o
ce
s
s
o
r
w
it
h
4
GB
R
A
M.
T
h
e
ex
p
er
i
m
e
n
tal
r
esu
lts
w
er
e
co
n
clu
d
ed
to
m
o
n
ito
r
th
e
allo
ca
ti
o
n
o
f
th
e
b
atch
o
f
in
d
ep
en
d
en
t
task
s
o
n
t
h
e
FC
C
in
ter
co
n
n
ec
tio
n
n
e
t
w
o
r
k
.
T
h
e
tas
k
s
ar
e
r
an
d
o
m
l
y
g
e
n
er
ate
d
b
et
w
ee
n
0
-
1
0
0
,
0
-
1
0
0
0
,
0
-
2
5
0
0
0
etc.
,
an
d
ea
ch
task
’
s
E
T
C
v
al
u
e
s
ta
k
en
ar
e
al
s
o
b
et
w
ee
n
0
.
0
-
1
0
0
.
0
m
s
ec
i
n
th
e
s
i
m
u
la
tio
n
.
T
h
e
b
atc
h
o
f
i
n
d
ep
en
d
en
t
tas
k
s
i
s
s
ch
ed
u
led
o
n
t
h
e
F
C
C
n
et
w
o
r
k
s
a
s
p
er
th
e
I
T
SL
B
al
g
o
r
ith
m
w
h
ic
h
is
d
is
cu
s
s
ed
i
n
s
ec
ti
o
n
2
.
1
an
d
2
.
2
.
T
h
e
ex
p
er
i
m
e
n
tal
r
e
s
u
l
ts
ar
e
to
c
o
m
p
ar
e
o
u
r
p
r
ev
io
u
s
w
o
r
k
D
L
B
S
al
g
o
r
it
h
m
.
T
h
e
ex
p
er
i
m
en
tal
e
v
al
u
atio
n
i
s
ca
r
r
ied
o
u
t
to
co
m
p
ar
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
al
g
o
r
ith
m
o
n
th
e
p
er
f
o
r
m
a
n
ce
m
etr
ic
s
s
u
ch
as
L
I
F,
m
ak
e
s
p
an
,
s
p
ee
d
u
p
an
d
r
eso
u
r
ce
u
tili
za
ti
o
n
as f
o
llo
w
s
:
a.
Ob
s
er
v
i
n
g
t
h
e
L
I
F,
Ma
k
esp
a
n
,
Sp
ee
d
u
p
an
d
Av
er
ag
e
R
es
o
u
r
ce
U
tili
za
tio
n
o
f
t
h
e
p
r
o
ce
s
s
o
r
s
r
ep
r
esen
t
th
e
FC
C
n
et
w
o
r
k
w
h
ile
k
ee
p
in
g
t
h
e
n
u
m
b
er
o
f
th
e
p
r
o
ce
s
s
o
r
s
eq
u
al
b
u
t
v
ar
y
in
g
t
h
e
n
u
m
b
er
o
f
in
d
ep
en
d
en
t ta
s
k
s
.
b.
Ob
s
er
v
i
n
g
t
h
e
L
I
F,
Ma
k
esp
a
n
,
Sp
ee
d
u
p
an
d
Av
er
ag
e
R
es
o
u
r
ce
Utilizatio
n
o
f
t
h
e
p
r
o
ce
s
s
o
r
s
r
ep
r
esen
t
th
e
F
C
C
n
et
w
o
r
k
w
h
ile
k
ee
p
in
g
t
h
e
n
u
m
b
er
o
f
in
d
ep
en
d
e
n
t
task
s
eq
u
al
b
u
t
v
ar
y
i
n
g
th
e
n
u
m
b
er
o
f
t
h
e
p
r
o
ce
s
s
o
r
s
.
3
.
1
.
O
bs
er
v
a
t
i
o
ns
I
n
Fi
g
u
r
es
2
,
3
,
4
,
an
d
5
s
h
o
w
th
e
ca
s
e
1
w
h
ic
h
is
r
ep
r
es
en
ti
n
g
th
e
v
ar
ia
tio
n
o
f
L
I
F,
Ma
k
esp
a
n
,
Sp
ee
d
u
p
an
d
Av
er
ag
e
R
eso
u
r
ce
Utilizatio
n
w
h
ile
k
ee
p
in
g
t
h
e
n
u
m
b
er
o
f
t
h
e
p
r
o
ce
s
s
o
r
s
eq
u
al
to
eig
h
t.(
i.e
.
,
FC
C
3
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
)
b
u
t v
ar
y
i
n
g
t
h
e
n
u
m
b
er
o
f
ta
s
k
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N
: 2
0
8
8
-
8708
E
ffective
Lo
a
d
B
a
la
n
ce
S
ch
e
d
u
lin
g
S
c
h
eme
s
fo
r
Hete
r
o
g
en
eo
u
s
Dis
tr
ib
u
ted
S
ystem
(
Zeb
a
K
h
a
n
)
2763
Fig
u
r
e
2
.
L
I
F v
/
s
i
n
d
ep
en
d
en
t
task
s
Fig
u
r
e
3
.
Ma
k
esp
an
v
/s
i
n
d
ep
en
d
en
t ta
s
k
s
Fig
u
r
e
4
.
Sp
ee
d
u
p
v
/s
i
n
d
ep
en
d
en
t ta
s
k
s
Fig
u
r
e
5
.
R
eso
u
r
ce
Utiliza
tio
n
v
/s
in
d
ep
en
d
en
t ta
s
k
s
I
T
SL
B
(
Ma
x
-
Ma
x
)
s
h
o
w
s
t
h
e
b
est
p
er
f
o
r
m
an
ce
f
o
llo
w
ed
b
y
I
T
SL
B
(
Min
-
Ma
x
)
an
d
D
L
B
S.
T
h
is
is
b
ec
au
s
e
o
f
t
h
e
p
o
te
n
tiall
y
o
f
I
T
SL
B
(
Ma
x
-
Ma
x
)
to
s
i
m
u
lt
an
eo
u
s
l
y
allo
ca
te
ea
c
h
in
d
ep
en
d
en
t
tas
k
s
o
f
th
e
b
atch
o
n
th
e
b
est
p
r
o
ce
s
s
o
r
s
av
ailab
le
r
es
u
lti
n
g
i
n
th
e
m
in
i
m
izi
n
g
t
h
e
L
I
F
o
f
f
er
ed
to
th
e
in
d
ep
en
d
e
n
t
ta
s
k
s
.
I
T
SL
B
(
Min
-
Ma
x
)
s
h
o
w
s
al
s
o
b
etter
p
er
f
o
r
m
t
h
a
n
D
L
B
S.
Ma
k
e
s
p
an
,
Sp
ee
d
u
p
an
d
R
U
ar
e
also
in
cr
ea
s
in
g
w
h
e
n
k
ee
p
in
g
t
h
e
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
s
f
ix
ed
w
h
ile
th
e
n
u
m
b
er
o
f
ta
s
k
s
is
i
n
cr
ea
s
ed
f
o
r
all
lo
ad
b
alan
cin
g
s
tr
ateg
y
v
iz.
I
T
SL
B
(
Ma
x
-
Ma
x
)
an
d
I
T
SL
B
(
Min
-
Ma
x
)
.
I
T
SL
B
(
Ma
x
-
Ma
x
)
s
h
o
w
s
b
etter
Ma
k
esp
an
,
Sp
ee
d
u
p
an
d
R
U
as c
o
m
p
ar
e
t
o
I
T
SL
B
(
Min
-
Ma
x
)
.
3
.
2
.
O
bs
er
v
a
t
i
o
ns
Fu
r
t
h
er
m
o
r
e,
i
n
F
ig
u
r
e
6
,
7
,
8
an
d
9
s
h
o
w
th
e
ca
s
e
2
w
h
i
ch
i
s
r
ep
r
esen
tin
g
th
e
v
ar
iat
i
o
n
o
f
L
I
F,
Ma
k
esp
a
n
,
Sp
ee
d
u
p
an
d
Av
er
ag
e
R
e
s
o
u
r
ce
Uti
lizatio
n
w
h
i
l
e
k
ee
p
in
g
t
h
e
n
u
m
b
er
o
f
i
n
d
e
p
en
d
en
t
tas
k
s
eq
u
al
b
u
t
v
ar
y
i
n
g
th
e
n
u
m
b
er
o
f
th
e
p
r
o
ce
s
s
o
r
s
ar
e
eig
h
t
an
d
s
i
x
tee
n
.
As
w
e
ca
n
s
ee
i
n
Fi
g
u
r
e
6
,
I
T
S
LB
(
Min
-
Ma
x
)
also
s
h
o
w
s
b
etter
L
I
F
f
r
o
m
DL
B
S.
L
I
F
g
o
es
o
n
d
ec
r
ea
s
i
n
g
w
h
e
n
t
h
e
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
s
is
in
cr
ea
s
ed
w
h
er
ea
s
k
ee
p
in
g
t
h
e
b
atc
h
o
f
task
s
f
i
x
ed
f
o
r
all
t
h
e
s
c
h
ed
u
li
n
g
s
tr
ate
g
ies
v
iz.
I
T
SL
B
(
Ma
x
-
Ma
x
)
,
I
T
SL
B
(
Min
-
Ma
x
)
a
n
d
DL
B
S
a
s
ex
p
ec
ted
in
s
u
ch
a
ca
s
e
o
n
F
C
C
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
a
s
s
h
o
w
n
i
n
Fi
g
u
r
e
6
.
Ma
k
esp
a
n
,
Sp
ee
d
u
p
an
d
R
U
ar
e
also
d
ec
r
ea
s
in
g
w
h
e
n
t
h
e
in
cr
ea
s
e
t
h
e
n
u
m
b
er
o
f
p
r
o
ce
s
s
o
r
s
w
h
ile
k
ee
p
in
g
th
e
n
u
m
b
er
o
f
tas
k
s
f
i
x
ed
f
o
r
all
lo
ad
b
alan
cin
g
s
tr
ate
g
y
v
i
z.
I
T
SL
B
(
Ma
x
-
Ma
x
)
a
n
d
I
T
SL
B
(
Min
-
Ma
x
)
as
p
r
ed
ictab
le
in
s
u
c
h
a
ca
s
e.
I
T
SL
B
(
Ma
x
-
Ma
x
)
s
h
o
w
s
b
et
ter
Ma
k
e
s
p
an
,
Sp
ee
d
u
p
an
d
R
U
a
s
co
m
p
ar
e
to
I
T
SL
B
(
Min
-
Ma
x
)
.
Fig
u
r
e
7
.
L
I
F v
/
s
i
n
d
ep
en
d
en
t
task
s
Fig
u
r
e
8
.
Ma
k
esp
an
v
/s
i
n
d
ep
en
d
en
t ta
s
k
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
5
7
–
2
7
6
5
2764
Fig
u
r
e
9
.
Sp
ee
d
u
p
v
/s
i
n
d
ep
en
d
en
t ta
s
ks
Fig
u
r
e
1
0
.
R
eso
u
r
ce
Utilizatio
n
v
/
s
in
d
ep
en
d
e
n
t ta
s
k
s
4.
CO
NCLU
SI
O
N
L
o
ad
B
alan
cin
g
(
L
B
)
is
th
e
p
h
en
o
m
en
a
o
f
d
is
tr
ib
u
tin
g
t
h
e
ap
p
r
o
x
im
a
tel
y
eq
u
al
a
m
o
u
n
t
o
f
w
o
r
k
lo
ad
o
f
th
e
p
r
o
ce
s
s
o
r
s
s
o
t
h
at
all
p
r
o
ce
s
s
o
r
s
k
ee
p
b
u
s
y
all
th
e
ti
m
e
in
o
r
d
er
to
p
r
ev
en
t id
ea
l
ti
m
e
o
f
p
r
o
ce
s
s
o
r
s
.
T
h
e
ai
m
o
f
L
B
alg
o
r
ith
m
i
s
to
s
u
s
tain
t
h
e
lo
ad
to
ea
ch
p
r
o
ce
s
s
in
g
ele
m
e
n
t
(
P
E
)
s
u
ch
t
h
at
al
l
th
e
P
E
s
b
ec
o
m
es
n
eit
h
er
u
n
d
er
lo
ad
ed
n
o
r
o
v
er
l
o
ad
ed
.
T
h
er
ef
o
r
e,
th
e
p
r
o
p
er
d
esig
n
o
f
a
L
B
al
g
o
r
ith
m
m
a
y
n
o
tab
l
y
i
m
p
r
o
v
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
t
h
e
s
y
s
te
m
.
I
n
t
h
is
p
ap
er
,
a
lo
ad
b
alan
cin
g
s
c
h
e
m
es
I
T
SL
B
(
Ma
x
-
Ma
x
)
an
d
I
T
SL
B
(
Min
-
Ma
x
)
al
g
o
r
ith
m
s
h
av
e
b
ee
n
p
r
o
p
o
s
ed
to
ad
d
r
ess
L
I
F
in
t
h
e
s
c
h
ed
u
li
n
g
f
o
r
h
e
ter
o
g
en
eo
u
s
d
is
tr
ib
u
ted
s
y
s
te
m
an
d
its
ap
p
licatio
n
o
n
FC
C
in
ter
co
n
n
ec
tio
n
n
et
w
o
r
k
.
T
o
th
e
ex
p
er
i
m
e
n
tal
r
e
s
u
lt
s
,
I
T
SL
B
(
Ma
x
-
Ma
x
)
alg
o
r
ith
m
i
s
f
r
a
m
ed
f
o
r
b
ette
r
p
er
f
o
r
m
a
n
ce
i
n
ter
m
s
o
f
d
i
f
f
er
en
t
p
ar
a
m
eter
s
li
k
e
L
I
F,
m
ak
esp
an
,
s
p
ee
d
u
p
,
r
eso
u
r
ce
u
tili
za
t
io
n
etc.
W
ith
th
is
I
T
SL
B
alg
o
r
ith
m
,
w
e
w
o
u
ld
b
e
ab
le
to
co
n
s
tr
u
ct
a
f
i
n
e
s
p
ee
d
u
p
,
r
ed
u
ce
d
L
I
F a
n
d
m
ak
e
s
p
an
,
w
h
ic
h
co
n
s
eq
u
en
tl
y
ca
n
s
a
v
e
en
er
g
y
o
f
t
h
e
s
y
s
te
m
s
.
RE
F
E
R
E
NC
E
S
[1
]
S
in
g
h
K,
A
la
m
M
,
S
h
a
rm
a
S
.
“
A
S
u
rv
e
y
o
f
S
tatic
S
c
h
e
d
u
l
in
g
A
l
g
o
rit
h
m
f
o
r
Distrib
u
ted
C
o
m
p
u
ti
n
g
S
y
ste
m
.
”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
C
o
mp
u
ter
Ap
p
l
ica
ti
o
n
s
.
2
0
1
5
;
1
2
9
(
2
):
2
5
-
30.
[2
]
A
la
m
M
,
V
a
rsh
n
e
y
A
K.
“
A
Ne
w
A
p
p
ro
a
c
h
o
f
D
y
n
a
m
ic
L
o
a
d
Ba
l
a
n
c
in
g
S
c
h
e
d
u
li
n
g
A
l
g
o
rit
h
m
f
o
r
Ho
m
o
g
e
n
e
o
u
s
M
u
lt
i
p
ro
c
e
ss
o
r
S
y
ste
m
.
”
In
ter
n
a
t
io
n
a
l
J
o
u
rn
a
l
o
f
A
p
p
li
e
d
Evo
l
u
ti
o
n
a
ry
Co
m
p
u
t
a
ti
o
n
(
IJ
AE
C)
.
2
0
1
6
;
7
(2
)
:
6
1
-
7
5
.
[3
]
Da
o
u
d
M
I,
Kh
a
rm
a
N.
“
A
Hig
h
P
e
rf
o
rm
a
n
c
e
A
l
g
o
rit
h
m
f
o
r
S
tatic
Tas
k
S
c
h
e
d
u
li
n
g
in
He
tero
g
e
n
e
o
u
s
Distrib
u
ted
Co
m
p
u
ti
n
g
S
y
ste
m
s
.
”
J
o
u
rn
a
l
o
f
Pa
ra
ll
e
l
a
n
d
Distri
b
u
ted
Co
m
p
u
ti
n
g
.
2
0
0
8
;
6
8
(4
)
:
3
9
9
-
4
0
9
.
[4
]
Jia
n
g
Y.
“
A
S
u
rv
e
y
o
f
T
a
s
k
Allo
c
a
ti
o
n
a
n
d
L
o
a
d
Ba
lan
c
i
n
g
i
n
Distrib
u
ted
S
y
ste
m
s
.
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Pa
ra
ll
e
l
a
n
d
Distri
b
u
ted
S
y
ste
ms
.
2
0
1
6
;
2
7
(2
):
5
8
5
-
99.
[5
]
P
o
tl
u
ri
S
,
Ra
o
K
S
.
“
Qu
a
li
ty
o
f
S
e
rv
ice
b
a
se
d
T
a
s
k
S
c
h
e
d
u
li
n
g
A
l
g
o
rit
h
m
s
in
Clo
u
d
C
o
m
p
u
ti
n
g
.
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
t
e
r E
n
g
i
n
e
e
rin
g
(
IJ
ECE
)
.
2
0
1
7
;
7
(
2
).
[6
]
Yo
u
T
,
L
i
W
,
F
a
n
g
Z,
W
a
n
g
H,
Qu
G
.
“
Pe
rf
o
rm
a
n
c
e
Ev
a
lu
a
ti
o
n
o
f
Dy
n
a
m
i
c
L
o
a
d
Ba
lan
c
in
g
A
l
g
o
rit
h
m
s
.
”
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
.
2
0
1
4
;
1
2
(
4
):
2
8
5
0
-
9.
[7
]
Ya
n
g
ZX
.
“
L
o
a
d
Ba
lan
c
in
g
A
lg
o
rit
h
m
o
f
G
P
U
Ba
se
d
o
n
Ge
n
e
ti
c
A
lg
o
rit
h
m
.
”
In
d
o
n
e
sia
n
J
o
u
rn
a
l
o
f
El
e
c
trica
l
En
g
i
n
e
e
rin
g
a
n
d
C
o
mp
u
ter
S
c
ien
c
e
.
2
0
1
4
;
1
2
(
6
):
4
3
6
1
-
7.
[8
]
Ra
f
s
a
n
jan
i
M
K,
Ba
rd
sir
i
A
K.
“
A
Ne
w
H
e
u
risti
c
A
p
p
ro
a
c
h
f
o
r
S
c
h
e
d
u
l
in
g
In
d
e
p
e
n
d
e
n
t
T
a
sk
s
on
He
tero
g
e
n
e
o
u
s
Co
m
p
u
ti
n
g
S
y
ste
m
s
.
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
M
a
c
h
i
n
e
L
e
a
rn
in
g
a
n
d
C
o
mp
u
ti
n
g
.
2
0
1
2
;
2
(
4
):
3
7
1
.
[9
]
Et
m
in
a
n
i
K,
Na
g
h
ib
z
a
d
e
h
M
.
“
A
min
-
min
ma
x
-
min
S
e
lec
ti
v
e
Al
g
o
rih
tm
fo
r
Gr
id
T
a
sk
S
c
h
e
d
u
l
i
n
g
.
”
In
I
n
tern
e
t,
2
0
0
7
.
ICI
2
0
0
7
.
3
rd
IEE
E/
I
F
I
P
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
in
Ce
n
tral
A
sia
o
n
2
0
0
7
;
1
-
7
.
IEE
E
.
[1
0
]
F
re
u
n
d
RF
,
G
h
e
rrit
y
M
,
Am
b
ro
siu
s
S
,
Ca
m
p
b
e
ll
M
,
Ha
ld
e
rm
a
n
M
,
He
n
sg
e
n
D,
Ke
it
h
E,
Kid
d
T
,
K
u
ss
o
w
M
,
L
im
a
JD
,
M
irab
il
e
F
.
“
S
c
h
e
d
u
li
n
g
Res
o
u
rc
e
s
in
mu
lt
i
-
u
se
r,
He
ter
o
g
e
n
e
o
u
s,
Co
mp
u
ti
n
g
E
n
v
iro
n
me
n
ts
wit
h
S
ma
rtNe
t
.
”
I
n
He
tero
g
e
n
e
o
u
s Co
m
p
u
ti
n
g
W
o
rk
sh
o
p
,
1
9
9
8
.
(HCW
9
8
)
P
r
o
c
e
e
d
in
g
s.
1
9
9
8
S
e
v
e
n
th
1
9
9
8
;
p
p
.
1
8
4
-
1
9
9
.
IEE
E.
[1
1
]
S
a
n
g
A
,
W
a
n
g
X
,
M
a
d
ih
ian
M
,
G
it
li
n
RD.
“
Co
o
r
d
in
a
ted
L
o
a
d
Ba
lan
c
in
g
,
h
a
n
d
o
f
f
/ce
ll
-
site
se
lec
ti
o
n
,
a
n
d
S
c
h
e
d
u
l
in
g
in
m
u
lt
i
-
c
e
ll
P
a
c
k
e
t
D
a
ta S
y
ste
m
s
.
”
W
ire
les
s Ne
two
rk
s
.
2
0
0
8
;
1
4
(1
):
1
0
3
-
20.
[1
2
]
T
.
S
a
sid
h
a
r,
V
.
Ha
v
ish
a
,
S
.
Ko
u
sh
ik
,
M
.
De
e
p
,
V
K.
Re
d
d
y
,
"
Lo
a
d
Ba
lan
c
in
g
T
e
c
h
n
iq
u
e
s
f
o
r
E
ff
icie
n
t
T
ra
ff
ic
M
a
n
a
g
e
m
e
n
t
in
Clo
u
d
E
n
v
iro
n
m
e
n
t
.
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
El
e
c
trica
l
a
n
d
C
o
mp
u
ter
En
g
i
n
e
e
rin
g
(
IJ
ECE
)
.
,
v
o
l.
6
,
n
o
.
3
,
p
p
.
9
6
3
-
9
7
3
,
2
0
1
6
.
[1
3
]
A
la
m
M
,
V
a
rsh
n
e
y
A
K.
“
A
Co
m
p
a
ra
ti
v
e
S
tu
d
y
o
f
In
terc
o
n
n
e
c
ti
o
n
Ne
t
w
o
rk
.
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
Co
mp
u
ter
s
a
n
d
Ap
p
li
c
a
ti
o
n
s
.
2
0
1
5
;
1
2
7
(4
):
3
7
-
4
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N
: 2
0
8
8
-
8708
E
ffective
Lo
a
d
B
a
la
n
ce
S
ch
e
d
u
lin
g
S
c
h
eme
s
fo
r
Hete
r
o
g
en
eo
u
s
Dis
tr
ib
u
ted
S
ystem
(
Zeb
a
K
h
a
n
)
2765
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
R
s
ZE
BA
KH
AN
is
p
u
rsu
in
g
M
.
T
e
c
h
.
in
Co
m
p
u
ter
S
c
ien
c
e
&
E
n
g
in
e
e
rin
g
f
ro
m
In
stit
u
te
o
f
T
e
c
h
n
o
lo
g
y
&
M
a
n
a
g
e
m
e
n
t
(IT
M
)
A
li
g
a
rh
In
d
ia.
S
h
e
re
c
e
iv
e
d
h
e
r
B.
T
e
c
h
.
d
e
g
re
e
in
Co
m
p
u
ter
S
c
ien
c
e
&
En
g
in
e
e
rin
g
f
ro
m
ACN
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
a
n
d
M
a
n
a
g
e
m
e
n
t
S
tu
d
ies
A
li
g
a
rh
In
d
ia
in
2
0
1
4
.
He
r
re
se
a
r
c
h
a
re
a
s
a
re
P
a
ra
ll
e
l
a
n
d
Distrib
u
ted
S
y
st
e
m
,
L
o
a
d
Ba
lan
c
in
g
.
S
h
e
h
a
s
a
tt
e
n
d
e
d
n
a
ti
o
n
a
l
w
o
rk
sh
o
p
o
n
I
n
tern
e
t
a
n
d
it
s
A
p
p
li
c
a
ti
o
n
s
in
A
li
g
a
rh
M
u
slim
Un
iv
e
rsit
y
in
2
0
0
9
.
M
a
h
f
o
o
z
A
la
m
is
a
n
As
sista
n
t
P
r
o
f
e
ss
o
r
in
d
e
p
a
rtm
e
n
t
o
f
Co
m
p
u
ter
S
c
ien
c
e
a
t
A
l
-
Ba
rk
a
a
t
Co
ll
e
g
e
o
f
G
ra
d
u
a
te
S
tu
d
ies
(ABCG
S
),
A
li
g
a
rh
,
In
d
ia.
He
re
c
e
iv
e
d
h
is
M
.
T
e
c
h
.
d
e
g
r
e
e
in
Co
m
p
u
ter
S
c
ien
c
e
&
En
g
in
e
e
ri
n
g
f
ro
m
Dr.
A
.
P
.
J.
A
b
d
u
l
Ka
la
m
T
e
c
h
n
ica
l
Un
iv
e
rsit
y
,
L
u
c
k
n
o
w
,
In
d
ia
in
2
0
1
5
.
He
a
lso
c
o
m
p
lete
d
h
is
M
.
C.
A
.
a
n
d
B
.
C.
A
.
in
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
f
ro
m
In
d
ira
G
a
n
d
h
i
Na
ti
o
n
a
l
Op
e
n
Un
iv
e
rsit
y
(I
GN
OU
)
Ne
w
D
e
lh
i,
In
d
ia
in
2
0
1
2
De
c
.
a
n
d
2
0
1
1
J
u
n
.
re
sp
e
c
ti
v
e
l
y
.
His
re
se
a
rc
h
a
re
a
s
a
re
P
a
ra
ll
e
l
a
n
d
Distri
b
u
ted
S
y
ste
m
s
,
G
rid
a
n
d
Clo
u
d
Co
m
p
u
ti
n
g
.
He
h
a
s
a
tt
e
n
d
e
d
n
a
ti
o
n
a
l
a
n
d
in
tern
a
ti
o
n
a
l
c
o
n
f
e
re
n
c
e
in
In
d
ia,
a
n
d
p
u
b
li
sh
e
d
p
a
p
e
rs
in
i
n
tern
a
ti
o
n
a
l
j
o
u
r
n
a
ls.
Yo
u
c
a
n
c
o
n
tac
t
h
im
a
t:
A
BC
G
S
,
A
li
g
a
rh
,
2
0
2
0
2
1
,
In
d
ia.
Ra
z
a
A
b
b
a
s
Ha
id
ri
is
p
u
rsu
in
g
P
h
.
D.
a
t
th
e
S
c
h
o
o
l
o
f
C
o
m
p
u
ter
a
n
d
S
y
ste
m
s
S
c
ien
c
e
s
,
Ja
w
a
h
a
rlal
Ne
h
ru
Un
iv
e
rsity
,
Ne
w
De
lh
i,
In
d
ia.
Be
f
o
re
th
is
h
e
o
b
tain
e
d
h
is
M
.
T
e
c
h
.
i
n
Co
m
p
u
te
r
S
c
ien
c
e
f
ro
m
th
e
s
a
m
e
sc
h
o
o
l.
He
a
lso
c
o
m
p
lete
d
h
is
M
.
C.
A
.
in
Co
m
p
u
ter
A
p
p
li
c
a
ti
o
n
s
a
n
d
B.
S
c
.
Ho
n
s.
(M
a
th
s)
f
ro
m
A
li
g
a
rh
M
u
slim
Un
i
v
e
rsity
(
A
M
U)
A
li
g
a
rh
,
In
d
ia
in
2
0
1
0
a
n
d
2
0
0
6
re
sp
e
c
ti
v
e
l
y
.
Hi
s
re
se
a
r
c
h
in
tere
sts
in
c
lu
d
e
Cl
o
u
d
Co
m
p
u
ti
n
g
,
P
a
ra
ll
e
l
a
n
d
Distrib
u
te
d
Co
m
p
u
ti
n
g
,
a
n
d
so
f
t
c
o
m
p
u
ti
n
g
.
Evaluation Warning : The document was created with Spire.PDF for Python.