Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
5, No. 6, Decem
ber
2015, pp. 1252~
1
261
I
S
SN
: 208
8-8
7
0
8
1
252
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Performance Measurement of
a Compact Gen
e
rator - Hydro
Turbine System
Pudji
I
r
as
ari
*
,
Pri
y
on
o Suti
kno
*
*
, Puji
W
i
di
yan
t
o
*
,
**, Qidun Maulana
*
* Resear
ch C
e
ntre for
Electrical
Po
wer and Mech
atronic, Indonesian In
stitute of Sciences, Indon
esia
** Fluid Machin
er
y
Laborator
y
,
Faculty
of Mech
anical
and Aerospace Engin
eer
in
g, Institut
Tekno
logi B
a
ndung (I
TB),
Indonesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received J
u
n
3, 2015
Rev
i
sed
Ju
l 29
,
20
15
Accepted Aug 15, 2015
This
s
t
ud
y
aim
s
to inves
tigat
e the chara
c
te
ris
t
i
c
of a com
p
act genera
tor –
h
y
dro
turbin
e s
y
stem. The gen
e
rator
is of
per
m
anent magnet
ty
p
e
and th
e
turbine operates
in a ver
y
low head.
Th
e
integration of th
e two
co
mponents is
conducted in su
ch a way
that simplifie
s the con
s
truction of
the
conventional
turbine
gener
a
to
r. Th
e m
e
thod
i
s
b
y
m
ounting
the g
e
nera
tor st
ator
to th
e
turbine
cas
ing
a
nd the p
e
rm
anen
t m
a
gnets
ar
e as
s
e
m
b
led in th
e p
e
rim
e
ter
of
the turbin
e bl
ade
rotor. Th
is sim
p
le c
onstru
c
tion is approached b
y
making th
e
stator from individual
teeth an
d
y
o
k
e
.
The p
e
rmanent magnet generator
(PMG) is design
ed to produce th
e nominal power of 300 Watt 50 Hz at 83
rpm
of turbine shaft. Al
l com
p
o
n
ents of
the
int
e
grated
turbine
-
g
e
nera
tor ar
e
total
l
y
im
m
e
rsed in
the
water
st
ream
.
The st
ator
has to
be
herm
i
tic
to
avoid
water en
tering
the spool. Anoth
e
r issue i
nvestig
ated is th
e inf
l
u
e
nce of
the
ty
p
e
of the stator inner casing
materi
a
l
to the
genera
tor perfor
m
ance. Th
e
results show, th
e PVC material
for inner
casing
has a good in
flu
e
nce
to th
e
genera
tor p
e
rfor
m
ance
com
p
ared
with
the
m
ild s
t
eel
m
a
ter
i
al
.
Keyword:
Low s
p
eed
Perm
anent
m
a
gnet
ge
nerat
o
r
lo
w h
e
ad
St
at
or i
nne
r ca
si
ng
m
a
t
e
ri
al
Water t
u
r
b
ine
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Pu
dji Ira
sari
Research Cen
t
re fo
r
Electrical Power an
d Mech
atro
n
i
c, In
don
esian In
stitu
te of Scien
ces,
K
o
m
p
lek
LI
PI
, Jl. Sang
ku
r
i
ang
G
d
.
2
0
, Lt. 2, Band
ung
4
0135
West Ja
va-Indone
sia
Em
a
il: p
i
rasari@yaho
o
.co
m
/p
u
d
j0
02@lip
i.go
.id
1.
INTRODUCTION
In t
h
e l
a
st
dec
a
de, t
h
e e
x
pl
o
r
at
i
on
of t
h
e very
l
o
w hea
d
hy
dr
o
po
wer
(VL
H
HP)
bec
o
m
e
s
m
o
re
attractiv
e in
lin
e
with
th
e imp
r
ov
em
en
t o
f
t
h
e techno
lo
gy
of l
o
w
spee
d
gene
rat
o
r a
nd
very
l
o
w
hea
d
wat
e
r
tu
rb
in
e. VLHHP i
n
stalled
at lo
w
po
ten
tial en
erg
y
so
urces or low
h
e
ad
, lik
e irri
g
a
tio
n
con
d
u
it,
usu
a
lly
o
p
e
rates in
t
h
e run
o
f
th
e riv
e
rs wh
ich
are mo
stly easily
ac
cessible locations
and
near
l
o
ad ce
nter. T
h
erefore
,
it sav
e
s th
e cost o
f
t
r
an
sm
issio
n
and
facilitates th
e op
eratio
n
and
m
a
in
t
e
n
a
n
c
e. In
additio
n
,
th
e VLHHP is
al
so c
onsi
d
ere
d
e
nvi
ro
nm
ent
a
l
l
y
fri
endl
y
.
Usu
a
lly VLHHP system is
si
m
p
ly i
m
mersed
in
ri
v
e
r strea
m
with
a rel
a
tiv
ely low head (below 2
meters), availa
ble in irrigation system
with a sm
al
l dam
.
To increase the adde
d
value of a
water gate,
occasionally VLHHP system
is integrate
d
in it. The
elevation of low
hea
d
is us
ually defi
ned as less t
h
a
n
40 m
[1
] an
d v
e
ry lo
w h
e
ad
h
a
s a po
ten
tial h
e
ad o
f
less t
h
an
2
m
e
ters. Mo
st o
f
VLHHPs
are m
a
d
e
in
a
sm
a
ll
capacity, us
ual
l
y in pico
scale (
≤
5
kW
). Now
a
d
a
ys, th
e cap
acity h
a
s
r
each
e
d up
to hun
dr
ed
s of
w
a
tts per
un
it
[2
] and
will co
n
tinu
e
t
o
in
crease. Und
e
r t
h
e cap
acity o
f
5
kW, p
i
co
h
y
d
r
o
p
o
wer is co
n
s
i
d
ered
as a co
st
effect
i
v
e
an
d
r
e
l
i
a
bl
e p
o
we
r s
u
p
p
l
y
f
o
r
of
f-
g
r
i
d
st
a
n
d
-
al
o
n
e
ge
nerat
o
rs
, a
n
d
has al
s
o
bee
n
s
h
ow
n t
o
be
one
o
f
th
e m
o
st co
st-effectiv
e
o
f
f-g
r
i
d
en
erg
y
so
lu
tio
n
s
[3
].
Nev
e
rt
h
e
less, fo
r
power
o
f
ab
ov
e 5 kW
, t
h
ere are still a
lo
t of effo
rts sho
u
l
d
b
e
d
o
n
e
t
o
ach
i
ev
e its eco
n
o
m
ic v
i
ab
ilit
y.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce Meas
u
rem
e
nt
of
a
C
o
m
pact
Gene
rat
o
r - H
y
dr
o
T
u
r
b
i
n
e S
y
st
em
(
P
u
d
j
i
Ir
asa
r
i
)
1
253
M
a
ny
st
udi
es r
e
l
a
t
e
d t
o
VLH
H
P t
ech
nol
ogy
have bee
n
c
o
n
duct
e
d, ei
t
h
er
as i
ndi
vi
dual
c
o
m
pone
nt
o
r
as a
whole sys
t
e
m
. Research
and de
velopm
ent of l
o
w he
ad
h
ydr
o tu
rb
ines can b
e
fo
und
in [4
]-
[7
],
an
d the
st
udi
es
on
ove
ral
l
sy
st
em
wi
th t
h
e g
o
al
o
f
g
e
t
t
i
ng a m
o
re econ
o
m
i
c sy
stem
or a bet
t
e
r
per
f
o
r
m
a
nce sy
st
e
m
were per
f
o
rm
ed
by
[8]
,
[9]
.
An
ot
he
r
m
a
i
n
com
pone
nt
,
l
o
w
s
p
eed ge
ner
a
t
o
r, has bee
n
po
p
u
l
a
r
fi
rst
f
o
r wi
n
d
energy applications followe
d by o
cean and
low hea
d
hy
dro ene
r
gy. T
h
e
m
o
st used generator
for low
spee
d
appl
i
cat
i
o
ns ar
e of pe
rm
anen
t
m
a
gnet
t
y
pe. The ot
he
r t
y
p
e
s, i
.
e. i
n
d
u
ct
i
on
or asy
n
c
h
r
on
o
u
s ge
nerat
o
r a
nd
sy
nch
r
o
n
o
u
s
g
e
nerat
o
r are
us
ual
l
y
desi
gne
d
i
n
hi
gh s
p
eed
.
Ho
weve
r, si
n
ce i
nduct
i
o
n g
e
nerat
o
r i
s
rel
a
t
i
v
el
y
ch
eap an
d easy to
fi
nd
in the m
a
rk
et, th
e
u
tilizatio
n
of t
h
is typ
e
of
g
e
n
e
rat
o
r, for
win
d
,
h
ydro or
o
c
ean
en
erg
y
, is still
h
i
gh
alth
ou
gh
a
m
ech
an
ical t
r
an
sm
issio
n
is n
eed
ed
. Th
e ap
p
lication
s
of in
du
ctio
n
g
e
n
e
rato
rs
for
wind
turb
in
e are stud
ied b
y
[10
]
, [11
]
, wh
ilst in
v
e
sti
g
atio
n on
l
o
w
sp
eed
PM
G and
its ap
p
lication
are
di
scuss
e
d
i
n
[1
2]
-[
1
5
]
.
C
onsi
d
eri
ng t
h
at
t
h
e sy
st
em
shoul
d be
com
p
act
, t
h
i
s
researc
h
i
s
ai
m
e
d t
o
bui
l
d
a l
o
w spee
d
p
e
rm
an
en
t m
a
g
n
e
t g
e
n
e
rato
r (PMG) th
at can
b
e
sim
p
ly
i
n
tegrated
with a lo
w h
ead
hyd
ro
tu
rb
in
e.
Fo
r th
at
pu
r
pose
,
a
n
i
n
t
e
grat
ed
st
at
or
wi
t
h
i
n
di
vi
du
al
t
eet
h and
y
oke
i
s
co
nsi
d
e
r
ed t
o
be t
h
e s
i
m
p
l
e
st
and t
h
e m
o
st
app
r
op
ri
at
e co
nst
r
uct
i
o
n
.
An
ot
he
r st
u
d
i
e
d
i
s
s
u
e
i
s
th
e
in
f
l
u
e
n
c
e o
f
th
e
t
y
p
e
of the stator inne
r casi
n
g
material
to
th
e g
e
n
e
rator
p
e
rform
a
n
ce. Th
is is su
bstan
tial as
th
e VLHHP system
will b
e
op
erated
to
tally i
mmersed
i
n
water so
t
h
ere
will b
e
water
gap
in
stead
o
f
air g
a
p
.
Th
e d
e
sig
n
and
p
e
rfo
rman
ce of th
e
gen
e
rat
o
r are
v
a
lid
ated
usi
n
g l
a
bo
rat
o
r
y
expe
ri
m
e
nt
.
2.
R
E
SEARC
H M
ETHOD
2.
1.
Desi
gn
S
t
ra
te
gy
Th
e t
u
rb
in
e is
d
e
sign
ed
to g
e
n
e
rate
po
wer
of
3
0
0
W at
83
rp
m
.
Th
e
requ
ire
m
en
t is th
at t
h
e
p
e
rim
e
ter
of t
h
e t
u
r
b
i
n
e
bl
ades
pos
sessi
ng t
h
e
di
am
et
er of
60
0 m
m
, serves as t
h
e
ro
t
o
r ge
ner
a
t
o
r a
t
once (Fi
g
u
r
e
1)
. In
co
m
p
lian
ce wi
th
th
at, th
e i
n
teg
r
ated
stator
with
in
d
i
v
i
du
al t
eeth
and yok
e
w
o
u
l
d b
e
the
s
e
lected sol
u
tion.
The
material o
f
th
e
iron
yok
e is m
i
ld
steel (St
3
7)
an
d th
e teet
h
u
tilize I p
a
rt of t
h
e tran
sform
e
r la
m
i
n
a
tio
n
.
Fi
gu
re
1.
Tu
r
b
i
n
e-
ge
nerat
o
r c
onst
r
uct
i
o
n
Gen
e
rally, stand
a
rd
electric
mach
in
es ap
p
l
y stato
r
m
a
te
rial t
h
at is en
tirely
mad
e
o
f
silicon
steel sh
eet
l
a
m
i
nat
i
on. B
o
t
h
si
des
of
t
h
e l
a
m
i
nat
i
on are i
s
ol
at
ed t
o
m
i
nim
i
ze core l
o
ss
,
part
i
c
ul
a
r
l
y
Eddy
c
u
r
r
e
n
t
l
o
s
s
t
h
at
g
e
n
e
rates h
eat
in
th
e m
ach
in
e. Nev
e
rth
e
less, th
e u
s
e o
f
silico
n
steel sh
eet
requ
ires a h
i
gh
co
st d
i
es to
cu
t th
e
la
m
i
nation into desi
red pieces
. T
h
ere
f
ore, st
ator
with di
ffe
r
ent m
a
terials for yoke
and teeth is
rega
rde
d
m
o
re
appropriate for this study.
The yoke can be
shape
d
by m
a
chining
proces
s and the teet
h
are arra
nge
d
fr
om
t
r
ans
f
o
r
m
e
r l
a
m
i
nat
i
ons
whi
c
h a
r
e a
v
ai
l
a
bl
e i
n
t
h
e
m
a
rket
i
n
va
ri
o
u
s
di
m
e
nsi
ons
. T
h
e
heat
ca
use
d
b
y
core
l
o
ss i
s
assum
e
d n
o
t
t
o
a
ffect
t
h
e pe
rf
orm
a
nce of t
h
e ge
ne
ra
t
o
r si
nce t
h
e sy
st
em
i
s
t
horo
u
ghl
y
s
ubm
ersed i
n
t
o
t
h
e wat
e
r d
u
r
i
ng t
h
e
o
p
erat
i
o
n
.
Det
a
i
l
e
d p
r
oce
d
ure i
n
de
si
gni
ng e
v
ery
m
a
i
n
com
pone
nt
i
s
descri
be
d
i
n
t
h
e
fo
llowing
secti
o
n
s
.
2.
2.
Stator Design and
Cons
truc
tion
Stator has slot
s in which the
windi
ngs a
r
e insta
lled.T
h
e accuracy in det
e
rm
ining stator dim
e
nsion
will affect the
p
e
rform
a
n
ce of th
e
g
e
n
e
rat
o
r. Th
e
b
i
gg
er t
h
e
d
i
m
e
n
s
io
n
o
f
t
h
e y
o
k
e
and
th
e teeth
,
t
h
e m
o
re
ex
p
e
n
s
i
v
e th
e
mach
in
e will
be. On
t
h
e
o
t
h
e
r h
a
n
d
, if th
e
d
i
men
s
io
n is too
sm
a
ll, th
e flux
d
e
nsity will in
crease
t
h
at
m
a
y
l
ead t
o
o
v
er
heat
i
n
g
or
hi
ghe
r
har
m
oni
c cont
ent
.
A c
o
m
m
on equat
i
o
n a
p
pl
i
e
d t
o
p
r
edi
c
t
t
h
e o
u
t
p
u
t
p
o
wer is:
∙
(1
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1252 –
1261
1
254
whe
r
e
P
is th
e p
o
wer ou
tpu
t
(W),
D
i
s
t
h
e i
nne
r st
at
or di
a
m
et
er, and
L
i
is th
e effectiv
e
len
g
t
h
o
f
th
e stato
r
core
. In this ca
se, the rotor di
a
m
eter
is already known and
the radial leng
t
h
of th
e
water
g
a
p
is set at 5
mm
consideri
n
g the m
echanical const
r
uction. R
e
garding t
h
at,
l
o
o
k
i
n
g
bac
k
t
o
eq
uat
i
o
n
(
1
)
,
t
h
e
onl
y
vari
a
b
l
e
t
h
at
en
ab
les t
o
b
e
ad
ju
sted
is th
e l
e
n
g
t
h
o
f
t
h
e co
re lam
i
nat
i
o
n
s
. N
u
m
b
er o
f
s
t
at
or p
o
l
e
s ca
n
be cal
cul
a
t
e
d
usi
n
g
Equ
a
tio
n (2
),
∙
(
2
)
Sub
s
titu
tin
g
t
h
e tu
rb
in
e’s ro
tatio
n
n
s
of
83
r
p
m
an
d
th
e no
min
a
l f
r
e
qu
en
cy
f
of 50
Hz
,
t
h
e num
ber o
f
pol
es
2
p
i
s
o
b
t
a
i
n
ed
as
72
.
G
e
nerat
o
r
i
s
d
e
si
gne
d
wi
t
h
si
n
g
l
e ph
ase
wi
n
d
i
n
g
an
d
t
h
e
n
u
m
ber of
sl
ot
s
p
e
r
pol
e
per phase
q
, equ
a
ls to 1.
Furt
herm
ore, t
h
e p
o
l
e
s a
r
e di
st
ri
but
e
d
e
v
enl
y
wi
t
h
t
h
e
hel
p
o
f
C
A
D
desi
gn
so
ft
wa
re. T
h
i
s
st
age i
s
co
ndu
cted wit
h
little trial and
erro
r b
y
applyin
g
on
e at
a
ti
m
e
so
m
e
p
o
s
sib
l
e d
i
m
e
n
s
ion
s
o
f
th
e transform
e
r
l
a
m
i
nat
i
on. To
m
eet t
h
e desi
red desi
gn
, t
h
e sel
ect
ed di
m
e
n
s
i
on o
f
t
h
e st
at
or t
eet
h i
s
0.
0
13 m
x 0.0
7
6
3
5
m
.
The st
at
o
r
de
pt
h i
s
o
b
t
a
i
n
ed
af
t
e
r det
e
rm
i
n
i
n
g
t
h
e
rat
i
o
of
st
at
or
wi
dt
h t
o
st
at
or
de
pt
h as
0
.
4.
C
once
r
ni
ng
t
h
e st
at
or i
n
ne
r c
a
si
ng m
a
t
e
ri
al
s, p
o
l
y
vi
ny
l
chl
o
ri
de (
P
VC
), a
nd m
i
l
d
st
eel
(St
3
7
)
a
r
e t
h
e
two
selected
materials to
b
e
inv
e
stig
ated,
with
th
e po
sition
as shown in
Figu
re 2.
Fig
u
re
2
.
Th
e
p
o
s
ition
o
f
th
e
in
v
e
stig
ated
st
ato
r
casi
n
g m
a
t
e
rial
The t
h
i
c
k
n
ess
of t
h
e st
at
o
r
i
nne
r casi
n
g i
s
2 m
m
.
St
37 i
s
one
of l
o
w c
a
rb
o
n
st
eel
s or
m
i
l
d
st
eel
s
categorized in norm
al strength and e
x
tensi
v
ely used in
diverse industri
es
especially for the
fabrication of
aut
o
m
obi
l
e
ch
assi
s an
d
b
odi
e
s
[
16]
,
[
1
7]
.
As
f
o
r
P
V
C
,
i
t
i
s
one
of t
h
e m
o
s
t
wi
del
y
use
d
o
f
al
l
pl
ast
i
c
s, h
a
vi
n
g
to
ug
h, str
ong
,
g
ood
lo
w
temp
er
at
u
r
e
characteristics, as well as fla
m
e-retard
an
t p
r
o
p
ert
i
es. Howev
e
r,
it d
o
e
s
n
o
t
r
e
tain
go
od
m
ech
an
i
cal pe
rform
a
nce above
80
o
C
[
18]
.
2.
3.
Winding Num
b
er and
Par
a
meters
Co
n
s
i
d
eri
n
g
its d
i
m
e
n
s
io
n, th
e po
wer produ
ced
b
y
th
e g
e
n
e
rat
o
r is relativ
ely s
m
al
l, wh
ich
is o
n
l
y
30
0 W.
W
i
ndi
ng
n
u
m
b
er
i
s
p
r
esent
e
d by
,
.∙
∙
∙
(
3
)
∙
(
4
)
∙
∙
(
5
)
Wi
t
h
E
ph
is the
back electro
m
o
tiv
e for
ce (V
),
f
is th
e fr
equen
c
y (H
z)
,
is th
e m
a
g
n
e
tic flux
(Wb),
k
w
is
t
h
e
w
i
nd
ing
f
actor,
B
g
is th
e stato
r
teeth
flux
d
e
nsity (T),
A
m
is
the permanent m
a
gnet area (m
2
),
k
d
is t
h
e
d
i
str
i
bu
tio
n f
a
cto
r
,
k
p
is
th
e p
itch
facto
r
,
an
d
k
s
is the s
k
ew factor.
Th
e wind
ing
ty
p
e
is fu
ll-p
itch lap
wi
n
d
i
ng
o
r
k
p
= 1. T
h
e c
r
oss section a
r
ea
of the
winding
conductor
is ob
tain
ed u
s
i
n
g Eq
u
a
tion
(6),
∙
(
6
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce Meas
u
rem
e
nt
of
a
C
o
m
pact
Gene
rat
o
r - H
y
dr
o
T
u
r
b
i
n
e S
y
st
em
(
P
u
d
j
i
Ir
asa
r
i
)
1
255
Whe
r
e
FF
is th
e fill facto
r
d
e
fin
e
d
as 0.3. Sin
ce th
e syste
m
is fu
lly i
m
mersed
in
th
e water, th
e curren
t
den
s
ity
is set at a qu
ite h
i
gh
v
a
lu
e,
wh
ich
is 10
A/mm
2
.
The c
o
nductor
diam
e
t
er is pre
s
ented by,
∙
(7
)
The
wi
n
d
i
n
g
p
a
ram
e
t
e
rs, i
n
cl
udi
ng
resi
st
a
n
c
e
an
d
inductance, are
calculated
usi
n
g E
q
uat
i
on
(
8
)
-
(
1
0
)
.
∙
(8)
Wi
t
h
is t
h
e e
l
ectrical resistiv
i
t
y
of
co
p
p
er of
1.
7 x 1
0
-8
.m
,
l
is th
e leng
th
of th
e wi
n
d
in
g
(m
), and
a
w
is in
m
2
. The sl
ot leakage
inducta
nce is appr
oac
h
ed with rectangula
r
s
h
ape
[19],
2
∙
∙
∙
∙
(
9
)
Whe
r
e
o
i
s
t
h
e const
a
nt
of
4
10
-7
,
L
i
i
s
t
h
e l
e
ngt
h
of t
h
e
st
at
or core
(m
), an
d
s
is the
geom
etrical s
p
ecific
slot pe
rm
eance (see
Figure
3)
prese
n
ted by,
(
1
0
)
Wi
t
h
h
s
=
0
.
040
m
,
b
s
=
0
.
01
8 m
,
h
os
= 0
.
00
1 m
,
b
os
= 0
.
01
5 m
.
Fi
gu
re
3.
The
s
l
ot
di
m
e
nsi
ons
fo
r t
h
e
sl
ot
l
e
a
k
age
i
n
duct
a
nc
e cal
cul
a
t
i
o
n
The ot
her l
e
a
k
age i
n
duct
a
nce
s
consi
s
t
e
d o
f
ai
r gap
lea
k
age
inductance, t
o
oth
tip leaka
g
e
inductance,
end
wi
ndi
ng
i
n
duct
a
nce a
n
d s
k
ew
l
eaka
g
e i
n
duct
a
nce a
r
e c
a
l
c
ul
at
ed re
fer
r
i
ng t
o
[2
0]
.
2.
4.
Ro
to
r C
o
n
s
tr
uctio
n
R
o
t
o
r
i
s
t
h
e
r
o
t
a
t
i
ng pa
rt
of
g
e
nerat
o
r a
n
d c
a
rri
es
perm
anent
m
a
gnet
s
i
n
i
t
s bo
dy
.
I
n
m
o
st
cases,
fo
r
l
o
w s
p
ee
d ap
p
l
i
cat
i
on, su
rfac
e
m
ount
e
d
m
a
gnet
or i
n
set
mag
n
e
t con
f
i
g
u
r
ation
is m
o
re p
r
eferab
le.
In
th
is
st
udy
, r
o
t
o
r m
a
t
e
ri
al
i
s
m
i
l
d
st
eel
St
37, t
h
e sam
e
as
y
oke m
a
t
e
ri
al
.The benefi
t
of u
s
i
n
g
perm
anent
m
a
gnet
i
s
t
h
e abse
nce
of
heat
ge
nerat
e
d
i
n
rot
o
r as i
n
wo
u
nd
rot
o
r t
y
pe. T
h
e co
n
f
i
g
urat
i
o
n
of t
h
e
m
a
gnet
s
o
n
t
h
e rot
o
r
b
o
d
y
is ilu
st
rated
in Figure
4
.
Fi
gu
re
4.
The
m
a
gnet
s
k
ewi
n
g
of
t
h
e st
udi
e
d
gene
rat
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1252 –
1261
1
256
Ske
w
i
n
g t
h
e
m
a
gnet
s
i
s
t
h
e
easi
e
st
an
d t
h
e m
o
st
com
m
on m
e
t
hod
of
re
duci
n
g c
o
g
g
i
n
g t
o
r
q
ue.
Howev
e
r, an
ex
cessiv
e
sk
ewi
n
g will lead to
a red
u
c
ed
electro
m
o
tiv
e force.
Th
erefo
r
e, th
ere sh
ou
ld
b
e
a
co
m
p
ro
m
i
sed
lev
e
l wh
ere th
e two p
a
ram
e
ter
s
can
b
e
ach
i
ev
ed op
tim
a
lly.
In
Figu
re 4, the m
a
g
n
e
t sk
ewin
g
i
s
set at 21.31
o
.
2.
5.
Experimental Set-Up
The turbi
n
e-ge
nerat
o
r was tested at the laboratory with
the
expe
rim
e
ntal s
e
t-up as de
picted in Figure
5
.
Th
e m
easu
r
in
g
d
e
v
i
ces consist o
f
a v
a
riable water resistan
ce serv
es as th
e lo
ad
test, a p
o
wer q
u
a
lity meter
to
reco
rd
cu
rren
t, freq
u
e
n
c
y,
v
o
ltag
e
, an
d
po
wer.
In add
itio
n, an ind
u
c
ti
o
n
m
o
to
r t
h
at
serv
es as th
e
p
r
im
e
m
over was
connecte
d
t
o
a s
p
eed control.
The
ge
nera
to
r
a
n
d
t
h
e
in
d
u
c
ti
o
n
mo
t
o
r
are
connected
through a
three-stage m
e
chanical tra
n
s
m
ission,
p
u
l
l
e
y
bel
t
- gear
b
ox
- p
u
l
l
e
y
bel
t
. The t
e
st
was
per
f
o
r
m
e
d at
nom
i
n
al
fre
que
ncy
fo
r e
ach t
y
pe
o
f
t
h
e
st
at
or i
nne
r ca
si
ng
m
a
t
e
ri
al
.
Fi
gu
re
5.
The
e
xpe
ri
m
e
nt
set
-
up
o
f
ge
nerat
o
r
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
3.
1.
The Ana
litica
l
Ca
lculatio
n
Results
Th
e an
alytical calcu
latio
n
resu
lts o
f
th
e g
e
n
e
rat
o
r p
a
ram
e
ters as well as
th
e d
e
tailed
d
i
m
e
n
s
io
n
of
the stator and rotor are
prese
n
ted in
Table 1 and
Figure 6
re
spectively.
Tabl
e 1. Ge
ner
a
t
o
r param
e
t
e
rs
Par
a
m
e
ter
s
M
a
gnitudes
N
p
h
1195
2
tur
n
s
D
w
0.
9
m
m
R
ph
29.
7
L
ph
0.
197
H
(a)
(b
)
Fi
gu
re
6.
Det
a
i
l
ed di
m
e
nsi
o
n
of
t
h
e
st
at
or
a
n
d
r
o
t
o
r
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Perf
or
ma
nce Meas
urem
ent
of
a
C
o
m
pact
Gene
rat
o
r - H
y
dr
o
T
u
r
b
i
n
e S
y
st
em
(
P
u
d
j
i
Ir
asa
r
i
)
1
257
Th
e in
teraction b
e
tween
windin
g
in
th
e stator slo
t
s and
p
e
rman
en
t m
a
g
n
e
ts in
th
e ro
t
o
r i
s
ex
h
i
b
ited
i
n
t
h
e fo
rm
of fl
ux
densi
t
y
g
r
ap
hs, t
a
ke
n i
n
t
w
o b
o
u
n
d
ary
con
d
i
t
i
ons
, i
n
t
h
e ai
r gap a
n
d i
n
t
h
e st
at
or
sl
ot
s
consecutively. The flux de
nsity g
r
aph
s
f
o
r
b
o
th
stud
ied casi
n
g m
a
ter
i
als ar
e sho
w
n
i
n
Figu
r
e
7.
(a)
(b
)
Fi
gu
re
7.
The
f
l
ux
de
nsi
t
y
cha
r
act
eri
s
t
i
c
affe
ct
ed by
t
h
e
di
f
f
e
rent
t
y
pes
o
f
t
h
e stator inne
r
casing m
a
terials, (a
)
In
t
h
e
wat
e
r
ga
p,
(
b
)
I
n
t
h
e
st
at
or t
eet
h
an
d
sl
ot
s
Th
e
g
r
aph
s
illu
strate an
op
po
site ph
en
o
m
en
o
m
o
f
th
e
flux
d
e
nsity d
u
e
to
th
e d
i
fferent typ
e
of the
st
at
or i
n
ner c
a
s
i
ng m
a
t
e
ri
al
. In t
h
e
wat
e
r
ga
p,
hi
g
h
er
fl
u
x
den
s
i
t
y
occu
rs
whe
n
t
h
e
casi
n
g o
f
m
i
l
d
st
eel
St
37 i
s
appl
i
e
d
.
I
n
co
nt
rast
, i
n
t
h
e s
t
at
or t
eet
h an
d
sl
ot
s, ge
nerat
o
r
wi
t
h
P
V
C
casi
ng
gen
e
rat
e
s hi
g
h
er
fl
u
x
d
e
nsi
t
y
.
Th
is is th
e effect o
f
t
h
e valu
e
o
f
t
h
e relativ
e
mag
n
e
tic
p
e
rmeab
ility, i.e. 100
an
d
0
.
75
for
mild
steel an
d
PVC
respectively.
In conse
que
nce
,
the mild steel casing ab
s
o
r
b
s o
r
car
ri
es l
a
rge
r
m
a
gnet
i
c
fl
ux
, an
d pa
s
s
es t
h
e
rem
a
ining to t
h
e stator teet
h a
n
d slots
where
a
s the
PV
C
ca
s
i
ng
f
o
r
w
ar
ds al
m
o
st
al
l
of t
h
e
m
a
gnet
i
c
fl
u
x
.
3.
2. T
h
e E
x
pe
ri
ment
Resul
t
s
The e
x
peri
m
e
nt
resul
t
s
of
t
h
e
gene
rat
o
r
per
f
o
r
m
a
nce at
nom
i
n
al
fre
q
u
en
cy
are
prese
n
t
e
d
i
n
Fi
gu
re
8.
(a)
(b
)
(c)
Fi
gu
re
8.
The
e
xpe
ri
m
e
nt
resu
l
t
s
of
ge
nerat
o
r
pe
rf
orm
a
nce, (
a
) P
o
w
e
r
vs
C
u
rre
nt
g
r
a
p
h
,
(
b
)
V
o
l
t
a
ge
vs
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1252 –
1261
1
258
C
u
r
r
ent
gra
p
h, (c) V
o
l
t
a
ge vs Po
wer g
r
ap
h
The fi
gu
res sh
ow t
h
at
gene
r
a
t
o
r wi
t
h
P
V
C
i
nner casi
ng
m
a
t
e
ri
al
possesses hi
g
h
er
o
u
t
put
p
o
w
er
,
aro
u
nd
5.
8 t
i
m
e
s, t
h
an t
h
e
one
usi
n
g
m
ild st
eel
St
3
7
.
Furt
herm
ore,
Fi
gu
re
9 c
o
m
p
ares
t
h
e
wa
v
e
fo
rm
s of
vol
t
a
ge a
n
d cu
rre
nt
of
bot
h
m
a
t
e
ri
al
casi
ngs and i
n
di
cat
es
t
h
at
t
h
e si
nus
oi
dal
wa
vef
o
r
m
usi
ng P
V
C
casi
ng i
s
m
o
re tapere
d t
h
an that
of St37 casi
n
g.
(a)
(b
)
Fi
gu
re
9.
The
c
u
r
r
ent
a
n
d
vol
t
a
ge
wave
f
o
rm
s o
f
t
h
e
ge
nerat
o
r
(a
) P
V
C
cas
i
ng,
(
b
)
St
3
7
c
a
si
ng
It is already known that wa
veform
is
influe
nced
by
ha
rm
oni
c co
nt
ent
,
m
eani
n
g t
h
at
l
o
w ha
rm
oni
cs
p
r
esen
t in a
g
o
o
d
wav
e
form
q
u
a
lity. In th
is case, it is sh
own in
Fi
g
u
re
10
.
(a)
(b
)
Fi
gu
re
1
0
. T
o
t
a
l
harm
oni
c
di
st
ort
i
o
n,
(a)
P
V
C
casi
n
g,
(
b
)
St
37
casi
n
g
At the
last sta
g
e, t
h
e
pe
rformance of t
h
e
gene
ra
tor is
measure
d
by its
efficie
n
cy. B
a
sed
on the
expe
ri
m
e
nt
pr
oced
u
r
e, t
h
e i
n
p
u
t
po
we
r i
s
t
h
e
po
wer
del
i
vere
d
by
t
h
e i
n
d
u
ct
i
o
n m
o
t
o
r. B
y
t
a
ki
n
g
o
n
l
y
t
h
e
v
a
lu
e co
rr
elated
w
ith
t
h
e m
a
x
i
m
u
m
p
o
w
er
of
th
e
g
e
n
e
r
a
tor, th
e
p
o
w
e
r
of
th
e in
du
ction
m
o
to
r
ar
e 5761
.4
5
W
(PVC
ca
si
n
g
)
and
5
3
2
9
.
5
2
W (
S
t
3
7 casi
n
g)
. Acc
o
r
d
i
n
gl
y
,
the efficiency of eac
h
ge
n
e
rator is
6
9
.
8
% (P
VC
casing) and
13.1%
(St37 casi
n
g). T
h
ose val
u
es are
rela
tiv
ely lo
w as th
e
p
o
wer h
a
s to
pass th
ro
ugh
a th
ree-
step m
echanic
al transm
ission. If as
su
m
e
d
that th
e losses at
th
e
g
e
arbox
an
d th
e pu
lley
b
e
lt is
5
%
each
[21
]
,
[2
2]
, by
negl
e
c
t
i
ng t
h
e t
r
a
n
s
m
i
ssi
on sy
st
em
,
t
h
e ge
nerat
o
r e
ffi
ci
enci
es
coul
d reac
h
aro
u
nd
8
4
.
8
%
(P
VC
casi
n
g
)
an
d 2
8
.
1
% (St
37 casi
n
g)
. C
o
m
p
ared t
o
t
h
e ef
fi
ci
enci
es of ot
her PM
Gs wi
t
h
t
h
e sa
m
e
t
opol
o
g
y
,
8
6
.
2
%
-
95
.9%
[
2
3]
-[
25]
,
t
h
i
s
st
u
d
y
i
s
re
gar
d
ed
t
o
have
a
g
o
o
d
p
r
el
im
i
n
ary
at
t
a
i
n
m
e
nt
(ge
n
erat
or
usi
n
g
P
V
C
casi
n
g
in
p
a
rticu
l
ar).
Nev
e
rth
e
less, i
f
on
ly 300
W
o
f
po
we
r
u
litized
to correspo
n
d
with
t
h
e tu
rb
in
e cap
acit
y
, th
e
gene
rat
o
r wo
ul
d be
l
e
ss
e
ffi
ci
ent
.
A v
a
lu
ab
le find
ing
v
e
rified
by th
e ex
p
e
rim
e
n
t
resu
lts is that in
th
e case
o
f
a certain
m
a
terial co
v
e
rs
stator s
u
rface,
the de
sign cal
culation
should
not
refe
r t
o
the air
or
water
gap flux de
nsity but on t
h
e
flux
den
s
i
t
y
i
n
t
h
e s
t
at
or sl
ot
s
an
d t
eet
h i
n
st
ea
d.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce Meas
u
rem
e
nt
of
a
C
o
m
pact
Gene
rat
o
r - H
y
dr
o
T
u
r
b
i
n
e S
y
st
em
(
P
u
d
j
i
Ir
asa
r
i
)
1
259
3.
3.
The Temper
ature Dis
t
ribution
An
ot
he
r
param
e
t
e
r o
b
se
rve
d
i
s
t
h
e
heat
di
st
ri
but
i
o
n a
s
depi
c
t
ed i
n
Fi
g
u
re
1
1
.
(a)
(b
)
Fi
gu
re
1
1
. T
h
e
si
m
u
l
a
ti
on
res
u
l
t
s
o
f
heat
di
st
ri
b
u
t
i
o
n
,
(a
)
St
37
casi
n
g,
(
b
)
PVC
casi
n
g
In
th
e sim
u
lati
o
n
, water is the o
u
t
er bou
ndary co
nd
itio
n
t
o
create a realistic en
v
i
ron
m
en
t. Hav
i
ng
bet
t
e
r heat
co
n
duct
i
v
i
t
y
, St
3
7
casi
ng ca
n easi
l
y
di
ssi
pat
e
the heat
t
o
i
t
s
sur
r
o
u
ndi
n
g
.
Ho
we
ver
,
usi
n
g PV
C
casing, hi
ghe
r
heat is held
up in
the
windi
n
g, although still
in a safe
level for PVC
material because it is
un
de
r 80
o
C
or
35
3 K.
4.
CO
NCL
USI
O
N
The
per
f
o
r
m
a
nce m
easurem
ent
o
f
a c
o
m
p
act
gene
rat
o
r –
h
y
d
r
o
t
u
r
b
i
n
e sy
st
em
has bee
n
di
scuss
e
d i
n
th
is p
a
p
e
r.
The syste
m
is b
u
ilt b
y
e
m
p
l
o
y
i
n
g
t
h
e con
s
tr
uctio
n
of in
teg
r
ated
stato
r
with
ind
i
v
i
du
al teeth
and
yo
k
e
as well as u
tilizin
g
tu
rb
i
n
e’s
b
l
ad
e circu
m
feren
ce as th
e ro
to
r
o
f
th
e
g
e
n
e
rator.Th
e in
fl
u
e
n
ces
o
f
the typ
e
of
t
h
e
st
at
or
i
nne
r ca
si
n
g
m
a
t
e
ri
al
, PVC
a
n
d
m
i
l
d
st
eel
St
37
, t
o
t
h
e
g
e
nerat
o
r
pe
rf
or
m
a
nce ha
ve al
so
bee
n
in
v
e
stig
ated
. A n
o
t
eworth
y resu
lt is th
e o
ppo
site v
a
lu
es
o
f
flu
x
d
e
nsity i
n
th
e air g
a
p
an
d
in
t
h
e slo
t
s, wh
ere
th
e lattest affectin
g
th
e ou
tpu
t
power. As
d
e
m
o
n
s
trat
ed
by
t
h
e e
x
p
e
ri
m
e
nt
resul
t
s
,
gene
rat
o
r
usi
n
g P
V
C
casi
ng
gi
ves m
u
ch
bet
t
e
r
per
f
o
rm
ance i
n
m
a
ny
aspect
s, i
n
c
l
udi
n
g
t
h
e
p
o
w
e
r, t
h
e
wa
vef
o
r
m
, and t
h
e ha
r
m
oni
c
cont
e
n
t
.
Due
t
o
c
o
nf
or
m
i
ng t
o
t
h
e t
u
rbi
n
e ca
paci
t
y
, t
h
e
gene
rat
o
r
becom
e
s u
nde
r
u
se
d si
nce
o
n
l
y
30
0
W
o
f
p
o
wer sho
u
l
d
b
e
g
e
n
e
rated
ou
t o
f
400
0
W.
Fu
ture wo
rk
is still n
eed
ed
to
match
th
e tu
rb
i
n
e cap
acity, b
y
u
s
in
g
an
op
en
fl
u
m
e
tu
rb
in
e with
the h
ead
m
o
re th
an
2
m
e
ters. Hen
ce, th
e power eq
u
a
lity b
e
tween
th
e tu
rb
in
e an
d
t
h
e ge
ne
rat
o
r c
a
n
be ac
hi
eve
d
.
ACKNOWLE
DGE
M
ENTS
This work wa
s supporte
d
by Re
search Fund from
Decentralization
DIKTI L
PPM
ITB 2015
(Band
ung
In
sti
t
u
t
e of Techn
o
l
o
g
y
) an
d In
donesian
In
stitu
te
o
f
Scien
ces (LIPI).
REFERE
NC
ES
[1]
S. P. Adhau
,
R
.
M. Mohari
l,
and
P. G. Adhau. "Mini-h
y
dro
pow
er gen
e
ration on
existing irr
i
gation projects: C
a
se
stud
y
o
f
Indian s
ites,"
Ren
e
wable and Sustainab
le Energy Reviews,
Vol. 16
, No. 7,
pp. 4785–4795
,
2012.
[2]
C. h. Corp. "Ver
y
Low Head (V
LH) Turbin
e,"
11
th
Annual Pow
e
r of Water Conference
, Ontar
i
o, 2
011.
[3]
S. J. William
s
on, B. H. Stark
,
and
J. D. Booker
.
"Perform
ance
of a low-head p
i
co-h
y
d
ro Turgo
turbine,"
Applied
Energy,
Vol. 10
2, pp
. 1114-112
6, 2013
.
[4]
A. Muis, and P. Sutikno. "Design and Si
mulation of Very
Lo
w Head Axial H
y
draulic Turb
ine with Variation
of Swirl
Velo
ci
t
y
Cr
iter
i
on,"
In
ternational Jour
nal of
Flu
i
d Ma
chinery and
System,
Vol. 7
,
No. 2,
pp. 68-79
, 2014
.
[5]
A.
Date,
and A. Akbarzadeh.
"I
nvestigat
ing the
Potentia
l for Using a Sim
p
le W
a
ter Rea
c
tion
Turbine for Po
wer
Production from
Low Head H
y
dr
o Resources
,"
Energy Conversion and Manag
ement,
Vol. 66, pp.
257-270, 2013
.
[6]
J. Senior, P. Wiemann, G. Müller. "T
he Rotar
y
Hy
drau
lic Pressur
e
Machine
for Ver
y
Low Head Hy
dropower Sites
,
"
Proc. Hidro
e
ner
g
ia, S
e
ssion 5B(
1
)
,
Slovenia,
Eur
opean, 2008.
[7]
D. Abhijit, D. Ashwin, A. Akbarzadeh
, and F. Alam
. "E
xam
i
ning the Potentia
l of Split Reac
tion
W
a
ter Turbine f
o
r
Ultra-Low Head
H
y
dro Resources,"
Evolving En
ergy-IEF In
tern
ational En
ergy
Congress
(
I
EF-IEC 2012)
,
Sy
dney
,
Australia, pp
. 19
7 – 204
, 2012
.
[8]
K. V. Alexander, and E.
P. Gid
d
ens. "Microh
y
d
r
o: Cost-effec
tiv
e, Modular S
y
stems for Low
Heads,"
Ren
e
wable
Energy,
Vol. 33, No. 6
,
pp
. 1379-
1391, 2008
.
Water
Water
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1252 –
1261
1
260
[9]
S. J. Willi
am
son, B. H
.
Stark
,
an
d J. D. Booker
.
"Perform
ance of
a Low-Head Pi
co-H
y
d
ro
Turgo
Turbine,"
App
l
i
e
d
Energy,
Vol. 10
2, pp
. 1114-112
6, 2013
.
[10]
K. Trin
adha, A.
Kumar, and K.
S.
Sandhu. "Stu
d
y
of Wind
Tur
b
ine based
SEIG under Balanced
/Unbalan
ced
Lo
ads
and Excitation,"
International
Jo
urnal of Electrical
and Computer Engineering (
I
JECE)
,
Vol. 3, No. 2, pp. 353-37
0,
2012.
[11]
M
.
Anju, and
R
.
Raj
a
s
e
kar
a
n.
"P
ower S
y
s
t
em
S
t
abil
it
y
Enhan
c
ement and Improvement
of LVR
T
Capab
ility
of
a
DFIG Based
Wind Power Sy
stem
by
Using SMES and SFCL,"
International
Jo
urnal of
Electrical and Computer
Engineering (
I
JECE)
,
Vol. 3, No. 5
.
pp
. 618-62
8, 2013
.
[12]
E. Kurt,
H. Gör,
and M
.
Dem
i
rt
as
. "Theor
eti
cal
and Exper
i
m
e
nt
al Anal
ys
es
of a
S
i
ngle P
h
as
e P
e
rm
anent M
a
gn
et
Generator (PM
G
) with Multip
le Cores Havi
n
g
Axial and R
a
dia
l
Direc
t
ed
Fluxes,"
Energy Conversion and
Management,
V
o
l. 77
, pp
. 163-1
72, 2014
.
[13]
G. C.
Lee, S.
M. Kang,
a
nd
T. U. Jung. "Permanent Magn
et Stru
ct
ur
e Design of Outer
Rotor Radial Flux
Permanent Mag
n
et Gen
e
rator fo
r Reduction
Cogging Torqu
e
w
ith Design of
Exp
e
riment,"
Intern
ation
a
l
Conferen
ce
on Electr
i
cal M
a
chines
and S
y
s
t
ems,
Busan, Korea, pp
. 315-3
19, 2
013.
[14]
P.
Wannakarn
, T. Tanmaneeprasert,
N
.
Rugth
a
icharoen
cheep, and S. Ne
dphogr
aw. "Design
an
d Construction
of
Axial Flux Per
m
anent Magnet Generator for
Wind Turb
ine
Generated DC Voltage
at Rated Power 1500
W,"
International Co
nference on Electr
ic Utility Deregulation and Restruct
uring and
Power Technologies (
D
RPT)
,
pp.
763-766, 2011
.
[15]
S. M. Mohiuddin, and M
.
R. I. Shei
kh, "Stabilization of Solar
-
Wind H
y
br
id
Power S
y
stem
b
y
Using SMES,"
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
,
Vol. 4, No. 3
,
pp
. 351-35
8, 2014
.
[16]
A. R. Bahm
an,
E. Alia
lhosseini
,
"Cha
nge in har
dness,
y
i
eld st
rength and UTS of welded join
ts produced in St3
7
grade s
t
ee
l,"
Ind
i
an Journal o
f
S
c
ience and
Techn
o
logy,
Vol. 3, No. 12
, pp
. 1162-
1164, 2010
.
[17]
R. A. R
a
hbar
,
and A. H. Zak
e
ri. "
M
echanical P
r
operties and
Corrosion Re
sistanc
e
of No
rmal Strength and
High
Strength Steels in
Chloride Solution,"
Journal of
Naval Arch
itect
ure and Marine
Engineering,
Vo
l. 3
,
pp. 93-100
,
2010.
[18]
R. L. Lehman,
and M.
G. McLaren, "Mech
anical
Engineering
Handbook,"
In Material.
F
.
Kreith
, Ed. ed Bo
ca
Raton: CRC Press LLC, 1999
.
[19]
I. Bold
ea,
and S. A. Nasar
.
"
T
he
Inductio
n
Machine Handbook
,"
Florida, CRC Pr
ess, 2000.
[20]
P. Salminen. "Fractional Slo
t
Per
m
anent Magnet
S
y
nchr
onous Motors For Low Speed A
pplicatio
ns," Lappeenran
t
a
University
of
Technolog
y
Lapp
eenr
anta, Finland
,
PhD Thesis, 20
14.
[21]
C. S
c
hleg
el
, A.
Hos
l
, and S
.
Diel.
"Det
ai
led
Loss Modelling
of Vehicl
e Gearboxes,"
7
th
M
odeli
ca Confer
e
n
ce,
Como, Italy
,
pp
.
434-113, 2009
.
[22]
L. C. Company
.
"Engin
eering
Cookbook:
A Handbook for the Mechanical Designer
,
"
Second Edition
ed
.
Springfield
, MO, 1999
.
[23]
S.
E
r
iksson,
A.
Solum,
M.
L
e
ijon,
a
nd H. Bernh
o
ff, "Simulation
s
and Expe
r
i
ments on a 12 kW
Direct Driv
en P
M
S
y
nchronous Generator
for Wind
Power,"
Renew
able Energy,
Vo
l. 33
, pp
. 674-68
1, 2008
.
[24]
J. Y. Choi, S. M
.
Jang,
a
nd B. M. Song, "Design
of a Direct-Coup
led Ra
d
i
al-Flux
Permanent Mag
n
et Generator
f
o
r
Wind Turbines
,"
Power and
En
ergy Society Gen
e
ral Meeting
,
201
0 IEEE
.
Minneapolis, MN, pp. 1
-
6, 2010
.
[25]
T. F
.
Chan,
L
.
L
.
L
a
i,
and
L.
T
.
Yan, "P
erform
a
n
ce of
a
Thre
e-P
h
as
e AC Gener
a
tor W
ith Ins
e
t
NdF
e
B P
e
rm
anent
-
Magnet Ro
tor,"
IEEE Transactio
n on En
ergy Con
version,
Vol. 1,
No. 19, pp. 88-9
4
, 2004
.
BIOGRAP
HI
ES
OF AUTH
ORS
Pudji Irasari r
e
ceiv
e
d electric
al engineering d
e
gree in 1994
fr
om Brawijay
a
University
and
master degree in
renewable
ener
g
y
in 2003 from Ol
denburg university
.
Curren
t
ly she is a senior
research
er under
research group
of power electro
n
ics and electr
i
c machines
at Research Centr
e
for El
ect
rical
Power and
Mechatr
onics
, Indon
esian Institut
e
of
Sci
e
nces.
Pri
y
ono Sutikno
com
p
leted h
i
s bachelor d
e
gree in
Mechani
cal
Engi
neering
,
Bandun
g Institut
e
of
Techno
log
y
(ITB), in 1976
. He
continu
e
d his master stud
y
in A
u
tomatic Con
t
ro
l ENSM in 1981
and received h
i
s Diplome de Docteur
Engin
i
eur
in 1984 from th
e University
of
de Perpign
a
n,
F
r
ance. His
res
e
arch in
teres
t
an
d com
p
etenc
e
in
clude F
l
uid M
e
c
h
anic
, Turbom
a
c
hiner
y
,
CF
D.
Currentl
y
h
e
is
an As
s
o
ciate
P
r
ofes
s
o
r at
th
e Labor
ator
y
o
f
Fluid Machin
er
y
and Fluid
M
echani
c
s
,
I
T
B.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Perf
or
ma
nce Meas
u
rem
e
nt
of
a
C
o
m
pact
Gene
rat
o
r - H
y
dr
o
T
u
r
b
i
n
e S
y
st
em
(
P
u
d
j
i
Ir
asa
r
i
)
1
261
P
u
ji W
i
di
y
a
n
t
o
finis
h
ed his
bache
l
or degre
e
in techn
i
ca
l en
gineer
ing, M
a
n
d
ala Coll
ege of
Techno
lg
y
,
in
2
011. He is curr
ently
a master
student of Power Gene
r
a
tion S
y
stem at Fluid
M
achiner
y
and
F
l
uid M
echan
ic
s
Lab. I
T
B and
a res
e
arch
er a
t
Res
ear
ch Cen
t
r
e
for E
l
e
c
tri
cal
Power and Mech
atronic, Indonesi
an Institute of Sciences.
Qidun
Ma
ulana
receive
d his bachel
or de
gre
e
in Physics of Enginee
r
ing,
Gadja
h
Mada
Uni
v
ersi
t
y
i
n
2
0
1
0
, a
n
d fi
ni
s
h
ed hi
s m
a
st
er
degree i
n
Mechanical Enginee
r
ing, Ga
dja
h
M
a
da U
n
i
v
e
r
si
t
y
i
n
20
13
. C
u
rre
nt
l
y
he i
s
a ju
ni
o
r
resea
r
c
h
er at
R
e
searc
h
C
e
nt
re
fo
r
Electrical Power and
Mech
atro
n
i
c,
In
don
esian
Institu
te o
f
Scien
ces. His cu
rren
t
researc
h
is
to inve
stigate the
flow c
h
ar
a
c
t
e
ri
st
i
c
of
p
r
opel
l
e
r
hy
dr
o
t
u
r
b
i
n
e
usi
n
g
com
put
at
i
onal
fl
ui
d
dy
nam
i
cs.
Evaluation Warning : The document was created with Spire.PDF for Python.