Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 4
,
A
ugu
st
2015
, pp
. 78
8
~
79
7
I
S
SN
: 208
8-8
7
0
8
7
88
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Network Reconfiguration for
Loss Reduction and Voltage
Profile Improvement of 110-Bu
s Radial Distribution System
Using Exhaustive Search Techniques
Su Mon Myin
t,
S
o
e
Win Naing
Department o
f
Electrical Power
Engineering, Mandalay
Technolo
g
ical
University
, Patheing
y
i
, M
y
anmar
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
Mar 22, 2015
Rev
i
sed
May
9, 201
5
Accepted
May 24, 2015
Nowada
y
s
,
the
ele
c
tri
c
it
y d
e
m
a
nd is in
creas
ing
da
y
b
y
da
y
an
d hence i
t
is
ver
y
im
portan
t
not onl
y
to ex
tr
act
el
ectr
i
c
a
l
en
erg
y
from
al
l p
o
s
s
i
ble new
power res
ources
but als
o
to reduce power los
s
e
s
to an acc
ept
a
ble
m
i
nim
u
m
level in the
existing distribution
netw
orks where a larg
e amount of power
dissipation o
ccu
rred. In
M
y
anmar,
a lo
t
of power is remarkab
ly
dissipated
in
distribution s
y
stem. Among me
thods in
reducing power losses, network
reconfigur
ation
method is empl
o
y
ed
for loss minimization and
exhaustiv
e
techn
i
que
is a
l
so appl
ied
to
ac
hieve
the
m
i
ni
m
a
l loss switch
i
ng schem
e
.
Network reconfiguration
in d
i
stributi
on s
y
stems is performed
b
y
op
ening
section
a
li
zing s
w
itches and
clo
s
ing tie swit
che
s
of the networ
k for loss
reduction and voltag
e
profile improve
ment. The distribution
network fo
r
existing and reconfiguration conditi
ons are
modelled and simulated
b
y
Ele
c
tri
cal
Tr
ans
i
ent An
al
yz
er P
r
ogram
(ETAP
)
7.5 v
e
rs
ion s
o
ftware.
Th
e
inputs are given based on th
e real
time data collected from 33/11kV
substations under Yangon Electr
i
city
Supply
Bo
ard (YESB). The proposed
method is tested on 110-Bus, overhead
AC radial distr
i
bution
network o
f
Dagon Seikkan
Township since
it is
l
ong-leng
th, overlo
a
ded
lines and high
leve
l of power d
i
ssipation
is occ
u
rred in
this s
y
st
em
. According
t
o
sim
u
latio
n
results of
load
f
l
ow analy
s
is, vo
ltag
e
profile en
hancement and
power loss
reduction for
pro
posed s
y
stem ar
e rev
e
aled
in
this
paper
.
Keyword:
Ex
haust
i
v
e
t
e
c
hni
que
s
Loa
d
fl
ow anal
ysis
Loss re
duction
Net
w
or
k reco
n
f
i
g
urat
i
o
n
R
a
di
al
di
st
ri
b
u
t
i
on sy
st
em
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Su
M
o
n Myin
t,
Depa
rt
m
e
nt
of
El
ect
ri
cal
Po
w
e
r E
ngi
neeri
n
g, Mandalay Te
chno
log
i
cal Univ
ersity
Path
eing
yi,
Mandalay
,
Myan
m
a
r
Em
a
il: su
m
o
nmyin
t
1
0
@
g
m
a
il.co
m
1.
INTRODUCTION
The i
n
c
r
ease i
n
p
o
w
er
dem
a
nd a
n
d
hi
g
h
l
o
ad
de
nsi
t
y
i
n
t
h
e u
r
ba
n a
r
e
a
s m
a
kes t
h
e ope
rat
i
o
n
o
f
po
we
r sy
st
em
s com
p
l
i
cat
ed. The
po
wer
di
st
ri
b
u
t
i
on t
o
p
o
l
o
gy
i
s
re
qui
re
d t
o
cha
n
ge f
o
r t
h
e bet
t
e
r
pl
an
ni
ng
o
f
pri
m
ary
di
st
ri
but
i
on sy
st
em
and
by
i
n
creasi
ng t
h
e su
bst
a
t
i
on ca
paci
t
y
an
d t
h
e n
u
m
b
er o
f
fee
d
ers acc
or
di
n
g
t
o
o
b
t
ain
t
h
e m
i
n
i
mal lo
ss co
n
f
i
g
uration
.
A
sign
ifican
t
p
o
rtio
n
of th
e
p
o
wer th
at a u
tility g
e
n
e
rates is lo
st
in
th
e
di
st
ri
b
u
t
i
on
pr
ocess. T
h
ese l
o
sses
occu
r i
n
num
erou
s sm
al
l
co
m
pone
nt
s i
n
t
h
e di
st
ri
b
u
t
i
on sy
st
em
,
suc
h
as
tr
an
sf
or
m
e
r
s
an
d d
i
str
i
bu
tio
n lin
es
[
1
]. On
e of
th
e m
a
j
o
r
sources
of l
o
ss
es in t
h
e
distri
bution system
is the
p
o
wer lin
es
wh
ich
co
nn
ect t
h
e su
b
s
tation
t
o
th
e l
o
ad
s. Virtu
a
lly all real p
o
wer is l
o
st in
th
e
d
i
stribu
tio
n
syste
m
since these losses a
r
e
a functio
n
of
t
h
e sq
ua
re o
f
t
h
e c
u
r
r
ent
fl
o
w
t
h
ro
u
gh t
h
e
l
i
n
e. M
i
ni
m
i
zat
i
on
of
active power l
o
sses is one of the essential aim
s
for an
y electrical distribution t
o
im
prove system properties
and m
eet
t
h
e cust
om
er dem
a
nd
. Net
w
o
r
k
re
con
f
i
g
urat
i
o
n
,
capaci
t
o
r
pl
ace
m
e
nt
and di
st
ri
but
e
d
ge
nerat
i
on a
r
e
am
ong
di
f
f
ere
n
t
way
s
o
f
de
creasi
n
g l
o
sses
.
As a co
nse
q
uence
,
t
h
e sy
st
em
vol
t
a
ge i
s
al
so im
pro
v
e
d
.
Thu
s
,
these two
fact
s are
interc
onnected [2].
As
di
st
ri
but
i
o
n s
y
st
em
of case
st
u
d
y
i
s
r
a
di
a
l
di
st
ri
b
u
t
i
o
n s
y
st
em
,
di
st
ri
b
u
t
i
o
n
fee
d
er
co
nfi
g
u
r
at
i
o
n
i
s
t
h
e
be
st
m
e
t
hod.
Di
st
ri
but
i
o
n
fee
d
er
r
econ
f
i
g
urat
i
o
n
i
s
per
f
o
rm
ed f
o
r
l
o
a
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
78
8
–
79
7
7
89
b
a
lan
c
ing
and
lo
ss redu
ction
d
u
ring
th
e lo
ad
tran
sfer fr
om
heavy loade
d
feede
r
to
light loade
d
feeder.
After
finding the
statues
of
differe
n
t switc
hes, t
h
e fee
d
er
ca
n
be confi
g
ured from
a distant
place. T
h
e
r
e a
r
e t
w
o
typ
e
s o
f
switches: n
o
rm
al
ly o
p
e
n
switch
e
s as tie-switch
and
no
rm
ally clo
s
e switch
e
s as
sectio
n
a
lizin
g
switch.
By clo
s
in
g
tie switch
e
s in
rad
i
al d
i
stribu
tion
syste
m
, th
is n
e
two
r
k
tran
sfo
r
m
s
in
to
fu
lly
m
e
sh
ed
d
i
stri
b
u
tion
syste
m
. In this condition, sys
t
e
m
power los
s
es are d
ecreas
ed. This is the
least
power losses the system
can
have
.
An
d t
h
e
fu
nct
i
o
n
of se
ct
i
onal
i
z
i
ng
s
w
i
t
c
hes i
s
t
o
o
p
en
l
i
n
e bet
w
e
e
n
buse
s
i
n
a l
o
o
p
t
o
rest
ore
radi
al
di
st
ri
b
u
t
i
on sy
st
em
fi
nal
l
y
. It
i
s
not
ed t
h
at
i
f
t
h
ere a
r
e fi
ve
l
o
o
p
s i
n
t
h
e s
y
st
em
, t
h
i
s
sy
st
em
shoul
d
ha
ve fi
v
e
sect
i
onal
i
z
i
n
g
swi
t
c
hes
t
o
be radi
al
di
st
ri
b
u
t
i
o
n
net
w
o
r
k
[
3
]
.
2.
ETAP
MODEL IN POWE
R FLOW
ANALYSIS
Po
wer
flo
w
analy
s
is is im
p
o
rta
n
t fo
r pla
n
nin
g
f
u
ture exp
a
nsion
of power system
s a
s
well as in
d
e
term
in
in
g
the b
e
st o
p
e
ration
of ex
istin
g
syste
m
s. Th
e p
r
in
cip
a
l in
fo
rm
atio
n
ob
tain
ed
fro
m
th
e p
o
wer flow
analysis is the magnitude a
nd phase a
n
gle of the voltage
at each bus, a
n
d the real and rea
c
tive power
flowing
in each line [4]
.
In the electrical pow
e
r
system losses, technical losses ar
e m
o
re im
portant than non-tec
h
nical
lo
sses fo
r
d
e
si
g
n
i
n
g
t
h
e electrical p
o
wer
d
i
strib
u
tion
system
. Th
ese lo
sses can
still b
e
group
ed
acco
r
d
i
n
g
t
o
th
e seg
m
en
t o
f
th
e electric syste
m
wh
ere it
h
a
pp
en
s, can
be subd
iv
id
ed into
lo
sses in th
e transm
issio
n
syste
m
,
su
bstatio
n
pow
er
t
r
an
sfo
r
mer
s
,
p
r
im
ar
y d
i
str
i
bu
tio
n syste
m
, seco
nd
ar
y d
i
str
i
bu
tion syste
m
co
n
n
ectio
n
ex
ten
s
i
o
n
s
. On
e of th
e m
a
i
n
sources of lo
sses is th
e c
o
ppe
r
losses i
n
the
distribution system
in
powe
r
ove
rhead lines
and ca
bles since these losses
are a functi
o
n
o
f
cu
rr
en
t f
l
ow
s
thr
oug
h
th
e lin
e
s
.
T
h
es
e
lo
s
s
es
can al
s
o
be r
e
d
u
ced
by
net
w
o
r
k
rec
o
n
f
i
g
urat
i
on
[
5
]
.
Da
g
o
n
Sei
k
kan
net
w
or
k
whi
c
h i
s
c
hos
en
as a ca
s
e
st
u
d
y
area
has m
a
ny industrial l
o
a
d
s,
comm
erci
al
l
o
ads
,
ot
he
r
depa
rt
m
e
nt
s and
resi
dent
i
a
l
l
o
ad
s [
6
]
.
R
eal
po
we
r,
reactive powe
r and volt drop of each
bus a
r
e calculated by using Ne
wt
on
Raphson m
e
thod for loa
d
flow
solutions. It is
m
o
re suitable
for large s
cale of
power
syste
m
because
it
is m
o
re pr
actic
al and efficient. The
to
tal p
o
wer lo
ss o
f
feed
ers m
a
y th
en
b
e
d
e
termin
ed
b
y
su
m
m
in
g
up
th
e losses o
f
all lin
e sectio
n
s
o
f
th
e
feed
er
wh
ich
is:
k
1
m
n
mn
R
2
mn
I
Loss
Peak
P
(1
)
k
1
m
n
mn
X
2
mn
I
Loss
Peak
Q
(2
)
m
V
mn
Q
mn
P
mn
I
(3
)
Perce
n
t
a
ge c
h
a
nge
i
n
t
h
e
po
w
e
r l
o
s
s
re
d
u
ct
i
o
n ca
n
be
defi
ne
d
by
:
100
LB
P
LA
P
LB
P
=
Loss
Power
%
(4
)
whe
r
e;
I
mn
= Cu
rren
t th
rou
g
h
i
n
th
e branch
(m
, n
)
V
m
= V
o
l
t
a
ge at
n
ode
m
P
mn
= R
eal
p
o
we
r t
h
r
o
ug
h i
n
t
h
e
b
r
anc
h
(m
, n)
R
mn
= Resistance in the
bra
n
c
h
(m
, n)
X
mn
= Reactance in the
bra
n
c
h
(m
, n)
P
LA
= Power lo
ss after
recon
f
i
g
uratio
n
Q
mn
= Reactive power through i
n
the bra
n
ch (m
, n)
P
LB
= Pow
e
r lo
ss bef
o
r
e
r
econ
f
i
g
ur
atio
n [5
]
The
powe
r
flow e
quations
are the
following:
Loa
d
Fl
ow: F(x, u)
= 0
n
i,
δ
n
j,
δ
ij
cos
N
1
j
n
j,
V
n
i,
V
ij
Y
n
i,
P
B
(5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Netwo
r
k Reco
nfig
u
r
a
tio
n fo
r
Lo
ss Redu
ction an
d Vo
lta
g
e
Pro
file Imp
r
o
v
emen
t
o
f
1
10-Bu
s …
(
S
u M
o
n
Myi
nt
)
79
0
n
i,
δ
n
j,
δ
ij
sin
B
N
1
j
n
j,
V
n
i,
V
ij
Y
n
i,
Q
(6
)
B
u
s Vol
t
a
ge
C
onst
r
ai
nt
:
max
V
V
min
V
fo
r all
PQ b
u
ses
Rad
i
al Co
nstrain
t:
The
di
st
ri
b
u
t
i
o
n sy
st
em
t
opo
l
ogy
s
h
oul
d
b
e
i
n
seri
es c
o
nnect
i
o
n
t
o
m
i
nim
i
ze t
h
e co
m
p
l
e
xi
ty
i
n
calculating power
flow.
ETAP
s
o
ftw
a
r
e
is
one
o
f
t
h
e e
fficient
s
o
ft
ware
to a
n
alyze the
very com
p
lex power system
s
i
n
cl
udi
ng s
h
or
t
ci
rcui
t
cal
cul
a
t
i
on,
bat
t
e
ry
si
zi
ng, t
r
a
n
s
f
o
r
m
e
r si
zi
ng, l
o
ad fl
o
w
,
v
o
l
t
dr
o
p
, sy
st
em
losses
,
transient stabil
ity, ground
gri
d
desi
gn, optimal capacitor placem
ent
and so on. Am
ong these applications,
ETAP is a
p
plied for loa
d
fl
ow calculations
of
be
fore
and
after rec
o
nfi
g
uration states
because it can
quickly
an
d easily bu
i
l
d
3
-
p
h
a
se
AC n
e
twork one lin
e
d
i
agram
with
u
n
lim
i
t
ed
b
u
s
es an
d elem
en
ts. Sing
le lin
e
di
ag
ram
of case st
udy
,
rat
i
n
g
s
of
p
o
we
r t
r
a
n
sf
orm
e
rs an
d
di
st
ri
b
u
t
i
on t
r
a
n
sf
orm
e
rs an
d
act
ual
rat
i
n
g
s
of l
i
n
e
p
a
ram
e
ters are n
e
ed
ed to
simu
late fo
r l
o
ad flo
w
so
lu
ti
o
n
of ex
isting
system
. Th
is allo
w
th
e pro
p
e
r layou
t fo
r
th
e d
i
stri
b
u
tion
feed
ers in
t
o
wn
sh
ip to
b
e
mad
e
in
th
e
form
o
f
sing
le lin
e
d
i
ag
ram
wh
ich
en
ab
les a b
e
tter
u
n
d
e
rstand
ing
th
e lo
ss calcu
latio
n
of th
e lo
catio
n
in
a m
o
re precise
way
[7
]
.
Curre
nt flo
w
ing in e
v
ery
b
r
anch
,
lin
e lo
sses,
b
u
s v
o
ltag
e
, power factor
an
d p
e
rcent
a
ge i
n
v
o
l
t
dr
op
o
n
t
h
e
feed
er of th
e ex
istin
g
system an
d
pr
o
pose
d
sy
st
e
m
can be cal
cul
a
t
e
d by
t
h
i
s
soft
ware
. I
n
p
o
we
r fl
ow a
n
a
l
y
s
i
s
of case st
udy
, t
h
e rat
i
n
g
s
of al
l
equi
pm
ent
s
are cho
s
en
by
I
E
C
st
anda
rd i
n
ETAP
.
L
o
ad
fl
ow cal
c
u
l
a
t
i
on
i
s
per
f
o
r
m
e
d for
b
o
t
h
c
o
n
d
i
t
i
ons
i
.
e.
,
bef
o
re
an
d
a
f
t
e
r net
w
or
k reco
nfi
g
u
r
at
i
o
n
o
f
11
0
-
B
u
s di
st
ri
but
i
o
n net
w
o
r
k. The
l
o
a
d
fl
o
w
s
o
l
u
t
i
o
ns f
o
r
t
h
ree
m
e
t
hods i
n
e
x
hau
s
t
i
v
e searc
h
t
ech
ni
q
u
es
are nee
d
ed t
o
m
a
nage o
p
t
i
m
al
swi
t
c
hi
ng
con
f
i
g
urat
i
o
n
of t
e
st
syste
m
.
3.
OVER
VIEW
OF 11
0-B
U
S
RA
DI
AL DIS
T
RIBUTIO
N
NETWO
R
K
The sy
st
em
under st
udy
i
s
o
n
e
of t
h
e
1
1
k
V
di
st
ri
b
u
t
i
on
ne
t
w
o
r
ks
u
nde
r
Yan
g
on El
ect
r
i
ci
t
y
Suppl
y
B
o
ar
d (
Y
ESB
)
. The
di
st
ri
b
u
t
i
on
net
w
o
r
ks a
r
e l
o
cat
ed i
n
Da
go
n Sei
kka
n T
o
w
n
s
h
i
p
i
n
Ya
ng
o
n
. T
h
e si
n
g
l
e l
i
n
e
di
ag
ram
of Dago
n Sei
kka
n T
o
w
n
s
h
i
p
i
s
sh
o
w
n i
n
Fi
g
u
re
1.
Inc
o
m
i
ng l
i
n
e i
s
33
kV a
nd
o
u
t
goi
n
g
l
i
n
e i
s
1
1
k
V
.
The
di
st
ri
b
u
t
i
on
v
o
l
t
a
ge o
f
t
h
e sy
st
em
unde
r st
u
d
y
i
s
11
k
V
. St
e
p
d
o
w
n
po
wer t
r
ansf
o
r
m
e
r i
s
use
d
t
o
d
i
stribu
te p
o
wer and
its ratin
g
is 1
0
M
VA an
d
p
o
wer
factor
is 0
.
85
.
Altho
ugh
in
stalled
cap
acities fo
r
Statio
n
,
Kana
u
ng M
i
nt
har a
nd M
i
ngy
im
ahar Ka
un
g
are 5
0
k
V
A,
1
6
3
6
5
k
V
A an
d
24
4
50
kV
A,
con
n
ect
ed l
o
ad
s fo
r
each feede
r
a
r
e
0.54 kVA, 1933
kVA
a
nd 2594 kVA beca
use
s
o
m
e
distribu
tion t
r
ans
f
ormers are
not
full load
condition. So,
the total
load for three
feede
r
s is 4.
52754
MVA. Loa
d
of this syste
m
r
eceives a volta
ge of
40
0
V
an
d t
y
pe of l
o
ad i
s
l
u
m
p
l
o
ad
. The val
u
e of
po
wer fa
ct
or f
o
r di
st
ri
b
u
t
i
on t
r
a
n
sf
o
r
m
e
r i
s
0.83. C
o
n
d
u
ct
o
r
size fo
r 3
3
k
V
is 12
0m
m
2
an
d
1
1kV
is 95
mm
2
. AC
SR
co
n
duct
o
r i
s
use
d
fo
r i
n
c
o
m
i
ng and
o
u
t
g
oi
n
g
fe
eder
s
.
The
distribution system
is radi
al distributi
o
n
syste
m
[6].
4.
NETWORK RECONFIGURATION
IN ELEC
TRICAL DIST
RIBUTION
SYSTEM
Syste
m
reconfiguration m
eans rest
r
u
ct
uri
n
g t
h
e p
o
we
r l
i
n
e
s
whi
c
h co
n
n
e
c
t
vari
o
u
s
buse
s
i
n
a p
o
we
r
syste
m
. Restru
ctu
r
ing
of sp
ecific lin
es lead
s to
altern
at
e syst
em
confi
g
ura
t
i
ons.
System
reconfi
g
uration
can
be accom
p
lished by
placing line interconnection
switc
hes into network. Openi
n
g and cl
osing a
switch
con
n
ect
s o
r
di
sco
nnect
a l
i
n
e t
o
t
h
e exi
s
t
i
ng
net
w
or
k.
N
e
t
w
o
r
k
reco
nfi
g
u
r
at
i
o
n i
n
di
s
t
ri
but
i
o
n sy
st
em
s i
s
per
f
o
r
m
e
d by
ope
ni
n
g
sect
i
o
nal
i
z
i
ng (
n
orm
a
l
l
y
cl
osed) a
nd cl
osi
ng t
i
e
(no
r
m
a
l
l
y
open) s
w
i
t
c
hes of t
h
e
n
e
two
r
k
.
Th
ese switch
i
ng
are p
e
rform
e
d
in
su
ch
a way th
at th
e rad
i
ality
o
f
th
e
n
e
two
r
k is
m
a
in
tain
ed
an
d
all
the loa
d
s are
e
n
ergized. A norm
a
lly open ti
e switch is cl
os
ed t
o
t
r
an
sfe
r
a l
o
ad
fr
om
one fee
d
e
r
t
o
a
not
her
whi
l
e
a
n
a
p
p
r
o
p
ri
at
e sect
i
o
nal
i
zi
ng s
w
i
t
c
h i
s
ope
ne
d t
o
rest
o
r
e t
h
e
ra
di
al
st
r
u
ct
u
r
e.
Du
ri
n
g
a
ppl
y
i
n
g
rec
o
nfi
g
u
r
at
i
on t
e
c
hni
que
, t
h
e t
i
e
swi
t
c
h
h
a
s t
o
be cl
osed
and
o
n
t
h
e
ot
h
e
r ha
n
d
, t
h
e
sect
i
onal
i
z
i
n
g
swi
t
c
h
has t
o
be
ope
ne
d i
n
t
h
e l
o
o
p
cre
a
t
e
d, w
h
i
c
h rest
o
r
es
ra
di
al
co
nfig
uratio
n. Th
e
switch
pai
r
s a
r
e c
h
ose
n
t
h
r
o
u
g
h
e
xha
ust
i
v
e
fo
rm
ul
as f
o
r
t
h
e c
h
a
n
ge in losses. Bra
n
ch exc
h
a
n
ge
process
is re
pe
atedly
ap
p
lied till no
m
o
re lo
ss
reductio
n
s
are av
ail
a
b
l
e.
A
rad
i
al
d
i
stribu
tio
n n
e
twork
can
b
e
rep
r
esen
ted b
y
sev
e
ral
loops. T
h
is is
because,
whe
n
it is connecte
d
,
one tie-
line
can only m
a
ke one l
o
op,
the
num
ber
of l
o
ops
is
eq
u
a
l to
t
h
e num
b
e
r o
f
tie-lines [9
]. Th
e
b
e
nefits o
f
f
eede
r
reconfi
g
uration
include:
(i
)
r
e
st
ori
n
g
po
we
r
t
o
any
o
u
t
ag
e p
a
rtitio
n
s
of a feed
er,
(ii) reliev
i
n
g
o
v
e
rlo
a
d
s
on
feed
ers
b
y
sh
if
t
i
n
g
th
e lo
ad
in real ti
me to
a
d
j
acen
t
feed
ers, and
(iii) redu
cing
resistiv
e lin
e lo
sses. Op
ti
m
a
l reco
nfigu
r
atio
n
i
n
vo
lv
es th
e sel
ectio
n
of th
e
best set
of bra
n
che
s
to be opene
d
,
one
each from
eac
h loop, fo
r reducing resistive
line lo
sses, and reliving overloads
o
n
f
e
ed
e
r
s
b
y
sh
if
ting
th
e lo
ad to
ad
j
a
ce
n
t
f
e
ed
e
r
s [10
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
78
8
–
79
7
7
91
Fi
gu
re
1.
Si
n
g
l
e
l
i
n
e di
a
g
ram
of
1
1
0
-B
us sy
s
t
em
[6]
5.
EX
H
A
U
S
T
I
VE
TECHNIQUES
IN
NETWORK
R
E
CON
F
IGURA
TION
R
econ
f
i
g
urat
i
o
n i
s
an i
ndi
sp
e
n
sa
bl
e
m
e
t
hod
for l
o
ss
red
u
c
t
i
on i
n
p
o
we
r di
st
ri
b
u
t
i
on sy
st
em
s. Thi
s
pape
r f
o
c
u
ses
on
rec
o
n
f
i
g
ura
t
i
on o
f
a ra
di
al
di
st
ri
b
u
t
i
on
n
e
t
w
o
r
ks t
o
o
p
t
i
m
i
ze t
h
e powe
r
di
st
ri
but
i
o
n
p
r
oce
s
s
i
n
t
h
e fee
d
er
s
and
fo
r
vol
t
a
g
e
pr
ofi
l
e
i
m
pro
v
em
ent
and p
r
esent
s
t
h
ree di
ffe
rent
m
e
t
hod
s fo
r rec
o
nfi
g
u
r
at
i
o
n
.
Feed
er reco
nfig
uration
is d
one to
m
i
n
i
m
i
ze
l
o
sses for
t
h
e e
x
i
s
t
i
ng a
nd
ne
w t
o
p
o
l
ogy
o
f
t
h
e feede
r
sy
st
em
and
fo
r t
h
e
pu
r
pose
o
f
m
a
i
n
t
e
nanc
e i
n
t
h
e
di
st
ri
b
u
t
i
o
n
sy
st
em
. The
schem
a
t
i
c
di
ag
ram
of
11
0-B
u
s e
x
i
s
t
i
n
g
radi
al
d
i
stribu
tio
n syste
m
is illu
strat
e
d
in Figure
2
.
Fi
gu
re
2.
1
1
0
-
B
us E
x
i
s
t
i
n
g
r
a
di
al
sy
st
em
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Netwo
r
k Reco
nfig
u
r
a
tio
n fo
r
Lo
ss Redu
ction an
d Vo
lta
g
e
Pro
file Imp
r
o
v
emen
t
o
f
1
10-Bu
s …
(
S
u M
o
n
Myi
nt
)
79
2
Fi
gu
re 3 s
h
o
w
s t
h
e con
n
ect
i
on
of
11
0-B
u
s
sy
st
em
wi
t
h
ti
e l
i
n
es. An ex
hau
s
t
i
v
e t
echni
que
fo
r t
h
e
reco
nfi
g
u
r
at
i
o
n o
f
di
st
ri
but
i
o
n net
w
o
r
ks i
s
u
s
ed t
o
red
u
ce t
h
ei
r l
i
n
e l
o
s
s
es
un
der
n
o
rm
al
ope
rat
i
n
g co
n
d
i
t
i
ons.
There
are t
h
re
e types of m
e
thods in
ex
ha
ust
i
v
e sea
r
ch
t
echni
que
f
o
r l
o
ss
red
u
ct
i
o
n.
They
are
m
i
ni
m
u
m
bra
n
c
h
cu
rre
nt
, m
i
nim
u
m
vol
t
a
ge
di
ffe
re
n
ce an
d v
o
l
t
a
g
e
di
f
f
ere
n
ce
b
a
sed cl
o
s
i
n
g/
o
p
eni
n
g
swi
t
c
h
.
The
pr
o
pose
d
ap
pr
oach i
s
sui
t
a
bl
e for b
o
t
h
pl
anni
ng a
nd o
p
e
r
at
i
on st
u
d
i
e
s as i
t
i
s
co
m
put
at
i
onal
l
y
rob
u
s
t
an
d
efficient [10]. In this
pape
r,
thr
ee di
ffe
rent
m
e
thods are
propose
d
wi
t
h
initial configuration and m
e
she
d
to
po
log
i
es. The in
itial
m
e
sh
ed
topo
log
y
g
i
v
e
s th
e m
i
n
i
mu
m
lo
ss co
nfi
g
uration
fo
r the syste
m
an
d
as th
e
n
e
two
r
k
is reco
nfigu
r
ed
, t
h
e
rad
i
al con
f
i
g
uratio
n
with
m
i
n
i
m
u
m lo
sses will o
ccu
r. Th
e
red
u
c
tion
in
l
o
sses can
easi
l
y
be co
m
put
ed f
r
om
t
h
e resul
t
s
of t
w
o l
o
ad
fl
o
w
st
udi
es of t
h
e sy
st
em
confi
g
urat
i
o
n be
fo
re an
d af
t
e
r t
h
e
feede
r
re
confi
g
uration. T
h
e
load
flow s
o
lutions
of
b
o
t
h
cases are m
o
d
e
l
e
d an
d si
m
u
l
a
t
e
d by
usi
n
g
ETA
P
soft
ware
. Ne
w
t
on R
a
p
h
s
o
n l
o
ad
fl
o
w
ha
s
been
use
d
in th
e en
tire reco
nfigu
r
a
tion process beca
use
the
conve
r
ge
nce cl
ip is a
p
preciably swif
t.
When th
e switch
i
ng
is p
e
rfo
rm
ed
, t
h
e
n
e
two
r
k
n
e
ed
s t
o
b
e
m
a
in
tain
ed
in ra
dial f
o
rm
.
Fi
gu
re
3.
1
1
0
-
B
us F
u
l
l
y
m
e
shed
sy
st
em
Three differe
n
t
m
e
thods for
reconfig
urati
o
n of
110-B
u
s sy
stem
are illu
strated in Figure
4, Fi
gure 5
and Fi
gu
re 6.
The v
o
l
t
a
ge p
r
ofi
l
e
s an
d l
o
ss
reduct
i
on i
n
r
e
spect
i
v
e case
s
are com
p
ared su
bse
que
nt
l
y
. Three
di
ffe
re
nt
m
e
t
h
ods
are
as
fol
l
o
w:
Meth
od
1
:
Mini
m
u
m
Bran
ch
Cu
rren
t Based
Red
u
c
tion
Fi
gu
re
4.
1
1
0
-
B
us Fi
nal
ra
di
a
l
con
f
i
g
urat
i
o
n
usi
n
g
m
e
t
hod
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
78
8
–
79
7
7
93
a)
Active po
wer
loss fo
r 11
0
-
Bu
s
ra
dial
d
i
stribu
tio
n system
mu
st b
e
calcu
lated
.
It co
m
e
s ou
t to
b
e
(243
.6)
kW
.
b)
Active powe
r loss for 110-B
u
s m
e
sh
ed di
st
ri
but
i
o
n sy
st
em
m
u
st be calcul
a
t
e
d. It
co
m
e
s out
t
o
be
(157.7)
kW. T
h
is is t
h
e least
powe
r l
o
ss t
h
e system
can have
. T
h
e
aim is to
reac
h t
h
e m
o
st feasible
rad
i
al state in
term
s o
f
po
wer
lo
ss b
y
o
p
e
n
i
ng
sectio
n
a
lizin
g
switch
e
s in
each
loo
p
su
ch
t
h
at rad
i
ality is
main
tain
ed
an
d no
n
e
of t
h
e load
s is iso
l
ated
.
c)
After power
flow in
base cas
e, sort m
i
nim
u
m
bran
ch c
u
rrent to
open t
h
a
t
bra
n
ch at m
i
nim
u
m
current
.
By
d
o
i
n
g
th
is, in
crease
i
n
p
o
wer
lo
ss will
also
b
e
v
e
ry sm
a
ll.
d)
R
e
peat
l
o
a
d
fl
ow
an
d
ope
n t
h
e s
w
i
t
c
h
wi
t
h
m
i
nim
u
m
branch
cu
rre
nt
, s
u
ch t
h
at
i
t
l
i
e
s i
n
di
ffe
rent
l
o
o
p
,
no
l
o
a
d
i
s
i
s
ol
at
ed an
d
ra
di
al s
t
ructure is m
a
intained.
e)
Sin
ce fiv
e
loop
s h
a
v
e
b
e
en
created
du
e to tie
switch
e
s, h
e
n
ce
fiv
e
sectio
n
a
lizin
g
switch
e
s will b
e
o
p
e
n
e
d
corresp
ond
ing
to
each
loo
p
. Rep
eat
step
(d) till th
e n
e
two
r
k
is rad
i
al an
d
no
te d
o
wn
th
e fi
n
a
l
co
nf
igu
r
ation po
w
e
r
l
o
ss.
f)
Fi
nal
con
f
i
g
ur
at
i
on p
o
we
r l
o
ss com
e
s out
to be (
1
7
5
.
3
)
k
W
. C
a
l
c
ul
at
e percent
a
ge p
o
w
e
r l
o
ss red
u
ct
i
o
n
usi
n
g e
q
uat
i
o
n
(4
).
Fi
nal
ra
di
al
co
nfi
g
u
r
at
i
o
n
o
f
11
0
-
B
u
s
usi
n
g
m
e
t
hod
1 i
s
sh
ow
n i
n
Fi
gu
re
4.
M
e
t
h
o
d
2:
M
i
n
i
m
u
m
Vol
t
a
ge
Di
ffe
re
nce B
a
s
e
d R
e
duct
i
o
n
a)
Act
i
v
e p
o
we
r l
o
ss f
o
r
11
0
-
B
u
s radi
al
di
st
ri
b
u
t
i
on sy
st
em
m
u
st
be cal
culat
e
d. It
com
e
s
out
t
o
be
(2
4
3
.
6
)
kW
.
b)
A
c
tiv
e pow
er
l
o
ss fo
r
11
0-
Bus
m
e
sh
ed
di
st
ri
but
i
o
n sy
st
em
m
u
st
be cal
culat
e
d. It
com
e
s out
t
o
be (
1
5
7
.
7
)
kW. T
h
is is the least power l
o
ss the
syste
m
can ha
ve. Th
e
aim
is to reach the m
o
st
feasible ra
dial state in
term
s o
f
po
wer lo
ss
b
y
op
en
ing
section
a
lizing
switch
e
s in
each
loop
su
ch th
at rad
i
ality is main
tain
ed
and
n
o
n
e
of th
e lo
ad
s is iso
l
ated
.
c)
Aft
e
r
p
o
we
r fl
ow i
n
bas
e
cas
e, so
rt
m
i
nim
u
m
vol
t
a
ge
di
fference bra
n
c
h
to
open
t
h
at branch at m
i
nimu
m
vol
t
a
ge
di
ffe
re
nce.
d)
R
e
peat
l
o
ad fl
ow a
nd
ope
n t
h
e swi
t
c
h wi
t
h
m
i
nim
u
m
vol
t
a
ge di
ffe
re
nce
,
such t
h
at
i
t
li
es i
n
di
ffere
nt
lo
op
,
no
lo
ad
i
s
iso
l
ated
and
rad
i
al stru
ct
u
r
e
is m
a
in
tain
ed
.
e)
Sin
ce fiv
e
loops h
a
v
e
b
een
created
d
u
e to
tie sw
itch
e
s, hence fiv
e
sectio
nalizin
g
sw
itch
e
s w
ill b
e
o
p
e
n
e
d
corresponding to each
loop. Repeat step (d) till the networ
k is ra
dial and
note
down t
h
e fi
nal
co
nf
igu
r
ation po
w
e
r
l
o
ss.
f)
Fin
a
l con
f
i
g
uratio
n
pow
er
l
o
ss co
m
e
s o
u
t
to
b
e
(
175
.6
)
kW
. Calcu
l
ate per
cen
tag
e
power
lo
ss
r
e
du
ctio
n
usi
n
g e
q
uat
i
o
n
(4
).
Final ra
dial confi
g
uration of
110-Bus
us
i
n
g
m
e
thod
2 is
illustrated in
Figure
5.
Fi
gu
re
5.
1
1
0
-
B
us Fi
nal
ra
di
a
l
con
f
i
g
urat
i
o
n
usi
n
g
m
e
t
hod
2
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Netwo
r
k Reco
nfig
u
r
a
tio
n fo
r
Lo
ss Redu
ction an
d Vo
lta
g
e
Pro
file Imp
r
o
v
emen
t
o
f
1
10-Bu
s …
(
S
u M
o
n
Myi
nt
)
79
4
M
e
t
h
o
d
3:
V
o
l
t
age Di
ffe
renc
e B
a
sed C
l
osi
n
g /
O
pe
ni
n
g
S
w
i
t
c
h M
e
t
h
o
d
a)
Active po
wer
loss fo
r 11
0
-
Bu
s
ra
dial
d
i
stribu
tio
n system
mu
st b
e
calcu
lated
.
It co
m
e
s ou
t to
b
e
(243
.6)
kW
.
b)
C
a
l
c
ul
at
e vol
t
a
ge
di
ffe
ren
c
e
acro
ss al
l
t
i
e
swi
t
c
hes a
f
t
e
r ba
se case l
o
ad fl
ow
an
d c
h
o
o
se t
h
em
i
n
d
e
scen
d
i
n
g
order. Th
is
will b
e
th
e sequ
en
ce of clo
s
i
n
g switch
e
s.
c)
Clo
s
e th
e
first
tie switch
e
s
with
m
a
x
i
m
u
m
v
o
ltag
e
d
i
fferen
c
e acro
ss i
t
an
d run
th
e lo
ad fl
o
w
on
t
h
is
syste
m
. Now
search fo
r t
h
e sectio
n
a
lizing switch
i
n
si
de
t
h
e l
o
op
wi
t
h
m
i
nim
u
m
vol
t
a
ge di
f
f
er
ence
acro
s
s it.
Op
en th
at switch
,
it
will g
i
v
e
t
h
e
ne
w co
nfigu
r
ati
o
n and
no
te down th
e
po
wer l
o
ss.
d
)
Rep
eat step
(c), till al
l th
e
ti
e switch
e
s are clo
s
ed
an
d
syste
m
is rad
i
al. No
te down
th
e p
o
wer lo
ss
o
f
fi
nal
c
o
n
f
i
g
ura
t
i
on.
e)
Fi
nal
con
f
i
g
ur
at
i
on p
o
we
r l
o
ss com
e
s out
to be (
1
8
1
.
2
)
k
W
. C
a
l
c
ul
at
e percent
a
ge p
o
w
e
r l
o
ss red
u
ct
i
o
n
usi
n
g e
q
uat
i
o
n
(4
).
Fi
nal
ra
di
al
co
nfi
g
u
r
at
i
o
n
o
f
11
0
-
B
u
s
usi
n
g
m
e
t
hod
3 i
s
ex
pl
ai
ned
i
n
Fi
g
u
r
e
6.
Fi
gu
re
6.
1
1
0
-
B
us Fi
nal
ra
di
a
l
con
f
i
g
urat
i
o
n
usi
n
g
m
e
t
hod
3
6.
SIM
U
LATI
O
N
RESULTS
AN
D DIS
C
US
SION
The
pr
o
pose
d
m
e
t
hod
has
been
t
e
st
ed
o
n
11
0-B
u
s
ra
di
al
di
st
ri
b
u
t
i
o
n
sy
st
em
t
o
ascert
a
i
n
i
t
s
effective
n
ess.
For that
system
, all tie and s
ectionalizin
g switch
e
s
wh
ich
b
e
lon
g
to an
y
lo
op
are con
s
idered as
candi
dat
e
swi
t
ches f
o
r rec
o
n
f
i
g
urat
i
o
n
pr
ob
l
e
m
.
The 1
1
0-Bu
s,
1
1kV
syste
m
co
n
s
is
ts of thre
e m
a
in feeders
an
d f
i
v
e
tie lin
es. Th
er
e ar
e
fiv
e
tie lin
es b
e
f
o
r
e
n
e
two
r
k
reco
nf
igu
r
ati
o
n b
ecau
s
e
o
f
voltag
e
r
e
d
u
c
tion, long
len
g
t
h and
overlo
a
d
e
d lin
es in
th
e ex
isting
system
. Fo
r 110-Bus
syste
m
, the ra
dial real
power loss a
nd
r
eactiv
e
p
o
w
e
r lo
ss is
24
3.6 kW
an
d 431
.9
k
V
A
R
.
An
d th
e m
i
n
i
m
u
m op
er
ating
v
o
l
tag
e
is 9.9kV
in
the
ex
istin
g
system
.
Ex
h
a
u
s
tiv
e tech
n
i
qu
e is u
s
ed
to
find th
e o
p
tim
al
switch
i
ng
configu
r
ation
and lo
ss
m
i
nim
i
zation to rec
o
nfigure
this network. The
r
e
are t
h
ree m
e
thods
to get acceptable
m
i
nim
u
m
loss
con
f
i
g
urat
i
o
n
.
ETAP i
s
a
ppl
i
e
d f
o
r l
o
ad
fl
o
w
sol
u
t
i
o
n
s
o
f
t
h
ree m
e
t
hods
t
o
m
a
nage t
h
e opt
i
m
al
swi
t
chi
n
g
schem
e
wi
t
h
m
i
nim
u
m
l
o
ss. C
o
m
p
ari
s
on
of
pe
rcent
b
u
s
v
o
l
t
a
ge i
m
provem
e
nt
at
di
st
ri
but
i
o
n
fee
d
ers f
o
r
bef
o
re
an
d a
f
t
e
r rec
o
nfi
g
u
r
at
i
o
n
o
f
t
h
e t
e
st
s
y
st
em
are depi
ct
ed i
n
Tabl
e
1
an
d Fi
gu
re
7.
Tabl
e
1.
Perce
n
t
V
o
l
t
a
ge
I
n
cr
em
ent
of
1
1
0
-
B
us R
a
di
al
Di
s
t
ri
but
i
o
n
Sy
st
em
Base
M
e
thod 1
M
e
thod 2
M
e
thod 3
Total Percentage i
n
Voltage
Incre
m
ent
-
210.
19
1
%
206.
76
8
195.
27
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
78
8
–
79
7
7
95
Fi
gu
re 7.
C
o
m
p
ari
s
on
o
f
o
p
er
at
i
ng bu
s vol
t
a
ges fo
r bef
o
re and
aft
e
r
rec
o
n
f
i
g
urat
i
o
n
From
Tabl
e 1,
m
i
nim
u
m
branch c
u
r
r
ent
m
e
t
h
o
d
i
s
t
h
e best
i
n
net
w
o
r
k r
econ
f
i
g
urat
i
o
n
proc
ess.
I
n
Fi
gu
re 7
,
be
fo
re rec
o
n
f
i
g
urat
i
on c
o
n
d
i
t
i
on i
s
exp
r
esse
d i
n
bl
ue c
o
l
o
ur a
n
d som
e
operat
i
ng
b
u
s v
o
l
t
a
ge
s are
less th
an 10
kV
. Red
,
p
i
n
k
an
d gr
een
co
lour
s ar
e ind
i
cated
for three m
e
thods
in e
x
haus
tive searc
h
tec
hni
que
in
recon
f
i
g
urat
io
n
pro
c
ess. In th
is co
n
d
ition
,
all o
p
e
ratin
g
bu
s vo
ltag
e
s are d
r
am
atica
lly
i
n
creased
above 1
0
.
2
kV.
In this c
o
ndition,
real
powe
r l
o
ss a
nd reactive
po
we
r loss is
reduc
e
d to
175.3 kW
a
n
d
374.1 kVAR.
Though the aim is reducing the real
power l
o
ss, the reactive power l
o
ss is
also reducing
due t
o
enhanc
e
m
ent
in
vo
ltag
e
profile.
C
o
m
p
ari
s
on
o
f
real
p
o
w
e
r l
o
ss a
n
d
react
i
v
e
po
we
r l
o
s
s
cu
rves
f
o
r
t
h
ree m
e
t
hods
i
n
e
xha
ust
i
v
e
al
go
ri
t
h
m
befo
re an
d a
f
t
e
r re
con
f
i
g
urat
i
o
n i
s
ex
pl
ai
ned
Fi
gu
re
8 an
d
Fi
g
u
re
9.
I
n
t
h
e t
w
o
fi
g
u
re
s,
re
d,
pi
n
k
and
g
r
ee
n l
i
n
es
are a
f
t
e
r
rec
o
n
f
i
g
urat
i
o
n c
o
nd
i
t
i
ons f
o
r m
e
t
hod
1
,
m
e
t
hod
2
an
d m
e
t
hod
3.
Figu
re
8.
Com
p
aris
on
o
f
real
po
we
r loss
c
u
r
v
es
fo
r t
h
ree m
e
tho
d
s
Figure
9. Comparis
on of
reac
tive po
we
r l
o
ss
cu
rves
f
o
r
th
re
e m
e
thod
s
0
20
40
60
80
10
0
9.
9
10
10
.
1
10
.
2
10
.
3
10
.
4
10
.
5
10
.
6
10
.
7
10
.
8
Bu
s
N
u
m
b
e
r
B
u
s
Vo
l
t
a
g
e
s
(
k
V)
C
o
m
p
a
r
i
s
o
n
f
o
r
B
u
s
V
o
l
t
a
g
e
s
of
V
a
r
i
ou
s
R
e
c
o
nf
i
gur
at
i
on S
c
he
m
e
Be
f
o
r
e
C
u
rre
n
t
Vo
l
t
a
g
e
Op
e
n
-
C
l
o
s
e
d
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
16
0
17
0
18
0
19
0
20
0
21
0
It
e
r
a
t
i
o
n
R
e
al
P
o
w
e
r L
o
ss
(k
W)
C
o
m
p
a
r
i
s
o
n
o
f
R
e
a
l
P
o
w
e
r
L
o
s
s
f
o
r
V
a
r
i
ou
s
R
e
c
o
nf
i
g
u
r
a
t
i
on S
c
he
m
e
M
e
t
hod 1
M
e
t
hod 2
M
e
t
hod 3
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
35
0
36
0
37
0
38
0
39
0
40
0
41
0
It
e
r
a
t
i
o
n
R
e
ac
t
i
v
e
P
o
w
e
r
L
o
s
s
(k
V
A
R
)
C
o
m
p
a
r
i
s
o
n
o
f
R
e
a
c
tiv
e
P
o
we
r
L
o
s
s
f
o
r
V
a
r
i
o
u
s
R
e
c
o
n
f
ig
u
r
a
t
i
o
n
S
c
h
e
m
e
Me
t
h
o
d
1
Me
t
h
o
d
2
Me
t
h
o
d
3
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Netwo
r
k Reco
nfig
u
r
a
tio
n fo
r
Lo
ss Redu
ction an
d Vo
lta
g
e
Pro
file Imp
r
o
v
emen
t
o
f
1
10-Bu
s …
(
S
u M
o
n
Myi
nt
)
79
6
Th
e
p
e
rcen
tage redu
ction
in th
e real
p
o
wer lo
ss
and
reactiv
e po
wer loss is equ
a
l to
2
8
.04
%
and
13
.4
% f
o
r m
i
ni
m
u
m
branch c
u
r
r
ent
m
e
t
hod
and
t
h
e
po
we
r
l
o
ss i
n
t
h
e rest
m
e
t
hods i
s
al
s
o
re
d
u
ci
n
g
.
It
c
a
n
be
cl
earl
y
seen that
m
i
nim
u
m
branc
h
cu
rre
nt
m
e
t
hod i
s
m
o
re effi
ci
ent
t
h
an any
ot
h
e
r t
w
o m
e
t
hods. S
o
,
perce
n
t
a
ge
i
n
po
we
r l
o
ss
re
duct
i
o
n
fo
r t
h
ree m
e
t
hods t
h
at
i
s
com
p
ar
ed t
o
base
ca
se o
f
1
1
0
-B
us
radi
al
di
st
ri
b
u
t
i
on
sy
st
em
i
s
depi
ct
ed i
n
Ta
bl
e 2
.
The l
i
n
e a
nd l
o
ad
dat
a
f
o
r
1
1
0
-
B
u
s
ra
di
al
di
st
ri
b
u
t
i
on
sy
st
em
i
s
sho
w
n i
n
A
p
pe
ndi
x
A.
Tabl
e
2.
Po
wer
Loss
R
e
d
u
ct
i
o
n
of
1
1
0
-B
us R
a
di
al
Di
st
ri
but
i
o
n
Sy
st
em
Case
Real Power
Loss
(k
W)
Reactive Power
Loss (kVAR)
Real Power
Loss
Reduction (
%
)
Reactive Power
Lo
ss
Reduction (
%
)
Switches Opened
Base 243.
6
431.
9
-
-
-
M
e
thod 1
175.
3
374.
1
28.
04
13.
4
90-
91,
81-
82,
73-
7
4
,
34-
35,
14-
15
M
e
thod 2
175.
6
374.
3
27.
92
13.
3
71-
72,
90-
91,
77-
7
8
,
11-
12,
34-
35
M
e
thod 3
181.
2
379.
0
25.
62
12.
25
11-
12,
22-
23,
75-
7
6
,
91-
92,
108-
1
0
9
7.
CO
NCL
USI
O
N
In t
h
i
s
pa
per
,
t
h
e rec
o
nfi
g
u
r
a
t
i
on o
f
di
st
ri
b
u
t
i
on net
w
o
r
k u
nde
r 1
0
M
V
A
,
33/
11
k
V
t
r
an
sfo
r
m
e
r i
s
prese
n
t
e
d
.
It
h
a
s t
h
ree
radi
al
out
goi
ng
fee
d
e
r
s. T
h
e
base v
o
l
t
a
ge i
s
1
1
k
V
and
1
10
b
u
ses
are st
u
d
i
e
d i
n
det
a
i
l
fo
r
reco
nfi
g
ura
t
i
on.
Net
w
o
r
k
reco
nfi
g
u
r
at
i
o
n m
e
t
hod
i
m
prove
s t
h
e
v
o
l
t
a
ge
pr
ofi
l
e
a
n
d
red
u
ces l
o
sses
i
n
t
h
e
po
we
r di
st
ri
b
u
t
i
on
sy
st
em
sim
u
l
t
a
neou
sl
y
.
C
onsi
d
er
abl
e
l
o
ss
re
duct
i
o
n i
s
a
c
hi
eve
d
by
net
w
or
k
reco
nfi
g
u
r
at
i
o
n m
e
t
hod i
n
di
st
ri
b
u
t
i
on
net
w
or
ks. E
x
hau
s
t
i
v
e t
ech
ni
q
u
e i
s
ap
pl
i
e
d fo
r t
h
e
net
w
or
k
reco
nfi
g
u
r
at
i
o
n by
usi
n
g ET
AP so
ft
wa
re. Acco
r
d
i
n
g
t
o
si
m
u
latio
n
resu
lts, n
e
two
r
k
reco
nfigu
r
ati
o
n
is
the
m
o
st
effect
i
v
e
way
f
o
r
t
h
e
p
r
op
ose
d
sy
st
em
. T
h
e
best
re
su
l
t
s
are
obt
ai
ne
d
by
u
s
i
n
g m
i
ni
m
u
m
curre
nt
bas
e
d
m
e
t
hod am
on
g
t
h
ree
m
e
t
hods
i
n
e
xha
ust
i
v
e
t
echni
q
u
e a
s
i
t
achi
e
ve
s a
n
o
p
t
i
m
a
l
l
o
ss co
nfi
g
u
r
at
i
o
n
acc
or
di
n
g
to
th
e resu
lts
of abov
e tab
l
es
an
d
figu
res. Fro
m
th
es
e resu
lts, to
tal real and
reactiv
e po
wer lo
ss
red
u
c
ed fro
m
24
3.
6
k
W
a
n
d
43
1.
9
kV
AR
b
e
fo
re net
w
o
r
k
reco
nfi
g
u
r
at
i
o
n st
at
e t
o
1
7
5
.
3
k
W
a
nd
3
7
4
.
1 k
V
AR
aft
e
r
net
w
or
k
reco
nfi
g
u
r
at
i
o
n st
at
e. T
h
us,
d
i
st
ri
but
i
o
n sy
st
em
l
o
sses are
r
e
duce
d
a
b
out
2
8
.
0
4
%
a
n
d
1
3
.
4
%.
Ap
pe
ndi
x
A P
o
we
r L
o
ss
R
e
d
u
ct
i
o
n
o
f
1
1
0
-
B
u
s R
a
di
al
Di
s
t
ri
but
i
o
n
Sy
st
em
Fro
m
Bus
To
Bus
R
(
Ω
)
X
(
Ω
)
Load at Receiving
Fro
m
Bus
To
Bus
R
(
Ω
)
X
(
Ω
)
Load at Receiving
P,M
W
Q,MV
AR
P,M
W
Q,MV
AR
1
2
0.
0578
0.
0438
0.
000
0.
000
62
63
0.
0868
0.
0658
0.
011
0.
007
2
3
0.
0578
0.
0438
0.
086
0.
058
63
64
0.
0868
0.
0658
0.
010
0.
007
3
4
0.
0578
0.
0438
0.
000
0.
000
64
65
0.
0868
0.
0658
0.
010
0.
007
4
5
0.
0578
0.
0438
0.
003
0.
002
65
66
0.
0868
0.
0658
0.
044
0.
029
5
6
0.
0578
0.
0438
0.
061
0.
041
66
67
0.
0721
0.
0546
0.
089
0.
060
6
7
0.
0721
0.
0546
0.
073
0.
049
67
68
0.
0721
0.
0546
0.
022
0.
015
7
8
0.
0721
0.
0546
0.
150
0.
100
68
69
0.
0721
0.
0546
0.
005
0.
004
8
9
0.
0721
0.
0546
0.
015
0.
010
69
70
0.
0721
0.
0546
0.
044
0.
029
9
10
0.
0721
0.
0546
0.
010
0.
007
70
71
0.
0721
0.
0546
0.
183
0.
123
10
11
0.
0721
0.
0546
0.
013
0.
009
71
72
0.
0721
0.
0546
0.
006
0.
004
11
12
0.
0360
0.
0273
0.
016
0.
011
72
73
0.
0721
0.
0546
0.
005
0.
004
12
13
0.
1086
0.
0823
0.
010
0.
007
73
74
0.
0721
0.
0546
0.
012
0.
008
13
14
0.
1086
0.
0823
0.
011
0.
007
74
75
0.
0721
0.
0546
0.
118
0.
080
14
15
0.
1086
0.
0823
0.
010
0.
007
75
76
0.
0721
0.
0546
0.
005
0.
004
15
16
0.
1086
0.
0823
0.
010
0.
007
76
77
0.
0431
0.
0327
0.
040
0.
027
16
17
0.
1086
0.
0823
0.
006
0.
004
77
78
0.
1157
0.
0877
0.
012
0.
008
17
18
0.
1086
0.
0823
0.
010
0.
007
78
79
0.
1157
0.
0877
0.
006
0.
004
18
19
0.
1086
0.
0823
0.
097
0.
065
79
80
0.
1157
0.
0877
0.
007
0.
005
19
20
0.
1086
0.
0823
0.
021
0.
014
80
81
0.
1157
0.
0877
0.
007
0.
005
20
21
0.
1086
0.
0823
0.
016
0.
011
81
82
0.
1157
0.
0877
0.
032
0.
022
21
22
0.
1086
0.
0823
0.
025
0.
017
82
83
0.
1157
0.
0877
0.
068
0.
046
22
23
0.
0721
0.
0546
0.
010
0.
007
83
84
0.
1157
0.
0877
0.
005
0.
004
23
24
0.
1446
0.
1096
0.
010
0.
007
84
85
0.
1157
0.
0877
0.
028
0.
019
24
25
0.
1446
0.
1096
0.
010
0.
007
85
86
0.
1157
0.
0877
0.
008
0.
005
25
26
0.
1446
0.
1096
0.
010
0.
007
86
87
0.
0877
0.
0877
0.
006
0.
004
26
27
0.
1446
0.
1096
0.
010
0.
007
87
88
0.
0431
0.
0327
0.
123
0.
083
27
28
0.
1446
0.
1096
0.
210
0.
141
88
89
0.
0431
0.
0327
0.
029
0.
020
28
29
0.
1157
0.
0877
0.
078
0.
052
89
90
0.
0431
0.
0327
0.
005
0.
004
29
30
0.
1157
0.
0877
0.
006
0.
004
90
91
0.
0431
0.
0327
0.
086
0.
058
30
31
0.
1157
0.
0877
0.
022
0.
015
91
92
0.
0431
0.
0327
0.
034
0.
023
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE Vo
l. 5
,
N
o
. 4
,
Au
gu
st 2
015
:
78
8
–
79
7
7
97
31
32
0.
1157
0.
0877
0.
006
0.
004
92
93
0.
1446
0.
1096
0.
020
0.
013
32
33
0.
1157
0.
0877
0.
019
0.
013
93
94
0.
1446
0.
1096
0.
122
0.
082
33
34
0.
1157
0.
0877
0.
006
0.
004
94
95
0.
1086
0.
0823
0.
006
0.
004
34
35
0.
1157
0.
0877
0.
016
0.
011
95
96
0.
1086
0.
0823
0.
026
0.
018
35
36
0.
1157
0.
0877
0.
015
0.
010
96
97
0.
1086
0.
0823
0.
006
0.
004
36
37
0.
1157
0.
0877
0.
015
0.
010
97
98
0.
0431
0.
0327
0.
005
0.
004
37
38
0.
0431
0.
0327
0.
008
0.
006
98
99
0.
0431
0.
0327
0.
031
0.
021
38
39
0.
0431
0.
0327
0.
224
0.
150
99
100
0.
0431
0.
0327
0.
064
0.
043
39
40
0.
0939
0.
0711
0.
008
0.
005
100
101
0.
0431
0.
0327
0.
005
0.
004
40
41
0.
0431
0.
0327
0.
005
0.
004
101
102
0.
0431
0.
0327
0.
007
0.
005
41
42
0.
0431
0.
0327
0.
022
0.
015
102
103
0.
0578
0.
0438
0.
015
0.
010
42
43
0.
0360
0.
0273
0.
053
0.
036
103
104
0.
0431
0.
0327
0.
005
0.
004
43
44
0.
1346
0.
1020
0.
012
0.
008
104
105
0.
0431
0.
0327
0.
006
0.
004
44
45
0.
1346
0.
1020
0.
117
0.
078
105
106
0.
0431
0.
0327
0.
012
0.
008
1
46
0.
0578
0.
0438
0.
005
0.
004
106
107
0.
0431
0.
0327
0.
005
0.
004
46
47
0.
0578
0.
0438
0.
007
0.
005
107
108
0.
0474
0.
0359
0.
051
0.
034
47
48
0.
0578
0.
0438
0.
002
0.
002
108
109
0.
0474
0.
0359
0.
008
0.
006
48
49
0.
0578
0.
0438
0.
037
0.
025
1
110
0.
0133
0.
010
0.
011
0.
007
49
50
0.
0578
0.
0438
0.
173
0.
116
50
51
0.
0578
0.
0438
0.
045
0.
030
51
52
0.
0578
0.
0438
0.
010
0.
007
52
53
0.
0578
0.
0438
0.
056
0.
038
53
54
0.
0578
0.
0438
0.
013
0.
008
54
55
0.
0578
0.
0438
0.
043
0.
029
55
56
0.
0578
0.
0438
0.
013
0.
009
56
57
0.
0868
0.
0658
0.
038
0.
025
57
58
0.
0868
0.
0658
0.
015
0.
010
58
59
0.
0868
0.
0658
0.
011
0.
007
59
60
0.
0868
0.
0658
0.
084
0.
056
60
61
0.
0868
0.
0658
0.
019
0.
013
61
62
0.
0868
0.
0658
0.
010
0.
007
ACKNOWLE
DGE
M
ENTS
The a
u
thor
wi
shes to expre
s
s her special t
h
anks
t
o
he
r
pare
nt
s f
o
r t
h
e
i
r su
pp
o
r
t
s
. T
h
e aut
h
or i
s
deepl
y
grat
e
f
ul
t
o
s
u
per
v
i
s
o
r
,
Dr.
S
o
e Wi
n
N
a
i
ng,
Associ
at
e
Pr
of
esso
r
a
n
d Dr
. Yan
Au
n
g
Oo
, Pr
ofes
so
r
a
n
d
Head of
De
partm
e
nt of Electrical Powe
r E
ngi
neeri
n
g at
M
a
ndal
a
y
Tec
h
no
l
ogi
cal
U
n
i
v
ers
i
t
y
.
REFERE
NC
ES
[1]
Willis, H
.
L., Marcel
Dekker
,
Ne
w York, “Power
Distribution
Planning Ref
e
ren
c
e Book”, 1997.
[2]
Benedi
ct,
E
.
; Co
llins,
T.
; Goth
a
m
, D.; Hoffm
an
, S.;
Karip
i
des,
D.; Pekar
e
k,
S.;
and
R
a
m
a
bhadr
an, R
.
;
“
L
osses in
Electric Power S
y
stems,” (1992).
[3]
M.
E
.
Ba
ran,
Felix F.
Wu,
“N
e
t
work
Reconfiguration in Distribution S
y
s
t
em for Loss Re
duction and Lo
ad
Balan
c
ing.
”
I
E
EE Transactions
on Power D
e
livery
, 4:2
,
1989
.
[4]
Power Flow Stud
y
,
http://en
.
wik
i
pedia.
org/wik
i
/Power-flow- stud
y
#
Load-f
low
[5]
C.M
.
P
dos
S
a
n
y
os
, Lat
i
n Am
eri
ca, V
e
nezu
el
a “
D
eterm
i
nat
i
on o
f
Ele
c
tri
c
a
l
P
o
wer Los
s
e
s
in Dis
t
ribution S
y
s
t
em
”
IEEE PES
Transmission and Distri
bution Conference and
Exposition
, pp
. 1-5
,
200
6.
[6]
Dagon Seikkan
Substation, 2014
. A Dep
a
rtment
Report. Da
gon S
e
ikkan
Township, Yangon
.
[7]
Ele
c
tri
cal
Tr
ans
i
ent Ana
l
yz
erP
r
ogran (E
TAP
)
, w
ww.etap
.com
[8]
Grainger, J.;
Stevenson, W.
, McGraw–Hill, N
e
w York, “Power Sy
stem
Anal
y
s
is”, 1994
.
[9]
R. Srinivasa and
S. Narasim
h
am, “
A
New
Algorithm
for th
e Network Reconfigu
r
ation of Distrib
u
tion Feeders fo
r
Loss Minimiz
a
tion”
,
I
E
EE Transaction
on Pow
e
r Delivery
, Vol. 7
,
No. 3, pp. 1484
-1491, 1992
.
[10]
Utkarsh Singh, “Radial Distribution
S
y
s
t
em
Reconfigur
ation
for Loss Minimization
using
Exhaustiv
e Sear
ch
Techn
i
ques”, In
dia, July
2014
.
Evaluation Warning : The document was created with Spire.PDF for Python.