Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
4
,
No
. 5, Oct
o
ber
2
0
1
4
,
pp
. 81
7~
83
0
I
S
SN
: 208
8-8
7
0
8
8
17
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Fingerprint Direct-Access Stra
t
e
gyUsing L
o
cal-St
ar-Stru
c
t
u
re-
based Discriminator Feat
ures: A Comparison Study
G Indr
awan*,
S
Akb
a
r
*
, B
Sitoh
a
n
g*
* Data & Software Engine
ering Research
Division,
School
of El
ectr
i
cal
Engin
eer
ing and
Inform
ati
c
s, Institut Tekno
lo
gi
Bandung
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Aug 18, 2014
Rev
i
sed
Sep
20
, 20
14
Accepte
d Oct 1, 2014
This paper descr
i
bes a comparison stud
y
of the
proposed finger
p
rint direct-
access strateg
y
using local-star-topol
og
y
-
b
a
sed discriminator
featur
es,
including
internal comparison
among diffe
r
e
nt
co
ncerned
conf
igur
ations, and
extern
al compar
ison to the other
stra
tegies. Thro
ugh careful min
u
tiae-based
featur
e ex
traction, hashing-b
a
sed inde
x
i
ng-re
tr
ieva
l m
echan
ism
,
variab
le-
threshold-on-sco
r
e-ratio-ba
sed candidate-list red
u
c
tion techniqu
e, and hill-
climbing learning process, th
isstrate
g
y
was
considered pr
omising, as
confirm
e
d b
y
t
h
e exp
e
rim
e
nt
res
u
lts
. F
o
r par
ticul
ar
as
pect
o
f
exte
rna
l
accur
a
c
y
com
p
aris
on, this
s
tr
ateg
y outp
e
rfor
m
ed the others
over three
publicd
a
ta sets,
i.e. up to Pene
tration
Rate (PR) 5%, it consistently
gav
e
lower Error Rate (ER). B
y
taking sample
at P
R
5%, this strateg
y
p
r
oduced
ER 4%, 10%
, an
d 1% on FVC2000 DB2A, FVC
2000 DB3A, and FVC2002
DB1A, res
p
ec
tiv
el
y.
Another
per
s
pectiv
e if
a
ccur
a
c
y
p
e
rform
anc
e
was
bas
e
d
on area und
er cu
rve of graph ER
and PR, this str
a
teg
y
n
e
ith
er is the best nor
the worst strateg
y
on FVC200
0 DB2A and FVC2000 DB3A, while on
FVC2002
DB1
A
it outperfomed the others and even it gav
e
impressive
results for index created b
y
thr
e
e im
pressions per
finger (with or without
N
T
)
b
y
id
eal s
t
ep do
wn curve where
P
R
equal to 1
%
can a
l
wa
y
s
b
e
m
a
inta
ined
for smaller
ER.
Keyword:
Direct-access
ErrorRate
Fi
nge
r
p
ri
nt
Local-star
Pen
e
tration
Rate
Copyright ©
201
4 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
G
.
I
ndr
aw
an
,
Dat
a
&
So
ft
wa
re E
ngi
neeri
n
g
R
e
searc
h
Di
vi
si
on
,
Scho
o
l
of Electrical Eng
i
n
eerin
g
and
In
formatics, Institu
t Tek
n
o
l
og
i Ban
d
u
n
g
,
Jl.
G
a
n
e
sh
a 1
0
,
Band
ung
4
0243
, In
don
esia.
Em
a
il: g
i
n
d
r
awan@liv
e.co
m
1.
INTRODUCTION
Recent performance com
p
arison i
n
ar
ea
of finge
r
print direct-access st
rategy [1], leaving
furthe
r
que
stion
on
how far its accuracy
, efficiency
, and scala
b
ility perform
a
nce
can be im
proved. In ge
ne
ral, direct-
access strategy
itself
m
eans any searc
h
ing st
rategy to
out
puta candidate l
i
st (CL) without pe
rform
i
ng
1-t
o
-1
match
i
n
g
b
e
tween
a
qu
ery and
can
d
i
d
a
tes in th
e
d
a
tab
a
se.
ACLfro
m
a query will h
a
v
ea
list o
f
certain
Error
Rate (ER) atcertain
Pen
e
t
r
atio
n
Rate (PR
)
.
Th
e ER is th
e avera
g
e pe
rce
n
tage of sea
r
che
d
queries that
are not
fo
u
n
d
,
an
dt
he
PR
i
s
t
h
e p
o
rt
i
on
o
f
t
h
e
dat
a
base t
o
be sea
r
che
d
on t
h
e a
v
era
g
e.
The ac
curacy
performance
isth
en
m
easu
r
ed
b
y
th
egraph
of th
e trad
e-o
f
f
b
e
tween
ER and PR that s
h
ows atcertain E
R
how low PR
can be
achieve
d. The
efficiency perform
an
ce is consid
ering
as strateg
y
’s
sea
r
ch s
p
eed and m
e
mory
usa
g
e.
Based on above question and m
o
tiva
tion to answe
r
it through ne
w fi
ngerprint direct-acces
s strategy
,
in
itial wo
rk
h
a
s b
e
en
cond
u
c
t
e
d
b
y
au
tho
r
s
[2
].
As
fa
r
as au
tho
r
s’ k
nowled
g
e
,
th
e propo
sed
strateg
y
by
th
is
work
fill in non-e
xisting e
x
ploration area i
n
direct-acces
s strategy base
d
on 1-to-1
m
a
tching
using local
-star-
stru
cture th
at
was in
trod
u
c
ed
first b
y
Ratha et al. [3
].
This p
r
opo
sed
strateg
y
will th
en b
e
co
m
p
ared
to
th
e
othe
r state-of-the
-a
rt strate
giesin this
pa
per. Seve
ral
proposed
fingerpri
n
t
direct-acce
ss strategies have
be
e
n
ro
u
ghl
y
cl
assi
fi
ed by
[4]
,
i
.
e.
1)
usi
n
g gl
o
b
al
feat
ures
s
u
ch
as global ridge
-
line fre
qu
ency
[5]; 2) local fe
atures
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 4
,
N
o
. 5
,
O
c
tob
e
r
20
14
:
817
–
8
30
81
8
suc
h
aslocal ri
dge
-line frequency, lo
cal
ri
d
g
e-l
i
n
e
ori
e
nt
at
i
ons, a
ndl
ocal
features
from
the orie
ntation im
age
([
5]
, [6]
,
[
7
]
,
[
8
]
,
[9]
,
[
1
0]
);
3) m
i
nut
i
ae feat
uress
u
c
h
asg
e
om
et
ri
c feat
ures fr
om
t
r
i
p
l
e
t
s
of m
i
nut
i
ae poi
nt
s
an
d
p
e
rf
or
m
se
ar
ch
i
n
g
thr
ough
h
a
sh
ing
str
a
teg
y
(
[
1
1
]
, [12
]
, [
1
3
]
, [
1
4
]
)
;
4) o
t
h
e
r
f
eat
u
r
es su
ch
asFi
n
g
e
rCo
d
e
,
ri
d
g
e c
u
r
v
at
u
r
e
,
an
d S
I
FT
feat
ures
(
[
1
4
]
,
[1
5]
, [
1
6]
), a
n
d m
a
t
c
hi
ng
sc
ores
(
[
1
7
]
,
[1
8]
).
The p
r
o
p
o
se
d
st
rat
e
gy
cl
oses t
o
m
i
nut
i
ae-base
d a
ppro
a
ch
abo
v
e bu
t in
stead
of u
s
i
n
g
tri
p
letsof
min
u
tiae, it u
s
es lo
cal-star-stru
ct
u
r
e
o
f
m
i
n
u
tiae. Th
is p
a
per reports exp
e
rim
e
n
t
s o
n
th
ree p
u
b
licly av
ailab
l
e
benc
hm
arks a
n
d i
t
s
res
u
l
t
s
pr
ove
t
h
at
t
h
e
p
r
op
ose
d
st
r
a
t
e
g
y
was c
o
n
s
i
d
e
r
edas
a
pr
om
i
s
i
ng st
rat
e
gy
si
nce i
t
com
p
ares fa
vorably
with the
othe
r state-
of
-the-a
rt strate
gies.
Based
on pre
v
ious m
e
ntione
d
perfom
ace indicator, th
e
rest of this
pa
per is
orga
nized as
follows
.
Sectio
n
2
illu
st
rativ
ely d
e
scri
b
e
s th
e propo
sed
strateg
y
th
at
was in
itiated
b
y
In
drawan
et al. [2
] (its scalab
ilit
y
per
f
o
r
m
a
nce was al
ready
g
i
ven o
n
i
t
)
. S
ect
i
on 3 desc
r
i
bes exp
e
ri
m
e
nt
s on
pu
bl
i
c
dat
a
set
s
, i
n
t
e
rnal
l
y
com
p
are i
t
a
m
o
ng
di
ffe
re
nt
co
ncer
ne
d co
nfi
g
urat
i
o
ns, a
n
dex
t
ernal
l
y
com
p
are i
t
wi
t
h
ni
ne
pu
bl
i
s
he
d st
rat
e
gi
es.
It desc
ribes
data sets that
was
use
d
(Section
3.1), internal accuracy c
o
m
p
arison am
ong
diffe
re
nt
configurations
and e
x
ternal accuracy
com
p
aris
on to the other strate
gi
es (Section 3.2), interna
l
speed
com
p
ari
s
on
a
m
ong di
f
f
ere
n
t
con
f
i
g
urat
i
o
n
s
(Sect
i
o
n
3.
3
)
, a
n
d
i
n
t
e
r
n
al
m
e
m
o
ry
usage com
p
ari
s
o
n
am
ong
di
ffe
re
nt
co
nfi
g
u
r
at
i
o
ns (
S
ec
t
i
on
3.
4)
rel
a
t
e
d t
o
t
h
e
has
h
i
n
g sy
st
em
used
by
t
h
e
pr
op
ose
d
i
n
de
xi
ng
an
d
ret
r
i
e
val
pr
oce
ss. Sect
i
o
n
3.
3
an
d
3.
4 ca
nn
o
t
do
ext
e
r
n
al
c
o
m
p
ari
s
on
bec
a
use
of
di
f
f
ere
n
t
ha
rd
wa
re
pl
at
form
with
th
e
o
t
h
e
r strateg
i
es.
Fin
a
lly, Sectio
n 4
draws
th
e con
c
lu
si
o
n
an
d Section
5 sugg
ests immed
i
ate
im
pro
v
em
ent for
the
pr
o
p
o
s
e
d
strate
gy
th
ro
ug
h t
h
e
fut
u
re
wo
rk
.
2.
R
E
SEARC
H M
ETHOD
The
pr
op
ose
d
st
rat
e
gy
was c
onst
r
uct
e
d by
m
i
nut
i
ae-base
d
feat
ur
e ext
r
a
c
t
i
on
pr
ocess
,
ha
shi
n
g-
bas
e
d
inde
xing-retrie
v
al m
echanism
,
vari
ab
le-
t
hr
esho
ld-o
n-
scor
e-r
a
tio
-b
ased
can
d
i
d
a
te-list redu
ction
techn
i
qu
e,
an
d
h
ill-clim
b
i
n
g
learn
i
n
g
pro
cess.Its m
a
th
e
m
atical p
e
rs
pectiv
e was elab
orated
i
n
detail at [2
]. Figu
re
1
ilustrates sim
p
lified
proce
ss
of
th
e pr
opo
sed
str
a
teg
y
.
1.
Feat
ure e
x
t
r
act
i
on
pr
ocess
w
a
s base
d o
n
m
i
nut
i
ae det
ect
i
on al
g
o
ri
t
h
m
[1
9]
, [
2
0]
, w
h
ere m
i
nut
i
a
t
y
pe
(end
ing
o
r
b
i
furcatio
n), m
i
n
u
t
ia cartesian
-coo
rd
in
ate,
and
min
u
tia ab
so
lute-o
rien
tatio
n (min
u
tia an
g
l
e to
the horiz
ontal
line) are
rec
o
rded.
Based
on th
is feat
u
r
e ex
traction
r
esu
lt, th
e algo
rith
m
i
d
e
n
tifies certai
n
num
ber
of m
i
n
u
tiae edgesthrough id
e
n
tifica
tion of
l
o
cal-st
a
r
structur
e
be
long to each minutia-re
fe
renc
e
(sam
pl
e st
ruct
urei
n Fi
gu
re
1:
da
sh
ed
-lin
e en
circled
m
in
u
tia-referen
ce
m
1
wit
h
sev
e
ral d
a
sh
ed-lines
co
nn
ecting
to
min
u
tia-
n
eighbo
ur
s). Each
edg
e
d
e
f
i
n
e
s a lin
e
w
h
o
s
e
g
e
ometr
i
c f
eatu
r
es ar
eex
t
r
acted
: i
t
s
len
g
t
h
f
r
o
m
it
s
m
i
n
u
tia-
r
e
f
e
r
e
n
ce t
o
its min
u
tia-
n
eighbo
ur
, its m
i
n
u
tia-
r
e
f
e
r
e
ncer
el
ativ
e-
or
ien
t
ation
(angle di
ffe
rence betwee
n m
i
nutia-refe
r
e
n
ce
abs
o
lute-o
rien
tatio
n
to
t
h
e edg
eabso
l
u
te-ori
en
tatio
n), and
its
min
u
tia-
n
eighbo
ur
r
e
lativ
e-o
r
i
e
n
t
atio
n (
a
n
g
l
e d
i
ff
er
en
ce b
e
t
w
een m
i
n
u
tia-
n
eigh
bou
r abso
lu
te-o
r
i
en
tatio
n
to
th
e edg
e
abso
lu
te-orien
tatio
n).Hipo
t
etically, th
e si
milari
ty b
e
tween
two
fing
erprin
ts is d
e
fin
e
d
b
y
th
e
num
ber of
co
rr
esp
o
n
d
i
n
g
e
d
g
e
s
t
h
at
ca
n be f
o
u
n
d
un
de
r
ret
r
i
e
val
pr
ocess on
t
h
e ne
xt
st
e
p
.
2.
In
stead
of exp
licitly co
m
p
aring
th
e sim
i
l
a
rity b
e
tween th
e qu
ery fi
n
g
e
rp
rin
t
an
d all th
e can
d
i
d
a
te
fi
n
g
er
pri
n
t
s
i
n
t
h
e dat
a
base (
w
hi
ch w
o
ul
d
be
very
t
i
m
e
consum
i
ng), t
h
e a
u
t
h
ors
use a g
e
om
et
ri
chashi
n
g
t
echni
q
u
e [2
1]
fo
r
i
n
d
exi
ng
pr
ocess:
a has
h
t
a
bl
e i
s
bui
l
t
by
qua
nt
i
z
i
n
g cert
a
i
n
num
ber
of t
h
e e
d
g
e
s
above and for
eachqua
n
tized edge
, a lis
t of
poi
nters (ID) to the fingerpr
i
n
ts in the database containi
ng
that specifice
dgeis m
a
intained.
Wh
en
a new fi
n
g
e
rp
rin
t
is in
serted
i
n
th
e
d
a
tab
a
se, its edg
e
s are
extracted, a
n
d
the ha
sh table i
s
updated
by a
ddi
ng th
e f
i
ng
er
pr
in
t
I
D
s an
d
th
eir
co
rr
esp
ond
ing
f
i
ng
erp
r
i
n
t
edge
s, t
o
t
h
e
has
h
val
u
es a
ssoci
at
ed t
o
t
h
e has
h
key
s
.
A hash
val
u
e was co
nst
r
u
c
t
e
d by
t
h
e
list
to
accomm
odate
co
llisio
n
t
h
at
c
e
rt
ai
nl
y
ha
ppe
ned
.
C
o
llisio
n
will b
e
h
a
p
p
e
ned
wh
en th
e same h
a
sh k
e
y
was
gene
rat
e
d
f
r
o
m
di
fferent
ed
ges t
h
at
co
ul
d
com
e
from
sam
e
or
di
f
f
ere
n
t
fi
n
g
er
pri
n
t
I
D
.
G
o
o
d
desi
g
n
o
f
has
h
f
unct
i
o
n
fo
r t
h
e ha
sh
k
e
y
wo
ul
d m
i
nim
i
ze
co
llisio
n
. Fo
r
t
h
e pr
oposed
str
a
teg
y
, t
h
e h
a
shk
e
y w
a
s
b
a
sed
on
3
2
-b
it in
teg
e
r
v
a
lu
e co
nstructed
by p
r
ev
iou
s
ly
describ
e
d
three
d
i
scrim
i
n
a
to
r attrib
u
t
es, i.e. th
e
ed
g
e
leng
th
(16
-
b
it Least Sig
n
i
fican
t Bit /
LS
B), m
i
nutia-re
fere
nce re
lativ
e-orien
t
ation
(23
th
- 1
6
th
bit),
an
d
m
in
u
tia-n
ei
g
hbo
ur relativ
e-orien
t
a
tion
(8-b
it Mo
st Si
g
n
i
fican
t Bit / MSB).
3.
At retrieval time, the edges
of the query
finge
rpri
nt are com
puted and, for each
edge
, the list
of
fing
erp
r
i
n
t IDs in
wh
ich
th
at ed
g
e
is
p
r
esen
t
is retriev
e
d. Intu
itiv
ely, if th
e sa
m
e
fin
g
e
rp
rin
t
ID is h
it b
y
m
o
re ed
g
e
s in
th
e qu
ery, th
en it is
m
o
re lik
el
y th
at
t
h
e cor
r
e
s
po
n
d
i
n
g fi
nge
rp
ri
nt
i
s
t
h
e se
arche
d
one
. B
u
t
through expe
ri
ment, an edge
com
p
arison rel
a
tively stil
l not reduce
s
the search s
p
ace significantly. So the
pr
o
pose
d
st
rat
e
gy
uses
com
p
ari
s
on
o
f
co
n
n
ect
ed
-t
w
o
-e
dges (sam
plein Figure
1: connected edges
wi
th
min
u
tia
m
1
,
m
2
, and
m
3
by
fi
nge
r
p
ri
nt
ID
X
)
an
d c
o
n
n
ect
e
d
-t
hree
-ed
g
es
(
s
am
pl
ei
n Fi
gur
e 1:
co
nnect
e
d
ed
g
e
s with
m
i
n
u
tia
m
1
,
m
2
,
m
3
, and
m
4
by
fi
nge
r
p
ri
nt
I
D
X
)
. A
b
ove t
h
ree
edge
s which are connected, the
com
putational cost is expone
ntially
m
o
re expensiv
e (e
xponentially
longe
r
tim
e
execution). Am
ulti-stage
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
nger
p
ri
nt
Di
rect
-Access St
r
a
t
e
gy
Usi
n
g Lo
cal
-
St
ar
-St
r
uct
u
re-
b
ase
d
Di
scri
mi
n
a
t
o
r
…
(
G
. In
dr
aw
a
n
)
81
9
si
m
ilarit
y
sco
r
e co
m
p
u
t
atio
n
is app
lied
t
o
ob
tain
afin
al
rank
ing
,
wh
ich is
u
s
ed
for
v
i
sitin
g
t
h
e
d
a
tab
a
se
in
a con
v
e
n
i
en
t
ord
e
r.
It co
n
s
ist
s
of relativ
ely-fast-le
ss-accurate si
m
ilarit
y
sco
r
e co
m
p
u
t
atio
n at pre-filter
stage (
),
and re
latively-slow-m
ore-accurate sim
ilari
ty score com
putation
at
m
a
tcher stage (
). At pre
-
filter stag
e, an
in
itial ran
k
i
n
g
was
d
e
sce
n
d
i
ng
ly ord
e
red b
y
p
r
e-filter sco
r
e,
.
∙
(1
)
whe
r
e
is th
e nu
m
b
er
o
f
con
n
ected
-
t
wo
-
e
dges b
e
long
to
cer
t
ain
f
i
ng
er
pr
i
n
t I
D
,
i
s
t
h
e num
ber
of
connected-thre
e
-edges belong
to
cert
a
i
n
f
i
nge
rp
ri
nt
ID
,
an
d
is th
e
weigh
tin
g v
a
l
u
e
wh
ich
is
det
e
rm
i
n
ed t
h
r
o
u
g
h
t
h
e l
ear
ni
ng
pr
ocess
o
n
t
r
ai
ni
n
g
dat
a
(S
ect
i
on 3
.
1
)
.
At
m
a
t
c
her st
age,
a fi
nal
ra
nki
n
g
wh
ich
is an
upd
ate fro
m
an
i
n
itial ran
k
i
ng
was d
e
scend
i
ng
ly o
r
d
e
red
b
y
fin
a
l sco
r
e,
s
.
∙
(2
)
whe
r
e
is th
e m
a
x
i
m
u
m
v
a
lu
e
o
f
th
e add
itio
n of sev
e
ral
wei
g
h
t
ed
p
a
ram
e
t
e
rs
d
e
ri
v
e
d from
th
e lon
g
e
st
con
s
t
r
uct
e
d e
d
ges
(m
ay
be di
sco
nnect
e
d
)
be
l
o
n
g
t
o
ce
rt
ai
n
fi
n
g
er
pri
n
t
I
D
and
i
t
s
co
unt
e
r
part
, t
h
e l
o
n
g
e
s
t
con
s
t
r
uct
e
d ed
ges (m
ay
be
di
sco
n
n
ect
ed)
bel
o
ng t
o
fi
n
g
er
pri
n
t
ID X
.
Tho
s
e par
a
m
e
t
e
rs i
n
cl
udi
ng
num
ber
of e
d
gepai
r
s,
num
b
er of sam
e
-type-m
inu
tiapairs, edge le
ngt
h di
ffe
rence
accum
u
lation
of
edge
pairs
,
m
i
nutia-re
fere
nce’srela
tive-orie
ntation differe
n
c
e
accum
u
la
tion
of e
dge
pairs
,
a
nd
m
i
nutia-
n
e
igh
bou
r’srel
ativ
e-orien
t
ation
d
i
ffer
e
n
ce a
ccum
u
lation of edgepai
r
s [2].
is th
e weig
h
ting
v
a
lu
e
w
h
ich
is d
e
termin
ed
th
ro
ugh th
e lear
n
i
ng
pr
o
cess on
tr
ainin
g
d
a
ta (Sectio
n
3
.
1
)
. Figu
r
e
1
sho
w
s sim
p
le
retriev
a
l p
r
o
c
ess
with
= 1 a
n
d
=
1,
w
h
i
c
h a
r
e n
o
t
act
ual
l
va
l
u
es
used
by
t
h
e p
r
o
p
o
sed
st
ra
t
e
gy
.
4.
Can
d
i
d
a
te-list redu
ction
m
e
c
h
an
ism
was app
lied
o
n
re
t
r
i
e
val
p
r
o
cess
a
b
ove
.
It
o
u
t
p
ut
s cert
a
i
n
num
ber
of
fin
a
l cand
i
d
a
tes th
ro
ugh
co
mb
in
ed
techn
i
ques o
f
v
a
riab
le th
resho
l
d
o
n
sco
r
e
ratio
[2
2
]
at p
r
e-filter stage,
an
d fi
x
e
d-leng
t
h
trun
catio
n of
can
d
i
d
a
te-list at
m
a
tch
e
r stag
e.
5.
Fin
a
lly, h
ill-cli
m
b
i
n
g
learn
i
ng
p
r
o
cess [23
]
was u
s
ed
o
n
train
i
n
g
d
a
ta to
o
b
t
ain
op
ti
m
a
l
v
a
lu
es for
param
e
ter-set
of algorithm
.
These
values
for pa
ram
e
te
r-set were u
s
ed
on
sev
e
ral testing
data (Tab
le 1).
Figure
1. Duri
ng the i
nde
xi
ng
pha
se,
t
h
e e
x
tracted feature
s
from
each fi
nger
print in the
database are
use
d
to
gene
rat
e
t
h
e
hash
-
keys
(a
,
b, c
)
. Eac
h
key
m
aint
ai
ns t
h
e l
i
s
t
o
f
fi
nge
r
p
ri
nt
I
D
s
(
1
,
2
,
3
) and
th
e
i
r
co
rr
e
s
po
nd
ing
edge
s (
e
1
,
e
2
,
e
3
)
.
D
u
r
i
ng
t
h
e retr
iev
a
l ph
ase,
ed
g
e
s
o
f
t
h
e
q
u
er
y f
i
ng
er
pr
in
t
X
are co
m
p
u
t
ed
an
d th
e list
of
fing
erp
r
i
n
t IDs in
wh
ich
th
at
ed
g
e
is
p
r
esen
t
is re
triev
e
d. M
u
lti stag
e sim
i
l
a
rity sco
r
e com
p
u
t
atio
n
th
en
o
u
t
p
u
t
s cand
i
date list with
its fin
a
l rank
ing
wh
ich
is an upd
ate fro
m
th
ein
iti
al rank
ing
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 4
,
N
o
. 5
,
O
c
tob
e
r
20
14
:
817
–
8
30
82
0
3.
R
E
SU
LTS AN
D ANA
LY
SIS
This section
descri
bes experim
e
nts carried out
to eva
l
uate accuracy
and ot
her as
pects of the
pr
o
pose
d
fi
n
g
e
r
p
r
i
n
t
di
rect
-ac
cess st
rat
e
gy
a
nd t
o
com
p
ar
e
it with
th
e o
t
her state-of-t
h
e
-art in
th
is field. Th
e
al
go
ri
t
h
m
i
s
a C
#
i
m
pl
em
entat
i
on,
r
u
n
n
i
n
g
on
an
I
n
t
e
l
C
o
re
2
Qua
d
C
P
U
@
2.
40
G
H
z
. E
xpe
ri
m
e
nt
s usi
n
g
sam
e
p
e
rform
a
n
ce ev
alu
a
tion
an
d p
a
ram
e
ters calib
ration
in [2
].
3.
1. D
a
t
a
S
e
ts
Tabl
e 1 s
h
o
w
s
pu
bl
i
c
dat
a
se
t
s
1
as testing data for m
o
st of th
e publishe
d finge
r
print direct-access
st
rat
e
gi
es
[1]
.
It
al
so
s
h
o
w
s
pu
bl
i
c
dat
a
set
use
d
a
s
t
r
ai
ni
ng
d
a
t
a
f
o
r
t
h
e p
r
o
p
o
se
d st
r
a
t
e
gy
[
2
]
.
M
o
r
e
ove
r
,
m
o
re descri
pt
i
on
of t
h
ei
r ac
q
u
i
s
i
t
i
on speci
fi
cat
i
on [
24]
, [
2
5]
was sh
ow
n
by
Tabl
e 2. Im
age sam
p
l
e
s of t
hose
pu
bl
i
c
dat
a
set
s
we
re s
h
o
w
n
by
Fi
g
u
r
e
2.
Table
1.
Public data sets c
o
nsi
d
ere
d
for
e
v
aluation for direct
-access
st
rategi
es.
No.
Data Set
Data Set
Status
Sensor
Typ
e
Pixels
(
w
x h)
I
m
age Nu
m
b
er
(
w
x d)
Resolution
(
dpi)
Published
Strategies
1 FVC2000
DB1A[24]
T
r
aining
Data
Lo
w-Co
st
Capacitive
Sensor
300 x 30
0
800 x 8
500
I
ndr
awanet al.
(
2
0
14)
[2]
2 FVC2000
DB2A[24]
T
e
sting
Data
Lo
w-Co
st
Capacitive
Sensor
256 x 36
4
800 x 8
500
Capelli (2011) [1]
L
i
ang et al. (
2006)
[13]
Jiang et al.
(
2006)
[5]
De Boer
at al. (
2001)
[14]
3 FVC2000
DB3A[24]
T
e
sting
Data
Optical
Sensor
448 x 47
8
800 x 8
500
Capelli (2011) [1]
Jiang et al.
(
2006)
[5]
4 FVC2002
DB1A[25]
T
e
sting
Data
Optical
Sensor
388 x 37
4
800 x 8
500
Capelli (2011) [1]
Shuai et al.
(
2008)
[16]
L
i
ang et al. (
2007)
[26]
Fig
u
r
e
2
.
Fro
m
lef
t
to
r
i
gh
t: sam
p
le f
i
n
g
e
rp
r
i
n
t
s fro
m
FV
C20
0
0
D
B
1A
, FVC2
000
D
B
2A
,
FV
C200
0 D
B
3A
,
an
d FV
C200
2
D
B
1
.
Fir
s
t
im
p
r
ession
sw
er
e used
f
o
r
i
n
d
e
x
cr
eatio
n (
t
op
row
)
, an
d th
e
o
t
her
s
(
b
o
tto
m
r
o
w
)
were
use
d
for
que
ries.
Noted, im
ages are
not
in thei
r actual
size but they a
r
e in thei
r scale
diffe
re
nce.
1
Beside FVC
(Fi
ngerprint Verifica
tion Co
m
p
etition) public data sets, several published
strategies have
been also evaluated o
n
co
mm
e
r
cial
public data sets, i
.
e.
NIS
T
DB4,
NIS
T
DB4
(Natura
l
),
and NI
ST DB14
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
nger
p
ri
nt
Di
rect
-Access St
r
a
t
e
gy
Usi
n
g Lo
cal
-
St
ar
-St
r
uct
u
re-
b
ase
d
Di
scri
mi
n
a
t
o
r
…
(
G
. In
dr
aw
a
n
)
82
1
Tabl
e
2.
Pu
bl
i
c
dat
a
set
s
ac
q
u
i
s
i
t
i
on s
p
eci
fi
ca
t
i
on.
No.
Aspect
FVC2000 DB1A &
DB2A [24]
FVC2000 DB3A [
24]
FVC2002 DB1A [
25]
1
Volunteer
Students (
20 to 30
y
e
ar
old; about
50% m
a
le).
19 vol
unteer
s (
5
to 73 y
ear
old;
55%
m
a
le; 1/3 of
them
wer
e
over
55 y
ear
old; 1/3
of t
h
em
wer
e
under
18 y
ear
old; 1/6 of them
wer
e
under
7
y
e
arold)
.
30 stude
nts (
20 y
ear
old on the
average).
2
Session
For
e
and
m
i
ddle finger
of
both
the hands
(f
our
f
i
ngers) of
each
volunteer
wer
e
acquir
e
d in two
sessionsby
inte
r
l
eaving the
acquisition o
f
the
differ
e
nt
finger
s
(
e
.
g
.
,
fir
s
t sa
m
p
le
of le
ft
for
e
,
fir
s
t
sa
m
p
l
e
o
f
rig
h
t
fore, f
i
rst sa
m
p
l
e
of le
ft
m
i
ddle,
fir
s
t sam
p
le of
r
i
ght
m
i
ddle,
second sam
p
le of
the left for
e
,
and so on)
.
T
w
o im
ages
of six finger
s
(
t
hu
m
b
,
for
e
,
and
m
i
ddle finger
of
both the
hands) of each volunteer
wer
e
acquir
e
d in four
sessi
ons
without inter
l
eavi
ng.
No
m
o
r
e
than two sessio
n
s
a day
.
The ti
m
e
between the first a
nd last sessions
was at least 3 day
s
and as l
ong
as
3 m
onths,
depending
upo
n
volunteer
.
For
eand
m
i
ddle finger
of both the
hands (f
our f
i
ngers) of
each
volunteer
wer
e
acquir
e
d in thr
ee
sessions
by
inter
l
eaving the
acquisition o
f
the differ
e
nt
f
i
ngers. The ti
m
e
between each
session was at le
ast two weeks.
At each session,
f
o
ur i
m
ages were
acquired of each of the
f
o
ur
f
i
ngers of
each volunteer. At the
2
nd
session, they
were requested to
exagger
a
te finger
displacem
e
nt
(
i
m
a
ge 1 and 2)
a
nd r
o
tation
not
to exceed 35° (i
m
a
ge 3 and 4). At
the 3
rd
session,
finger
s
wer
e
alternatively dried
(i
m
a
ge 1 and
2)
and
m
o
istened (im
a
ge 3 and 4)
.
3 Sensor
Platen&
I
m
age
Quality
T
h
e sensor
platens wer
e
not
cleaned syste
m
atically. The
im
ages wer
e
taken fr
o
m
untr
a
ined
people and no ef
f
o
r
t
s wer
e
m
a
de
to control i
m
age q
u
ality.
The sensor platen was cleaned
syste
m
a
ticall
y
between each
acquisition. At one session, each
volunteer
’
s
finger
s
wer
e
cleaned
with r
ubbing alcoh
o
l and dr
ied.
The sensor platen was not cleaned
syste
m
a
ticall
y
. Th
e i
m
ages were
taken fr
o
m
untr
a
ined people and
no e
ffor
t
s
wer
e
m
a
de to contr
o
l
i
m
age quality.
4 Cor
e
&
Delta
Finger
p
r
i
nt cor
e
s
and deltas ar
e
not guar
a
nteed exist since no
attention on checking the
correct
finger
center
i
ng.
Finger
p
r
i
nt cor
e
was exist but
car
e
was taken to
avoid co
m
p
lete
overlap between consecutive
i
m
ages taken at
a s
e
ssion.
5 Rotation
&
Non-
Null
Over
lapping
Area
Maxi
m
u
m
rotation is about 15
and non-
n
u
ll ov
er
lapping ar
ea
between any
two im
p
r
essions of
the sam
e
finger
.
M
a
xim
u
m
r
o
tatio
n is ab
out
15°
and non-
null o
v
e
r
l
apping ar
ea
between any
two im
p
r
essions of
the sam
e
finger
.
M
a
xim
u
m
r
o
tation is a
bou
t
35°
and no
n-
null o
v
er
lapping ar
ea
between any
two im
p
r
essions of
the sam
e
finger
.
3.
2. Accur
a
c
y
Com
p
ari
s
on
Figure 3
- 5 s
h
ow the tra
d
e
-
off betwee
n PR a
nd ER
for seve
ral fingerpri
n
t direct access strategies on
th
ree FVC d
a
ta
sets.
1.
All of th
e results, ex
cep
t
th
em
with
an
asterisk
m
a
rk
(Table
3
)
, were ob
tain
ed
b
y
u
s
ing
first fing
erp
r
i
n
t
im
pression from each finge
r
for inde
x c
r
eation, a
n
d the re
maining seve
n for
queries (In this case, the
pr
o
pose
d
st
rat
e
gy
resul
t
s
we
re rep
r
ese
n
t
e
d
by
bl
ack
d
a
sh
ed-lin
es). The resu
lts with
an
asterisk
m
a
rk
were
obtained
by using first
three finge
r
pri
n
t im
pr
essions
from
each finger for inde
x
creation a
nd t
h
e
rem
a
i
n
i
ng fi
ve
for
qu
eri
e
s (
I
n
t
h
i
s
case, t
h
e
pr
op
ose
d
st
rat
e
gy
resul
t
s
we
re rep
r
ese
n
t
e
d
by
grey
da
she
d
-
l
i
n
es). S
huai
et
al
. [16]
an
d Li
ang et
al
. [2
6]
aret
he exce
pt
i
ons
. As s
h
o
w
n
by
Tabl
e 3, t
h
ey
used ra
nd
om
i
m
pression or random
three i
m
pr
essions from
each finge
r for i
n
dex creation.
This will ha
ve a
co
nsequ
e
n
ce o
n
u
n
p
r
ed
ictab
l
e h
i
gh
qu
ality o
f
created
in
d
e
x
sin
c
e first i
m
p
r
ession
o
r
first th
ree
i
m
p
r
ession
s, as it rep
r
esen
ts
o
r
th
ey
represen
t h
i
gh
er qu
ality i
m
ag
e(s)
t
h
an
o
t
h
e
rs
fro
m
t
h
e sam
e
fin
g
e
r,
was or were
not selected for
sure
.
Because
of that c
o
nsequence
,
ra
ndom
selection not s
o
appropriate for
h
ead to
h
e
ad
co
m
p
ariso
n
.
Howev
e
r, th
ey are still wo
rt
h
y
sho
w
n
t
o
en
rich
co
m
p
ariso
n
stud
y in
t
h
is
p
a
p
e
r.
2.
Al
l
of t
h
e res
u
l
t
s
, except
t
h
e
m
wi
t
h
a pl
us
m
a
rk (Ta
b
l
e
3
)
,
were
obt
ai
n
e
d by
usi
n
g
80
0 fi
nge
rp
ri
nt
s
o
f
t
e
st
i
ng set
“A
” [2
4]
[2
5]
fr
om
100 fi
n
g
e
r
s. The re
sul
t
s
wi
t
h
a pl
us
m
a
rk wer
e
o
b
t
ai
ned by
usi
n
g
ad
d
ition
a
l 80
fin
g
e
rprin
t
s of train
i
ng
set “B” [24
]
[2
5
]
, resultin
g
in
88
0
fing
erp
r
i
n
ts fro
m
1
1
0
fi
n
g
e
rs.
In
anot
her
wo
rd
, t
h
e resul
t
s
wi
t
h
a pl
us m
a
rk were
obt
ai
ne
d
by
usi
n
g ad
di
t
i
onal
1
0
im
pre
ssi
ons
f
o
r i
n
de
x
creat
i
on a
n
d 7
0
i
m
pressi
ons
f
o
r
que
ri
es. B
o
t
h
o
f
t
h
e r
e
sul
t
s
cann
o
t
be
u
n
i
t
e
d f
o
r
hea
d
t
o
head c
o
m
p
ari
s
on
.
Howev
e
r, th
e resu
lts with a
p
l
u
s
m
a
rk
are still wort
h
y
sho
w
n
to enrich com
p
ariso
n
st
u
d
y
in
th
is
p
a
p
e
r.
3.
All o
f
th
e
results, ex
cep
t
th
em
with
a h
a
sh m
a
rk
(Tab
le
3
)
, were
ob
tain
ed withou
t selectin
g
To
p 10%
Scores (
N
T
=
N
/10), where
N
i
s
num
ber of
im
pressi
on
s u
s
ed by
i
n
de
x creat
i
o
n
.
The
re
sul
t
s
wi
t
h
a ha
s
h
m
a
rk were o
b
t
a
i
n
ed by
sel
ect
i
ng To
p 1
0
%
S
c
ores
.
4.
Based on thos
e pre
v
ious points, th
e propos
e
d strategy provides three
kinds of res
u
lts, each re
prese
n
te
d
by
p
r
evi
o
u
s
m
e
nt
i
one
d
bl
ack
- an
d
g
r
ey
-
das
h
ed
-l
i
n
es
. T
h
es
e three
kinds
of res
u
lts eac
h c
o
m
e
s from
thre
e
con
f
i
g
urat
i
o
ns
t
h
at
were c
o
ncer
ne
d by
t
h
i
s
resear
ch
for th
e in
tern
al
co
m
p
arison,
and t
h
e external
co
m
p
ariso
n
with
o
t
h
e
r ex
istin
g
strateg
i
es.
Th
ese thr
ee confi
g
urations are for
sear
ch
m
o
d
e
: 1)
up
topre-
filter stag
e
(d
ash
e
d
-
lin
es
wit
h
sq
u
a
re m
a
rk); 2)
u
p
t
o
m
a
t
c
h
e
r
stag
e
with
N
T
t
r
u
n
cat
i
o
n
of C
L
(
d
as
h
e
d-
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 4
,
N
o
. 5
,
O
c
tob
e
r
20
14
:
817
–
8
30
82
2
lin
es with
trian
g
l
e m
a
rk
); and
3) up
to
m
a
tch
e
r stag
e
with
ou
t
N
T
t
r
unca
t
i
on o
f
C
L
(
d
a
s
he
d-l
i
n
es
wi
t
h
ro
u
nd m
a
rk)
.
F
o
r t
h
e
next
di
s
c
ussi
o
n
,
t
h
ree
bl
ack
das
h
ed
-l
i
n
es
wi
t
h
s
qua
r
e
, t
r
i
a
n
g
l
e
, a
n
d
ro
u
n
d
m
a
rk o
n
th
e grap
h
s
, each
will b
e
re
ferred
as
Pre-filter, Match
e
r,
an
d Matc
h
e
r2
. Wh
ilst,
t
h
ree grey
d
a
sh
ed
-lines
with square
, triangle, a
nd round m
a
rk on the gra
phs, each
will be refe
rre
d
as Pre
-filter*, Matcher*, and
M
a
t
c
her2
*.
N
o
t
e
d,
no
s
p
eci
fi
c sq
uare
, t
r
i
a
n
g
l
e
, a
n
d
r
o
un
d
l
e
gen
d
s
fo
r t
h
e
p
r
o
p
o
sed
st
rat
e
gy
f
o
r
t
h
e
sak
e
of si
m
p
l
i
c
it
y
of t
h
e g
r
a
phs
.
As Li
ang et
al
. [1
3]
[
26] s
t
ated that the
finger
p
r
i
n
t id
en
tificatio
n
can b
e
di
vi
de
d i
n
t
o
f
i
nge
rp
ri
nt
i
n
d
e
xi
n
g
a
n
d
fi
n
g
er
pri
n
t
ve
ri
fi
cat
i
on, M
a
t
c
h
e
r, M
a
t
c
he
r
2
,
M
a
t
c
her
*
, a
n
d
M
a
t
c
her2
* o
f
t
h
e pr
o
pose
d
st
r
a
t
e
gy
co
ul
d be
con
s
i
d
ere
d
a
s
s
o
rt
of
fi
nge
rp
ri
nt
ve
ri
fi
cat
i
o
n.
5.
Th
is po
in
t
refers to
th
e i
n
ternal co
m
p
ariso
n
o
f
t
h
e p
r
o
p
o
se
d st
rat
e
gy
.
G
ra
ph
res
u
l
t
s
co
nf
i
r
m
e
d t
h
at
Pre-
filter/Pre-filter* was less acc
urate tha
n
Matcher/Ma
tche
r*, whilst Matcher/Matcher* was less accurate
th
an
Match
e
r2
/
M
atch
er2*
. By d
e
sig
n
, Pre-fil
t
er/Pre-filte
r*
refer to
th
e search
po
wered
b
y
relativ
ely-fast-
less-accurate si
milarit
y
score
com
puta
tion.
They ga
ve the
search
output
in the form
of i
n
itial CL with it
s
in
itial can
d
i
d
a
tes rank
. At t
h
e o
t
h
e
r sid
e
, Match
e
r/Match
e
r*o
r
Matcher2
/Match
er2* refer t
o
search
powe
red by
relatively-slow-m
ore-accu
rate
similarity sc
ore
com
putatio
n. They re
fi
ne initial CL to
becom
e
final
CL with its final rank,
whic
h
was m
o
re
accurate on ra
ngki
ng order. Matcher/Matcher* loss
its accuracy in certain
degree
com
p
are to M
a
tcher2/Matcher2*
because
of its final CL t
r
uncation by t
h
e
secon
d
step
of CL redu
ction
[2
] wh
ich
is si
m
p
l
y
tru
n
cating
leng
th
o
f
C
L
to
N
T
if leng
th
o
f
CL long
er
th
an
N
T
.
No
ted on
Figure
4
,
Pre-filter resu
lt is ou
t of
g
r
aph
v
i
ew. Fu
rth
e
rm
o
r
e b
a
sed on
g
r
aph
resu
lts, t
h
e
pr
o
pose
d
st
rat
e
gy
nee
d
t
o
i
m
prove i
t
s
al
go
ri
t
h
m
to
g
i
v
e
s relativ
ely sm
a
ll d
i
fferen
t
resu
lt b
e
tween
M
a
tcher a
n
d
M
a
tcher2
,
or
b
e
tween M
a
tc
h
e
r* a
n
d M
a
tch
e
r2
*,
specifica
lly
for
result
o
n
F
V
C2
0
0
0
D
B
2
(
F
igu
r
e 3)
and
FV
C200
0 D
B
3 (
F
i
g
ur
e
4
)
.
6.
Th
is po
in
t refers to
ex
tern
al co
m
p
ariso
n
o
f
th
e p
r
o
p
o
s
ed
strateg
y
(Match
erand
Match
e
r*) to
th
e o
t
her
strateg
i
es u
tilizin
g
N
T
(st
r
at
egi
e
s wi
t
h
has
h
m
a
rk at
Tabl
e
3).
On Fi
gu
re 3 a
nd Fi
gu
re 4
,
u
p
t
o
PR
equal
t
o
4
%
, Match
e
r gav
e
lower ER
rath
er th
an
Cap
e
lli [1
].
Larger th
an
PR eq
ual to
4
%
, Cap
e
lli [1
] h
a
s fast
er
rate o
f
d
e
crease o
f
its ER to
PR, so
it g
a
v
e
lo
wer ER
rather than Matche
r. On Figure
5,
at all PR on the
g
r
aph
,
Match
e
r g
a
v
e
l
o
wer ER rath
er t
h
an
Cap
e
lli [1
], and
Match
e
r*
g
a
v
e
lower ER
rath
er th
an
Cap
e
lli*
[
1
]. M
o
r
e
ov
er, Match
e
r*
g
a
ve step
do
wn
cu
rv
e
wh
ic
h
is id
eal cu
rv
e
where it can m
a
in
tain
its PR eq
ual
t
o
1%
f
o
r
sm
al
l
e
r ER
. It
m
eans
fo
r e
v
ery
q
u
ery
,
searc
h
res
u
l
t
of
t
o
p
one
o
f
C
L
(
1
% o
f
num
ber
of
fingerpri
n
t at inde
x) alwa
ys
give correct
candidate.
Figure
3. Acc
u
racy of
propos
ed direct-acces
s
st
rategy on
FVC2000 DB
2.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Fi
nger
p
ri
nt
Di
rect
-Access St
r
a
t
e
gy
Usi
n
g Lo
cal
-
St
ar
-St
r
uct
u
re-
b
ase
d
Di
scri
mi
n
a
t
o
r
…
(
G
. In
dr
aw
a
n
)
82
3
Figure
4. Acc
u
racy of
propos
ed direct-acces
s
st
rategy on
FVC2000 DB
3.
Figure
5. Acc
u
racy of
propos
ed direct-acces
s
st
rategy on
FVC2002 DB
1.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 4
,
N
o
. 5
,
O
c
tob
e
r
20
14
:
817
–
8
30
82
4
Table
3. T
h
e
e
x
ternal accurac
y
com
p
arisonof direct-access
strategies.
No.
Data set
Proposed approach
Publis
hed strategies
Index fro
m
each finger
1 FVC2000
DB2A[24]
Match
e
r2
Match
e
r2
Match
e
r2
Match
e
r
#
De Boer
at al. (
2001)
+
[14]
Jiang et al.
(
2006)
[5]
L
i
ang et al. (
2006)
+
[13]
Capelli (2011)
#
[1]
First i
m
p
r
ession
First i
m
p
r
ession
First i
m
p
r
ession
First i
m
p
r
ession
2 FVC2000
DB3A[24]
Match
e
r2
Match
e
r
#
Jiang et al.
(
2006)
[5]
Capelli (2011)
#
[1]
First i
m
p
r
ession
First i
m
p
r
ession
3 FVC2002
DB1A[25]
Match
e
r2
Match
e
r
#
Match
e
r2
*
Match
e
r2
*
Match
e
r*
#
Shuai et al.
(
2008)
[16]
Capelli (2011)
#
[1]
L
i
ang et al. (
2007)
*
+
[26]
Shuai et al.
(
2008)
*[1
6
]
Capelli (2011)*
#
[1
]
Rando
m
i
m
pr
essio
n
First i
m
p
r
ession
Rando
m
thr
e
e i
m
p
r
essions
Rando
m
thr
e
e i
m
p
r
essions
Fir
s
t thr
e
e im
pressions
+
Results have been obtained
by
usin
g additional
80
fin
g
er
pr
ints of tr
ainin
g
set “B”
[2
4]
[25]
,
r
e
sulting in
880 fi
nger
p
r
i
nts fr
o
m
110 finger
s
.
* Results have bee
n
obtaine
d by using three f
i
ngerprint
i
m
p
r
essions
f
r
o
m
each f
i
nger f
o
r index creation,
instead of one.
#
Results have been obtained by
selecting T
op 10% Scor
es (
N
T
=
N
/10)
.
7.
Th
is po
i
n
t refers to
ex
tern
al
co
m
p
arison
of th
e
pr
o
pose
d
st
rat
e
gy
(M
at
cher
2 a
nd M
a
t
c
her
2
*
)
t
o
t
h
e
o
t
h
e
rstrateg
ies n
o
t
u
tilizin
g
N
T
(strateg
ies wi
th
ou
t h
a
sh
m
a
rk
at Tab
l
e 3).
On
Figu
re3
,
up
to
PR eq
u
a
l t
o
5
%
, Match
e
r2
g
a
v
e
lower
ER
rath
er th
an
all
o
t
h
e
r strateg
i
es. Hi
g
h
e
r than
PR eq
ual to
5
%
, De B
o
er et al.
[1
4]
(C
om
bi
ne
d)
gave l
o
we
r
ER
rat
h
er t
h
an
M
a
t
c
her2
. Hi
ghe
r t
h
a
n
PR
equal
t
o
1
3
%,
Li
ang et
al
. [
1
3]
g
a
v
e
lower ER rath
er th
an
Match
e
r2.
High
er t
h
an PR
eq
u
a
l t
o
22
%,
De Bo
er et al. [14
]
(Direction
a
l
Field) ga
ve lo
wer ER rat
h
er
than M
a
tche
r2
.
Un
fo
rtu
n
ately, Matcher2 cannot
be com
p
ared hea
d
to
hea
d
to De Boer et al. [14] and Li
ang et
al. [13] because of
different num
b
er of data set used (see Ta
ble 3).
Mo
reo
v
e
r,
De
Bo
er et al. ob
tain
ed
tho
s
e
resu
lts b
y
m
a
n
u
a
lly co
rrectin
g th
e co
re
po
int in
1
3
%
o
f
t
h
e
fi
n
g
er
pri
n
t
s
an
d
by
di
sca
r
di
n
g
1%
of t
h
e fi
nge
r
p
ri
nt
s
bec
a
use
no
co
re
p
o
i
n
t
c
oul
d
be f
o
u
n
d
. M
a
t
c
he
r
2
have
bee
n
pe
rf
orm
e
d nei
t
h
e
r
suc
h
m
a
nual
a
d
j
u
st
m
e
nt
s no
r
re
ject
i
ons
. F
u
rt
herm
ore,
M
a
t
c
her
2
ca
n
onl
y
be com
p
are
d
head t
o
head t
o
Jiang et al.
[5] star
t
at
PR
equal
t
o
5%
whe
r
eM
at
che
r
2 ga
ve l
o
we
r
ER
r
a
th
er th
an
Jian
g et al. [5
].
O
n
Figu
r
e
4,
up
to PR
eq
u
a
l
to
22
%, Matcher2
g
a
v
e
lower ER rath
er t
h
an
Jiang et al. [5]
.
Higher tha
n
PR
eq
u
a
l to
22%, Jian
g
et al. [5
] g
a
v
e
lower ER rath
er th
an
Match
e
r2
. On
Fi
gu
re 5, at
al
l
PR
on t
h
e gra
p
h
,
M
a
t
c
her
2
and M
a
t
c
he
r2
*
gave l
o
we
r ER
rat
h
er t
h
a
n
al
l
ot
her st
rat
e
gi
es,
even though no head t
o
hea
d
c
o
m
p
ari
s
on exi
s
t
b
eca
use o
f
di
ffe
rent
nu
m
b
er
of dat
a
set
and
di
f
f
ere
n
t
im
pression(s
) s
e
lection m
echanism
for i
nde
x
creation (see
T
a
ble 3).
8.
Accuracy perform
ance com
p
arison re
su
lts
related
to
t
h
e
u
s
ed
d
a
ta
set ch
aracteristics. Sev
e
ral po
in
t
s
about these characteristics that could ex
pl
ai
n t
hose re
sul
t
s
(poi
nt
5, 6, a
n
d 7):
1
)
Ji
ang et
al
. [5]
st
at
ed
fing
erp
r
i
n
ts of
FVC200
0 DB
2A h
a
v
e
a h
i
g
h
er im
ag
e q
u
a
lity th
an
tho
s
e
of FVC
2
000
DB
3
A
. At a l
o
wer
PR, s
u
ccess
f
ul
retrieval nee
d
s close
r
sim
ila
rity be
twee
n t
h
e
que
ry a
n
d
the candi
dates, which is
m
o
re
sen
s
itiv
e to
t
h
e im
ag
e q
u
a
lity. Th
erefo
r
e, FVC
2
000
DB2
A
h
a
s b
e
tt
er retrieval perfo
r
m
a
n
ce than
FV
C200
0 D
B
3
A
at low
e
r
PR. How
e
ver
,
FV
C
2
000
DB2
A
h
a
s a
wo
r
s
e r
e
tr
iev
a
l
p
e
rf
or
m
a
n
ce th
an
FVC
2
0
0
0
DB
3
A
at
hi
g
h
er
PR
beca
use
of
pa
r
t
i
a
l
fi
nge
rp
rint
s whose c
o
re
point is
near the
im
age edge
or
out
of t
h
e i
m
age. F
V
C
2
0
00
DB
2
A
has m
o
re suc
h
pa
rt
i
a
l
fi
n
g
er
pri
n
t
s
t
h
an F
V
C
2
00
0
DB
3
A
,
whi
c
h
fai
l
s
to
b
e
retriev
e
d
ev
en at h
i
g
h
PR; 2
)
Cap
e
lli [1
] h
a
v
e
b
e
en
man
u
a
lly an
al
yzed
all qu
eries th
at co
u
l
d
n
o
t b
e
fo
u
nd at
PR
e
q
ual
t
o
30% a
n
d co
u
n
t
e
d t
h
e
m
per dat
a
set
base
d o
n
the
m
o
st likely
error ca
use
(n
o e
r
ro
rs
at th
at PR
o
n
FV
C20
00 D
B
2
)
: a. co
r
e
no
t
p
r
esen
t
(
F
V
C
20
00
D
B
3A
=
1
,
FV
C200
0
D
B
2A
= 3)
, b. sm
all
o
v
e
r
l
app
i
ng
r
e
g
i
on
(
F
V
C
2000
D
B
3A
=1, FV
C20
0
0
D
B
2A
=2
), c. lar
g
e r
o
tatio
n
(FV
C
2
000
D
B
3A
=2
,
FVC200
0
DB
2
A
=1
),
d
.
low i
m
ag
e q
u
a
lity
(FVC
2
000
DB3
A
=10
, FVC2
000
DB2A
= 0
)
, and
e. skin
d
i
sto
r
sion
(FVC2
000
DB3A
= 10
, FVC200
0 DB
2
A
=
0
)
; 3
)
Abo
u
t
fing
erp
r
i
n
t im
ag
e qu
alitystated
b
y
Jian
g
et al. [5
], th
is
p
a
p
e
r con
f
irm
e
d
it b
y
measu
r
em
en
t u
s
in
g
NIST
Fing
erp
r
i
n
t Im
ag
e Qu
ality (NFIQ)
al
go
ri
t
h
m
[20
]
. As sho
w
n b
y
Fi
gure 6
,
N
F
IQ
out
put
s t
h
e im
age qual
i
t
y
val
u
e (w
her
e
1 i
s
t
h
e hi
gh
est
q
u
a
lity and
5 is th
e lowest quality) fo
r
80
0
i
m
ag
es p
e
r d
a
ta set. Percen
tage o
f
im
ag
es wi
th
qu
ality 1
and
2
(t
wo h
i
g
h
e
st i
m
ag
e qu
ality
v
a
lu
e) are ab
ou
t 37
%,
88
%,
2
6
%, an
d 93
% for FVC
2
000
DB1A
(train
i
ng
d
a
ta set u
s
ed
b
y
th
e p
r
op
o
s
ed
str
a
teg
y
), FV
C200
0
D
B
2
A
, FV
C
2
000 D
B
3
A
, and
FV
C200
2
D
B
1
A
,
resp
ectiv
ely.
Un
lik
e Jiang
et al. [5
] an
d
C
a
p
e
lli [1
], the
p
r
op
o
s
ed
st
rateg
y
h
a
s no
th
i
n
g
to
do
wit
h
co
re
p
o
i
n
t
and
large ro
tatio
n
(no
t
d
e
p
e
nd
on
the
m
), so
its retriev
a
l p
e
rfo
r
m
a
n
ce on
testing
d
a
ta sets is in
accorda
n
ce to their i
m
age
quality results by NFIQ
, i.e
.
best result on FVC
2
002 DB1A,
follow
by
FVC
2
0
00
DB
2A
, an
d t
h
e
n
FVC
2
0
00
DB
3A
. N
o
t
e
d
,
t
h
e
pr
op
ose
d
st
rat
e
gy
ar
bi
t
r
ari
l
y
chos
e FVC
2
0
0
0
DB1A as train
i
n
g
d
a
ta
wh
ose
p
e
rcen
tag
e
of i
m
ag
es with quality 1
an
d
2
is
relativ
ely q
u
ite lo
w.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Fi
nger
p
ri
nt
Di
rect
-Access St
r
a
t
e
gy
Usi
n
g Lo
cal
-
St
ar
-St
r
uct
u
re-
b
ase
d
Di
scri
mi
n
a
t
o
r
…
(
G
. In
dr
aw
a
n
)
82
5
Fig
u
re
6
.
Histog
ram
o
f
fing
erp
r
i
n
t im
ag
e q
u
ality b
a
sed
o
n
NFIQ al
g
o
rithm
3.
3. Speed
C
o
mpari
s
on
Pre
v
ious accuracy perform
a
n
ce com
e
s along
with its
spee
d pe
rform
a
nce.
In
ge
ne
ral, it is not
pos
sible t
o
m
a
ke a
system
a
t
ic spee
d c
o
m
p
arison like
accuracy com
p
aris
on since
s
p
eed res
u
lt is
obtai
ned
on
diffe
re
nt ha
rd
ware
platf
o
rm
s.
1.
M
o
re
ove
r,
bas
e
d o
n
[1]
,
un
fo
rt
u
n
at
el
y
av
erage sea
r
c
h
t
i
m
e
s are not
rep
o
rt
e
d
f
o
r
o
t
her
pu
bl
i
s
he
d
strateg
i
es
o
n
three
d
a
ta sets (Tab
le 1),
ex
cep
t
b
y
Ca
p
e
lli[1
]
t
h
at repo
rted averag
e search
ti
me ab
ou
t 70
m
s
,
134m
s, and 71m
s, each for FVC200
0
DB2, FVC2000
DB
3, and FVC
2002
DB1, runni
ng
on a
n
Intel
Co
r
e
2
Q
u
ad
CPU
@ 2.66
G
H
z
. A
ltho
ugh
it can
no
t b
e
directly com
p
a
r
ed, howe
ver,
that result can
be
use
d
as a refe
r
e
nce t
o
m
o
t
i
v
at
e im
provem
e
nt
of t
h
e p
r
op
os
ed st
rat
e
gy
.
As
sho
w
n by
M
a
t
c
her at
Fi
g
u
r
e7
,
avera
g
e sea
r
c
h
t
i
m
e cond
u
c
t
e
d by
t
h
e
p
r
o
p
o
sed
st
rat
e
gy
i
s
ab
o
u
t
2
47m
s, 7
56m
s, an
d
27
8m
s for
FV
C200
0 D
B
2, FV
C20
0
0
D
B
3
,
and
FV
C
2
002
D
B
1
,
r
e
sp
ect
iv
ely.
2.
To
co
m
p
lete in
tern
al co
m
p
arison
p
e
rsp
ecti
v
e,
Fi
gure
7
also s
h
ows a
v
erage sea
r
c
h
time com
p
arison
bet
w
ee
n Pre
-fi
l
t
e
r and Pre
-fi
l
t
e
r*;
M
a
t
c
her
and M
a
t
c
her
*
am
ongst
t
h
r
ee di
ffe
rent
d
a
t
a
set
s
. Sam
e
te
m
p
late d
a
ta (resu
lt of
fingerprin
t
feature ex
trac
t
i
o
n
p
r
ocess
)
was
us
ed t
o
p
r
ovi
de
rel
a
t
i
v
el
y
sa
me
in
fo
rm
atio
n
as an
inpu
t to
t
h
e
p
r
o
p
o
s
ed
strateg
y
w
ith
dif
f
e
r
e
n
t
conf
igu
r
ation
(
s
ear
ch
op
tion
)
du
r
i
ng
expe
ri
m
e
nt
. O
n
F
V
C
2
0
0
0
D
B
2 a
n
d
F
V
C
2
0
0
2
DB
1,
a
v
era
g
e sea
r
c
h
t
i
m
e
com
p
ari
s
on
ga
ve
rel
a
t
i
v
el
y
fl
at
resu
lt trend
.
It mean
s th
e p
r
op
o
s
ed
strateg
y
relativ
ely well
ap
p
lied
for th
ese d
a
ta sets ch
aracteristic sin
c
e
t
r
i
p
l
e
gr
owt
h
n
u
m
b
er of i
m
pressi
ons
on sea
r
ched
-i
n
d
e
x
di
d
not
m
a
ke average searc
h
t
i
m
e
t
r
i
p
l
e
l
onge
r,
in
co
m
p
arison
b
e
tween
Pre-fi
lter an
d
Pre-filter*
(Pre-filter*
on
FVC20
00 DB2
and
FVC2
002
DB1
g
a
v
e
ad
d
ition
a
l av
erag
e search
time abo
u
t
1.6
%
an
d -2
.7
%,
respectiv
ely), or
between Matcher an
d Match
e
r*
(
M
atch
er*
o
n
FV
C200
0
D
B
2 an
d
FV
C
2
002 D
B
1
g
a
v
e
additio
n
a
l av
er
ag
e sear
ch
tim
e a
b
ou
t 44
.5
% and
16.9%, re
spect
ively). On
FVC2
000
D
B
3
,
av
e
r
ag
e
s
e
ar
c
h
ti
me
co
m
p
ariso
n
g
a
v
e
relativ
ely sub
-
lin
ear
resul
t
t
r
en
d, a
nd al
s
o
, t
r
i
p
l
e
gr
owt
h
n
u
m
b
er of i
m
pressi
ons
o
n
searc
h
ed-i
nde
x di
d n
o
t
m
a
ke avera
g
e
search
tim
e tri
p
le lo
ng
er, in
co
m
p
ariso
n
b
e
t
w
een
Pr
e-filter an
d
Pre-filter* (P
re-filter*
on
FVC200
0
DB
3
gave a
dditiona
l average sea
r
ch tim
e
about 32.5%
),
or between Matcher and Matcher* (Matc
h
er* on
FVC200
0 DB
3 g
a
v
e
ad
d
ition
a
l search
i
n
g time abo
u
t
12
6.7%).
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 4
,
N
o
. 5
,
O
c
tob
e
r
20
14
:
817
–
8
30
82
6
Fi
gu
re
7.
A
v
er
age sea
r
ch
s
p
e
e
d c
o
m
p
ari
s
on
of
t
h
e
pr
o
p
o
s
e
d
st
rat
e
gy
ba
se
d
on
n
u
m
b
er
of
im
pressi
o
n
fr
o
m
sam
e
fi
nger t
h
at
was
use
d
fo
r
i
nde
x c
r
eat
i
o
n
.
3.
4. Mem
o
r
y
Usa
g
e C
o
mp
a
r
i
s
on
As one of
t
h
e efficiency perform
ance
consi
d
eration
besi
d
e
spee
d,
i
t
i
s
a
l
so
not
p
o
ssi
bl
e t
o
m
a
ke a
syste
m
atic
m
e
m
o
ry usage c
o
m
p
arison like
accuracy c
o
m
p
arison because of
differ
e
n
t hardwa
re platforms.
1.
Thi
s
sect
i
o
n
o
n
l
y
desc
ri
bes i
n
t
e
r
n
al
com
p
ari
s
on
, a
m
ongst
t
h
ree
di
f
f
ere
n
t
da
t
a
set
s
,
bet
w
een
inde
xingproces
s
(Section 2 Point 2)
usi
n
g fingerpri
n
t’s
first im
pr
ession from
each finge
r for inde
x
creation (refe
r
red as the Inde
xing),
and usi
ng fi
ngerpri
n
t’s first thr
ee impressi
ons from each finger for
i
nde
x creat
i
o
n
(re
fer
r
ed as t
h
e In
de
xi
n
g
*
)
.
Thi
s
i
n
t
e
r
n
al
c
o
m
p
ari
s
on
su
p
pos
es t
o
gi
ve
m
o
re pers
pect
i
v
e
of
t
h
e
pr
o
p
o
s
e
d
st
rat
e
gy
.
2.
C
o
m
p
ari
s
on
u
s
es t
w
o di
ffe
r
e
nt
co
nfi
g
u
r
at
i
ons
ab
o
v
e (
I
n
dexi
ng
an
d
In
dexi
ng
*
)
bec
a
u
se t
h
ey
a
r
e i
n
accorda
n
ce to the pre
v
ious
expe
rim
e
ts. T
h
e Inde
xing
process prec
ede
s
the Pr
e-filter, Matcher, and
Match
e
r2,
wh
il
st th
e Ind
e
x
i
n
g
*
p
r
o
cess preced
es t
h
e Pre-filter*
, Match
e
r*
, and
Match
e
r2*
.
3.
Thi
s
i
n
de
xi
n
g
p
r
o
cess
(I
n
d
ex
i
ng a
n
d
I
nde
x
i
ng
*)
req
u
i
r
e
d
cert
a
i
n
am
ou
nt
o
f
m
e
m
o
ry du
ri
n
g
sy
st
em
ru
n
n
i
n
g f
o
r
ha
sh-t
a
b
l
e
-
b
ased
searc
h
ed i
n
d
e
x. M
e
m
o
ri
es
were
occ
upi
e
d
by
ha
sh
-key
s
an
d i
t
s
rel
a
t
e
d
retriev
e
d
ob
j
e
cts (ele
m
e
n
t
s) t
h
at co
n
s
t
r
u
c
t th
at h
a
sh-tab
le.
A h
a
sh
-k
ey h
o
ld
s its ele
m
en
ts in
a
lis
t
if
th
ere
is
co
llisio
n
(a
hash-key has
m
o
re than
oneele
m
ent). A
ha
sh
-k
ey was
allo
cated
b
y
to
tal 3
2
-b
it d
a
t
a
,
con
s
t
r
uct
e
d
by
1
6
-
b
i
t
(
L
SB
)
dat
a
of
ed
ge l
e
ngt
h,
8
bi
t
(bi
t
23
th
- 16
th
)
dat
a
o
f
m
i
nutia-re
fere
nce
relativ
e-
ori
e
nt
at
i
on, a
n
d 8
-
bi
t
(M
SB
)
dat
a
of m
i
nut
i
a
-nei
gh
b
o
u
r
relativ
e-orien
t
ation
.
An
elem
en
t
was allo
cated
b
y
to
tal 1
04-b
it
data, con
s
tru
c
ted
b
y32
-b
it d
a
t
a
o
f
can
d
i
d
a
te
fing
erp
r
i
n
t ID
in
d
a
tab
a
se, 16-b
it
d
a
ta of edg
e
len
g
t
h, 8
b
it d
a
ta o
f
m
i
n
u
tia-referen
ce rel
a
tiv
e-orien
t
ation
,
8
-
b
it d
a
ta o
f
m
i
n
u
tia-n
ei
g
hbo
ur relative-
ori
e
nt
at
i
on,
8
bi
t
dat
a
o
f
m
i
nut
i
a
-
n
ei
g
h
b
o
u
r
t
y
pe (e
ndi
ng
,
bi
fu
rcat
i
o
n,
o
r
el
se),
16
-
b
i
t
dat
a
o
f
m
i
nut
ia-
r
e
f
e
r
e
n
c
e nu
mb
er, an
d 16
-b
it
d
a
ta of
m
i
n
u
tia-
n
ei
g
hbo
ur
n
u
m
b
er
.
4.
Fo
r t
h
e n
e
x
t
d
i
scu
ssion
, m
e
mo
ry u
s
ag
e co
mp
ariso
n
will o
n
ly refers to
th
e
n
u
m
b
e
r of h
a
sh
-k
eys and
th
eir
related
n
u
m
b
e
r of elem
en
ts for an
alysis si
m
p
licit
y.
5.
Fi
gu
re
8 s
h
o
w
s
i
n
creasi
n
g
n
u
m
ber of
has
h
-
k
ey
ge
ner
a
t
e
d
by
t
h
e
In
de
xi
n
g
*
t
o
t
h
e b
a
se
num
ber
of
has
h
-
key
s
ge
ne
rat
e
d
by
t
h
e
I
nde
xi
ng
. T
h
e
In
de
xi
ng
*
ga
ve i
n
c
r
e
a
si
ng
n
u
m
b
er
of
has
h
-
k
ey
s a
b
o
u
t
16%
,
19
%,
an
d 12
% fo
r FV
C20
0
0
D
B
2
,
FV
C200
0 D
B
3, and
FV
C
2
0
02 D
B
1,
r
e
spectiv
ely.
6.
R
e
l
a
t
e
d t
o
Fi
g
u
re
8, Fi
gu
re 9
sho
w
s
hash
-
k
ey
s di
st
ri
but
i
o
n base
d
on
nu
m
b
er of i
t
s
el
em
ent
s
. Up
pe
r-
r
o
w
gra
p
hs (ge
n
e
r
a
t
ed by
t
h
e I
nde
xi
n
g
)
an
d
l
o
w
e
r-
ro
w gra
p
hs (
g
ene
r
at
ed
by
t
h
e In
de
xi
n
g
*
)
sho
w
di
st
ri
but
i
o
n
perce
n
t
a
ge
of
has
h
-
k
ey
gr
o
u
p
s ba
sed
on
n
u
m
ber of i
t
s
el
em
ent
s
. These
h
a
sh-
k
ey
g
r
o
u
p
s
were cl
assi
fi
e
d
i
n
t
o
gr
o
u
p
1;
2
-
1
0
;
21
-3
0;
31
-4
0;
41
-5
0;
a
n
d 51
-
x
.
Last
gr
ou
p c
o
nt
ai
ns
x
(
num
ber
wi
t
h
an ast
e
ri
x m
a
rk
)
that diffe
rs from each data set and re
pre
s
ent
s
the bigg
est num
b
er of elements th
at could fill in the list,
rel
a
t
e
d t
o
cert
a
i
n
has
h
-
k
ey
. N
o
t
e
d, c
o
nsecut
i
ve n
u
m
b
er of e
l
em
ent
s
on l
a
st
gr
ou
p (
f
r
o
m
51 t
o
x
) wa
s n
o
t
gua
ra
nt
eed e
x
i
s
t
s
i
f
c
o
m
p
ared
wi
t
h
t
h
e
ot
he
r
gr
o
ups
.
7.
On t
h
e I
nde
xi
ng
, di
st
ri
but
i
o
ns o
f
hash
-
k
ey
gr
ou
p
1 are a
b
o
u
t
1
0
%,
1
6
%
, an
d 1
0
%
f
o
r F
V
C
2
0
0
0
DB
2
,
FVC
2
0
0
0
DB
3, a
n
d F
V
C
2
0
0
2
DB
1,
res
p
e
c
t
i
v
el
y
.
On
t
h
e
In
de
xi
n
g
*
,
di
st
ri
but
i
o
ns
o
f
has
h
-
k
ey
g
r
ou
p
1
rel
a
t
i
v
el
y
n
o
t
chan
ge
d
m
u
ch
,
i
.
e.
ab
o
u
t
9
%
, 15%
,
a
n
d 8% fo
r FVC
2
00
0 DB
2, FV
C
2
0
0
0
DB
3,
a
n
d
Evaluation Warning : The document was created with Spire.PDF for Python.