Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 1
,
Febr
u
a
r
y
201
6,
pp
. 26
~33
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
1.8
632
26
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Control of Power and Voltag
e of
Solar Gri
d
Connected
Boucetta Abd Allah
*
,
L
a
be
d
Djamel
**
Department o
f
Electrical Engin
e
ering,
Univ
ersity
of Constantine 1
,
Alger
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
J
u
l 21, 2015
Rev
i
sed
O
c
t 26
, 20
15
Accepted Nov 10, 2015
Renewable energ
y
is high o
n
intern
ational agendas. Curr
ently
,
gr
id-
connected photo
voltaic s
y
stems are a
popular technolog
y
to co
nvert solar
energ
y
in
to e
l
e
c
t
rici
t
y
.
Control
of power inj
ect
ed into
the
grid
, m
a
xim
u
m
power point, high efficiency
,
and lo
w total
harmonic distor
tion of the
currents in
jected
into th
e grid
ar
e th
e
requir
e
ments for inver
t
er
connection
into the grid. Co
nsequently
,
the perform
ance of th
e invert
ers
connect
ed to the
grid
depends largely
on the control
st
rateg
y
applied.
In this
paper the
simulation and
design of grid
connect
ed thr
e
e phase photovoltaic s
y
stem
using Matlab/S
i
mulink has examined
. Th
e
proposed s
y
stem consists
photovoltaic panels, boost and
inverter
the PV sy
stem convert the su
n
irradiation
into
direct cur
r
ent,
thereaf
ter
we h
a
ve used
a boost to
track
th
e
maximum powe
r
point of th
e P
V
s
y
stem,
three-
phase inv
e
rter and LC ou
tput
filte
r. A VOC c
ontrol strat
e
g
y
based
on the phase shifting of the invert
e
r
output voltag
e
with respect to the grid
voltage. Th
e proposed contr
o
l strateg
y
requires f
e
w har
d
ware and
comp
utation
a
l
resources. As a result,
the inv
e
rter
im
plem
entat
i
on
is sim
p
le,
and
it be
com
e
s an
attr
act
ive solu
ti
on for low
power grid
conn
ect
ed
appli
cat
ion
s
.
Keyword:
Gri
d
-c
on
nect
e
d
Matlab
/
Si
m
u
li
n
k
M
a
xi
m
u
m
pow
er
poi
nt
Pho
t
ov
o
ltaic
VOC
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Bo
u
cetta Abd
Allah
,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Engi
neeri
n
g
,
Uni
v
e
r
si
t
y
of
C
o
nst
a
nt
i
n
e
1,
Ro
ad el Bey, C
o
n
s
tan
tin
e, 2500
0,
A
l
g
e
r
i
a.
Em
ail: boucetta_abdallah@yahoo.c
o
m
1.
INTRODUCTION
In rece
nt years
,
the use of re
newable ene
r
gy resour
ces in
Alg
e
ria in
stead
of p
o
llu
tan
t
fo
ssil fu
els h
a
s
in
creased
.
Photo
v
o
ltaic g
e
n
e
ratio
n is
b
e
comin
g
in
creasing
l
y i
m
p
o
r
tan
t
as th
e m
o
st im
p
o
r
tan
t
po
ten
tial in
A
l
g
e
r
i
a
is
th
e so
la
r
en
e
r
g
y
[
1
-5
].
(Ho
w
ev
er
th
e
co
s
t
is
th
e
mo
s
t
is
s
u
e
)
The m
o
st
i
m
port
a
nt
of t
h
e M
e
di
t
e
rra
nea
n
bas
i
n:
•
Th
e
16
9.440
TW
h / year
.
•
5,
00
0 t
i
m
es t
h
e Al
ge
ri
an
el
ect
ri
ci
t
y
cons
um
pt
i
on.
•
60
t
i
m
e
s t
h
e co
nsum
pt
i
o
n
o
f
t
h
e E
u
r
o
pe
(estimated at 3,000 T
W
h / year)
[6].
As a rene
wa
bl
e reso
urce a
n
d
si
nce i
t
don
’t
causes f
u
el
cons
um
pt
i
on, m
a
i
n
t
e
nan
ce, p
o
l
l
u
t
i
on, a
n
d
e
m
itting noise
com
p
ared with
other alternati
v
es use
d
i
n
p
o
wer app
lication
s
[7
]. Man
y
co
un
tries are tryin
g
t
o
increase the
pe
netration of re
newa
ble ene
r
gy. The US
plans to reac
h 20% of electricity de
m
a
nd wit
h
solar
tech
no
log
i
es by
2
030
[
8
].
A
l
g
e
r
i
a
also
pro
m
ised
to
ach
i
e
v
e
4
0
% p
o
w
e
r
g
e
n
e
r
a
tio
n
fro
m
r
e
n
e
w
a
b
l
e en
erg
y
b
y
2030
[
9
].
The
pri
n
ci
pal
com
pone
nt
f
o
r c
o
nnect
i
n
g
rene
wa
bl
e ener
gy
so
u
r
ces
t
o
t
h
e
gri
d
i
s
t
h
e p
o
we
r
electronics i
n
terface. T
h
is inte
rface
has t
w
o
main functions
: conversion
of direct c
u
rrent
powe
r to alternative
cur
r
ent
p
o
we
r
fo
r t
h
e
g
r
i
d
co
nnect
i
o
n a
n
d e
x
t
r
act
i
n
g t
h
e
m
a
xi
m
u
m
powe
r
fr
om
t
h
e PV
m
odul
es.
Wh
en
con
n
ect
ed
to a
p
o
wer
n
e
two
r
k
,
t
h
e PV system
s
m
u
st
mee
t
strin
g
e
n
t
p
o
wer qu
ality
requ
irem
en
ts set b
y
th
e u
tility
in
clu
d
i
ng
low
to
tal h
a
rm
o
n
i
c
d
i
sto
r
tion
(THD) and
fast
d
y
n
a
m
i
c resp
on
se [10
]
.
In th
is
reg
a
rd
,
we
h
a
v
e
stud
ied
an
d sim
u
late
d
a
grid
-c
onne
c
ted power sys
t
e
m
. The syste
m
is com
posed of PV
arrays, DC/DC
bo
o
s
t
,
a t
h
ree l
e
v
e
l inv
e
rt
er, a LC filter and
a th
ree ph
ase
grid
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
2
6
– 33
27
2.
POWER S
Y
S
TEM DE
SCRIPTION
Because of the
photovoltaic array c
onvert s
o
lar irradiation into dc
c
u
rre
n
t. The dc/
d
c boost aim
to
t
r
ack m
a
xi
m
u
m
power
poi
nt
o
f
t
h
e P
V
sy
st
em
. The t
h
ree
-
l
e
vel
i
n
ve
rt
er
i
s
co
nt
r
o
l
l
e
d
b
y
hy
st
eresi
s
curre
n
t
co
n
t
ro
l and
LC filter is inserted
t
o
elim
in
a
t
e th
e
h
a
rm
o
n
i
cs con
t
ain
e
d
i
n
bo
th th
e curren
t
and vo
ltag
e
o
f
th
e
i
nve
rt
er out
p
u
t
.
Fi
gu
re
1.
Di
a
g
r
a
m
of
gri
d
-c
o
n
n
ect
ed
p
hot
o
v
o
l
t
a
i
c
sy
st
em
wit
h
t
h
ree-l
e
vel
i
nve
rt
er
3.
MO
DUL
ATI
O
N
3.
1.
Photovoltaic Generator Model
Th
e
b
a
sic un
it o
f
a PV system is th
e so
lar cell.
The cu
rre
nt
an
d p
o
w
er
pr
o
duces
by
a
n
i
n
di
vi
d
u
al
so
lar cell typ
i
cally b
e
tween
1 an
d 2
W
[1
].
Th
e eq
u
i
v
a
len
t
circu
it is shown
i
n
Fi
g
u
re
2. It is con
s
titu
t
e
d
of a
l
i
ght
ge
nerat
e
d
curre
nt
so
ur
ce
, a seri
es resi
st
ance, an
d a pa
r
a
l
l
e
l
di
ode [2]
.
The gr
o
u
p
e
d
of P
h
ot
o
vol
t
a
i
c
cel
l
s
pr
o
duct
a
ph
ot
ov
ol
t
a
i
c
m
odu
l
e
s, w
h
i
c
h a
r
e
com
b
i
n
ed i
n
paral
l
e
l
an
d se
ri
es t
o
pr
ovi
de
t
h
e desi
red
o
u
t
p
ut
po
we
r.
Whe
n
t
h
e number
of cells in
series is Ns
, a
nd t
h
e
n
u
m
b
e
r o
f
cells in
p
a
rallel is Np
, th
e relatio
n
s
h
i
p
bet
w
ee
n t
h
e
o
u
t
put
c
u
r
r
ent
an
d
vol
t
a
ge
i
s
gi
v
e
n
by
:
Fig
u
re
2
.
Circuit o
f
a so
lar cel
l
0
..
ex
p
1
sP
V
s
P
V
PV
P
sh
VR
I
V
R
I
II
I
AR
(
1
)
.
.
(2
)
I
pv
:
i
s
t
h
e
ph
ot
ocu
rre
nt
i
n
(
A
)
.
I
0
: th
e
d
i
od
e satu
ration
cu
rrent (A).
K: th
e B
o
ltzm
a
n
n
con
s
tan
t
23
1
1.
38
10
JK
.
q: the electronic cha
r
ge
19
1.
6
0
2
1
0
C
T: the cell temperat
ure
(K),
n
:
th
e
d
i
od
e ideality facto
r
R
Sh
R
S
V
DC
I
p
I
PV
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
of
Po
w
e
r a
n
d
V
o
l
t
a
ge
of
S
o
l
a
r
Gri
d
C
o
n
n
ect
ed
(
B
oucet
t
a
A
b
d
al
l
ah)
28
Fi
gu
re
3.
Si
m
u
l
i
nk m
odul
e
o
f
PV
pa
nel
i
n
M
a
t
l
a
b/
Sim
u
l
i
n
k
3.
2.
Mo
del
o
f
the Boos
t DC
-
D
C
Co
nver
ter
Th
e DC/ DC
co
nv
erter is u
s
ed
to
track
m
a
x
i
m
u
m
power
poi
nt of the
PV syste
m
. There are two
hardware t
o
pol
ogies for MPPT,
one
-stage
a
n
d two-sta
g
e PV system
s. Because it
offers
an a
dditional
degree
of
free
dom
i
n
t
h
e o
p
erat
i
on
o
f
t
h
e sy
st
em
,
we ha
ve se
lected the two-stage PV ene
r
g
y
co
nv
er
sion
syste
m
. To
red
u
ce hi
gh f
r
e
que
ncy
ha
rm
oni
cs we ha
ve con
n
ect
ed a cap
aci
t
o
r bet
w
ee
n
PV ar
ray
and t
h
e b
oost
ci
rc
ui
t
.
The
co
nfigu
r
ation
o
f
th
e
bo
o
s
t ci
rcu
it and
its con
t
ro
l syste
m
ar
e illu
strated
in fig
u
re 4. DC
-DC con
v
e
rters b
o
o
s
t
step
-u
p th
e
PV
v
o
ltag
e
to
t
h
e lev
e
l
o
f
th
e allo
wab
l
e m
a
x
i
m
u
m
l
i
n
e
voltag
e
and
to
t
h
e stab
le requ
ired
DC
lev
e
l withou
t sto
r
ag
e elem
en
t
s
.
Fi
gu
re 4.
Si
m
u
l
i
nk m
odul
e
o
f
bo
ost
i
n
M
a
t
l
a
b/
Si
m
u
l
i
nk
3.
3.
The Inverter
The
DC
powe
r from
the PV s
y
ste
m
is conve
r
ted t
o
A
C
p
o
w
e
r b
y
th
e
in
v
e
r
t
e
r
th
a
t
w
e
h
a
v
e
in
s
e
r
t
ed
to the gri
d
. T
h
e
m
odel for a three-phase inverter
gri
d
-conn
ected
is presen
ted
in
Fi
g
u
re 1
wh
ich
shows th
e
powe
r circuit
of a three
-
phas
e inve
rt
er grid-connected, wit
h
IGBT s
w
itche
s [3]. T
o
eliminate the ha
rmonics
co
n
t
ain
e
d
i
n
bo
th
curren
t
and vo
ltag
e
o
f
th
e
in
v
e
rter
o
u
t
pu
t, an LC
filter is in
serted
after th
e
d
c
-ac inv
e
rter i
n
or
der
.
Fi
gu
re
5.
Sc
he
m
a
t
i
c
di
agram
of
g
r
i
d
-co
n
n
ect
ed t
h
ree-l
e
vel
i
nve
rt
er
2
C
onn2
1
C
onn1
T
S
U
out
I
pv
panel
v
+
-
VM
1
25
T
e
m
per
at
ur
e
R1
In
s
o
l
a
ti
o
n
C1
s
-
+
i
3
I
2
2
i
1
K
1
K
*
1
K
2
K
*
2
K
3
K
*
3
V
dc
L
L
L
Gr
id
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
2
6
– 33
29
Am
ong t
h
e si
x
swi
t
c
hes use
d
i
n
t
h
e t
o
p
o
l
o
gy
of Fi
g
u
r
e
1, t
h
ree of t
h
em
are cont
r
o
l
l
e
d i
n
d
e
pen
d
e
n
t
l
y
wh
ereas t
h
e con
t
ro
l of th
e rest
is in
terd
ep
enden
t
[3
].
Th
e i
n
tern
ation
a
l stand
a
r
d
s su
ch as
I
EEE15
47
, EN
610
00-
3-
2 and I
E
C
6
1
727
p
r
esen
t t
h
e stan
d
a
rd
s
d
e
fi
n
e
d
b
y
th
e g
r
i
d
au
t
h
orities. Acco
rd
ing
t
o
th
ese stan
d
a
rd
s,
g
r
i
d
in
teractiv
e in
v
e
rter mu
st op
erate at
u
n
ity
harm
oni
c com
p
o
n
e
n
t
s
of t
h
e i
nvert
er a
n
d
po
wer fact
or,
and t
h
e o
u
t
p
ut
cur
r
ent
an
d
/
or t
o
t
a
l
harm
oni
c
s
d
i
sto
r
tion
of this cu
rren
t (THD%) m
u
st b
e
limited
[4
].
4.
CONTROL SYSTEM
4.
1.
MPPT
The
out
put
v
o
l
t
a
ge t
h
at
c
o
r
r
e
s
po
n
d
s t
o
t
h
e
m
a
xim
u
m
out
put
p
o
we
r
of t
h
e P
V
a
rray
v
a
ri
es wi
t
h
t
h
e
voltage ac
ross
the array, t
h
e irra
diance a
nd
cell te
m
p
erat
u
r
e. MPP track
i
ng
is th
e
technique t
h
at adjust
s the
out
put
vol
t
a
ge
of t
h
e
PV a
r
r
a
y
i
n
or
der t
o
ext
r
act
t
h
e m
a
xi
m
u
m
avai
l
a
bl
e p
o
we
r at
any
cha
nge i
n
sol
a
r
irradiation or cells te
m
p
erature
.
The
r
e are
a num
ber
of
diffe
re
nt approaches for MPPT. They are the ope
n
ci
rcui
t
v
o
l
t
a
ge
m
e
t
hod
, c
o
nst
a
nt
v
o
l
t
a
ge
m
e
t
h
o
d
,
sh
ort
ci
r
c
ui
t
m
e
t
hod,
p
e
rt
ur
b a
n
d
o
b
s
e
rve
m
e
t
hod a
n
d
t
h
e
in
crem
en
tal co
n
d
u
c
tan
c
e m
e
t
h
od
[5
].
4.
2.
Inver
t
er Control
Fig
u
re 5
p
r
esen
ted
t
h
e d
i
agram
o
f
th
e
inv
e
rt
er
co
n
t
ro
l. Th
e
ob
j
ective o
f
t
h
e
con
t
ro
l
is
to
regu
late
th
e
in
pu
t power to
th
e grid.
Fi
gu
re 6.
The
bl
oc
k di
ag
ram
of
V
O
C
wi
t
h
d
ecou
p
l
i
n
g
a
n
d feed
f
o
r
w
ar
d
.
.
:
dr
e
f
d
q
r
e
f
qr
e
f
q
d
r
e
f
IV
V
P
A
IV
V
Q
5.
SIMULATION RESULTS
Tabl
e 1. Param
e
t
e
rs
o
f
t
h
e gri
d
-c
o
nnect
e
d
i
n
vert
er
Para
m
e
ter Sy
m
bol
Value
Unit
Gr
id voltage
Vn
400
V
Gr
id fr
equency
f
50
Hz
Filter inductance
L
18
m
H
Filter c
a
pacitor
C
640
m
F
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
of
Po
w
e
r a
n
d
V
o
l
t
a
ge
of
S
o
l
a
r
Gri
d
C
o
n
n
ect
ed
(
B
oucet
t
a
A
b
d
al
l
ah)
30
The M
a
t
l
a
b/
Si
m
u
li
nk h
a
s be
en u
s
ed
fo
r si
m
u
l
a
t
i
ng t
h
e
p
r
o
p
o
sed c
o
nt
r
o
l
schem
e
. The sim
u
l
a
t
i
on
t
i
m
e
was set
f
o
r
2.
2 sec
o
n
d
s
.
At
t
h
e
be
gi
n
n
i
n
g
o
f
si
m
u
l
a
t
i
ons, t
e
m
p
erat
u
r
e an
d s
o
l
a
r i
rra
di
at
i
on
are
su
p
pos
ed
eq
u
a
l to
th
ei
r stan
d
a
rd
v
a
lu
es (25
o
C
an
d10
00W
/m
2
)
. Figure 7
sho
w
s t
h
at fro
m
in
itial
c
o
nd
itio
ns, th
e
o
u
t
p
u
t
po
we
r, v
o
l
t
a
ge
, cur
r
e
n
t
of
PV
array
an
d i
rra
di
at
i
on.
Fi
g
u
re
8 sh
o
w
s t
h
e c
u
r
r
ent
,
v
o
l
t
a
ge
and
p
o
we
r i
n
je
ct
ed t
o
th
e grid. Th
e
Si
m
u
latio
n
resu
lts of t
h
e inverter
o
u
t
pu
t Vo
ltag
e
after
filterin
g
wh
ich giv
e
a t
o
tal h
a
rm
o
n
i
c
d
i
sto
r
tion
(THD) 4
%
after filterin
g
b
y
th
e LC filter, Th
is percen
tag
e
is with
in
th
e
li
m
its
o
f
4
%
sp
eci
fied
b
y
the IEC. The freque
ncy can be calculated yielding the va
lu
e 5
0
.20
(Hz). Th
is v
a
l
u
e is with
in
th
e limits
o
f
50±1 s
p
ecified by the
IEC
.
Fig
u
res
9
and
1
0
illu
strate a
si
m
u
latio
n
of a step
ch
ang
e
in so
lar irrad
i
ati
o
n
0
kW
/m
2
to 1
kW/m
2
at
ti
m
e
t = 0
.
5 s. i
t
is clearly shown th
at th
e power,
v
o
l
t
a
ge
an
d c
u
r
r
ent
o
f
t
h
e
ne
w M
P
P
are
rapi
dl
y
reac
he
d.
The p
r
op
ose
d
si
ngl
e st
age
,
t
h
ree-
pha
se t
h
ree
-
l
e
vel
g
r
i
d
co
n
n
ect
ed i
n
vert
e
r
i
s
m
odel
e
d an
d si
m
u
l
a
t
e
d
with
MATLAB/Si
m
u
lin
k
.
(A
)
(B)
(C)
(D
)
Fi
gu
re
7.
I
rra
di
at
i
on P
V
o
u
t
p
u
t
, cu
rre
nt
,
vol
t
a
ge a
n
d
p
o
w
er
(A
)
(B)
0
0.
5
1
1.
5
2
2.
5
99
9
9
99.
5
100
0
10
00.
5
100
1
t(s
)
I
r
r
adi
at
i
on (
K
W
/
m
2
)
0
0.5
1
1.5
2
2.
5
-0
.5
0
0.5
1
1.5
t(
s
)
Ib
o
o
s
t
(
A
)
0
0.
5
1
1.5
2
2.
5
0
50
10
0
15
0
20
0
25
0
30
0
t(
s
)
V
boo
s
t
(
V
)
0
0.
5
1
1.5
2
2.
5
-5
0
0
50
10
0
15
0
20
0
25
0
t(
s
)
P(
W
)
2
2.02
2.0
4
2.
06
2.
08
2.1
-1
0
-5
0
5
10
t(
s
)
I(
A
)
2
2.
02
2.04
2.06
2.08
2.1
-
500
0
500
t(s
)
U(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
2
6
– 33
31
(C)
Fi
gu
re
8.
C
u
re
nt
,
vol
t
a
ge
a
n
d
p
o
we
r i
n
ject
e
d
t
o
g
r
i
d
(A
)
(B)
(C)
(D
)
Fi
gu
re
9.
P
V
o
u
t
p
ut
s
beha
vi
o
r
t
o
war
d
s
st
ep
chan
ge i
n
s
o
l
a
r
i
rra
di
at
i
o
n
.
I
r
r
a
di
at
i
on,
c
u
r
r
e
n
t
,
vol
t
a
ge
a
n
d
po
we
r
(A
)
(B)
0
0.5
1
1.
5
2
2.5
0
2000
4000
6000
8000
1
0000
1
2000
t(s
)
P&Q (
W
)
Q
P
0
0.
5
1
1.
5
2
2.5
0
200
400
600
800
1
000
t(s
)
I
r
r
a
d
i
at
i
on (
W
/
m
2)
0
0.
5
1
1.
5
2
2.
5
-0
.5
0
0.
5
1
1.
5
t(s
)
I
boo
s
t
(
A
)
0
0.5
1
1.
5
2
2.
5
0
50
100
150
200
250
300
t(s
)
V
boo
st
(
V
)
0
0.
5
1
1.
5
2
2.5
-5
0
0
50
10
0
15
0
20
0
25
0
t(s
)
P (
W
)
2
2.
02
2.
0
4
2.
06
2.
08
2.
1
-1
0
-5
0
5
10
t(s
)
I(
A
)
2
2.
02
2.0
4
2.
0
6
2.
0
8
2.
1
-50
0
0
50
0
t(
s
)
U(
V
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
C
ont
r
o
l
of
Po
w
e
r a
n
d
V
o
l
t
a
ge
of
S
o
l
a
r
Gri
d
C
o
n
n
ect
ed
(
B
oucet
t
a
A
b
d
al
l
ah)
32
(C)
Fig
u
r
e
10
. C
u
rr
en
t, vo
ltag
e
an
d pow
er inj
e
cted
to
grid
after ch
ang
e
i
n
so
lar irrad
i
ation
6.
CO
NCL
USI
O
NS
To c
o
nnect a
photovoltaic syste
m
to grid, couple
parameters ha
ve
to
be taki
ng i
n
to account: the
m
a
xim
u
m
pow
er ge
nerat
i
o
n,
cont
rol
o
f
p
o
w
er i
n
ject
e
d
i
n
t
o
t
h
e gri
d
, hi
gh
effi
ci
ency
, a
n
d
l
o
w t
o
t
a
l
har
m
oni
c
di
st
ort
i
o
n o
f
t
h
e cu
rre
nt
s. I
n
t
h
i
s
paper
,
t
h
e cont
r
o
l
for th
ree-lev
e
l grid-conn
ected
pho
tov
o
ltaic in
v
e
rter h
a
s
b
een d
e
m
o
n
s
trated
and
sim
u
lated
.
Th
rou
g
h
si
m
u
latio
n
,
it is ob
serv
ed
th
at
th
e system
co
m
p
le
tes th
e m
a
x
i
m
u
m
po
we
r poi
nt
t
r
a
c
ki
n
g
,
t
h
e fre
q
u
ency
o
f
vol
t
a
ge
a
n
d
cu
rren
t
is with
in th
e li
mits sp
ecified
b
y
th
e
IEC.
REFERE
NC
ES
[1]
Miro Zeman
,
Ph
otovoltaic S
y
stems,
Delft Univ
er
sity
of
Technolo
g
y
.
[2]
Djaafer
L
a
li
li
⇑
, Adel Mellit 1
,
Nabil
Lourci, B
oubeker Med
j
ah
ed
, Ch
aban
e Bo
ubakir, State f
e
edback
control and
variab
le step size MPPT algorithm of thr
ee-
lev
e
l grid-
c
onnected
photovoltaic inverter
,
Solar Energy,
98
, (201
3),
561–571.
[3]
Mahdi Oloumi
Bay
g
i, Reza Gh
azi, Mohammad
Monfared, Apply
i
ng the min-
projection strateg
y
to improve the
trans
i
en
t P
e
rfor
m
ance of
the
thr
ee-phas
e
grid-
c
o
nnect
ed inv
e
rt
er,
ISA Transaction
s
, 53, (2014), 11
31–1142.
[4]
Necm
i Altin
, Sa
ban Ozdem
i
r,
T
h
ree-phase
thr
e
e
-
leve
l grid
int
e
r
act
ive
invert
er
with fuz
z
y
log
i
c
based m
a
xim
u
m
power point tr
acking con
t
roller,
Energy Con
version and Manag
ement
, 69
, (2
013)
, 17–26
.
[5]
K.M. Tsang a,
W.L. Chan a,
X. Ta
ng b, PLL-less single stage grid-conn
ect
ed photovoltaic inverter with rapid
maximum power
point tracking
,
Solar Energy
, 97
, (2013)
, 285–29
2.
[6]
Guide to Renew
a
ble En
erg
y
’ Republic of Algeri
a People'
s
Dem
o
crat
ic Ministr
y
o
f
Energ
y
and Mines, 2007 Editio
n
Director
ate
New
and R
e
newab
l
e
Energi
es
.
[7]
A. Ravi a, P.S.
Manoharan b,
⇑
, J. Vijay
Anand
b , Modeling an
d simulati
on of three phase multilevel inverter fo
r
grid conn
ected p
hot
ovolta
ic
s
y
st
e
m
s,
Solar Energ
y
, 85
, (2011
), 28
11–2818.
[8]
Brinkman, G.,
Denholm, P., Drur
y
,
E.
, Margolis, R., Mowers, M, Experime
n
t
al assessment of the wavefor
m
distortion
in gr
id-connected
pho
tovoltaic inst
allations, 2011
.
To
ward a solar-po
w
ered grid
.
I
E
E
E
Pow
e
r Energ
y
Mag
. 9
(3), 24–3
2. Chicco
, G., Sc
hlabbach, J., Spertino, F, 2009
. S
o
lar
Energ
y
83 (
7
), 1026–1039
.
[9]
Radioalg
erie.d
z/.../files/En
ergi
es%20Renouvelab
l
e%20M.%20Rebbah.pdf
[10]
Yihua Hu a, Wenping Cao b, *
,
Bing Ji
c, Jikai
Si d, Xiangping
Chen, New
multi-stage DC/DC converters for grid-
connected
photo
voltaic s
y
stems,
Re
newable
Ener
g
y
74 (2015)
24
7e254.
BIOGRAP
HI
ES OF
AUTH
ORS
Boucetta Abd Allah: Received graduation o
f
licens
e
in El
ectr
i
ca
l Engin
e
ering from
the
University
of Hadje Lakhd
er, B
a
tna, Alger
i
a, in
2
009. the M.S. d
e
gree in
Electrical Engineering
from the Univer
sity
of Had
j
e
Lakhder, Batna, Alge
ria, in 2011
, and the associate
Ph.D. degree in
Ele
c
tri
cal
Eng
i
n
eering
from
the
Universit
y
of
Mentouri, Constan
tine, Alg
e
ria 201
1
.
0
0.5
1
1.
5
2
2.
5
0
200
0
400
0
600
0
800
0
1
000
0
1
200
0
t(
s
)
P&Q
(
W
)
Q
P
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 1, Feb
r
uar
y
20
1
6
:
2
6
– 33
33
Labed Djam
e
l:
is a lec
t
urer in
the Departm
e
n
t
of Ele
c
tri
cal
of Constantine
Universit
y
, He
rece
ived
a
ingen
e
rat
e
in
El
ec
tric
all
from
Universit
y
of
Annaba
, a
Master
in E
l
e
c
t
r
ica
l
Rese
arc
h
Network from
the Ecole Poly
technique of M
ontreal,
CANADA,
and a PhD in Electrical
Engineering fro
m the University
Mentouri Con
s
ta
ntine
.
Te
am
leader l
a
borat
or
y "LGEC". Hi
s
research
activities focus on: Dispersed Gene
r
a
tion; Power flo
w
method for DC networks
integr
ated
into
AC; Anal
ysis of
differ
e
nt
t
y
pe
s
of problem quality
of electric p
o
wer caused b
y
renewabl
e
energ
y
s
our
ces
; V
a
rio
u
s
techn
i
que
s fo
r optim
iz
ing th
e
optimal power
flow.
Evaluation Warning : The document was created with Spire.PDF for Python.