Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
5, No. 6, Decem
ber
2015, pp. 1480~
1
485
I
S
SN
: 208
8-8
7
0
8
1
480
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Dynamic Time Slice Calcul
ation for Round Robin Process
Scheduling Using NOC
G. Si
va
N
a
ges
w
ara
R
a
o
1
, N. Sriniva
s
u
2
,
S.
V.
N.
Sriniv
as
u
3
, G
.
R
a
m
a
Ko
tesw
ar
a
Ra
o
4
1,2
Department of
Computer Scien
ce
and
Engineering, K
L Univ
ersity
, Ind
i
a
3
Department of Computer
Sc
ience, HOD,
PNC&KR PG Colle
ge Narasarao
PET, India
4
Department of Computer
Scien
ce
and
Engineering, V R
Siddhatha
Engg
. Co
lleg
e
, Vijay
a
w
a
da, I
ndia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 12, 2015
Rev
i
sed
Ju
l 20
,
20
15
Accepted Aug 16, 2015
Process scheduling means allocating a ce
rtain amount of CPU time to each of
the user
process
e
s. One of th
e
popular sch
e
duling algorithms is the “Round
Robin” algori
t
h
m
, which allows each and ever
y process to utilize the CP
U
for short tim
e
duration
.
Th
is paper
pr
esents an improvisation to
th
e
traditional round robin schedulin
g algorithm, b
y
the proposed a new method.
The new method represents the time sli
ce as a function of the b
u
rst time of
the waiting process in the read
y
queue. Fi
xing th
e tim
e s
lice for a
proces
s
is
a
cruci
a
l fa
ctor
,
becaus
e
it s
ubs
equentl
y
inf
l
uenc
es
m
a
n
y
perform
ance
parameters like turnaround time, wa
iting
time, response time and the
frequency
of con
t
ext switches. Th
ough the
tim
e slot is fix
e
d for
each process,
this paper explo
r
es the fine-tun
ing of
the tim
e slic
e for processe
s which do
not com
p
le
te
in
t
h
e stipu
l
at
ed
tim
e a
llot
t
ed
to
the
m
.
Keyword:
Num
b
er
of context switches
Num
b
er of
cycles
Re
m
a
in
in
g
b
u
rst
ti
m
e
Ti
m
e
slice
Tu
rn
ar
oun
d time
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G. Si
va Na
ges
w
ara
R
a
o,
Depa
rt
m
e
nt
of
C
o
m
put
er Sci
e
nce a
n
d
E
ngi
neeri
n
g
,
K L Un
iv
ersity,
Gree
nfi
e
l
d
s,
V
a
dde
swa
r
am
, Gu
nt
u
r
Di
st
ri
ct
, A
n
dh
ra P
r
a
d
e
s
h
52
2
5
0
2
.
Em
a
il: siv
a
n
a
gs@k
l
u
n
i
v
e
rsity.in
1.
INTRODUCTION
Sche
dul
i
n
g i
s
fu
n
d
am
ent
a
l
operat
i
n
g sy
st
e
m
funct
i
on a
n
d sc
hed
u
l
i
n
g i
s
nee
d
ed
f
o
r
e
ach a
n
d
eve
r
y
reso
u
r
ce .C
P
U
i
s
o
n
e
of t
h
e
m
a
jor
res
o
u
r
ce
so i
t
s
sc
he
dul
i
n
g
occ
u
pi
es m
a
jo
r
rol
e
i
n
t
h
e
desi
g
n
of
o
p
e
r
at
i
n
g
sy
st
em
[1]
-[3]
.
C
P
U sche
d
u
l
i
ng
deal
s wi
t
h
pr
o
b
l
e
m
of deci
di
ng
w
h
i
c
h
of
t
h
e pr
ocess i
n
t
h
e rea
d
y
que
u
e
i
s
t
o
be al
l
o
t
t
e
d t
o
t
h
e C
P
U f
o
r p
r
ocessi
n
g
.
F
o
r
doi
ng t
h
i
s
FC
F
S
,SJF ,
P
ri
ori
t
y
and R
o
u
nd
R
obi
n Al
g
o
r
i
t
h
m
s
ar
e
av
ailab
l
e [4
]-[7
].
The following characte
r
istics
CPU usa
g
es
(l
oad
t
h
e
c
p
u
as
busy
as pos
si
bl
e),
1)
Th
rou
ghp
u
t
(nu
m
b
e
r of
p
r
o
c
esso
rs th
at co
mp
lete th
eir ex
ecu
tio
n in
un
it of ti
m
e
)
2)
Tur
n
a
r
o
u
n
d
t
i
m
e (am
ount
o
f
t
i
m
e
t
o
execut
e
pa
rt
i
c
ul
ar
pr
oc
ess)
3)
Waiting tim
e (am
ount
of tim
e the
process
ha
s
bee
n
waiting in
the rea
d
y
queue)
4)
Response
tim
e
(am
ount
of t
i
m
e
it take from
whe
n
a
re
que
st was
s
u
bm
itted until the firs
t
resp
o
n
se i
s
p
r
o
duce
d
,
n
o
t
out
put
) are
u
s
ed
c
o
m
p
are an
d
de
t
e
rm
i
n
e w
h
i
c
h
al
go
ri
t
h
m
i
s
best
.
Ro
und
Ro
b
i
n
Sch
e
d
u
ling
is
d
e
sign
ed
fo
r time sh
aring
operatin
g
systems, th
is is v
e
ry
si
m
i
lar to
FCFS on
ly d
i
ff
er
en
ce is p
r
eem
p
t
i
o
n
is ad
d
e
d
to
it to
sw
itc
h
f
r
o
m
o
n
e
p
r
o
cess to
ano
t
her
p
r
o
cess. I
n
r
ound
rob
i
n
algorithm in
itia
lly
ti
me q
u
a
n
t
u
m
o
r
ti
m
e
sl
ice ,it v
a
ries with
m
i
llis
eco
nd
s and
this is u
s
ed
to
pree
m
p
t
i
.
e. C
P
U s
w
i
t
c
hes f
r
o
m
one p
r
oces
s t
o
a
not
h
e
r aft
e
r eac
h a
nd e
v
e
r
y
t
i
m
e
qua
nt
um
, an
d
som
e
t
i
m
e
s swi
t
c
hi
ng
occu
r e
v
e
n
bef
o
re
t
h
e t
i
m
e com
p
l
e
t
i
on o
f
t
i
m
e
qua
nt
um
[8
]
-[9]
,
[
17]
.
Here we
keep
the ready que
u
e as
a circular FIFO queue
.
T
h
e CPU
sch
e
du
ler selects th
e o
n
e
of th
e
pr
ocess
fr
om
the rea
d
y
q
u
eue
and C
P
U i
s
al
l
o
t
t
e
d t
o
i
t
end
.
W
h
e
n
t
h
e
pr
o
cess sche
dul
e
one
of t
h
e t
w
o t
h
i
n
g
s
m
a
y
happe
ns
[
13]
-
[
16]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dyn
a
m
i
c
Ti
me
Sl
i
ce C
a
l
c
ul
at
i
o
n
f
o
r
Ro
u
n
d
R
obi
n Pr
ocess
S
c
hed
u
l
i
n
g …
(
G
.
Si
va
N
a
ges
w
ara
R
ao)
1
481
1) T
h
e b
u
r
s
t
t
i
m
e
of t
h
e pr
oc
ess great
e
r
t
h
a
n
t
i
m
e
sli
ce CPU swi
t
c
hes t
o
an
ot
he
r p
r
oc
ess whi
c
h i
s
sel
ect
ed by
t
h
e
C
P
U
Sche
d
u
l
e
r f
o
r t
h
e
ne
xt
t
i
m
e
quant
um
, t
h
e cu
rre
nt
pr
o
cess i
s
se
nt
bac
k
t
o
t
h
e
rea
d
y
que
ue
an
d it will b
e
ob
serv
ed
fro
m
t
h
e
rem
a
in
in
g
time later [18
]
-[1
9
]
, [2
6
]
.
2
)
If th
e
bu
rst
ti
m
e
o
f
th
e p
r
o
cess is less th
an
t
h
e ti
m
e
s
slice th
en
th
e
cu
rren
t
p
r
o
cess is rem
o
v
e
d
fr
om
t
h
e ready
que
ue a
n
d t
h
e
C
P
U s
w
i
t
c
hes
anot
her
p
r
oce
s
s w
h
i
c
h
i
s
sel
e
ct
ed by
t
h
e sc
h
e
dul
e
[
20]
-
[
2
2
]
.
Th
er
e ar
e
n
u
mer
o
u
s
r
e
search
es go
ing
aro
und
th
e g
l
obe o
n
i
m
p
r
ov
ing
th
e p
e
rf
or
man
ce o
f
round
ro
bi
n al
g
o
ri
t
h
m
.
The aut
h
or
of [
1
]
pr
o
pose
s
a fuzzy
app
r
oach
to
find
th
e
su
itab
l
e ti
m
e
slice for the processes.
They
ha
ve
p
r
e
s
ent
e
d t
h
e
res
u
l
t
s
usi
ng
di
f
f
e
rent
si
m
u
l
a
t
i
ons.
The
n
ovel
i
st
s of
[
2
]
p
r
o
p
o
se a m
e
di
an
base
d
app
r
oach t
o
fi
nd t
h
e t
i
m
e
slice, com
b
i
n
i
ng
t
h
e co
nve
nt
i
o
n
a
l
sho
r
t
e
st
jo
b
fi
rst
an
d R
o
un
d R
o
bi
n al
g
o
ri
t
h
m
s
.
The a
u
t
h
or
s o
f
[3]
pr
op
oses
a
new
t
ech
ni
q
u
e
usi
n
g m
a
xim
u
m
and m
i
nim
u
m
burst
t
i
m
e
of t
h
e
set
o
f
pr
o
cesses
in
th
e
r
ead
y
qu
eu
e and
calculatin
g
a m
o
d
i
f
i
ed
tim
e sl
ice. Th
e au
tho
r
s of [
4
] talk
s about calcu
latin
g
the ti
me
sl
i
ce usi
ng m
e
di
an an
d hi
ghe
st
burst
t
i
m
e and t
h
e
n
exec
ut
i
ng t
h
e p
r
oces
ses as per t
h
e
new cal
cul
a
t
e
d
t
i
m
e
slice. The rese
arche
r
s of [5] prov
id
ed
a
m
a
t
h
em
at
ical
m
o
d
e
l fo
r calcu
latin
g
th
e waitin
g
ti
m
e
an
d
tu
rn
aroun
d
ti
m
e
. Th
e au
tho
r
s
of [6
] talk
s abo
u
t
calcu
latin
g th
e m
ean
of th
e burst ti
m
e
s o
f
all th
e
p
r
ocesses and
t
h
en
fi
n
d
s
the diffe
re
nce betwee
n the mean of the
b
u
rst ti
me an
d
th
e b
u
rst ti
m
e
o
f
a p
a
rticu
l
ar process an
d
allo
cates th
e
CPU to th
e process wh
ich h
a
s th
e m
a
x
i
m
u
m
d
i
fferen
ce.
So
, a
g
ood
sched
u
ling
al
go
r
ith
m
sh
ou
ld
po
ssess th
e fo
llo
win
g
ch
aracteristics [2
]:
1)
Min
i
m
i
ze th
e co
n
t
ex
t switch
e
s.
2)
Max
i
mize th
e CPU
u
tilizatio
n
.
3)
M
a
xi
m
i
ze t
h
e t
h
r
o
ug
h
put
.
4)
Minim
i
ze the turn
arou
nd
tim
e
.
5)
Min
i
m
i
ze th
e waitin
g
tim
e.
6)
Minim
i
ze respons
e tim
e.
2.
PROP
OSE
D
APP
R
O
A
CH
Ou
r
pr
o
p
o
s
ed
ap
pr
oac
h
do
e
s
n
o
t
ai
m
t
o
chan
ge
t
h
e
be
havi
or
o
f
t
h
e
con
v
e
n
t
i
onal
r
o
u
n
d
ro
bi
n
alg
o
rith
m
b
u
t
to
im
p
r
ov
e it fu
rt
h
e
r. In
ou
r
p
r
op
o
s
ed
app
r
o
ach,
we
will b
e
m
o
d
i
fying
t
h
e tim
e slice o
f
o
n
l
y
t
hose
p
r
oces
se
s w
h
i
c
h
re
qui
re a sl
i
g
ht
l
y
great
er
t
i
m
e
t
h
an th
e allo
tt
ed
tim
e s
lice
cycle(s) [1]-[3]. The
rem
a
in
in
g
processes
will b
e
ex
ecu
t
ed in
t
h
e
b
a
sic R
o
und
R
o
b
i
n
m
a
n
n
er.
Hen
ce
we
calcu
late th
e
rea
m
in
g
b
u
rst tim
e an
d
n
o
. cycles fo
r
each
p
r
o
cess
[2
3
]-[2
5
]
. Based
on
t
h
e ream
i
n
g
bu
rst tim
e, we so
rt th
e process, i
f
th
e ream
in
g
b
u
rst ti
m
e
is less
th
an
o
r
eq
u
a
l to
th
e on
e tim
e
slice th
en
ex
ecu
t
e th
e sam
e
p
r
o
cess o
t
h
e
rwise
go
fo
r ne
xt
pr
oce
ss. I
f
m
o
re t
h
a
n
o
n
e
pr
ocess
havi
ng
t
h
e sa
m
e
rem
a
i
n
i
ng
bu
rst
t
i
m
e
t
h
en u
s
e t
h
e
Sh
or
t
e
st
Job
First Sch
e
du
ling
Algo
rith
m
[10
]
-[12
].
TS: Tim
e
Slice
BT : Bu
rst Time
RBT : Rem
a
in
in
g
B
u
rst ti
m
e
RBT [P
i
] = BT [
P
i
] %
TS
NOC
: Num
b
er of
Cycles
NOC [P
i
]
= ce
il (BT [P
i
] / TS),
where ceil
fu
n
c
tion
g
i
ves t
h
e larg
est in
teger
g
r
eater th
an
o
r
equ
a
l to
the num
b
er.
2.
1. Pro
p
ose
d
Al
g
o
ri
thm
Step1:
ST
AR
T
Step
2
:
Mak
e
a r
e
ad
y qu
eu
e
of
th
e Pro
cesses say Requ
est.
Step3:
Calcula
t
e the Tim
e
Slice .(T
S
=
floor ((
(BT [Pi]
)
/ N)
))
Step
4
:
Calcu
l
ate th
e Rem
a
in
in
g
bu
rst tim
e and Num
b
er
of Cycles for all
processes
(RBT =
BT[P
I
]%TS,
N
O
C
= BT[P
I
]/TS)
St
ep5:
S
o
rt
t
h
e al
l
pr
ocesses
base
d
on
rem
a
ini
n
g
bu
rst
t
i
m
e &
NOC
.
Step6:
Pick the proces
s from
the rea
d
y
que
ue and allocate t
h
e CPU t
o
it for a
Tim
e
interval
of
up t
o
1 tim
e quant
um
.
Step
7
:
If th
e re
m
a
in
in
g
CPU bu
rst tim
e o
f
t
h
e cu
rren
tly run
n
i
n
g
pro
cess i
s
less th
an
o
r
Equ
a
l to
th
e on
e ti
m
e
q
u
a
n
t
u
m
th
en
allo
cate CPU ag
ain
to
th
e curren
tly ru
nn
ing
pro
c
ess,
ot
he
rwi
s
e t
o
t
h
e ne
xt
p
r
ocess.
Step
8
:
Rep
eat
Step
6 &
Step
7 un
til all p
r
o
c
ess are sch
e
du
led
.
St
ep9:
E
N
D
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1480 –
1485
1
482
Exam
pl
e1:
C
o
nsi
d
e
r
t
h
e
Fi
ve
Pr
ocess
an
d t
h
ei
r Ti
m
e
sl
i
ce is gi
ven
i
n
t
h
e f
o
l
l
o
wi
ng
Ta
bl
e.
(a)
Static Ti
m
e
Slice:
Co
n
s
i
d
er th
e
Static Ti
m
e
Slic
e = 10
Tabl
e 1. Pr
oce
ss
t
a
bl
e
P
r
o
c
e
s
s
N
a
me
B
u
r
s
t
T
i
me
PS1 12
PS2 15
PS3 23
PS4 37
PS5 21
Tab
l
e
2
.
C
o
m
p
arison
tab
l
e
fo
r v
a
riou
s sch
e
du
lin
g algo
rithm
s
u
s
in
g
static ti
m
e
slice
T
y
pe of Algor
ith
m
Avg.
T
A
T.
Avg.
TW
T
.
NCS
Basic Round Robi
n
81.
6
60
13
Aashna Bisht M
e
thod
71.
2
49.
6
10
M
y
Pr
oposal1
65.
2
40.
2
7
M
y
Pr
oposal2
59.
2
37.
6
7
I
n
t
h
e a
b
o
v
e
T
a
b
l
e
1
M
y
P
r
o
p
o
s
a
l
2
A
l
g
o
r
i
t
h
m h
a
s
mi
n
i
mu
m A
v
g
.
T
A
T
,
mi
n
i
mu
m T
W
T
an
d
minim
u
m
no.
of Context s
w
i
t
ches.
Due to l
e
ss context
sw
i
t
ch
in
g, t
h
e
p
r
ocessor id
le time is low an
d reso
urce
u
tilizatio
n
is very h
i
g
h
.
(b)
Dynam
i
c Tim
e
Slice:
TQ = Avg
.
B
u
rst ti
m
e
o
f
th
e all th
e pro
cess (i
.e. TS=
2
2
)
Tabl
e 3. Gra
n
t
C
h
at
0
PS1
1
2
1
2
PS2
2
7
2
7
PS5
4
8
4
8
P
S
3
7
1
7
1
P
S
4
1
0
8
Tabl
e
4. C
o
m
p
ari
s
o
n
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
d
u
l
i
n
g
al
g
o
ri
t
h
m
s
usi
ng
Dy
na
m
i
c t
i
m
e
sl
i
c
e
T
y
pe of Algor
ith
m
Avg.
T
A
T.
Avg.
TW
T
.
NCS
Basic Round Robi
n
59
40.
4
6
Aashna Bisht M
e
thod
58
36.
4
5
M
y
Pr
oposal1
53.
2
31.
8
4
I
n
t
h
e a
b
o
v
e
T
a
b
l
e
4
M
y
P
r
o
p
o
s
a
l
1
A
l
g
o
r
i
t
h
m h
a
s
mi
n
i
mu
m A
v
g
.
T
A
T
,
mi
n
i
mu
m T
W
T
an
d
minim
u
m
no.
of Context s
w
i
t
ches.
Due to l
e
ss context
sw
i
t
ch
in
g, t
h
e
p
r
ocessor id
le time is low an
d reso
urce
u
tilizatio
n
is very h
i
g
h
.
Exam
pl
e2:
C
o
nsi
d
e
r
t
h
e
Fi
ve
Pr
ocess
an
d t
h
ei
r Ti
m
e
sl
i
ce is gi
ven
i
n
t
h
e f
o
l
l
o
wi
ng
Ta
bl
e.
(a)
Static Ti
m
e
Slice:
Con
s
id
er th
e Static Ti
m
e
Slic
e = 4
Tabl
e 5. Pr
oce
ss
Ta
bl
e
Nam
e
of the Pr
ocess
Bur
s
t T
i
m
e
PS1 19
PS2 9
PS3 23
PS4 13
PS5 17
Tabl
e 6. Gra
n
t
C
h
at
0
P
S
2
9
9
PS4
2
2
2
2
PS5
3
9
3
9
PS1
5
8
5
8
PS3
8
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dyn
a
m
i
c
Ti
me
Sl
i
ce C
a
l
c
ul
at
i
o
n
f
o
r
Ro
u
n
d
R
obi
n Pr
ocess
S
c
hed
u
l
i
n
g …
(
G
.
Si
va
N
a
ges
w
ara
R
ao)
1
483
Tab
l
e
7
.
C
o
m
p
arison
tab
l
e
fo
r v
a
riou
s sch
e
du
lin
g algo
rithm
s
u
s
in
g
static ti
m
e
slice
T
y
pe of Algor
ith
m
Avg.
T
A
T.
Avg.
TW
T
.
NCS
Basic Round Robi
n
68.
6
52.
4
22
Aashna Bisht M
e
thod
60.
6
44.
4
18
M
y
Pr
oposal1
57
40.
8
16
M
y
Pr
oposal2
57
40.
8
16
(b)
Dynam
i
c Tim
e
Slice:
TS =
Av
g. Burst ti
m
e
o
f
th
e all th
e pro
cess (i
.e. TS=
1
6
)
Tabl
e
8. C
o
m
p
ari
s
o
n
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
d
u
l
i
n
g
al
g
o
ri
t
h
m
s
usi
ng
Dy
na
m
i
c t
i
m
e
sl
i
c
e
T
y
pe of Algor
ith
m
Avg.
T
A
T.
Avg.
TW
T
.
NCS
Basic Round Robi
n
62.
6
46.
4
7
Aashna Bisht M
e
thod
51.
2
35.
6
5
M
y
Pr
oposal1
41.
8
25.
6
4
3.
RESULTS
&
GR
APH
E
xam
pl
e 1
:
Fi
gu
re
1.
C
o
m
p
ari
s
on
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
dul
i
n
g al
go
ri
t
h
m
s
usi
ng st
at
i
c
t
i
m
e
sl
i
c
e
I
n
t
h
e a
b
o
v
e
F
i
g
u
r
e
1
M
y
P
r
o
p
o
s
a
l
2
A
l
g
o
r
i
t
h
m h
a
s
mi
n
i
mu
m A
v
g
.
T
A
T
,
mi
n
i
mu
m T
W
T
an
d
minim
u
m
no.
of Context s
w
i
t
ches.
Due to l
e
ss context
sw
i
t
ch
in
g, t
h
e
p
r
ocessor id
le time is low an
d reso
urce
u
tilizatio
n
is very h
i
g
h
.
Fi
gu
re
2.
C
o
m
p
ari
s
on
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
dul
i
n
g al
go
ri
t
h
m
s
usi
ng
Dy
na
m
i
c t
i
m
e
sl
i
c
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1480 –
1485
1
484
I
n
t
h
e
ab
o
v
e
F
i
g
u
r
e
2
,
M
y
P
r
o
p
o
s
a
l
1
A
l
g
o
r
i
t
h
m h
a
s
mi
n
i
mu
m A
v
g
.
T
A
T
,
mi
n
i
mu
m T
W
T
an
d
minim
u
m
no.
of Context s
w
i
t
ches.
Due to l
e
ss context
sw
i
t
ch
in
g, t
h
e
p
r
ocessor id
le time is low an
d reso
urce
u
tilizatio
n
is very h
i
g
h
.
E
xam
pl
e 2
:
Fi
gu
re
3.
C
o
m
p
ari
s
on
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
dul
i
n
g al
go
ri
t
h
m
s
usi
ng st
at
i
c
t
i
m
e
sl
i
c
e
In t
h
e
Fi
g
u
re
3, M
y
P
r
op
osa
l
2 Al
go
ri
t
h
m
has m
i
nim
u
m
A
v
g
.
T
A
T,
m
i
nim
u
m
TW
T a
n
d m
i
nim
u
m
n
o
. of Con
t
ex
t
switch
e
s.
Du
e
to
less con
t
ex
t
switch
i
ng
, t
h
e
p
r
o
cesso
r i
d
le ti
m
e
is
lo
w and
resou
r
ce
u
tilizatio
n
is v
e
ry h
i
g
h
. Th
e au
tho
r
s o
f
[6
] talk
s ab
ou
t calcu
latin
g
th
e
m
ean
o
f
th
e b
u
r
st ti
m
e
s o
f
all th
e p
r
o
cesses an
d
then fi
nds the
diffe
re
nce bet
w
een t
h
e m
e
a
n
of the burst
ti
m
e
an
d
th
e bu
rst tim
e o
f
a
p
a
rticu
l
ar pro
c
ess and
allocates the C
P
U t
o
the
proc
ess which ha
s t
h
e m
a
xim
u
m
differe
nce
Fi
gu
re
4.
C
o
m
p
ari
s
on
t
a
bl
e
f
o
r
va
ri
o
u
s sc
he
dul
i
n
g al
go
ri
t
h
m
s
usi
ng
Dy
na
m
i
c t
i
m
e
sl
i
c
e
W
i
t
h
th
e
referen
ce
o
f
t
h
e [6], we m
o
d
i
fied
th
e al
g
o
rithm
with
b
e
tter resu
lts th
an
earlier sch
e
m
e
sche
dul
i
n
g p
r
o
cess.
W
e
sche
m
e
t
a
kes l
o
wer t
i
m
e
t
h
an t
h
e basi
c ro
un
d r
obi
n m
e
t
hod
, whi
c
h i
s
sho
w
n i
n
t
h
e
Fi
gu
re
4.
I
n
t
h
e a
b
o
v
e
Fi
g
u
r
e
4 M
y
P
r
o
p
o
sal
1
Al
go
ri
t
h
m
has
m
i
nim
u
m
Avg.
TA
T,
m
i
nim
u
m
TWT a
n
d
minim
u
m
no.
of Context s
w
i
t
ches.
Due to l
e
ss context
sw
i
t
ch
in
g, t
h
e
p
r
ocessor id
le time is low an
d reso
urce
u
tilizatio
n
is very h
i
g
h
.
4.
CO
NCL
USI
O
N
In
t
h
i
s
pa
per a
n
i
m
pro
v
em
ent f
o
r t
h
e c
o
nve
n
t
i
onal
r
o
un
d
r
o
bi
n al
go
ri
t
h
m
i
s
p
r
o
p
o
se
d
whi
c
h i
s
bei
n
g
sup
p
o
rt
e
d
by
a
set
of hy
pot
he
t
i
cal
exam
pl
es
and a
bet
t
e
r a
m
ount
of i
m
provem
e
nt
i
s
obs
erve
d. T
h
e a
p
p
r
oac
h
can
be
fu
rt
he
r r
e
fi
ne
d
usi
n
g t
h
e co
ncept
o
f
a
r
ri
val
t
i
m
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Dyn
a
m
i
c
Ti
me
Sl
i
ce C
a
l
c
ul
at
i
o
n
f
o
r
Ro
u
n
d
R
obi
n Pr
ocess
S
c
hed
u
l
i
n
g …
(
G
.
Si
va
N
a
ges
w
ara
R
ao)
1
485
REFERE
NC
ES
[1]
G Siva, Nageswara Rao,
et al.
, “An Enhanced D
y
namic Round
Robin CPU Sc
heduling Algorithm”,
Internation
a
l
Journal of Applied Eng
i
neering
Research,
Vol. 9
,
No. 15, pp. 308
5-3098, 2014
.
[2]
G Siva, Nag
e
swara R
a
o,
et a
l
.
,
“Comparison of
Round Robin
CPU Sche
duling
Algorithm with
Various D
y
n
a
mic
T
i
me
Qua
n
t
u
m”,
International Jo
urnal
of A
pplied Engineering
Research,
Vol.
9, No. 18
, pp
. 4905-
4916, 2014
.
[3]
G Siva, N
a
ges
w
ara Rao
,
et al.
, “A NEW PROP
OSED D
YNAMIC DU
AL PROCESS
O
R BASED CPU
SCHEDULING
ALGORITHM”,
Journal of Theoretical and Ap
plied In
formatio
n Technology 2
0
th March 2015,
Vol.73, No. 2
,
1
992.
[4]
Bashir Alam, “Fuzzy
Round Ro
bin CPU
Scheduling Algorithm”,
Journal of Computer Science,
Vol. 9, No. 8, pp.
1079-1085, 201
3.
[5]
Lalit Kishor,
Dinesh Goy
a
l,
“Time Quan
tum Ba
sed Improved Scheduling Algorithm”,
Issue International Journal
of Ad
vanced
Research in
Computer
Science and
S
o
ftware
Engineering,
Vol. 3, 201
3.
[6]
P. Surendra Varma, “A Be
st
possible time quantum for Improving
Shortest Remaining Burst Round Ro
bin
(SRBRR) Algorithm”,
Internatio
nal Journal of
Advanced
Resear
ch
in Computer
Scien
ce and software Engineerin
g
,
Vol. 2
,
No. 11, 2
012.
[7]
K. N. Rout, G.
Das, B. M.
Sahoo, and A. K. Agrawall
a, “Im
p
roving Average Waiting
Tim
e
Using Dy
anam
ic
Ti
m
e
Quantum”.
[8]
Shahram Saeidi,
Hakimeh Alemi
Baktas
h, Determining th
e Optim
um Time Qu
antum Value in
Ro
und Robin Process
Scheduling
Method, Internation
a
l Jour
nal of
Inf
o
rmation Techn
o
log
y
an
d
Computer Science, pp: 67-73 2012
.
[9]
H. S. Behera, Simpi Patel,
and
Bijay
a
lakshmi Panda, “A New D
y
nami
c Round
Robin and SRTN Algorithm with
Variabl
e
Orig
ina
l
T
i
m
e
Slic
e
and
Inte
llig
ent
Tim
e
Slic
e for
Soft R
eal
Tim
e
S
y
st
em
s”.
[10]
Supriy
a R
a
heja, Reena Dhad
ich
,
and Smita Rajpal, “An
Optimum Time Quantum Usi
ng Linguistic S
y
nthesis f
o
r
Round Robin C
P
U Scheduling
Algorithm”,
International
Journal on So
ft Computing (
I
JSC)
,
Vol.
3, No. 1, 2012.
[11]
Nay
a
na Kundar
g
i, Sheetal Ban
d
ekar
, "CPU Scheduling Algor
ithm Using T
ime Quantum For Batch S
y
stem,"
International Jo
urnal Of La
test
Trends In Engen
eeri
ng
And Tech
nology (
I
JLTET),
2013.
[12]
Himanshi Aror
a, Deepanshu
Arora, Bagish Goel,
and Parita Jain, "An Impr
oved Scheduling Algorith
m",
International Jo
urnal of applied
Information Systems(
IJAIS)
, Founda
tion of Co
mputer Science
FCS,
New York,
USA, Vol. 6, No
. 6
,
pp
7- 9
,
201
3.
[13]
Sandeep Neg
i
, "An Improved Round Robin Ap
proach Us
ing D
y
an
amic
Time
Quantum For Improving Average
Waiting Time",
I
n
ternational Of
Computer Applications,
Vol. 69, No. 14
, pp
. 12-1
6
, 2013
.
[14]
Rakesh Pat
e
l
,
Mrs. Mili Pa
tel
,
"SJRR CPU Schedul
ing Algor
ithm
"
,
International journal
of Engin
eering
And
Computer Scien
ce,
Vol. 2, No. 1
2
, pp
. 3396-339
9, 2013
.
[15]
Adeeba Jamal,
Aiman Jubair, "A Vari
ed Round Robin Approach Using Har
m
o
n
ic Mean Of The Remaining Burst
Time
Of Proc
e
sse
s",
Special Issue of Internatio
nal J
ournal of C
o
mputer Applica
tions
,
3rd Intern
ational IT Summit
Confluenc
e
, pp.
11- 17, 2012.
[16]
Mohd Abdul Ahad, "Mod
y
f
y
i
n
g
Round Robin
Algorithm
For Process Sched
u
ling Using D
ynamic Quantum
P
r
ecis
i
on",
Special Issue Of In
ternational Jou
r
nal of Comput
er Applications On Issues AN
D Challenges In
Networking
,Int
elligen
ce And
Co
m
puting Techno
l
ogies, ICNICT 2
012,
pp
. 5-10
, 2
012.
[17]
C.
Yaashuwanth,
Dr.
R.
Ramesh,
“A New
Sc
heduling Algorith
m
s for
Real Time Tasks
”, (
I
JCSIS)
International
Journal of Computer Scienc
e and
Information S
e
curity,
Vol. 6, No. 2
,
pp
. 61-66
, 2
009.
[18]
Sanjay
a Kumar
Panda,
and Sourav Kuma
r Bhoi,
“An Effectiv
e R
ound Robin Al
g
o
rithm using Min-Max Dispersion
M
eas
ure”
,
IJCS
E,
Vol. 4
,
No
. 0
1
, pp
. 45-53
, 20
12.
[19]
Aashna Bisht, M
ohd Abdul Ahad
, Sielv
i
e Sharma, “Enhanc
ed Rou
nd Robin Algorithm for Process Scheduling usin
g
var
y
ing qu
antum precision”,
Pro
c
eedings o
f
IC
RI
EST
AICE
EMCS
,
pp. 11-15, 2013
.
[20]
R. N. D. S. S Kiran, Polin
ati Vinod
Babu, and B. B. Murali Krishna, “Optim
izing CPU Scheduling for Real Time
Applications Using Mean-Differe
nce Round Robin (MDRR)
Algorithm”,
I
C
T and Critical Infrastructure:
Proceed
ings of
t
h
e 48th
Annual
Convention
of
C
o
mputer Soci
e
ty
of India
,
Vol
.
1
,
Advanc
es in
In
tell
igent
S
y
st
em
s
and Computing,
Vol. 248
, pp
. 71
3-721, 2014
.
[21]
M. H. Zah
e
di,
M. Ghazizadeh
,
a
nd M. Naghibzadeh, “Fuzzy
Ro
und Robi
n CPU Scheduling (FR
RCS) Algorithm”,
Advances in
Co
mputer and Info
rm
ation Sciences and Engin
eering,
pp
. 348-353
, 2008.
[22]
Bin Nie, Jianqiang Du, Guoliang Xu, Hongni
ng Liu, Ri
y
u
e
Yu, and Quan
Wen, “A
New
Operating S
y
stem
Scheduling Alg
o
rithm”,
Advan
ced Research o
n
Electronic C
o
mmer
ce, Web
Applica
tion
,
and Communication,
Communications in Computer
an
d Information S
c
ience
, Vol. 143,
pp. 92-96
, 2011
.
[23]
T. Gunasekhar
,
and K. Thirupathi Rao,
et al.,
”
A
S
u
rve
y
on Denial of S
e
rvi
ce
Attacks
”
,
Intern
ational Journal
of
Computer Scien
ce and
Information Technolog
ies
,
Vol. 5
,
No. 2, 2
373-2376, 2014
.
[24]
T. Gunasekh
ar,
K. Thirup
athi Rao,
et al,
”Mitig
at
ion of Insid
e
r At
tacks th
rough M
u
lti-Cloud
”,
International Journa
l
of Electrical and
Comput
er
Eng
i
neer
ing (
I
JEC
E
)
, Vol. 5
,
No. 1, p
p
. 136-141
, 201
8.
[25]
T.Gunasekha
r,
K. Thirupa
thi R
a
o, ”
E
BCM: Si
ngle En
cr
yption
,
Multip
le De
cr
ypt
i
ons”,
In
tern
ational journal
of
Applied
eng
i
neering Research
,
Vol. 9
,
No. 19, p
p
. 5885-5893
, 2
014.
[26]
Adam Hendra Brata, Deron
Lia
ng,
and Sholeh
Hadi Pramono,
et al
, “
S
oftwar
e Developm
en
t
of Autom
a
tic D
a
ta
Collector for Bus Route Planning Sy
stem”,
International Journal of Electrical
an
d Computer Engineering (
I
JECE)
,
Vol. 5
,
No. 1, pp
. 150-157
, 2015
.
Evaluation Warning : The document was created with Spire.PDF for Python.