I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
2
,
A
p
r
il
201
7
,
p
p
.
10
3
2
~
10
4
1
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
2
.
p
p
1
0
3
2
-
10
4
1
1032
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
DARE A
lg
o
rith
m: A
New
Securit
y
Protoco
l by Integ
ra
tion o
f
Diff
e
rent
Crypto
g
ra
phic Techniqu
es
J
o
hn
M
a
rk
B
.
E
s
pa
l
m
a
do
,
E
dw
in
R.
Arbo
leda
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter an
d
E
lec
tro
n
ics
En
g
i
n
e
e
rin
g
,
Co
l
leg
e
o
f
En
g
in
e
e
rin
g
a
n
d
In
f
o
rm
a
ti
o
n
T
e
c
h
n
o
lo
g
y
,
Ca
v
it
e
S
tate
Un
iv
e
rsit
y
–
In
d
a
n
g
,
Ca
v
it
e
,
P
h
il
ip
p
i
n
e
s
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
No
v
14
,
2
0
1
6
R
ev
i
s
ed
Mar
8
,
2
0
1
7
A
cc
ep
ted
Mar
25
,
2
0
1
7
Ex
c
h
a
n
g
e
o
f
in
f
o
r
m
a
ti
o
n
b
e
tw
e
e
n
c
o
m
p
u
ter
n
e
tw
o
rk
s
r
e
q
u
ires
a
se
c
u
re
c
o
m
m
u
n
ica
ti
o
n
s
c
h
a
n
n
e
l
to
p
r
e
v
e
n
t
a
n
d
m
o
n
it
o
r
u
n
a
u
th
o
rize
d
a
c
c
e
ss
,
m
o
d
if
ic
a
ti
o
n
a
n
d
d
e
n
ial
o
f
th
e
c
o
m
p
u
ter
n
e
tw
o
rk
.
T
o
a
d
d
re
ss
th
i
s
g
ro
w
in
g
p
ro
b
lem
,
se
c
u
rit
y
e
x
p
e
rts
so
u
g
h
t
w
a
y
s
to
a
d
v
a
n
c
e
th
e
in
teg
rit
y
o
f
d
a
ta
tran
sm
issio
n
.
S
e
c
u
rit
y
A
tt
a
c
k
s
c
o
m
p
ro
m
ise
s
th
e
se
c
u
rit
y
a
n
d
h
e
n
c
e
h
y
b
rid
c
r
y
p
to
g
ra
p
h
ic
a
lg
o
rit
h
m
s
h
a
v
e
b
e
e
n
p
ro
p
o
se
d
to
a
c
h
iev
e
sa
fe
se
r
v
ice
in
th
e
p
ro
p
e
r
m
a
n
n
e
r,
su
c
h
a
s
u
se
r
a
u
th
e
n
ti
c
a
ti
o
n
a
n
d
d
a
ta
c
o
n
f
id
e
n
ti
a
li
ty
.
Da
t
a
se
c
u
rit
y
a
n
d
a
u
th
e
n
ti
c
it
y
a
re
a
c
h
iev
e
d
u
sin
g
th
e
se
a
lg
o
rit
h
m
s.
M
o
re
o
v
e
r,
to
im
p
ro
v
e
th
e
stre
n
g
th
a
n
d
c
o
v
e
r
e
a
c
h
a
lg
o
rit
h
m
’s
we
a
k
n
e
s
se
s,
a
n
e
w
se
c
u
rit
y
a
lg
o
rit
h
m
c
a
n
b
e
d
e
sig
n
e
d
u
si
n
g
th
e
c
o
m
b
in
a
ti
o
n
o
f
d
if
f
e
re
n
t
c
r
y
p
to
g
ra
p
h
ic
tec
h
n
iq
u
e
s.
T
h
is
d
e
sig
n
u
se
s
Dig
it
a
l
S
ig
n
a
tu
re
A
lg
o
rit
h
m
(
DSA
)
f
o
r
a
u
th
e
n
ti
c
k
e
y
g
e
n
e
ra
ti
o
n
,
Da
t
a
En
c
ry
p
ti
o
n
S
tan
d
a
r
d
(DES
)
f
o
r
k
e
y
sc
h
e
d
u
li
n
g
,
a
n
d
A
d
v
a
n
c
e
d
En
c
ry
p
ti
o
n
S
tan
d
a
rd
(A
ES
)
a
n
d
Riv
e
st
–
S
c
h
a
m
ir
–
A
d
le
m
a
n
A
l
g
o
rit
h
m
(RS
A
)
in
e
n
c
r
y
p
ti
n
g
d
a
ta.
T
h
is
n
e
w
se
c
u
rit
y
a
lg
o
rit
h
m
h
a
s
b
e
e
n
p
r
o
p
o
se
d
f
o
r
i
m
p
ro
v
e
d
se
c
u
rit
y
a
n
d
in
teg
rit
y
b
y
in
teg
ra
ti
o
n
o
f
th
e
se
c
r
y
p
to
g
ra
p
h
ic t
e
c
h
n
i
q
u
e
s.
K
ey
w
o
r
d
:
A
E
S a
l
g
o
r
ith
m
DE
S a
lg
o
r
ith
m
Dig
ital
s
i
g
n
at
u
r
e
alg
o
r
it
h
m
H
y
b
r
id
cr
y
p
to
g
r
ap
h
y
R
S
A
e
n
cr
y
p
tio
n
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
E
d
w
i
n
R
.
A
r
b
o
led
a
,
Dep
ar
t
m
en
t o
f
C
o
m
p
u
ter
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
C
o
lleg
e
o
f
E
n
g
in
ee
r
i
n
g
an
d
I
n
f
o
r
m
atio
n
T
ec
h
n
o
lo
g
y
,
C
av
i
te
State
U
n
i
v
er
s
it
y
,
Ma
in
,
I
n
d
an
g
,
C
a
v
ite,
P
h
ilip
p
i
n
es
.
E
m
ail:
ed
w
i
n
.
r
.
ar
b
o
led
a@
cv
s
u
.
ed
u
.
p
h
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
s
cien
ce
o
f
e
n
cr
y
p
ti
n
g
a
n
d
d
ec
r
y
p
ti
n
g
d
ata
u
s
i
n
g
m
at
h
e
m
atic
s
is
ca
lled
cr
y
p
to
g
r
ap
h
y
.
I
t
en
ab
les
u
s
er
s
to
s
to
r
e
p
r
iv
ate
in
f
o
r
m
atio
n
an
d
s
en
d
it
ac
r
o
s
s
m
e
d
iu
m
s
s
u
s
ce
p
tib
le
to
attac
k
s
o
f
h
ac
k
er
s
th
er
eb
y
r
ed
u
cin
g
t
h
e
co
m
p
r
o
m
is
e
i
n
d
ata
s
ec
u
r
it
y
.
T
h
i
s
m
ak
e
s
it
h
ar
d
f
o
r
an
y
u
n
a
u
t
h
o
r
ized
in
ter
f
e
r
en
ce
to
g
ar
b
le
w
it
h
s
en
s
iti
v
e
d
ata.
C
r
y
p
to
g
r
ap
h
y
w
o
r
k
s
w
it
h
t
h
e
u
s
e
o
f
al
g
o
r
ith
m
s
.
A
ci
p
h
er
o
r
c
r
y
p
to
g
r
ap
h
ic
al
g
o
r
ith
m
is
a
m
at
h
e
m
a
tical
f
u
n
ctio
n
u
s
ed
in
t
h
e
p
r
o
ce
s
s
o
f
e
n
cr
y
p
tio
n
an
d
d
ec
r
y
p
tio
n
p
r
o
ce
s
s
.
T
o
h
id
e
co
n
f
id
en
tia
l
in
f
o
r
m
atio
n
,
d
ata
o
r
m
es
s
ag
e
ca
n
b
e
en
cr
y
p
ted
u
s
in
g
k
e
y
s
g
en
er
ated
f
r
o
m
a
w
o
r
d
,
a
n
u
m
b
er
,
o
r
a
p
h
r
ase.
T
h
is
p
lain
tex
t
is
e
n
cr
y
p
ted
to
d
if
f
er
en
t
cip
h
er
tex
t
s
u
s
i
n
g
d
i
f
f
er
en
t
k
e
y
s
.
T
h
e
s
tr
en
g
t
h
o
f
th
e
cr
y
p
to
g
r
ap
h
i
c
alg
o
r
ith
m
a
n
d
th
e
s
ec
r
ec
y
o
f
t
h
e
k
e
y
g
r
ea
tl
y
a
f
f
ec
ts
t
h
e
s
ec
u
r
it
y
o
f
en
cr
y
p
ted
d
ata
[
1
]
.
Ho
w
e
v
er
,
th
er
e
ar
e
s
till
p
er
s
is
tin
g
th
r
ea
t
s
d
u
e
to
th
e
f
a
m
ili
ar
it
y
o
f
th
e
s
e
cr
y
p
to
g
r
ap
h
ic
t
ec
h
n
iq
u
es
ad
d
ed
w
it
h
it
s
s
i
m
p
licit
y
to
p
o
ten
tial
attac
k
er
s
.
P
r
esen
t
p
r
o
b
le
m
s
i
n
cl
u
d
e
B
r
u
te
-
f
o
r
ce
attac
k
s
,
lo
w
en
cr
y
p
tio
n
s
tr
en
g
th
,
a
n
d
in
s
u
f
f
icie
n
t
r
a
n
d
o
m
n
es
s
i
n
k
e
y
g
e
n
er
atio
n
[
2
]
.
Mo
r
e
o
v
er
,
d
ata
p
r
iv
ac
y
i
s
ch
alle
n
g
ed
s
i
n
ce
p
ass
w
o
r
d
s
ca
n
b
e
also
b
e
s
to
len
esp
ec
iall
y
w
h
e
n
lo
g
g
ed
in
an
u
n
s
ec
u
r
e
n
et
w
o
r
k
.
T
h
e
s
y
s
te
m
’
s
v
u
l
n
er
ab
ilit
y
to
attac
k
s
m
u
s
t b
e
less
p
r
o
b
ab
le
as a
f
u
n
ctio
n
o
f
t
h
e
s
ec
u
r
i
t
y
p
ar
am
eter
.
I
n
t
h
i
s
p
ap
er
,
w
e
a
d
d
r
ess
th
is
m
atter
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
DA
R
E
A
Lg
o
r
ith
m
:
A
N
ew S
ec
u
r
ity
P
r
o
to
co
l b
y
I
n
te
g
r
a
tio
n
o
f D
iffer
en
t .
.
.
.
(
Jo
h
n
Ma
r
k
B
.
E
s
p
a
lma
d
o
)
1033
b
y
p
r
o
p
o
s
in
g
a
m
ix
ed
e
n
cr
y
p
t
io
n
al
g
o
r
ith
m
b
y
co
m
b
i
n
i
n
g
t
h
e
p
r
esen
ted
cr
y
p
to
g
r
ap
h
y
tec
h
n
iq
u
es
an
d
u
til
ize
th
eir
s
tr
e
n
g
t
h
s
a
n
d
as
m
u
c
h
as
p
o
s
s
ib
le,
r
ed
u
ce
th
e
w
ea
k
n
es
s
o
f
o
n
e
tech
n
iq
u
e
w
i
th
t
h
at
o
f
a
n
o
th
er
.
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
B
a
s
ic
P
rinciples
inv
o
lv
ed
in
t
he
P
ro
po
s
ed
Sche
m
e
2
.
1
.
1
.
DSA
(
Dig
it
a
l Sig
na
t
ure
Alg
o
rit
h
m
)
Au
t
h
en
t
icatio
n
an
d
au
t
h
e
n
tici
t
y
ar
e
en
s
u
ed
u
s
in
g
Di
g
ital
Sig
n
at
u
r
e
A
l
g
o
r
ith
m
[
3
]
.
A
p
ar
am
ete
r
r
eq
u
ir
ed
is
a
s
ec
r
et
k
e
y
x
s
u
c
h
th
at
i
t
s
ati
s
f
ies
0
<
x
<
q
i
n
c
o
m
p
u
ti
n
g
th
e
p
r
iv
ate
a
n
d
p
u
b
l
ic
k
e
y
s
f
o
r
a
s
i
n
g
le
u
s
er
.
Get
t
h
e
p
u
b
lic
k
e
y
u
s
i
n
g
t
h
e
f
o
r
m
u
la:
y=
g
x
m
o
d
p
.
T
o
s
o
lv
e
f
o
r
t
h
e
m
o
d
u
lar
e
x
p
o
n
en
t
iatio
n
s
h
(p
−
1)
/q
m
o
d
p
an
d
g
x
m
o
d
p
, e
x
p
o
n
en
t
iatio
n
b
y
s
q
u
ar
in
g
ca
n
b
e
ap
p
lied
[
4
]
.
2
.
1
.
2
.
DE
S K
ey
Sched
uli
ng
T
h
e
k
e
y
s
c
h
ed
u
li
n
g
o
f
th
e
DE
S
s
ep
ar
ates
th
e
5
6
-
b
it
k
e
y
is
i
n
to
t
w
o
2
8
-
b
it
h
alv
e
s
;
w
h
er
ein
ea
ch
h
a
l
f
is
tr
ea
ted
s
ep
ar
atel
y
.
T
h
ese
h
a
lv
es
ar
e
r
o
tated
lef
t b
y
o
n
e
o
r
t
w
o
b
it
s
p
er
ea
c
h
s
u
cc
es
s
i
v
e
r
o
u
n
d
as
s
p
ec
i
f
ied
i
n
T
ab
le
1
.
T
h
en
,
4
8
s
u
b
k
e
y
b
its
ar
e
s
elec
ted
b
y
P
er
m
u
ted
C
h
o
ice
2
(
P
C
-
2
)
—
2
4
b
its
f
r
o
m
t
h
e
le
f
t
h
alf
,
a
n
d
2
4
f
r
o
m
th
e
r
i
g
h
t.
T
h
er
e
ar
e
v
ar
y
in
g
s
et
s
o
f
b
its
i
n
ea
ch
s
u
b
k
e
y
b
ec
au
s
e
o
f
th
e
r
o
u
n
d
s
;
ea
c
h
b
it
is
u
s
ed
in
ab
o
u
t
1
4
o
u
t o
f
th
e
1
6
s
u
b
k
e
y
s
[
5
]
.
T
ab
le
1
.
Sh
if
ts
f
o
r
ea
ch
r
o
u
n
d
in
DE
S Ke
y
Sc
h
ed
u
li
n
g
R
o
u
n
d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
Sh
i
f
t
1
1
2
2
2
2
2
2
1
2
2
2
2
2
2
1
2
.
1
.
3
.
AE
S
(
Adv
a
nced
E
ncry
ptio
n
Sta
nd
a
rd)
Alg
o
rit
h
m
A
E
S
al
g
o
r
ith
m
is
a
s
y
m
m
etr
ic
b
lo
ck
cip
h
er
,
w
h
ic
h
o
f
f
er
s
b
et
ter
s
ec
u
r
it
y
an
d
ef
f
ic
ien
c
y
th
a
n
DE
S
[
3
]
in
m
e
s
s
a
g
e
en
cr
y
p
tio
n
,
is
a
wid
el
y
-
u
s
ed
al
g
o
r
ith
m
p
r
i
m
ar
il
y
e
x
ec
u
ted
u
s
in
g
a
s
o
f
t
w
ar
e.
I
t
h
as
lo
w
m
e
m
o
r
y
r
eq
u
ir
e
m
en
ts
m
a
k
in
g
i
t
ap
p
r
o
p
r
iate
f
o
r
f
ast
u
s
ag
e
i
n
s
o
m
e
c
o
n
s
tr
ain
ed
e
n
v
ir
o
n
m
en
t.
A
E
S
en
cr
y
p
tio
n
p
r
o
ce
s
s
is
o
p
er
ated
in
a
4
x
Nb
m
atr
i
x
(
also
k
n
o
w
n
a
s
s
tate)
w
h
er
e
Nb
is
eq
u
i
v
ale
n
t
to
t
h
e
q
u
o
tie
n
t
o
f
t
h
e
d
ata
b
lo
ck
len
g
th
a
n
d
3
2
[
6
]
.
E
n
cr
y
p
tio
n
co
m
p
r
is
e
s
t
h
e
f
o
llo
w
i
n
g
s
tep
s
[
7
]
,
[
8
]
:
a.
A
d
d
R
o
u
n
d
Ke
y
E
ac
h
b
y
te
i
n
th
e
s
tate
m
a
tr
ix
i
s
XOR
ed
w
it
h
t
h
e
R
o
u
n
d
k
e
y
v
alu
e
i
s
XO
R
ed
.
b.
Su
b
B
y
te
s
In
th
i
s
s
ta
g
e,
ea
ch
b
y
te
i
s
s
u
b
s
tit
u
ted
w
i
th
it
s
eq
u
i
v
ale
n
t
b
y
t
e
as
d
ef
in
ed
f
r
o
m
a
lo
o
k
-
u
p
tab
le.
R
ef
er
to
T
a
b
le
2
(
a
)
f
o
r
th
e
lo
o
k
-
u
p
t
ab
le
d
u
r
in
g
e
n
cr
y
p
tio
n
a
n
d
T
a
b
l
e
2
(
b
)
d
u
r
in
g
d
ec
r
y
p
tio
n
.
T
ab
le
2
.
A
E
S Su
b
B
y
te
T
r
an
s
f
o
r
m
at
io
n
T
ab
le
(
a)
&
I
n
v
er
s
e
Su
b
b
y
te
T
r
an
s
f
o
r
m
atio
n
(
b
)
[
3
]
(
a)
(
b
)
c.
Sh
i
f
t
R
o
w
s
W
ith
a
n
i
n
cr
e
m
e
n
ti
n
g
n
u
m
b
e
r
o
f
r
o
w
s
,
a
c
y
cl
ic
s
h
i
f
t
to
th
e
lef
t
o
f
ea
ch
b
y
te
is
o
p
er
ate
d
in
ea
c
h
co
lu
m
n
o
f
t
h
e
m
atr
ix
.
d.
Mix
ed
C
o
l
u
m
n
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
10
3
2
–
10
4
1
1034
Yield
in
g
a
f
o
u
r
-
ter
m
p
o
l
y
n
o
m
ial
b
y
tr
ea
tin
g
t
h
e
m
atr
i
x
co
lu
m
n
b
y
co
lu
m
n
a
n
d
m
u
ltip
l
y
i
n
g
w
it
h
an
o
th
er
p
o
l
y
n
o
m
ial
a
s
s
tated
i
n
th
e
s
tan
d
ar
d
o
f
o
v
er
GF (
2
8
)
co
m
p
r
is
e
s
t
h
is
s
tep
.
2
.
1
.
4
.
RSA
R
S
A
al
g
o
r
ith
m
is
a
p
u
b
lic
k
ey
e
n
cr
y
p
tio
n
alg
o
r
it
h
m
,
u
tili
z
es
a
p
u
b
lic
k
e
y
a
n
d
a
p
r
iv
ate
k
e
y
.
T
h
e
k
e
y
s
ap
p
ea
r
as
p
air
s
,
an
d
th
e
co
r
r
esp
o
n
d
in
g
k
e
y
m
u
s
t
b
e
u
ti
lized
f
o
r
en
cr
y
p
ti
o
n
an
d
d
ec
r
y
p
tio
n
o
p
er
atio
n
[
4
]
,
[
9
]
.
a
)
C
o
n
f
id
en
tial p
r
i
m
e
n
u
m
b
er
s
p
an
d
q
ar
e
ch
o
s
en
in
t
h
e
s
a
m
e
o
r
d
er
o
f
m
a
g
n
it
u
d
e.
b
)
C
o
m
p
u
te
f
o
r
n
=
p
ɸ
q
,
ɸ
(
n
)
=
(
p
-
1
)
(
q
-
1
)
,
w
h
er
e
ɸ
(
n
)
is
th
e
E
u
ler
f
u
n
ct
io
n
v
a
lu
e
o
f
n
.
c)
P
ick
an
i
n
te
g
er
e
to
s
atis
f
y
1
<
e
<
ɸ
(
n
)
,
ɸ
(
n
)
d
)
Gen
er
ate
a
d
ec
r
y
p
tio
n
k
e
y
d
as f
o
llo
w
s
:
(
e
×
d
)
m
o
d
ɸ
(
n
)
=
1
E
n
cr
y
p
tio
n
c
=
m
e
m
o
d
n
Dec
r
y
p
tio
n
m
=
c
d
m
o
d
n
T
h
e
en
cr
y
p
tio
n
k
e
y
s
ar
e
e
an
d
n
w
h
ile
d
an
d
n
ar
e
th
e
d
ec
r
y
p
tio
n
k
e
y
s
.
T
h
e
cip
h
er
tex
t is
m
w
h
ile
c
is
th
e
d
ec
r
y
p
ted
cip
h
er
tex
t.
T
h
e
p
u
b
lic
k
e
y
s
ar
e
(
e
,
n
)
w
h
ile
(
d
,
n
)
co
n
s
titu
te
t
h
e
p
r
iv
ate
k
e
y
,
p
r
im
e
n
u
m
b
er
s
p
an
d
q
s
h
o
u
ld
b
e
d
is
ca
r
d
ed
.
2
.
2
.
P
ro
po
s
ed
H
y
brid Alg
o
rit
h
m Ar
chit
ec
t
ure
I
t
is
d
esire
d
to
co
m
m
u
n
icate
d
ata
w
it
h
h
i
g
h
s
ec
u
r
it
y
.
A
t
p
r
esen
t,
v
ar
io
u
s
t
y
p
es
o
f
cr
y
p
to
g
r
ap
h
ic
alg
o
r
ith
m
s
p
r
o
v
id
e
h
ig
h
s
ec
u
r
it
y
to
i
n
f
o
r
m
atio
n
o
n
co
n
tr
o
lled
n
et
w
o
r
k
s
.
T
h
ese
al
g
o
r
it
h
m
s
ar
e
r
eq
u
ir
ed
to
p
r
o
v
id
e
d
ata
s
ec
u
r
it
y
an
d
u
s
er
s
au
t
h
en
t
icit
y
.
T
h
is
n
e
w
s
ec
u
r
it
y
p
r
o
to
co
l
h
as
b
ee
n
d
esig
n
e
d
f
o
r
b
etter
s
ec
u
r
it
y
u
s
i
n
g
a
co
m
b
in
at
io
n
o
f
D
S
A
k
e
y
g
e
n
er
atio
n
an
d
DE
S
k
e
y
s
ch
ed
u
li
n
g
w
it
h
A
E
S
s
u
b
B
y
te
T
r
an
s
f
o
r
m
atio
n
a
n
d
R
S
A
e
n
cr
y
p
tio
n
.
Fig
u
r
e
1
.
B
lo
ck
Diag
r
a
m
o
f
P
r
o
p
o
s
ed
A
lg
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
DA
R
E
A
Lg
o
r
ith
m
:
A
N
ew S
ec
u
r
ity
P
r
o
to
co
l b
y
I
n
te
g
r
a
tio
n
o
f D
iffer
en
t .
.
.
.
(
Jo
h
n
Ma
r
k
B
.
E
s
p
a
lma
d
o
)
1035
As
s
h
o
w
n
in
F
i
g
u
r
e
1
,
th
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
r
eq
u
ir
es
a
p
ass
p
h
r
ase
s
h
ar
ed
b
y
b
o
th
th
e
s
en
d
er
an
d
r
ec
eiv
er
to
s
ec
u
r
el
y
a
u
t
h
en
tic
ate
d
ata
ex
c
h
an
g
e.
T
h
e
p
ass
p
h
r
ase
i
s
en
cr
y
p
ted
u
s
in
g
t
h
e
f
ir
s
t
p
h
ase
o
f
Di
g
ita
l
Sig
n
at
u
r
e
A
lg
o
r
it
h
m
(
DS
A
)
i
n
w
h
ich
d
i
f
f
er
en
t
u
s
er
s
in
t
h
e
s
y
s
te
m
s
h
ar
e
th
e
s
a
m
e
al
g
o
r
i
th
m
p
ar
a
m
eter
s
.
I
n
th
e
e
n
cr
y
p
tio
n
s
tag
e,
th
e
p
ass
p
h
r
ase
i
s
e
n
cr
y
p
ted
to
en
s
u
r
e
th
at
h
ac
k
er
s
m
a
y
n
o
t i
n
tr
u
d
e
an
d
in
ter
f
er
e
w
it
h
t
h
e
tr
an
s
m
is
s
io
n
.
T
h
e
e
n
cr
y
p
ted
p
u
b
lic
k
e
y
(
y
)
is
t
h
e
n
co
n
v
er
te
d
in
to
b
in
ar
y
an
d
n
k
e
y
s
ar
e
d
er
iv
ed
u
s
i
n
g
DE
S
k
e
y
Sc
h
ed
u
li
n
g
.
T
h
o
s
e
k
e
y
s
ar
e
XORed
w
it
h
t
h
e
p
lain
tex
t,
c
o
n
ce
aled
u
s
i
n
g
A
E
S
s
u
b
B
y
te
T
r
an
s
f
o
r
m
atio
n
,
to
s
ec
u
r
el
y
h
id
e
t
h
e
o
r
ig
i
n
al
p
lai
n
tex
t.
T
h
e
d
ata
is
th
en
co
m
p
l
e
m
en
ted
,
co
n
v
er
ted
to
d
ec
i
m
al
an
d
en
cr
y
p
ted
w
it
h
R
S
A
to
g
et
t
h
e
cip
h
er
tex
t
f
o
r
m
o
r
e
co
n
f
id
en
tialit
y
.
Du
r
i
n
g
t
h
e
d
ec
r
y
p
tio
n
s
ta
g
e,
s
a
m
e
s
tep
s
ar
e
ap
p
lied
to
th
e
r
ec
eiv
er
in
w
h
ic
h
th
e
y
m
u
s
t
also
in
p
u
t
p
as
s
p
h
r
ase,
e
n
cr
y
p
ted
w
it
h
DS
A
,
k
e
y
g
e
n
er
ate
w
it
h
DE
S
to
allo
w
ac
ce
s
s
to
d
ata.
T
h
e
k
e
y
s
w
ill
t
h
en
b
e
XO
R
ed
to
th
e
d
ec
r
y
p
t
ed
cip
h
er
tex
t
w
it
h
R
S
A
to
g
ai
n
t
h
e
A
E
S
s
u
b
B
y
te
eq
u
iv
ale
n
t.
P
lain
te
x
t
w
il
l b
e
r
ec
o
v
er
ed
u
s
in
g
t
h
e
tab
le
f
o
r
s
u
b
B
y
te
T
r
an
s
f
o
r
m
atio
n
.
T
h
is
p
r
o
p
o
s
al,
DA
R
E
(
DS
A/DE
S
–
A
E
S
–
R
S
A
E
n
cr
y
p
tio
n
)
alg
o
r
ith
m
is
co
m
p
o
s
e
d
o
f
th
r
ee
co
m
p
o
n
e
n
t
s
:
Ke
y
g
e
n
er
atio
n
w
h
ic
h
u
s
es
DS
A
an
d
DE
S;
d
a
ta
en
cr
y
p
tio
n
a
n
d
d
ec
r
y
p
tio
n
w
h
ic
h
u
s
es
A
E
S
a
n
d
R
S
A
.
2
.
3
.
Ke
y
G
ener
a
t
io
n
T
h
e
Key
g
en
er
ato
r
w
o
r
k
s
a
s
f
o
llo
w
s
:
a.
A
lice
i
n
p
u
t
s
a
p
ass
p
h
r
ase
o
f
u
p
to
n
c
h
ar
ac
ter
s
(
l
1
l
2
l
3
…
l
n)
w
h
ic
h
is
co
n
v
er
ted
to
it
s
b
i
n
ar
y
eq
u
i
v
ale
n
t,
b
it
w
i
s
e
XO
R
ed
,
g
r
a
y
co
d
ed
,
a
n
d
co
n
v
er
ted
to
d
ec
i
m
al
f
o
r
m
b.
A
lice
p
ick
s
a
p
er
f
ec
t
s
q
u
ar
e
n
o
t
g
r
ea
ter
th
a
n
t
h
e
d
ec
i
m
al
an
d
d
ed
u
cts
it
f
r
o
m
th
e
n
u
m
b
er
s
u
c
h
t
h
at
i
ts
d
if
f
er
e
n
ce
is
a
n
o
d
d
p
r
im
e
n
u
m
b
er
.
L
et
t
h
is
d
i
f
f
er
e
n
ce
b
e
p1
.
c.
A
lice
c
h
o
o
s
es
a
n
u
m
b
er
q
1
s
u
ch
th
a
t
it
is
a
p
r
i
m
e
f
ac
to
r
o
f
p1
-
1
an
d
a
n
u
m
b
er
h’
s
u
ch
th
at
it
is
les
s
t
h
an
p1
-
1
.
d.
A
lice
co
m
p
u
te
s
g
=h
’
(
p
1
-
1
)
/q
1
(
mo
d
p
)
e.
A
lice
c
h
o
o
s
es a
p
r
iv
ate
k
e
y
x
.
f.
A
lice
co
m
p
u
te
s
y
= g
x
(
mo
d
p
1
)
.
g.
A
lice
co
n
v
er
ts
y
to
b
in
ar
y
u
s
e
s
t
h
e
tab
le
f
o
r
r
o
u
n
d
s
h
if
t
s
i
n
DE
S
k
e
y
s
ch
ed
u
li
n
g
w
h
ich
r
esu
lt
s
to
k
0
u
p
to
k
n
.
2
.
4
.
E
ncry
ptio
n
T
h
e
en
cr
y
p
tio
n
al
g
o
r
ith
m
w
o
r
k
s
a
s
f
o
llo
w
s
:
to
e
n
cr
y
p
t
a
m
e
s
s
a
g
e
m
to
B
o
b
u
n
d
er
A
lice
’
p
u
b
lic
k
e
y
(k
0
u
p
to
k
n
)
A
lice
p
ick
s
a
p
r
i
m
e
n
u
m
b
er
p
2
s
u
c
h
t
h
at
p
2
>
(
lar
g
est
A
S
C
I
I
eq
u
i
v
ale
n
t
o
f
th
e
m
es
s
a
g
e)
an
d
a
r
an
d
o
m
n
u
m
b
er
q
.
a.
A
lice
ca
lc
u
late
s
n
=
p
2
*
q
2
an
d
ɸ
(n
)
=
(
p
2
-
1
)
*
(
q
2
-
1
)
.
b.
A
lice
c
h
o
o
s
es e
s
u
c
h
th
at
(
0
<e
<
ɸ
(
n
)
)
.
c.
A
lice
co
m
p
u
te
s
f
o
r
d
-
th
e
i
n
v
er
s
e
m
o
d
u
lo
o
f
e.
u
s
in
g
E
u
c
lid
ian
A
l
g
o
r
ith
m
e
*
d
m
o
d
ɸ
(
n
)
)
=
1
d.
A
lice
p
u
b
lis
h
es
h
er
p
u
b
lic
k
e
y
(
e,
n
)
an
d
(
d
,
n
)
e.
A
lice
co
n
v
er
t
s
th
e
m
es
s
ag
e
i
n
t
o
its
HE
X
eq
u
iv
ale
n
t.
f.
A
lice
u
s
es
t
h
e
tab
le
f
o
r
Su
b
B
y
te
T
r
an
s
f
o
r
m
at
io
n
i
n
A
E
S
to
h
id
e
th
e
m
e
s
s
a
g
e
a
n
d
co
n
v
er
t
s
t
h
e
m
in
to
b
in
ar
y
.
g.
A
lice
u
s
e
s
h
er
k
e
y
s
to
b
it
w
i
s
e
XOR it
w
it
h
h
er
b
in
ar
y
m
es
s
a
g
e.
h.
A
lice
co
m
p
u
te
s
its
1
’
s
co
m
p
le
m
en
t a
n
d
co
n
v
er
ts
it to
d
ec
i
m
al
f
o
r
m
.
L
et
it b
e
m
.
i.
A
lice
u
s
e
s
th
e
c
=
m
e
(
m
o
d
n
)
to
en
cr
y
p
t
m
.
2
.
5
.
Dec
ry
ptio
n
T
h
e
d
ec
r
y
p
tio
n
al
g
o
r
ith
m
w
o
r
k
s
a
s
f
o
llo
w
s
:
to
d
ec
r
y
p
t
a
cip
h
er
tex
t
{c
1,
c
2,
c
3
…
c
n
}
w
ith
k
e
y
s
p
u
b
li
c
k
e
y
s
(
k
0
-
k
n,
e,
d
,
n
)
a.
B
o
b
in
p
u
ts
th
e
s
a
m
e
s
h
ar
ed
p
ass
p
h
r
ase
f
o
r
au
t
h
en
ticatio
n
w
h
ich
allo
w
s
h
i
m
to
ac
ce
s
s
t
h
e
ci
p
h
er
tex
t.
b.
Usi
n
g
t
h
e
p
u
b
lic
k
e
y
d
,
B
o
b
c
alcu
late
s
th
e
m
es
s
ag
e:
m
=
c
d
m
o
d
n
c.
B
o
b
c
o
n
v
er
ts
t
h
e
m
1
to
m
n
f
r
o
m
d
ec
i
m
al
to
b
in
ar
y
f
o
r
m
an
d
g
et
th
e
1
’
s
co
m
p
le
m
e
n
t o
f
ea
c
h
.
d.
B
o
b
u
s
es th
e
k
e
y
s
k
0
to
k
n
in
B
it
w
i
s
e
XO
R
i
n
g
ea
c
h
o
f
t
h
e
1
’
s
co
m
p
le
m
e
n
ted
m
.
e.
B
o
b
th
en
u
s
es
th
e
i
n
v
er
s
e
S
u
b
B
y
te
T
r
an
s
f
o
r
m
atio
n
tab
le
in
A
E
S
to
r
ec
o
v
er
th
e
h
ex
eq
u
iv
ale
n
t
o
f
th
e
m
es
s
ag
e.
f.
T
h
e
h
ex
es a
r
e
th
e
n
co
n
v
er
ted
to
A
S
C
I
I
eq
u
iv
ale
n
t to
d
ec
r
y
p
t th
e
p
lain
te
x
t.
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
I
n
th
is
s
e
ctio
n
,
w
e
ca
lcu
la
ted
th
e
cip
h
er
tex
t
p
r
o
d
u
ce
d
w
h
en
a
u
s
er
p
ass
p
h
r
ase
―
d
ar
e‖
is
u
s
ed
to
en
cr
y
p
t a
m
e
s
s
a
g
e
―
W
altz,
n
y
m
p
h
,
f
o
r
q
u
ick
j
ig
s
v
ex
B
u
d
.
‖
to
p
r
o
v
e
th
at
th
is
p
r
o
p
o
s
al
is
a
ch
iev
ab
le.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
10
3
2
–
10
4
1
1036
3
.
1
.
K
ey
g
ener
a
t
io
n
1.
W
ith
th
i
s
p
r
o
p
o
s
al,
a
u
s
er
ca
n
n
o
w
in
p
u
t a
P
ass
p
h
r
ase
f
o
r
m
o
r
e
s
ec
u
r
e
k
e
y
g
en
er
atio
n
:
E
x
a
m
p
le:
d
a
r
e
ASC
I
I
E
q
u
i
v
alen
t
d
=
1
0
0
;
a
=
9
7
:
r
=
1
1
4
;
e
=
1
0
1
2.
XOR t
h
e
b
in
ar
y
eq
u
iv
ale
n
t o
f
th
e
A
S
C
I
I
p
ass
p
h
r
ase
a
n
d
it
w
ill
y
ield
0
0
0
1
0
0
1
0
3.
Gr
a
y
C
o
d
e
th
e
XO
R
ed
p
ass
p
h
r
ase.
An
s
w
e
r
=
0
0
0
1
1
1
0
1
4.
C
o
n
v
er
t it
to
d
ec
i
m
al
f
o
r
m
.
An
s
w
er
=
2
7
5.
Get
th
e
d
if
f
er
e
n
ce
b
et
w
ee
n
t
h
e
d
ec
im
a
l
w
it
h
th
e
p
er
f
ec
t
s
q
u
a
r
e
n
o
t g
r
ea
ter
th
a
n
th
e
d
ec
i
m
al
as lo
n
g
a
s
its
d
if
f
er
e
n
ce
is
a
n
o
d
d
n
u
m
b
er
An
s
w
er
=
2
7
–
1
6
=
1
1
I
n
th
i
s
ca
s
e;
1
6
w
i
ll b
e
d
ed
u
cted
f
r
o
m
2
7
.
6.
Usi
n
g
DS
A
k
e
y
p
air
g
en
er
atio
n
,
let:
p
=
1
1
p
r
im
e
n
u
m
b
er
b
et
w
ee
n
5
1
2
to
1
0
2
4
b
its
lo
n
g
p
-
1
=
1
0
q
=
5
h
’
=
7
s
u
c
h
th
a
t h
’
<
p
-
1
g
=h
’
(p
-
1)/
q
(
m
o
d
p
)
= 7
10/5
m
o
d
1
3
= 5
x
=3
p
r
iv
ate
k
e
y
y
=
g
x
(
m
o
d
p
)
= 5
3
(
m
o
d
1
3
)
= 4
7.
C
o
n
v
er
t
y
to
8
b
it
b
in
ar
y
0
0
0
0
1
0
0
0
8.
Usi
n
g
D
E
S
s
c
h
ed
u
le
f
o
r
k
e
y
s
h
i
f
t in
DE
S a
lg
o
r
it
h
m
,
f
i
n
d
k
1
to
k
n
.
K1
=
K1
7
=
K3
3
=
0
0
0
1
0
0
0
0
K2
=
K1
8
=
K3
4
=
0
0
1
0
0
0
0
0
K3
=
K1
9
=
K3
5
=
1
0
0
0
0
0
0
0
K4
=
K2
0
=
K3
6
=
0
0
0
0
0
0
1
0
K5
=
K2
1
=
K3
7
=
0
0
0
0
1
0
0
0
K6
=
K2
2
=
K3
8
=
0
0
1
0
0
0
0
0
K7
=
K2
3
=
1
0
0
0
0
0
0
0
K8
=
K2
4
=
0
0
0
0
0
0
1
0
K9
=
K2
5
=
0
0
0
0
0
1
0
0
K1
0
=
K2
6
=
0
0
0
1
0
0
0
0
K1
1
=
K2
7
=
0
1
0
0
0
0
0
0
K1
2
=
K2
8
=
0
0
0
0
0
0
0
1
K1
3
=
K2
9
=
0
0
0
0
0
1
0
0
K1
4
=
K3
0
=
0
0
0
1
0
0
0
0
K1
5
=
K3
1
=
0
1
0
0
0
0
0
0
K1
6
=
K3
2
=
1
0
0
0
0
0
0
0
9.
RSA
k
e
y
g
e
n
er
atio
n
p
=
1
2
7
;
s
u
c
h
th
a
t p
>
m
q
=
5
an
y
p
r
i
m
e
n
u
m
b
er
n
=
p
*
q
=
1
2
7
*
5
=
6
3
5
ɸ(
n
)
=
(
p
-
1
)
*
(
q
-
1
)
=
1
2
6
*
5
=
5
0
4
L
et
e
=
1
1
(
0
<e
<
ɸ(
n
)
)
L
et
d
=
in
v
er
s
e
m
o
d
u
lo
o
f
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
DA
R
E
A
Lg
o
r
ith
m
:
A
N
ew S
ec
u
r
ity
P
r
o
to
co
l b
y
I
n
te
g
r
a
tio
n
o
f D
iffer
en
t .
.
.
.
(
Jo
h
n
Ma
r
k
B
.
E
s
p
a
lma
d
o
)
1037
T
o
co
m
p
u
te
f
o
r
d
,
u
s
in
g
E
u
cli
d
ea
n
A
l
g
o
r
it
h
m
:
e
*
d
m
o
d
ɸ(
n
)
)
=
1
5
*
d
m
o
d
5
0
4
=
1
5
0
4
+1
1
y
=
1
5
0
4
=
4
5
(
1
1
)
+
9
[
eq
.
1
]
1
1
=
1
(
9
)
+
2
[
eq
.
2
]
9
=
4
(
2
)
+1
[
eq
.
3
]
E
x
ten
d
ed
E
u
clid
ea
n
A
l
g
o
r
ith
m
(
B
ac
k
S
u
b
s
tit
u
tio
n
)
1
=
9
–
4
(
2
)
eq
.
(
4
)
:
s
u
b
s
tit
u
te
eq
.
3
1
=
9
–
4
[
1
1
-
1
(
9
)
]
eq
.
(
5
)
:
s
u
b
s
tit
u
te
eq
.
2
1
=
9
–
4
(
1
1
)
+
4
(
9
)
eq
.
(
6
)
:
ex
ten
d
in
g
eq
.
5
1
=
5
(
9
)
–
4
(
1
1
)
eq
.
(
7
)
:
co
m
b
in
in
g
s
i
m
i
lar
ter
m
s
in
eq
.
6
1
=
5
[
5
0
4
-
4
5
(
1
1
)
]
-
4
(
1
1
)
e
q
.
(
8
)
1
=
5
(
5
0
4
)
–
5
(
4
5
)
(
1
1
)
–
4
(
1
1
)
eq
.
(
9
)
1
=5
(
5
0
4
)
–
4
9
(
1
1
)
eq
.
(
1
0
)
d
=
-
4
9
m
o
d
5
0
4
d
=
5
0
4
–
49
d
=4
5
5
P
u
b
lic
k
e
y
s
(
e,
n
)
=
(
1
1
,
6
3
5
)
P
r
iv
ate
k
e
y
s
(
d
,
n
)
=
(
3
8
3
,
6
35)
E
ncry
ptio
n
1.
C
o
n
v
er
t th
e
m
es
s
ag
e
i
n
to
its
ASC
I
I
eq
u
i
v
alen
t
L
e
t
t
e
r
A
S
C
I
I
L
e
t
t
e
r
A
S
C
I
I
W
87
i
1
0
5
a
97
c
99
l
1
0
8
k
1
0
7
t
1
1
6
j
1
0
6
z
1
2
2
g
1
0
3
n
1
1
0
s
1
1
5
y
1
2
1
v
1
1
8
m
1
0
9
e
1
0
1
p
1
1
2
x
1
2
0
h
1
0
4
B
66
f
1
0
2
u
1
1
7
o
1
1
1
d
1
0
0
r
1
1
4
,
44
q
1
1
3
.
46
u
1
1
7
(
sp
a
c
e
)
32
2.
C
o
n
v
er
t it
to
its
HE
X
eq
u
i
v
ale
n
t
L
e
t
t
e
r
A
S
C
I
I
H
e
x
L
e
t
t
e
r
A
S
C
I
I
H
e
x
W
87
57
i
1
0
5
69
a
97
61
c
99
63
l
1
0
8
6C
k
1
0
7
6B
t
1
1
6
74
j
1
0
6
6A
z
1
2
2
7A
g
1
0
3
67
n
1
1
0
6E
s
1
1
5
73
y
1
2
1
79
v
1
1
8
76
m
1
0
9
6D
e
1
0
1
65
p
1
1
2
70
x
1
2
0
78
h
1
0
4
68
B
66
42
f
1
0
2
66
u
1
1
7
75
o
1
1
1
6E
d
1
0
0
64
r
1
1
4
72
,
44
2C
q
1
1
3
71
.
46
2E
u
1
1
7
75
(
sp
a
c
e
)
32
20
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
10
3
2
–
10
4
1
1038
3.
Usi
n
g
A
E
S
u
s
i
n
g
S
u
b
B
y
te
tr
an
s
f
o
r
m
atio
n
,
tak
e
t
h
e
f
ir
s
t b
it
o
f
th
e
h
ex
as t
h
e
r
o
w
a
n
d
s
ec
o
n
d
(
x
)
an
d
th
e
s
ec
o
n
d
b
it a
s
th
e
co
lu
m
n
(
y
)
.
W
=1
7
=
m
1
a=
ef
=
m
2
l=5
0
=
m
3
t=9
2
=
m
4
z=
d
a
=
m
5
,
=7
1
=
m
6
=
m
1
3
s
p
ac
e=
b
7
=
m
7
=
m
1
4
=
m
1
8
=
m
2
4
=
m
2
9
=
m
3
3
n
=9
f
=
m
8
y
=b
6
=
m
9
m
=3
c
=
m
1
0
p
=5
1
=
m
1
1
h
=4
5
=
m
1
2
f
=3
3
=
m
1
5
o
=9
f
=
m
1
6
r
=4
0
=
m
1
7
q
=a
3
=
m
1
9
u
=9
d
=
m
2
0
=
m
3
5
i=f
9
=
m
2
1
c=
f
b
=
m
2
2
k
=7
b
=
m
2
3
j
=0
2
=
m
2
5
g
=8
5
=
m
2
7
s
=8
f
=
m
2
8
v
=3
8
=
m
3
0
e=
4
d
=
m
3
1
x
=b
c
=
m
3
2
B
=2
c
=
m
3
4
u
=9
d
=
m
3
5
=
m
2
0
d
=4
3
=
m
3
6
.
=3
1
=
m
3
7
T
h
e
m
e
s
s
a
g
e
is
n
o
w
in
t
h
e
f
o
r
m
:
1
7
E
F 5
0
9
2
DA
7
1
B
7
9
F B
6
3
C
5
1
4
5
7
1
B
7
3
3
9
F
4
0
B
7
A
3
9
D
F9
FB
7
B
B
7
0
2
F9
8
5
8
F B
7
3
8
4
D
B
C
B
7
2
C
9
D
4
3
3
1
4.
C
o
n
v
er
t e
ac
h
it i
n
to
b
in
ar
y
f
o
r
m
M1
0
0
0
1
0
1
1
1
M
2
0
1
0
0
1
1
1
0
1
M2
1
1
1
0
1
1
1
1
M
2
1
1
1
1
1
1
0
0
1
M3
0
1
0
1
0
0
0
0
M
2
2
1
1
1
1
1
0
1
1
M4
1
0
0
1
0
0
1
0
M
2
3
0
1
1
1
1
0
1
1
M5
1
1
0
1
1
0
1
0
M
2
4
1
0
1
1
0
1
1
1
M6
0
1
1
1
0
0
0
1
M
2
5
0
0
0
0
0
0
1
0
M7
1
0
1
1
0
1
1
1
M
2
6
1
1
1
1
1
0
0
1
M8
1
0
0
1
1
1
1
1
M
2
7
1
0
0
0
0
1
0
1
M9
1
0
1
1
0
1
1
0
M
2
8
1
0
0
0
1
1
1
1
M
1
0
0
0
1
1
1
1
0
0
M
2
9
1
0
1
1
0
1
1
1
M
1
1
0
1
0
1
0
0
0
1
M
3
0
0
0
1
1
1
0
0
0
M
1
2
0
1
0
0
0
1
0
1
M
3
1
0
1
0
0
1
1
0
1
M
1
3
0
1
1
1
0
0
0
1
M
3
2
1
0
1
1
1
1
0
0
M
1
4
1
0
1
1
0
1
1
1
M
3
3
1
0
1
1
0
1
1
1
M
1
5
0
0
1
1
0
0
1
1
M
3
4
0
0
1
0
1
1
0
0
M
1
6
1
0
0
1
1
1
1
1
M
3
5
1
0
0
1
1
1
0
1
M
1
7
0
1
0
0
0
0
0
0
M
3
6
0
1
0
0
0
0
1
1
M
1
8
1
0
1
1
0
1
1
1
M
3
7
0
0
1
1
0
0
0
1
M
1
9
1
0
1
0
0
0
1
1
5.
T
h
e
m
e
s
s
a
g
e
is
n
o
w
XORed
w
it
h
co
r
r
esp
o
n
d
in
g
k
e
y
s
K1
t
o
KN.
I
t w
ill n
o
w
b
ec
o
m
e:
0000
0
1
1
1
1
1
0
0
1
1
1
1
1
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
1
0
1
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
0
1
0
1
1
0
1
0
0
1
1
1
0
1
1
1
0
0
1
1
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
1
0
0
1
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
1
1
0
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0
1
0
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
DA
R
E
A
Lg
o
r
ith
m
:
A
N
ew S
ec
u
r
ity
P
r
o
to
co
l b
y
I
n
te
g
r
a
tio
n
o
f D
iffer
en
t .
.
.
.
(
Jo
h
n
Ma
r
k
B
.
E
s
p
a
lma
d
o
)
1039
0
0
0
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
1
1
0
1
0
0
1
1
1
1
0
0
1
0
1
0
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
1
1
1
0
0
1
6.
Get
th
e
1
’
s
co
m
p
le
m
en
t
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
0
1
1
1
1
0
0
1
0
1
1
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
10
0
0
1
0
1
0
0
1
0
1
1
0
0
0
1
0
0
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
1
0
1
1
1
1
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
1
1
1
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
0
0
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
1
0
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
0
1
0
1
0
1
1
1
1
1
0
1
1
0
0
0
1
1
0
7.
C
o
n
v
er
t
it to
d
ec
i
m
al
2
4
8
=
m
1
3
0
=
m
2
4
7
=m
3
1
1
1
=
m
4
4
5
=
m
5
1
7
4
=
m
6
8
=
m
7
9
8
=
m
8
7
7
=
m
9
2
1
1
=
m
1
0
2
3
8
=
m
1
1
1
8
7
=
m
1
2
1
3
8
=
m
1
3
8
8
=
m
1
4
1
4
0
=
m
1
5
2
2
4
=
m
1
6
1
7
5
=
m
1
7
1
0
4
=
m
1
8
2
2
0
=
m
1
9
4
8
=
m
2
0
1
4
=
m
2
1
3
6
=
m
2
2
4
=
m
2
3
7
4
=
m
2
4
2
4
9
=
m
2
5
22
=
m
2
6
5
8
=
m
2
7
1
1
3
=
m
2
8
7
6
=
m
2
9
2
1
5
=
m
3
0
2
4
2
=
m
3
1
1
9
5
=
m
3
2
8
8
=
m
3
3
2
4
3
=
m
3
4
2
2
6
=
m
3
5
1
9
0
=
m
3
6
1
9
8
=
m
3
7
8.
T
h
e
d
ec
im
al
s
w
ill b
e
en
cr
y
p
te
d
u
s
in
g
R
S
A
RSA:
E
ncry
ptio
n
1.
Usi
ng
f
o
r
m
ula
C
=
m
e
(
m
o
d
n)
C1
248
11
*
(
m
o
d
6
3
5
)
=
5
4
2
C2
30
11
*
(
m
o
d
6
3
5
)
=
4
5
0
C3
47
11
*
(
m
o
d
6
3
5
)
=
3
8
C4
111
11
*
(
m
o
d
6
3
5
)
=
6
3
1
C5
45
11
*
(
m
o
d
6
3
5
)
=
6
0
5
C6
174
11
*
(
m
o
d
6
3
5
)
=
4
1
9
C7
8
11
*
(
m
o
d
6
3
5
)
=
3
2
C8
98
11
*
(
m
o
d
6
3
5
)
=
4
1
2
C9
77
11
*
(
m
o
d
6
3
5
)
=
5
8
8
C
1
0
211
11
*
(
m
o
d
6
3
5
)
=
3
9
6
C
1
1
238
11
*
(
m
o
d
6
3
5
)
=
3
7
7
C
1
2
187
11
*
(
m
o
d
6
3
5
)
=
8
8
C
1
3
138
11
*
(
m
o
d
6
3
5
)
=
6
2
C
1
4
88
11
*
(
m
o
d
6
3
5
)
=
5
8
7
C
1
5
140
11
*
(
m
o
d
6
3
5
)
=
5
9
0
C
1
6
224
11
*
(
m
o
d
6
3
5
)
=
4
3
5
C
1
7
175
11
*
(
m
o
d
6
3
5
)
=
5
5
C
1
8
104
11
*
(
m
o
d
6
3
5
)
=
8
4
C
1
9
220
11
*
(
m
o
d
6
3
5
)
=
6
0
0
C
2
0
48
11
*
(
m
o
d
6
3
5
)
=
1
8
2
C
2
1
14
11
*
(
m
o
d
6
3
5
)
=
4
5
9
C
2
2
36
11
*
(
m
o
d
6
3
5
)
=
5
2
1
C
2
3
4
11
*
(
m
o
d
6
3
5
)
=
1
2
9
C
2
4
74
11
*
(
m
o
d
6
3
5
)
=
3
1
4
C
2
5
249
11
*
(
m
o
d
6
3
5
)
=
4
5
4
C
2
6
22
11
*
(
m
o
d
6
3
5
)
=
1
0
3
C
2
7
58
11
*
(
m
o
d
6
3
5
)
=
1
2
C
2
8
113
11
*
(
m
o
d
6
3
5
)
=
5
5
7
C
2
9
76
11
*
(
m
o
d
6
3
5
)
=
3
4
1
C
3
0
215
11
*
(
m
o
d
6
3
5
)
=
4
6
0
C
3
1
242
11
*
(
m
o
d
6
3
5
)
=
1
6
3
C
3
2
195
11
*
(
m
o
d
6
3
5
)
=
5
6
0
C
3
3
88
11
*
(
m
o
d
6
3
5
)
=
5
8
7
C
3
4
243
11
*
(
m
o
d
6
3
5
)
=
1
9
2
C
3
5
226
11
*
(
m
o
d
6
3
5
)
=
2
7
6
C
3
6
190
11
*
(
m
o
d
6
3
5
)
=
5
0
0
C
3
7
198
11
*
(
m
o
d
6
3
5
)
=
3
52
Dec
ry
ptio
n
1
.
Use RS
A
Dec
r
y
p
t
io
n
to
g
et
th
e
v
al
u
e
o
f
m
u
s
in
g
t
h
e
f
o
r
m
u
la:
m
=
c
d
m
o
d n
248
30
47
111
45
174
8
98
77
211
238
187
138
88
140
224
175
104
220
48
14
36
4
74
249
22
58
113
76
215
242
195
88
243
226
190
198
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
2
,
A
p
r
il 2
0
1
7
:
10
3
2
–
10
4
1
1040
2.
C
o
n
v
er
t e
ac
h
d
ec
r
y
p
ted
d
ec
i
m
al
in
to
b
in
ar
y
f
o
r
m
a
n
d
g
et
it
s
1
’
s
co
m
p
le
m
en
t.
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
0
1
1
1
1
0
0
1
0
1
1
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
1
0
0
0
1
0
1
0
0
1
0
1
1
0
0
0
1
0
0
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
1
0
1
1
1
1
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
1
1
1
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
0
0
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
1
0
1
1
0
0
0
1
1
1
1
0
0
1
1
1
1
1
0
0
0
1
0
1
0
1
1
1
1
1
0
3.
XOR t
h
e
1
’
s
co
m
p
le
m
e
n
t
w
it
h
co
r
r
esp
o
n
d
in
g
k
e
y
s
K1
to
Kn
an
d
co
n
v
er
t it
to
h
e
x
.
0
0
0
0
0
1
1
1
1
1
0
0
1
1
1
1
1
1
0
1
0
0
0
0
1
0
0
1
0
0
0
0
1
1
0
1
0
0
1
0
0
1
0
1
0
0
0
1
1
1
1
1
0
1
1
1
1
0
0
1
1
1
0
1
1
0
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
0
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
1
1
1
0
1
0
1
1
0
1
0
0
1
1
1
0
1
1
1
0
0
1
1
0
0
0
1
1
1
1
1
0
1
0
1
0
0
0
0
1
0
0
1
0
1
1
1
0
0
1
0
0
0
1
1
1
0
0
1
1
1
1
1
1
1
1
1
0
0
0
1
1
1
0
1
1
0
1
1
1
1
1
1
1
0
1
1
1
0
1
1
0
1
0
1
0
0
0
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
0
1
1
0
0
1
1
0
0
1
0
1
0
0
0
0
0
0
0
1
1
0
1
0
0
1
1
1
1
0
0
1
0
1
0
0
1
1
1
0
0
0
0
1
1
0
0
0
0
0
1
1
1
0
1
0
1
0
0
0
0
0
1
0
0
1
1
1
0
0
1
4.
Get
th
e
1
’
s
co
m
p
le
m
en
t o
f
th
e
r
esu
lti
n
g
b
it
s
in
n
u
m
b
er
3
.
1
1
1
1
1
0
0
0
0
0
1
1
0
0
0
0
0
0
1
0
1
1
1
1
0
1
1
0
1
1
1
1
0
0
1
0
1
1
0
1
1
0
1
0
1
1
1
0
0
0
0
0
1
0
0
0
0
1
1
0
0
0
1
0
0
1
0
0
1
1
0
1
1
1
0
1
0
0
1
1
1
1
1
0
1
1
1
0
1
0
1
1
1
0
1
1
1
0
0
0
1
0
1
0
0
1
0
1
1
0
0
0
1
0
0
0
1
1
0
0
1
1
1
0
0
0
0
0
1
0
1
0
1
1
1
1
0
1
1
0
1
0
0
0
1
1
0
1
1
1
0
0
0
1
1
0
0
0
0
0
0
0
0
0
1
1
1
0
0
0
1
0
0
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
1
0
1
0
1
1
1
1
1
0
0
1
0
0
0
1
0
1
1
0
0
0
1
1
1
0
1
0
0
1
1
1
0
0
0
1
0
1
0
0
1
1
0
0
1
1
0
1
0
1
1
1
1
1
1
1
0
0
1
0
1
1
0
0
0
0
1
1
0
1
0
1
1
0
0
0
1111
0
0
1
1
1
1
1
0
0
0
1
0
1
0
1
1
1
1
1
0
1
1
0
0
0
1
1
0
5.
C
o
n
v
er
t it
to
HE
X
1
7
E
F 5
0
9
2
DA
7
1
B
7
9
F B
6
3
C
5
1
4
5
7
1
B
7
3
3
9
F
4
0
B
7
A
3
9
D
F9
FB
7
B
B
7
0
2
F9
8
5
8
F B
7
3
8
4
D
B
C
B
7
2
C
9
D
4
3
3
1
6.
Fro
m
th
e
i
n
v
er
s
e
S b
o
x
,
lo
ca
te
th
e
t
w
o
-
b
it HE
X
eq
u
iv
ale
n
t o
f
th
e
m
es
s
a
g
e
an
d
co
n
v
er
t it
b
ac
k
to
ASC
I
I
.
5
7
6
1
6
c
7
4
7
a
2
c
2
0
6
e
7
9
6
d
7
0
6
8
2
c
2
e
6
6
6
e
7
2
2
0
7
1
7
5
6
9
6
3
6
b
2
0
6
a
6
9
6
7
7
3
2
0
7
6
6
5
7
8
2
0
4
2
7
5
6
4
2
e
7.
C
o
n
v
er
t it
to
ASC
I
I
eq
u
i
v
ale
n
t
8
7
9
7
1
0
8
1
1
6
1
2
2
4
4
3
2
1
1
0
1
2
1
1
0
9
1
2
2
1
0
4
4
4
3
2
1
0
2
1
1
1
1
1
4
3
2
1
1
3
1
1
7
1
0
5
9
9
1
0
7
3
2
1
0
6
1
0
5
1
0
3
1
1
5
3
2
1
1
8
1
0
1
1
2
0
3
2
6
6
1
1
7
1
0
0
4
6
8.
C
o
n
v
er
t it
to
eq
u
iv
ale
n
t
m
es
s
a
g
e.
T
h
e
o
r
ig
in
al
p
lain
te
x
t
m
es
s
ag
e
is
r
ec
o
v
er
ed
to
b
e:
W
altz,
n
y
m
p
h
,
f
o
r
q
u
ick
j
ig
s
v
ex
B
u
d
.
R
es
u
lts
s
h
o
w
th
a
t
t
h
e
p
r
o
p
o
s
al
is
d
o
ab
le
s
i
n
ce
t
h
e
o
r
ig
i
n
al
m
es
s
ag
e
h
as
b
ee
n
r
ec
o
v
er
ed
f
r
o
m
f
o
llo
w
in
g
th
e
s
tep
s
in
c
lu
d
ed
in
th
e
s
ec
tio
n
.
I
n
th
is
p
r
o
p
o
s
al,
b
o
th
t
h
e
s
e
n
d
er
a
n
d
r
ec
eiv
er
m
u
s
t
i
n
p
u
t
a
p
ass
p
h
r
ase
w
h
ic
h
u
n
d
er
g
o
es
en
cr
y
p
tio
n
in
D
S
A
.
T
h
e
en
cr
y
p
ted
p
as
s
w
o
r
d
is
th
e
n
s
h
i
f
te
d
w
it
h
r
o
u
n
d
s
u
s
i
n
g
DE
S
k
e
y
s
ch
ed
u
li
n
g
.
Fai
lu
r
e
o
f
in
p
u
t
tin
g
t
h
e
co
r
r
ec
t
p
ass
p
h
r
ase
w
o
u
ld
r
esu
lt
i
n
a
d
if
f
er
en
t
m
es
s
ag
e
s
in
ce
t
h
e
k
e
y
s
u
s
ed
in
en
cr
y
p
ti
n
g
an
d
d
ec
r
y
p
tin
g
t
h
e
m
es
s
a
g
e
o
b
tain
ed
f
r
o
m
t
h
e
p
ass
p
h
r
ase.
T
h
is
f
u
n
ctio
n
alit
y
st
r
en
g
th
e
n
s
d
ata
au
th
e
n
ticit
y
o
f
th
is
p
r
o
p
o
s
al.
Mo
r
eo
v
er
,
h
id
in
g
d
ata
u
s
in
g
t
h
e
Su
b
B
y
te
T
r
an
s
f
o
r
m
a
tio
n
i
n
A
E
S r
ei
n
f
o
r
ce
s
th
e
e
n
cr
y
p
tio
n
s
tr
en
g
th
o
f
R
S
A
.
4.
CO
NCLU
SI
O
N
I
n
th
i
s
p
ap
er
,
w
e
p
r
o
p
o
s
ed
a
r
o
b
u
s
t
p
r
o
to
co
l
u
s
in
g
D
S
A
a
n
d
DE
S
f
o
r
k
e
y
g
e
n
er
atio
n
a
n
d
s
ch
ed
u
li
n
g
an
d
A
E
S
an
d
R
S
A
f
o
r
en
cr
y
p
t
io
n
a
n
d
d
ec
r
y
p
tio
n
o
f
in
f
o
r
m
atio
n
.
T
h
e
co
m
b
i
n
atio
n
o
f
th
ese
d
i
f
f
er
en
t
cr
y
p
to
g
r
ap
h
y
a
lg
o
r
it
h
m
s
d
el
iv
er
s
a
m
a
x
i
m
ized
ef
f
icie
n
c
y
,
a
m
e
n
d
i
n
g
o
r
co
m
p
e
n
s
a
tin
g
ea
ch
o
th
er
’
s
d
ef
icien
c
ies.
Mo
r
eo
v
er
,
it
o
f
f
er
s
a
m
o
r
e
p
r
o
tecte
d
ex
ch
an
g
e
o
f
d
ata
s
in
ce
b
o
th
en
d
s
h
av
e
an
e
n
cr
y
p
ted
p
ass
p
h
r
ase
r
eq
u
ir
ed
to
d
ec
r
y
p
t
th
e
m
es
s
a
g
e.
T
h
er
ef
o
r
e,
it
r
eq
u
ir
es
m
o
r
e
ef
f
o
r
t
to
th
e
h
ac
k
er
s
to
d
is
co
v
er
th
e
m
e
s
s
a
g
e
its
el
f
b
ec
au
s
e
t
h
e
y
h
av
e
to
d
ec
r
y
p
t
t
h
e
p
as
s
p
h
r
ase
f
ir
s
t.
T
h
is
n
e
w
h
y
b
r
id
p
r
o
to
co
l
y
ield
s
a
s
t
r
o
n
g
cr
y
p
to
s
y
s
te
m
to
g
et
h
er
w
i
th
a
s
ec
u
r
e
k
e
y
e
n
cr
y
p
tio
n
m
a
n
a
g
e
m
en
t s
y
s
te
m
en
s
u
r
in
g
all
s
ec
u
r
it
y
g
o
als.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
DA
R
E
A
Lg
o
r
ith
m
:
A
N
ew S
ec
u
r
ity
P
r
o
to
co
l b
y
I
n
te
g
r
a
tio
n
o
f D
iffer
en
t .
.
.
.
(
Jo
h
n
Ma
r
k
B
.
E
s
p
a
lma
d
o
)
1041
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
ar
e
g
r
atef
u
l
to
Dr
.
R
o
b
les
an
d
Dr
.
H
o
s
ea
Ma
tel
f
o
r
th
e
en
co
u
r
ag
e
m
e
n
t
an
d
f
in
a
n
cial
s
u
p
p
o
r
t,
esp
ec
iall
y
i
n
p
r
o
v
id
in
g
p
u
b
licatio
n
f
ee
s
.
RE
F
E
R
E
NC
E
S
[1
]
M
.
J.
Du
b
a
l,
e
t
a
l.
,
―
De
sig
n
o
f
Ne
w
S
e
c
u
rit
y
A
lg
o
rit
h
m
U
sin
g
H
y
b
rid
Cry
p
to
g
ra
p
h
y
A
rc
h
it
e
c
tu
re
,
‖
IEE
E,
v
o
l
/i
ss
u
e
:
3
(
11
)
,
p
p
.
9
9
-
1
0
1
,
2
0
1
1
.
[2
]
D.
L
a
z
a
r,
e
t
a
l.
,
―
W
h
y
d
o
e
s cr
y
p
t
o
g
ra
p
h
ic so
f
tw
a
re
f
a
il
?
A
c
a
se
stu
d
y
a
n
d
o
p
e
n
p
r
o
b
lem
s,
‖
ACM
,
p
p
.
1
-
7
,
2
0
1
4
.
[3
]
G
.
M
a
tee
s
c
u
a
n
d
M
.
V
lad
e
sc
u
,
―
A
H
y
b
rid
A
p
p
ro
a
c
h
o
f
S
y
ste
m
S
e
c
u
rit
y
f
o
r
S
m
a
ll
a
n
d
M
e
d
i
u
m
En
terp
rise
s:
c
o
m
b
in
in
g
d
iff
e
re
n
t
Cr
y
p
to
g
ra
p
h
y
tec
h
n
iq
u
e
s,
‖
2
0
1
3
Co
n
fer
e
n
c
e
o
n
Co
mp
u
ter
S
c
ien
c
e
a
n
d
In
fo
rm
a
t
io
n
S
y
ste
ms
o
n
IEE
E,
p
p
.
6
5
9
-
6
6
2
,
2
0
1
3
.
[4
]
M
.
Y.
Re
e
,
―
In
tern
e
t
S
e
c
u
rit
y
:
c
ry
p
to
g
ra
p
h
ic
p
rin
c
i
p
les
,
a
lg
o
rit
h
m
s,
a
n
d
p
ro
t
o
c
o
ls,
P
O1
9
8
S
Q,
‖
En
g
lan
d
,
Jo
h
n
W
il
e
y
&
S
o
n
s L
td
,
2
0
0
3
.
[5
]
H.
Ya
n
g
,
―
He
ro
n
g
Ya
n
g
,
‖
2
0
1
5
.
[
On
li
n
e
]
.
A
v
a
il
a
b
le:
h
tt
p
:/
/w
ww
.
h
e
ro
n
g
y
a
n
g
.
c
o
m
/Cr
y
p
to
g
ra
p
h
y
/D
ES
-
.
[
A
c
c
e
ss
e
d
1
No
v
e
m
b
e
r
2
0
1
6
].
[6
]
X
.
M
in
g
y
u
a
n
,
―
A
M
ix
e
d
En
c
ry
p
ti
o
n
A
lg
o
rit
h
m
Us
e
d
in
In
tern
e
t
o
f
T
h
in
g
s
S
e
c
u
rit
y
T
ra
n
s
m
is
sio
n
S
y
st
e
m
,
‖
IEE
E,
v
o
l
/i
ss
u
e
:
6
(
15
)
,
p
p
.
6
2
-
6
5
,
2
0
1
5
.
[7
]
A
.
M
.
A
tt
e
y
a
a
n
d
A
.
H.
M
a
d
ian
,
―
A
H
y
b
rid
Ch
a
o
s
-
A
ES
E
n
c
ry
p
ti
o
n
A
lg
o
rit
h
m
a
n
d
It
s
Im
p
lem
e
n
t
a
ti
o
n
Ba
se
d
o
n
F
P
GA
,
‖
IEE
E,
v
o
l
/i
ss
u
e
:
7
(
14
)
,
p
p
.
2
1
4
-
2
2
0
,
2
0
1
4
.
[8
]
A
.
Na
d
ji
a
a
n
d
A
.
M
o
h
a
m
e
d
,
―
A
ES
IP
f
o
r
H
y
b
rid
Cry
p
to
sy
ste
m
RS
A
-
A
ES
,
‖
2
0
1
5
1
2
t
h
In
ter
n
a
ti
o
n
a
l
M
u
lt
i
-
Co
n
fer
e
n
c
e
o
n
S
y
ste
ms
,
S
i
g
n
a
ls
&
D
e
v
ice
s o
n
IEE
E,
v
o
l
/
issu
e
:
7
(
15
)
,
p
p
.
1
-
6
,
2
0
1
5
.
[9
]
X.
H
.
W
u
a
n
d
X.
J
.
M
in
g
,
―
Re
se
a
rc
h
o
f
th
e
Da
tab
a
se
En
c
r
y
p
ti
o
n
T
e
c
h
n
iq
u
e
Ba
se
d
o
n
Hy
b
rid
Cr
y
p
to
g
ra
p
h
y
,
‖
2
0
1
0
In
ter
n
a
t
io
n
a
l
S
y
mp
o
si
u
m o
n
C
o
m
p
u
t
a
ti
o
n
a
l
In
telli
g
e
n
c
e
a
n
d
De
sig
n
o
n
IEE
E,
v
o
l
/
issu
e
:
3
(
10
)
,
p
p
.
8
6
-
7
1
,
2
0
1
0
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
J
o
h
n
M
a
r
k
B
.
Espa
l
m
a
d
o
w
a
s
b
o
rn
i
n
Na
b
u
a
,
Ca
m
a
rin
e
s
S
u
r,
P
h
il
i
p
p
i
n
e
s
in
1
9
9
6
.
He
is
c
u
rre
n
tl
y
stu
d
y
in
g
BS
El
e
c
tro
n
ic
s
a
n
d
C
o
m
m
u
n
ica
ti
o
n
s
E
n
g
in
e
e
rin
g
in
Ca
v
te
S
tate
Un
iv
e
rsit
y
,
In
d
a
n
g
,
Ca
v
it
e
,
P
h
il
i
p
p
in
e
s.
He
is
a
g
ra
n
tee
o
f
th
e
R
A
7
6
8
7
DO
S
T
-
S
EI
a
c
a
d
e
m
ic
sc
h
o
lars
h
i
p
sin
c
e
2
0
1
2
.
He
is
a
Bo
a
r
d
-
of
-
Dire
c
to
r
o
f
th
e
Jr.
In
stit
u
te
o
f
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rs
o
f
th
e
P
h
il
i
p
p
i
n
e
s
–
C
a
v
it
e
c
h
a
p
ter
sin
c
e
Ju
l
y
2
0
1
6
.
He
is
c
u
rre
n
tl
y
th
e
p
re
sid
e
n
t
o
f
th
e
Ca
v
it
e
S
ta
te
Un
iv
e
rsity
L
e
a
g
u
e
o
f
A
d
a
m
a
n
t
DO
S
T
(De
p
a
rt
m
e
n
t
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
)
S
c
h
o
lars
.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
c
ry
p
to
sy
ste
m
d
e
v
e
lo
p
m
e
n
t,
a
n
d
c
o
n
tro
l
a
n
d
m
o
n
it
o
rin
g
s
y
ste
m
s.
Ed
w
in
R.
Ar
b
o
leda
w
a
s
b
o
rn
i
n
In
d
a
n
g
,
P
h
il
i
p
p
in
e
s
i
n
1
9
7
9
.
H
e
re
c
e
iv
e
d
th
e
B.
S
.
d
e
g
re
e
in
El
e
c
tro
n
ics
a
n
d
Co
m
m
u
n
ica
ti
o
n
s
En
g
in
e
e
rin
g
in
P
o
ly
tec
h
n
iq
u
e
Un
iv
e
rsit
y
o
f
th
e
P
h
il
ip
p
in
e
s,
S
ta.
M
e
sa
,
M
a
n
il
a
,
a
n
d
M
e
n
g
d
e
g
re
e
in
De
La
S
a
ll
e
Un
iv
e
rsity
,
M
a
n
il
a
in
1
9
9
5
a
n
d
2
0
0
8
re
sp
e
c
ti
v
e
l
y
.
S
in
c
e
2
0
0
1
,
h
e
h
a
s
b
e
e
n
a
m
e
m
b
e
r
o
f
th
e
f
a
c
u
lt
y
o
f
De
p
a
rtme
n
t
o
f
Co
m
p
u
ter
a
n
d
El
e
c
tro
n
ics
E
n
g
in
e
e
rin
g
i
n
Ca
v
it
e
S
tate
Un
iv
e
rsity
in
In
d
a
n
g
,
Ca
v
it
e
,
P
h
il
i
p
p
in
e
s
w
h
e
re
h
e
is
c
u
rre
n
tl
y
a
n
a
ss
istan
t
p
r
o
f
e
ss
o
r.
His
re
se
a
rc
h
in
tere
sts
in
c
lu
d
e
n
e
a
r
in
f
ra
re
d
sp
e
c
tro
sc
o
p
y
,
f
u
z
z
y
lo
g
ic,
ro
b
o
ti
c
s,
m
e
c
h
a
tro
n
ics
,
n
e
tw
o
rk
se
c
u
rit
y
a
n
d
a
rti
f
icia
l
n
e
u
ra
l
n
e
tw
o
rk
s.
Evaluation Warning : The document was created with Spire.PDF for Python.