I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
201
6
,
p
p
.
2
6
4
3
~
2
6
5
7
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
6i
6
.
1
2
7
6
4
2643
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Respo
nse Ba
sed
Co
m
pa
ra
tive
Ana
ly
sis
of Tw
o
Inv
erte
r
Fed
Six
P
ha
se PMSM
Dri
v
e
by
Using
PI an
d
Fu
zz
y
L
o
g
ic
Co
ntroller
Anura
g
Sin
g
h T
o
m
er
1
,
Sa
t
y
a
P
ra
k
a
s
h Du
bey
2
1
Co
ll
e
g
e
o
f
Ag
ricu
lt
u
re
En
g
in
e
e
ri
n
g
a
n
d
T
e
c
h
n
o
l
o
g
y
&
Re
s
e
a
rc
h
S
tatio
n
,
M
u
n
g
e
li
,
In
d
ira G
a
n
d
h
i
Krish
i
V
is
h
w
a
v
id
y
a
la
y
,
Ra
ip
u
r,
In
d
ia
2
Ru
n
g
ta Co
ll
leg
e
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
Bh
il
a
i,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Ma
y
9
,
2
0
1
6
R
ev
i
s
ed
Oct
2
0
,
201
6
A
cc
ep
ted
Dec
2
,
2
0
1
6
T
h
is
P
a
p
e
r
g
iv
e
s
a
c
o
m
p
lete
m
o
d
e
li
n
g
a
n
d
sim
u
latio
n
o
f
a
t
w
o
in
v
e
rter
f
e
d
six
p
h
a
se
p
e
rm
a
n
e
n
t
m
a
g
n
e
t
s
y
n
c
h
ro
n
o
u
s
m
o
to
r
d
riv
e
s
y
ste
m
,
T
h
e
n
re
sp
o
n
se
b
a
se
d
c
o
m
p
a
ra
ti
v
e
a
n
a
l
y
sis
is
d
o
n
e
o
n
sta
rti
n
g
to
r
q
u
e
,
se
tt
li
n
g
t
i
m
e
,
S
tea
d
y
sta
te
c
u
rre
n
t
a
t
v
a
rio
u
s
sp
e
e
d
lev
e
ls
a
n
d
to
r
q
u
e
le
v
e
ls
b
y
c
h
a
n
g
in
g
p
ro
p
o
rti
o
n
a
l
-
i
n
teg
ra
l
(
P
I)
c
o
n
tr
o
ll
e
r
t
o
F
u
z
z
y
lo
g
ic
c
o
n
tro
ll
e
r.
T
h
e
P
I
c
o
n
tro
ll
e
r
h
a
s
so
m
e
d
isa
d
v
a
n
ta
g
e
s
li
k
e
,
m
o
re
s
e
tt
li
n
g
ti
m
e
,
slu
g
g
is
h
re
sp
o
n
se
d
u
e
t
o
su
d
d
e
n
c
h
a
n
g
e
in
l
o
a
d
t
o
rq
u
e
e
tc.
S
o
a
n
in
telli
g
e
n
t
c
o
n
tro
ll
e
r
,
b
a
se
d
o
n
f
u
z
z
y
lo
g
ic
is
in
tro
d
u
c
e
d
w
h
ich
re
p
lac
e
s
th
e
P
I
-
c
o
n
tr
o
ll
e
r
a
n
d
it
s
d
ra
w
b
a
c
k
s.
T
h
e
p
e
rf
o
r
m
a
n
c
e
o
f
b
o
th
th
e
c
o
n
tro
ll
e
r
h
a
s
b
e
e
n
i
n
v
e
stig
a
ted
a
n
d
stu
d
ied
b
y
c
o
m
p
a
rin
g
th
e
d
iff
e
r
e
n
t
p
lo
ts
o
b
tain
e
d
b
y
se
tt
in
g
v
a
rio
u
s
sp
e
e
d
lev
e
l
b
o
th
in
c
re
m
e
n
ted
a
n
d
d
e
c
re
m
e
n
ted
sp
e
e
d
,
a
t
d
if
f
e
re
n
t
lo
a
d
c
o
n
d
i
ti
o
n
s
li
k
e
No
-
lo
a
d
,
f
ix
lo
a
d
a
n
d
d
y
n
a
m
ic
lo
a
d
t
h
ro
u
g
h
M
a
tl
a
b
/
S
im
u
li
n
k
e
n
v
iro
n
m
e
n
t.
F
in
a
ll
y
it
is
c
o
n
c
lu
d
e
d
f
ro
m
th
e
re
su
lt
th
a
t
f
u
z
z
y
lo
g
ic
b
a
s
e
d
c
o
n
tr
o
ll
e
r
is
ro
b
u
st,
re
li
a
b
le
g
iv
e
s
q
u
ick
re
sp
o
n
se
w
it
h
h
ig
h
sta
rti
n
g
to
rq
u
e
a
n
d
m
o
re
e
ffe
c
ti
v
e
th
a
n
th
e
c
o
n
v
e
n
ti
o
n
a
l
P
I
c
o
n
tr
o
ll
e
r.
I
t
is
a
ls
o
o
b
se
rv
e
d
th
a
t
b
o
t
h
t
h
e
p
ro
p
o
se
d
m
o
d
e
l
c
a
n
a
lso
ru
n
a
b
o
v
e
ra
ted
sp
e
e
d
sig
n
if
ica
n
tall
y
.
K
ey
w
o
r
d
:
Dr
iv
e
Fu
zz
y
lo
g
ic
co
n
tr
o
ller
I
n
v
er
te
r
P
I
co
n
tr
o
ller
P
MSM
Co
p
y
rig
h
t
©
2
0
1
6
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
An
u
r
ag
Si
n
g
h
T
o
m
er
,
C
o
lleg
e
o
f
Ag
r
ic
u
lt
u
r
e
E
n
g
in
e
er
in
g
a
n
d
T
ec
h
n
o
lo
g
y
&
R
e
s
e
ar
ch
Statio
n
,
M
u
n
g
eli
,
I
n
d
ir
a
Gan
d
h
i K
r
i
s
h
i V
is
h
w
av
id
y
a
la
y
,
R
aip
u
r
,
I
n
d
ia
E
m
ail: to
m
er
an
u
@
y
a
h
o
o
.
co
m
1.
I
NT
RO
D
UCT
I
O
N
Sin
ce
p
ast
f
e
w
d
ec
ad
es
p
o
w
er
elec
tr
o
n
ics
h
as
b
ee
n
w
id
el
y
u
s
ed
in
d
r
iv
e
o
r
as
en
er
g
y
g
en
er
atio
n
/co
n
v
er
s
io
n
s
y
s
te
m
.
I
t
ca
n
b
e
s
aid
th
at
elec
tr
ic
al
m
ac
h
i
n
e
s
w
ith
p
o
w
er
elec
tr
o
n
ics
co
n
v
er
ter
co
n
n
ec
ted
ar
e
in
a
m
a
tu
r
e
s
tat
e.
E
v
en
Af
ter
,
W
h
en
it
i
s
ab
o
u
t
s
elec
tin
g
a
m
ac
h
in
e
o
n
t
h
e
b
asis
o
f
r
ed
u
cin
g
t
h
e
cu
r
r
en
t p
er
p
h
ase
w
i
th
o
u
t i
n
cr
ea
s
in
g
t
h
e
v
o
ltag
e
p
er
p
h
ase,
r
ed
u
cin
g
t
h
e
r
o
to
r
h
ar
m
o
n
ic
cu
r
r
en
ts
,
r
ed
u
ci
n
g
t
h
e
a
m
p
lit
u
d
e
an
d
in
cr
ea
s
i
n
g
t
h
e
f
r
eq
u
en
c
y
o
f
to
r
q
u
e
p
u
ls
atio
n
s
,
an
d
lo
w
er
in
g
t
h
e
d
c
-
li
n
k
c
u
r
r
en
t
h
ar
m
o
n
ic
s
an
d
h
ig
h
er
r
eliab
ilit
y
,
it is
al
w
a
y
s
Mu
ltip
h
ase
v
ar
iab
le
s
p
ee
d
d
r
iv
e
[1
-
5
]
.
Mu
ltip
h
ase
v
ar
iab
le
s
p
ee
d
PMSM
d
r
iv
e
h
as
r
ec
eiv
ed
tr
e
m
en
d
o
u
s
i
n
ter
e
s
t
b
ec
au
s
e
o
f
it
s
ad
v
an
ta
g
e
s
o
f
b
ein
g
m
u
ltip
h
a
s
e
a
n
d
s
u
p
er
io
r
ity
o
v
er
o
th
er
m
o
to
r
d
r
iv
e
s
y
s
te
m
.
T
h
is
g
r
o
w
in
g
i
n
ter
es
t
is
d
u
e
to
t
h
e
f
ac
t
th
at
th
i
s
m
ac
h
i
n
e
ca
n
p
r
o
v
id
e
n
o
ticea
b
le
im
p
r
o
v
e
m
e
n
ts
i
n
p
er
f
o
r
m
an
ce
r
elate
d
to
v
ar
io
u
s
asp
ec
ts
w
h
e
n
co
m
p
ar
ed
to
eith
er
th
r
ee
p
h
a
s
e
DC
d
r
iv
e
o
r
s
ix
p
h
a
s
e
in
d
u
cti
o
n
m
o
to
r
d
r
iv
e
[6
-
9
]
.
T
w
o
k
i
n
d
s
o
f
s
i
x
p
h
ase
s
y
s
te
m
s
ar
e
av
ailab
le
s
y
m
m
etr
ical
an
d
as
y
m
m
etr
ical.
T
h
e
f
ir
s
t
is
s
y
m
m
etr
ical
s
y
s
te
m
i
n
w
h
ich
s
tato
r
w
i
n
d
in
g
s
ar
e
eith
er
0
0
o
r
6
0
°
a
p
ar
t.
I
n
w
h
ic
h
ze
r
o
d
eg
r
ee
p
h
ase
s
h
i
f
t
is
s
i
m
ilar
to
th
r
ee
p
h
ase
s
y
s
te
m
.
T
h
e
m
o
s
t
co
m
m
o
n
is
as
y
m
m
etr
ical
s
y
s
te
m
i
n
w
h
ic
h
th
e
s
tato
r
w
in
d
i
n
g
is
co
m
p
o
s
ed
o
f
t
w
o
s
et
s
o
f
3
-
p
h
a
s
e
w
in
d
i
n
g
s
,
in
Fi
g
u
r
e
1,
w
h
ic
h
ar
e
s
p
atiall
y
ap
ar
t b
y
3
0
° [
1
0
-
1
1
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
4
3
–
2
6
5
7
2644
Fig
u
r
e
1
.
Stato
r
w
i
n
d
in
g
i
n
s
y
m
m
e
tr
ical
an
d
as
y
m
m
etr
ical
m
ac
h
in
e
T
h
is
p
ap
er
c
o
n
ce
n
tr
ate
o
n
c
o
m
p
lete
m
o
d
elin
g
an
d
s
i
m
u
l
atio
n
o
f
as
y
m
m
e
tr
ical
d
u
al
i
n
v
er
ter
f
ed
6
-
p
h
ase
P
MSM
d
r
iv
e
s
y
s
te
m
co
n
tr
o
lled
b
y
tr
ad
itio
n
a
l
P
I
an
d
Fu
zz
y
lo
g
ic
co
n
tr
o
ller
at
v
a
r
io
u
s
s
p
ee
d
lev
el
s
.
Vec
to
r
co
n
tr
o
l
(
FOC
)
is
o
n
e
o
f
th
e
id
ea
l
tec
h
n
iq
u
es
u
s
ed
f
o
r
th
e
co
n
tr
o
l
o
f
s
u
ch
d
r
iv
e
s
y
s
t
e
m
.
Her
e
t
w
o
lo
o
p
s
ar
e
f
o
r
m
ed
th
e
o
u
ter
lo
o
p
an
d
th
e
in
n
er
lo
o
p
.
T
h
e
o
u
ter
lo
o
p
g
r
ea
tl
y
a
f
f
ec
ts
t
h
e
d
r
iv
e
p
er
f
o
r
m
an
ce
.
T
h
er
ef
o
r
e
th
e
elec
tr
ical
d
r
i
v
es
g
o
o
d
d
y
n
a
m
ic
p
er
f
o
r
m
an
ce
is
m
a
n
d
ato
r
y
s
o
a
s
t
o
r
esp
o
n
d
t
h
e
ch
a
n
g
es
in
co
m
m
a
n
d
s
p
ee
d
an
d
to
r
q
u
es
.
T
h
e
P
r
o
p
o
r
tio
n
al
–
I
n
teg
r
al
co
n
tr
o
ller
is
o
n
e
o
f
th
e
tr
ad
itio
n
al
co
n
tr
o
ller
s
w
h
i
ch
ar
e
w
id
el
y
u
s
ed
in
m
an
y
d
r
i
v
e
s
y
s
te
m
.
I
t
m
ai
n
tai
n
s
a
ze
r
o
s
tead
y
s
tat
e
er
r
o
r
to
a
s
u
d
d
en
s
tep
c
h
an
g
e
i
n
r
e
f
er
en
ce
.
Si
m
u
lta
n
eo
u
s
l
y
it
h
as
s
o
m
e
d
is
ad
v
a
n
tag
e
s
li
k
e
u
n
d
es
ir
ab
le
s
p
ee
d
o
v
er
s
h
o
o
t,
lo
n
g
s
ett
lin
g
ti
m
e,
t
h
e
s
lu
g
g
is
h
r
esp
o
n
s
e
d
u
e
to
s
u
d
d
en
ch
a
n
g
e
i
n
lo
ad
to
r
q
u
e
an
d
t
h
e
s
e
n
s
it
iv
i
t
y
to
co
n
tr
o
ller
g
ai
n
s
Ki
I
an
d
Kp
.
T
h
ese
p
r
o
b
lem
s
ca
n
b
e
o
v
er
co
m
e
b
y
th
e
f
u
zz
y
lo
g
ic
co
n
tr
o
lle
r
s
wh
ich
d
o
n
o
t
r
eq
u
ir
e
an
y
m
at
h
e
m
atica
l
m
o
d
el
an
d
ar
e
b
ased
o
n
th
e
lin
g
u
i
s
tic
r
u
le
s
o
b
tain
ed
f
r
o
m
t
h
e
ex
p
er
ien
c
e
o
f
th
e
s
y
s
te
m
o
p
er
ato
r
[
1
2
-
1
3
]
.
2.
M
O
DE
L
I
N
G
O
F
SI
X
P
H
AS
E
P
M
S
M
I
n
d
ev
elo
p
in
g
th
e
m
at
h
e
m
a
tic
al
m
o
d
el
th
e
f
o
llo
w
in
g
as
s
u
m
p
tio
n
s
an
d
eq
u
atio
n
s
ar
e
u
s
ed
[
1
4
]
:
a.
T
h
e
ca
p
ac
itan
ce
ca
n
b
e
n
eg
lec
ted
b.
T
h
e
s
et
o
f
s
tato
r
w
i
n
d
i
n
g
s
ar
e
s
y
m
m
etr
ical.
c.
Dis
tr
ib
u
ted
w
i
n
d
in
g
s
m
a
y
b
e
r
ep
r
esen
ted
b
y
a
co
n
ce
n
tr
ated
w
i
n
d
i
n
g
.
d.
T
h
e
ch
an
g
e
i
n
th
e
in
d
u
cta
n
c
e
o
f
t
h
e
s
tato
r
w
i
n
d
in
g
s
is
s
i
n
u
s
o
id
al
an
d
f
r
ee
f
r
o
m
h
i
g
h
e
r
o
r
d
e
r
h
ar
m
o
n
i
cs.
e.
C
o
r
e
lo
s
s
es a
r
e
n
e
g
lecte
d
.
f.
T
h
e
m
a
g
n
e
tic
cir
cu
it
s
ar
e
lin
e
ar
i.e
.
n
o
t
s
atu
r
ated
an
d
th
e
v
a
lu
es
o
f
i
n
d
u
cta
n
ce
ar
e
in
d
ep
en
d
en
t
o
f
th
e
cu
r
r
en
t.
I
n
th
i
s
s
t
u
d
y
,
a
s
i
x
-
p
h
ase
P
M
SM
w
ith
t
w
o
t
h
r
ee
-
p
h
ase
W
i
n
d
in
g
s
i
s
ad
o
p
ted
w
h
er
e
A
B
C
w
i
n
d
in
g
is
s
p
atiall
y
3
0
elec
tr
ical
d
e
g
r
ee
s
p
h
ase
led
to
X
YZ
w
i
n
d
i
n
g
.
T
h
e
p
h
ase
v
o
ltag
e
a
n
d
f
l
u
x
li
n
k
a
g
e
eq
u
atio
n
s
i
n
t
h
e
s
tatio
n
ar
y
r
e
f
er
en
ce
f
r
a
m
e
f
o
r
A
B
C
w
in
d
i
n
g
a
n
d
X
YZ
w
i
n
d
in
g
o
f
s
i
x
-
p
h
a
s
e
P
MSM
ar
e
s
h
o
w
n
as:
(
1
)
M
A
B
C
X
Y
Z
A
B
C
A
B
C
I
L
I
L
'
12
11
(
2
)
dt
d
I
R
V
X
Y
Z
X
Y
Z
S
X
Y
Z
(
3
)
M
X
Y
Z
A
B
C
X
Y
Z
X
Y
Z
I
L
I
L
'
21
22
(
4
)
w
h
er
e
R
s
=
d
iag
[
R
s
,
R
s
, R
s
]
T
i
s
th
e
s
tato
r
r
esi
s
ta
n
ce
v
ec
to
r
; V
A
B
C
=
[
V
A
V
B
V
C
]
T
is
th
e
p
h
a
s
e
v
o
lta
g
e
v
ec
to
r
o
f
A
B
C
w
i
n
d
in
g
;
I
A
BC
=
[
I
A
I
B
I
C
]
T
is
th
e
cu
r
r
en
t
v
ec
to
r
o
f
AB
C
w
i
n
d
in
g
;
V
XYZ
=
[
V
X
V
Y
V
Z
]
T
is
th
e
p
h
ase
v
o
ltag
e
v
ec
to
r
o
f
X
Y
Z
w
i
n
d
in
g
;
I
XYZ
=
[
I
X
I
Y
I
Z
]
T
is
th
e
cu
r
r
en
t
v
ec
to
r
o
f
X
YZ
w
i
n
d
in
g
;
Ø
A
B
C
=
[Ø
A
Ø
B
Ø
C
]
T
is
t
h
e
s
tato
r
f
l
u
x
li
n
k
a
g
e
v
ec
to
r
o
f
A
B
C
w
i
n
d
i
n
g
; Ø
XYZ
=
[Ø
X
Ø
Y
Ø
Z
]
T
is
th
e
s
tato
r
f
l
u
x
li
n
k
ag
e
v
ec
to
r
o
f
XY
Z
dt
d
I
R
V
A
BC
A
BC
S
A
BC
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
esp
o
n
s
e
B
a
s
ed
C
o
mp
a
r
a
tive
A
n
a
lysi
s
o
f Tw
o
I
n
ve
r
ter F
ed
S
ix
P
h
a
s
e
P
MS
M Drive
…
(
A
n
u
r
a
g
S
.
T
.
)
2645
w
i
n
d
i
n
g
;
L
11
is
th
e
s
ta
to
r
in
d
u
ctan
ce
v
ec
to
r
o
f
w
i
n
A
B
C
w
i
n
d
in
g
;
L
22
is
t
h
e
s
tato
r
in
d
u
cta
n
ce
v
ec
to
r
o
f
XYZ
w
i
n
d
i
n
g
;
L
12
an
d
L
21
ar
e
th
e
m
u
tu
al
i
n
d
u
ctan
ce
v
ec
to
r
s
;
Ø
‟
MA
B
C
‟
is
th
e
p
er
m
a
n
e
n
t
-
m
a
g
n
e
t
f
l
u
x
li
n
k
ag
e
v
ec
to
r
o
f
A
B
C
w
i
n
d
in
g
;
Ø‟
MX
YZ
is
t
h
e
p
er
m
a
n
e
n
t
-
m
a
g
n
et
f
l
u
x
lin
k
ag
e
v
ec
to
r
o
f
XYZ
w
in
d
i
n
g
.
I
n
o
r
d
e
r
to
co
n
tr
o
l
th
e
s
i
x
-
p
h
ase
P
MSM
,
th
e
f
o
ll
o
w
i
n
g
T
r
an
s
f
o
r
m
atio
n
m
atr
i
x
es
h
av
e
b
ee
n
u
s
ed
to
tr
an
s
f
er
th
e
ab
o
v
e
E
q
u
atio
n
s
in
to
th
e
s
y
n
c
h
r
o
n
o
u
s
r
o
tati
n
g
r
ef
er
en
ce
f
r
a
m
e:
2
1
2
1
2
1
)
120
s
i
n
(
)
120
s
i
n
(
s
i
n
)
120
c
o
s
(
)
120
c
o
s
(
c
o
s
3
2
1
0
0
0
0
e
e
e
e
e
e
T
q
d
(
5
)
2
1
2
1
2
1
)
90
s
i
n(
)
1
50
s
i
n(
)
30
s
i
n(
)
90
c
os
(
)
1
50
c
os
(
)
30
c
os
(
3
2
2
0
0
0
0
0
0
e
e
e
e
e
e
T
qd
(
6
)
w
h
er
e
T
qd
1
is
th
e
tr
an
s
f
o
r
m
ati
o
n
m
atr
ix
f
o
r
A
B
C
w
i
n
d
i
n
g
;
T
qd
2
is
t
h
e
tr
a
n
s
f
o
r
m
atio
n
m
atr
i
x
f
o
r
X
YZ
w
i
n
d
in
g
;
θ
e
is
th
e
r
o
to
r
f
lu
x
an
g
le.
Mo
r
eo
v
er
,
th
e
m
ac
h
i
n
e
m
o
d
el
o
f
a
s
ix
-
p
h
a
s
e
P
MSM
ca
n
b
e
d
escr
ib
ed
in
s
y
n
ch
r
o
n
o
u
s
r
o
tati
n
g
r
e
f
er
en
c
e
f
r
a
m
e
as
f
o
llo
w
s
:
)
(
1
11
1
11
1
1
PM
d
d
e
q
q
q
s
q
I
L
dt
dI
L
I
R
v
(
7
)
1
11
1
11
1
1
q
q
e
d
d
d
s
d
I
L
dt
dI
L
I
R
v
(
8
)
)
(
2
22
2
22
2
2
PM
d
d
e
q
q
q
s
q
I
L
dt
dI
L
I
R
v
(
9
)
2
22
2
22
2
2
q
q
e
d
d
d
s
d
I
L
dt
dI
L
I
R
v
(
1
0
)
r
e
P
2
(
1
1
)
w
h
er
e
v
d
1
an
d
v
q
1
ar
e
t
h
e
d
-
q
ax
is
v
o
ltag
e
s
o
f
A
B
C
w
i
n
d
in
g
;
v
d
2
an
d
v
q
2
ar
e
th
e
d
-
q
ax
is
v
o
lta
g
es
o
f
X
YZ
w
i
n
d
i
n
g
;
i
d
1
a
n
d
i
q
1
ar
e
th
e
d
-
q
ax
is
cu
r
r
en
t
s
o
f
A
B
C
w
in
d
in
g
;
i
d2
an
d
i
q2
ar
e
th
e
d
-
q
ax
is
cu
r
r
en
t
s
o
f
X
YZ
w
i
n
d
i
n
g
;
L
d
11
an
d
L
q
11
ar
e
th
e
d
-
q
ax
is
i
n
d
u
cta
n
ce
s
o
f
A
B
C
w
in
d
i
n
g
;
L
d
22
and
L
q
22
ar
e
th
e
d
-
q
ax
is
in
d
u
cta
n
ce
s
o
f
X
Y
Z
w
in
d
i
n
g
;
ω
r
is
th
e
r
o
to
r
an
g
u
lar
v
elo
cit
y
;
ω
e
is
th
e
elec
tr
ical
an
g
u
lar
v
elo
cit
y
;
Ø
PM
is
th
e
p
er
m
a
n
e
n
t
m
ag
n
et
f
l
u
x
li
n
k
a
g
e;
P
is
th
e
n
o
.
o
f
p
o
le
p
air
s
o
f
s
ix
p
h
ase
P
MSM
.
As
as
s
u
m
e
d
th
at
w
i
n
d
in
g
s
et
s
ar
e
id
en
tical
(
L
q11
=
L
q22
=
L
q
an
d
L
d
11
=
L
d22
=
L
d
)
.
F
u
r
th
er
m
o
r
e,
th
e
d
ev
elo
p
ed
elec
tr
i
c
to
r
q
u
e
Te
c
an
b
e
r
ep
r
esen
ted
b
y
t
h
e
f
o
llo
w
i
n
g
e
q
u
atio
n
:
2
2
1
1
2
1
2
2
3
q
d
q
d
q
d
q
q
PM
e
I
I
I
I
L
L
I
I
P
T
(
1
2
)
Ho
w
e
v
er
,
th
e
elec
tr
o
m
a
g
n
e
tic
to
r
q
u
e
ca
n
n
o
t
b
e
esti
m
ated
a
cc
u
r
atel
y
i
n
a
g
e
n
er
al
ca
s
e
w
i
th
o
u
t
k
n
o
w
led
g
e
o
f
th
e
c
u
r
r
en
ts
o
f
b
o
th
w
i
n
d
in
g
s
ets
an
d
t
h
e
in
d
u
ctan
ce
p
ar
a
m
e
ter
s
th
a
t
d
escr
ib
e
th
e
m
a
g
n
etic
co
u
p
lin
g
b
et
w
ee
n
th
e
m
.
I
n
ad
d
itio
n
,
th
e
m
ec
h
a
n
i
ca
l d
y
n
a
m
ic
eq
u
atio
n
o
f
t
h
e
s
i
x
-
p
h
ase
P
MSM
is
:
L
r
r
e
T
B
dt
d
J
T
(
1
3
)
w
h
er
e
J
i
s
t
h
e
in
er
tia
o
f
s
i
x
-
p
h
ase
P
MSM
;
B
i
s
t
h
e
d
a
m
p
in
g
C
o
ef
f
icie
n
t;
T
L
is
t
h
e
lo
ad
to
r
q
u
e.
T
h
e
m
ac
h
in
e
p
ar
am
eter
f
o
r
th
e
a
b
o
v
e
m
o
d
el
in
g
i
s
g
iv
e
n
i
n
T
ab
le
1
[
1
5
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
4
3
–
2
6
5
7
2646
T
ab
le
1
.
Ma
ch
in
e
P
ar
am
eter
S.
NO.
N
A
M
E
R
A
T
I
N
G
1.
N
o
mi
n
a
l
v
o
l
t
a
g
e
V
n
3
8
0
v
o
l
t
s
2.
N
o
mi
n
a
l
s
p
e
e
d
n
n
3
5
0
R
P
M
(
3
6
.
5
r
a
d
/
s)
3.
N
o
.
o
f
P
o
l
e
s
8
4.
S
t
a
t
o
r
R
e
si
st
a
n
c
e
R
s
0
.
6
4
o
h
m
5.
P
M
f
l
u
x
L
i
n
k
a
g
e
Ø
PM
2
.
0
4
w
b
6.
L
d
,
L
q
2
4
mH
,
3
1
.
4
mH
7.
I
n
e
r
t
i
a
J
.
0
1
4
N
m
/
(
r
a
d
/
se
c
2
)
8.
D
a
mp
i
n
g
c
o
e
f
f
i
c
i
e
n
t
B
.
0
1
2
4
N
m/
(
r
a
d
/
se
c
)
T
h
e
m
o
d
eli
n
g
i
n
s
i
m
u
li
n
k
(
M
A
T
L
A
B
)
o
f
Si
x
p
h
ase
P
MSM
is
p
r
esen
ted
in
f
o
llo
w
i
n
g
Fig
u
r
e
2
.
Fig
u
r
e
2.
Ma
tlab
/Si
m
u
li
n
k
M
o
d
el
o
f
Six
P
h
ase
P
MSM
.
3.
CO
NT
RO
L
L
E
R
SCH
E
M
E
S
T
h
e
d
if
f
er
en
ce
b
et
w
ee
n
th
e
d
e
s
ir
ed
in
p
u
t
(
ω
m
ref
)
an
d
t
h
e
ac
tu
al
o
u
tp
u
t
(
ω
m
ac
t
)
is
a
v
ar
iab
le
Δ
ω
r
w
h
ic
h
is
k
n
o
w
n
as
tr
ac
k
in
g
er
r
o
r
.
T
h
is
tr
ac
k
in
g
er
r
o
r
s
ig
n
al
i
s
s
en
d
to
co
n
tr
o
ller
w
h
ich
g
en
er
ate
s
iq
*
k
n
o
w
n
q
-
a
x
i
s
co
m
m
a
n
d
cu
r
r
e
n
t.
T
h
is
o
u
tp
u
t
o
f
co
n
tr
o
ller
an
d
i
d
*
(
=
0)
ar
e
tr
an
s
f
o
r
m
ed
to
A
B
C
a
n
d
XY
Z
cu
r
r
en
t
co
m
m
a
n
d
u
s
i
n
g
i
n
v
er
s
e
p
ar
k
‟
s
tr
a
n
s
f
o
r
m
.
T
h
ese
co
m
m
a
n
d
c
u
r
r
en
ts
ar
e
n
o
w
co
m
p
ar
ed
w
it
h
t
h
e
ac
tu
al
c
u
r
r
en
t
s
t
o
g
en
er
ate
t
h
e
P
W
M
s
ig
n
al
s
w
h
ich
w
ill
t
h
an
f
ir
e
th
e
s
e
m
ico
n
d
u
cto
r
d
ev
ices
to
p
r
o
d
u
ce
ac
tu
al
v
o
lta
g
es
f
o
r
Six
P
h
ase
m
o
to
r
to
o
p
er
ate
p
r
o
p
e
r
l
y
Fi
g
u
r
e
3
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
esp
o
n
s
e
B
a
s
ed
C
o
mp
a
r
a
tive
A
n
a
lysi
s
o
f Tw
o
I
n
ve
r
ter F
ed
S
ix
P
h
a
s
e
P
MS
M Drive
…
(
A
n
u
r
a
g
S
.
T
.
)
2647
Fig
u
r
e
3
.
B
lo
ck
Diag
r
a
m
O
f
S
ix
P
h
ase
P
MSM
d
r
iv
e
3
.
1
.
P
ro
po
rt
io
na
l
-
I
nte
g
ra
l
Co
nt
ro
ller
(
P
I
)
T
h
e
P
I
c
o
n
tr
o
ller
p
r
o
d
u
ce
s
an
o
u
tp
u
t
s
ig
n
al
co
n
s
is
tin
g
o
f
t
wo
ter
m
s
-
o
n
e
p
r
o
p
o
r
tio
n
al
to
in
p
u
t
s
ig
n
al
an
d
th
e
o
th
er
p
r
o
p
o
r
tio
n
al
to
th
e
i
n
te
g
r
al
o
f
in
p
u
t
s
i
g
n
al.
T
h
e
co
n
ce
r
n
s
o
f
P
I
co
n
tr
o
ller
in
t
h
e
s
y
s
te
m
ar
e
to
r
ed
u
ce
th
e
s
tead
y
s
tate
er
r
o
r
an
d
in
cr
ea
s
ed
th
e
o
r
d
er
an
d
t
y
p
e
o
f
t
h
e
s
y
s
te
m
b
y
o
n
e
w
h
ic
h
is
s
h
o
w
n
i
n
Fig
u
r
e
4
[
1
6
]
.
Fig
u
r
e
4
.
P
I
Co
n
tr
o
ller
T
r
an
s
f
er
f
u
n
ctio
n
S
K
K
PI
i
p
(
1
4
)
dt
K
K
i
r
i
r
p
q
*
(
1
5
)
T
h
is
iq
*
is
t
h
a
n
s
e
n
t
f
u
r
t
h
er
in
th
e
s
y
s
te
m
to
co
n
tr
o
l
t
h
e
o
p
er
atio
n
o
f
Si
x
P
h
a
s
e
P
MSM
d
r
iv
e
s
y
s
te
m
as
s
h
o
w
n
i
n
b
lo
ck
d
iag
r
a
m
i
n
Fi
g
u
r
e
3
f
o
r
t
u
n
in
g
o
f
P
I
co
n
tr
o
ller
C
lo
s
ed
L
o
o
p
Z
ie
g
ler
-
Nich
o
ls
Me
t
h
o
d
is
u
s
ed
.
Si
n
ce
it
is
tr
ial
a
n
d
er
r
o
r
m
eth
o
d
it
is
t
i
m
e
co
n
s
u
m
in
g
.
I
n
itiall
y
a
r
an
d
o
m
v
a
lu
e
o
f
K
p
an
d
Ki
is
ch
o
s
e
n
th
en
a
f
ter
s
ee
in
g
t
h
e
i
m
p
r
o
v
e
m
en
ts
i
n
r
esp
o
n
s
e
o
f
t
h
e
m
o
d
el,
th
e
m
o
s
t
s
u
i
tab
le
v
al
u
e
o
f
Kp
an
d
Ki
i
s
s
elec
ted
.
3
.
2
.
F
uzzy
L
o
g
ic
Co
ntr
o
ller
I
n
itiall
y
t
h
e
f
u
zz
y
in
p
u
t
v
ec
to
r
s
h
o
u
ld
b
e
d
e
f
in
ed
.
I
t
co
n
s
i
s
ts
o
f
t
w
o
v
ar
iab
les;
th
e
s
p
ee
d
er
r
o
r
(
)
an
d
its
d
er
iv
a
tiv
e
(
)
(
)
.
A
f
u
zz
y
s
et
f
o
r
in
p
u
t
a
n
d
o
u
tp
u
t
v
ar
iab
les
is
d
esig
n
ed
.
Fig
u
r
e
5
(
a)
an
d
Fig
u
r
e
5
(
b
)
,
s
h
o
w
s
t
h
e
s
ev
e
n
lin
g
u
is
tic
v
ar
iab
les
u
s
ed
f
o
r
ea
ch
f
u
zz
y
in
p
u
t
v
ar
iab
le,
w
h
ile
t
h
e
o
u
t
p
u
t
v
ar
iab
le
f
u
zz
y
s
et
i
s
s
h
o
w
n
i
n
F
ig
u
r
e
5
.
T
h
e
lin
g
u
is
ti
c
v
ar
iab
les
u
s
ed
f
o
r
in
p
u
t
s
s
h
o
w
n
ar
e
P
S
(
P
o
s
itiv
e
S
m
all)
,
P
M
(
P
o
s
itiv
e
Me
d
iu
m
)
;
P
B
(
Po
s
itiv
e
B
ig
)
;
Z
E
(
Z
er
o
)
;
NB
(
Neg
ativ
e
B
ig
)
;
an
d
NM
(
Ne
g
ativ
e
Me
d
iu
m
)
,
NS
(
Ne
g
ati
v
e
S
m
al
l)
t
h
e
s
a
m
e
L
V
‟
s
ar
e
u
s
ed
f
o
r
t
h
e
o
u
tp
u
t
f
u
zz
y
s
e
t
.
A
lo
o
k
-
u
p
tab
le
is
r
eq
u
ir
ed
to
d
ev
elo
p
th
e
s
et
o
f
r
u
les,
in
wh
ich
th
e
r
elatio
n
b
et
w
ee
n
t
h
e
i
n
p
u
t
v
ar
iab
les,
e
(
t)
an
d
d
[
e(
t)
}/
d
t
]
ar
e
d
ef
in
ed
an
d
th
e
o
u
tp
u
t
v
ar
iab
le
o
f
f
u
zz
y
lo
g
ic
co
n
tr
o
ller
ca
n
b
e
o
b
tain
ed
1
6
.
T
o
d
ef
in
e
th
e
co
n
tr
o
l
r
u
le
s
,
th
e
r
es
u
lts
f
r
o
m
P
I
co
n
tr
o
ller
g
i
v
e
a
n
o
p
p
o
r
tu
n
it
y
an
d
g
u
id
an
ce
f
o
r
r
u
le
j
u
s
ti
f
icatio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
4
3
–
2
6
5
7
2648
T
h
er
ef
o
r
e
af
ter
th
o
r
o
u
g
h
s
er
i
es
o
f
a
n
al
y
s
i
s
;
t
h
e
to
tal
4
9
r
u
les
h
a
v
e
b
ee
n
j
u
s
ti
f
ied
as
s
h
o
w
n
i
n
T
ab
le
2
t
h
is
lo
o
k
-
u
p
tab
le
is
u
s
ed
i
n
th
e
s
i
m
u
latio
n
p
r
o
g
r
a
m
[
1
7
-
1
9
]
.
T
h
e
I
n
p
u
t/o
u
tp
u
t d
ep
en
d
s
o
n
t
h
e
f
u
zz
y
r
u
le
ex
p
r
es
s
ed
as f
o
ll
o
w
s
;
I
f
(
E
is
NB
A
ND
C
E
is
NB
)
T
HE
N
I
q
*
i
s
NB
.
I
f
(
E
is
Z
A
N
D
C
E
in
P
S)
T
HE
N
I
q
*
is
PS
I
n
to
tal
4
9
f
u
zz
y
r
u
les ar
e
m
ad
e
to
m
ee
t t
h
e
g
o
al.
T
ab
le
2
.
Fu
zz
y
R
u
le
L
o
o
k
Up
T
ab
le
CE
E
NB
NM
NS
Z
PS
PM
PB
NB
NB
NB
NB
NB
NM
NS
Z
NM
NB
NB
NB
NM
NS
Z
PS
NS
NB
NB
NM
NS
Z
PS
PM
Z
NB
NM
NS
Z
PS
PM
PB
PS
NM
NS
Z
PS
PM
PB
PB
PM
NS
Z
PS
PM
PB
PB
PB
PB
Z
PS
PM
PB
PB
PB
PB
(
a)
E
r
r
o
r
(
b
)
C
h
an
g
e
i
n
E
r
r
o
r
Fig
u
r
e
5
.
(
a)
,
(
b
)
Me
m
b
er
s
h
ip
Fu
n
ctio
n
P
lo
ts
,
t
h
e
I
n
p
u
t
E
r
r
o
r
„
e‟
a
n
d
Ch
an
g
e
i
n
Er
r
o
r
„
Δ
e‟
M
e
m
b
er
s
h
ip
f
u
n
ctio
n
p
lo
t f
o
r
Ou
tp
u
t v
ar
iab
le
iq
*
is
s
h
o
w
s
i
n
Fi
g
u
r
e
6
.
Fig
u
r
e
6
.
Me
m
b
er
s
h
ip
F
u
n
ctio
n
P
lo
t f
o
r
Ou
tp
u
t
Va
r
iab
le
iq
*
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
esp
o
n
s
e
B
a
s
ed
C
o
mp
a
r
a
tive
A
n
a
lysi
s
o
f Tw
o
I
n
ve
r
ter F
ed
S
ix
P
h
a
s
e
P
MS
M Drive
…
(
A
n
u
r
a
g
S
.
T
.
)
2649
Fu
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
is
s
h
o
w
s
i
n
Fi
g
u
r
e
7
.
Fig
u
r
e
7
.
Fu
zz
y
L
o
g
ic
B
ased
C
o
n
tr
o
ller
4.
RE
SU
L
T
A
ND
DI
SCUS
SI
O
N
4
.
1
.
Ca
s
e
I
:
w
hen Speed is
s
et
a
t
3
6
.
5
rps
(
ra
t
ed
s
peed)
4
.
1
.
1
.
L
o
a
d T
o
rque
is
F
ix
e
d
T
L
=
1
5
0
N
-
M
T
h
e
m
o
d
el
is
s
i
m
u
lated
at
f
ix
lo
ad
T
o
r
q
u
e
(
T
L
=
1
5
0
N
-
M)
an
d
at
r
ated
s
p
ee
d
(
ω
r
=
3
6
.
5
r
ad
/s
ec
.
)
.
Fig
u
r
e
8
an
d
Fi
g
u
r
e
9
s
h
o
w
s
to
r
q
u
e
r
esp
o
n
s
e,
r
o
to
r
s
p
ee
d
an
d
s
i
x
p
h
ase
c
u
r
r
en
t
r
e
s
p
ec
tiv
el
y
f
o
r
b
o
th
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e.
T
h
e
s
i
m
u
lat
io
n
r
es
u
lt
s
s
h
o
w
th
at
a
t
0
.
0
1
5
-
0
.
0
2
s
ec
.
Sp
ee
d
an
d
T
o
r
q
u
e
r
ea
ch
es,
it‟s
s
et
v
al
u
e
f
o
r
Fu
zz
y
co
n
tr
o
ller
,
an
d
f
o
r
P
I
co
n
tr
o
ller
th
e
s
ettl
in
g
ti
m
e
is
d
ela
y
ed
at
0
.
0
8
-
0
.
0
9
s
ec
.
T
h
e
v
alu
e
o
f
i
n
itial
to
r
q
u
e
is
3
1
2
N
-
M
f
o
r
P
I
co
n
tr
o
ller
a
n
d
1
2
5
0
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
l
ler
.
th
e
v
al
u
e
o
f
s
tead
y
s
tate
m
ax
cu
r
r
en
t
is
8
.
7
6
A
an
d
8
.
7
9
A
r
esp
ec
tiv
el
y
f
o
r
P
I
an
d
f
u
zz
z
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
F
ig
u
r
e
8
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
ase
i
n
P
I
C
o
n
tr
o
ller
(
R
ated
S
p
ee
d
&
Fix
L
o
ad
)
Fig
u
r
e
9
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
ase
i
n
F
u
zz
y
Co
n
tr
o
ller
(
R
ated
S
p
ee
d
&
Fi
x
L
o
ad
)
4
.
1
.
2
.
Dy
na
m
ic
O
pera
t
io
n
T
L
=
0
t
o
T
L
=
1
5
0
N
-
M
a
t
I
ns
t
a
nce
0
.
1
2
s
ec
T
h
e
m
o
d
el
h
a
s
b
ee
n
s
i
m
u
late
d
f
o
r
d
y
n
a
m
ic
lo
ad
o
p
er
atio
n
;
lo
ad
to
r
q
u
e
is
i
n
it
iall
y
s
et
to
ze
r
o
an
d
at
0
.
1
2
s
ec
.
lo
ad
t
o
r
q
u
e
is
s
u
d
d
en
l
y
ch
a
n
g
ed
to
1
5
0
N
-
M.
Fig
u
r
e
1
0
an
d
Fig
u
r
e
1
1
s
h
o
w
s
th
at
w
h
e
n
lo
ad
T
o
r
q
u
e
is
ap
p
lied
s
u
d
d
en
l
y
at
0
.
1
2
s
ec
.
(
Fro
m
T
L
=0
to
T
L
=1
5
0
N
-
M)
.
I
n
P
I
co
n
tr
o
ller
t
h
e
s
p
ee
d
f
all
s
v
er
y
h
ea
v
il
y
(
2
5
.
5
r
p
s
)
.
Th
e
r
ec
o
v
er
y
ti
m
e
o
f
r
o
to
r
s
p
ee
d
to
c
o
m
e
b
ac
k
t
o
s
et
r
ated
s
p
ee
d
(
3
6
.
5
r
p
s
)
af
ter
0
.
0
8
s
ec
.
W
h
ile
in
Fu
zz
y
co
n
tr
o
ller
th
e
s
p
ee
d
f
alls
v
er
y
s
li
g
h
tl
y
(
3
5
.
6
r
p
s
)
a
n
d
r
ec
o
v
er
s
v
er
y
f
a
s
tl
y
(
a
f
ter
.
0
0
4
s
ec
)
.
T
h
e
v
alu
e
o
f
i
n
itial
to
r
q
u
e
is
2
1
3
N
-
M
f
o
r
P
I
co
n
tr
o
ller
an
d
1
0
8
8
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
al
u
e
o
f
s
tead
y
s
tate
m
a
x
cu
r
r
en
t is
6
.
0
9
A
a
n
d
8
.
7
6
A
f
o
r
P
I
c
o
n
tr
o
ller
&
3
.
5
A
an
d
8
.
9
A
f
o
r
f
u
zz
z
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
0
0
.
3
5
0
.
7
1
.
0
5
1
.
4
1
.
7
5
2
.
1
-
5
0
0
50
100
150
200
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
P
h
a
s
e
0
0
.
0
5
0
.
1
0
.
1
5
0
.
2
0
.
2
5
-
2
0
0
0
200
400
600
800
1000
1200
1400
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
p
h
a
s
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
4
3
–
2
6
5
7
2650
Fig
u
r
e
1
0
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
P
I
C
o
n
tr
o
ller
(
R
ated
s
p
ee
d
&
D
y
n
a
m
ic
L
o
ad
)
Fig
u
r
e
1
1
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
C
o
n
tr
o
ller
(
R
ated
S
p
ee
d
&
D
y
n
a
m
ic
L
o
ad
)
4
.
2
.
Ca
s
e
I
I
:
w
hen Speed is 2
0
%
I
ncre
a
s
ed
t
o
t
ha
t
o
f
R
a
t
ed
Sp
ee
d
4
.
2
.
1
.
L
o
a
d T
o
rque
is
F
ix
e
d
T
L
=
1
5
0
N
-
M
T
h
e
m
o
d
el
is
s
i
m
u
lated
at
f
ix
lo
ad
T
o
r
q
u
e
(
T
L
=
1
5
0
N
-
M)
an
d
at
2
0
%
in
cr
ea
s
ed
r
ated
s
p
ee
d
Fig
u
r
e
12
an
d
Fi
g
u
r
e
13
s
h
o
w
s
to
r
q
u
e
r
esp
o
n
s
e,
r
o
to
r
s
p
e
ed
an
d
s
i
x
p
h
ase
cu
r
r
en
t
r
esp
ec
tiv
el
y
f
o
r
b
o
th
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e.
T
h
e
s
i
m
u
l
atio
n
r
esu
lt
s
s
h
o
w
t
h
at
at
0
.
0
1
5
-
0
.
0
2
s
ec
.
Sp
ee
d
an
d
T
o
r
q
u
e
r
ea
ch
es,
it‟s
s
et
v
al
u
e
f
o
r
F
u
zz
y
co
n
tr
o
ller
,
an
d
f
o
r
P
I
co
n
tr
o
ller
it
is
d
ela
y
e
d
till
0
.
0
8
-
0
.
0
9
s
ec
.
T
h
e
v
al
u
e
o
f
i
n
itial
to
r
q
u
e
i
s
353N
-
M
f
o
r
PI
co
n
tr
o
ller
an
d
1
4
1
3
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
ax
cu
r
r
en
t
is
9
.
4
5
A
an
d
1
0
.
2
A
r
esp
ec
tiv
el
y
f
o
r
P
I
an
d
f
u
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
Fig
u
r
e
1
2
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
P
I
C
o
n
tr
o
ller
(
1
2
0
% R
ated
S
p
ee
d
&
Fix
L
o
ad
)
Fig
u
r
e
1
3
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
Co
n
tr
o
ller
(
1
2
0
% R
ated
S
p
ee
d
&
Fix
L
o
ad
)
4
.
2
.
2
.
Dy
na
m
ic
O
pera
t
io
n
T
L
=
0
t
o
T
L
=
1
5
0
N
-
M
a
t
I
ns
t
a
nce
0
.
1
2
s
ec
T
h
e
m
o
d
el
h
a
s
b
ee
n
s
i
m
u
late
d
f
o
r
d
y
n
a
m
ic
lo
ad
o
p
er
atio
n
;
lo
ad
to
r
q
u
e
is
i
n
it
iall
y
s
et
to
ze
r
o
an
d
at
0
.
1
2
s
ec
.
lo
ad
t
o
r
q
u
e
is
s
u
d
d
en
l
y
ch
a
n
g
ed
to
1
5
0
N
-
M.
Fig
u
r
e
1
4
an
d
Fig
u
r
e
1
5
s
h
o
w
s
th
at
w
h
e
n
lo
ad
T
o
r
q
u
e
is
ap
p
lied
s
u
d
d
en
l
y
at
0
.
1
2
s
ec
.
(
Fro
m
T
L
=0
to
T
L
=1
5
0
N
-
M)
.
I
n
P
I
co
n
tr
o
ller
t
h
e
s
p
ee
d
f
all
s
v
er
y
h
ea
v
il
y
(
31
r
p
s
)
.
T
h
e
r
ec
o
v
er
y
ti
m
e
o
f
r
o
to
r
s
p
ee
d
t
o
co
m
e
b
ac
k
to
s
et
s
p
ee
d
(
3
6
.
5
r
p
s
)
b
etw
ee
n
0
.
0
8
-
0
.
0
9
s
ec
.
W
h
ile
in
Fu
zz
y
co
n
tr
o
ller
th
e
s
p
ee
d
f
alls
v
er
y
s
li
g
h
tl
y
(
3
6
.
0
6
r
p
s
)
an
d
r
ec
o
v
er
s
v
er
y
f
astl
y
(
af
ter
0
.
0
0
4
s
ec
)
.
T
h
e
v
alu
e
o
f
in
itial
to
r
q
u
e
is
2
5
6
N
-
M
f
o
r
P
I
co
n
tr
o
ller
an
d
1
2
5
0
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
a
x
c
u
r
r
en
t is
6
.
0
9
A
a
n
d
9
.
4
5
A
f
o
r
P
I
c
o
n
tr
o
ller
&
3.
6
4
A
an
d
1
0
.
2
A
f
o
r
f
u
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
0
0
.
3
5
0
.
7
1
.
0
5
1
.
4
1
.
7
5
2
.
1
-
2
0
0
20
40
60
80
100
120
140
160
180
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
i
x
P
h
a
s
e
S
p
e
e
d
(
W
m
)
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
4
1
.
6
1
.
8
2
-
2
0
0
20
40
60
80
100
120
140
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
p
h
a
s
e
0
0
.
0
4
0
.
0
8
0
.
1
2
0
.
1
6
0
.
2
-
5
0
0
50
100
150
200
250
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
P
h
a
s
e
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
0
.
1
0
.
1
2
0
.
1
4
0
.
1
6
0
.
1
8
0
.
2
-
2
0
0
0
200
400
600
800
1000
1200
1400
1600
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
i
x
p
h
a
s
e
S
p
e
e
d
(
W
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
esp
o
n
s
e
B
a
s
ed
C
o
mp
a
r
a
tive
A
n
a
lysi
s
o
f Tw
o
I
n
ve
r
ter F
ed
S
ix
P
h
a
s
e
P
MS
M Drive
…
(
A
n
u
r
a
g
S
.
T
.
)
2651
Fig
u
r
e
1
4
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
P
I
co
n
tr
o
ller
(
1
2
0
% R
ated
s
p
ee
d
&
Dy
n
a
m
i
c
L
o
ad
)
Fig
u
r
e
1
5
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
co
n
tr
o
ller
(
1
2
0
% R
ated
s
p
ee
d
&
D
y
n
a
m
ic
L
o
ad
)
4
.
3
.
Ca
s
e
I
I
I
:
w
hen Speed
is
4
0
%
increa
s
ed
t
o
t
ha
t
o
f
Ra
t
ed
Sp
ee
d
4
.
3
.
1
.
L
o
a
d T
o
rque
is
F
ix
e
d
T
L
=
1
5
0
N
-
M
T
h
e
m
o
d
el
is
s
i
m
u
lated
at
f
ix
lo
ad
T
o
r
q
u
e
(
T
L
=
1
5
0
N
-
M)
an
d
at
4
0
%
in
cr
ea
s
ed
r
ated
s
p
ee
d
Fig
u
r
e
16
an
d
Fi
g
u
r
e
17
s
h
o
w
s
to
r
q
u
e
r
esp
o
n
s
e,
r
o
to
r
s
p
e
ed
an
d
s
i
x
p
h
ase
cu
r
r
en
t
r
esp
ec
tiv
el
y
f
o
r
b
o
th
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e.
T
h
e
s
i
m
u
l
atio
n
r
esu
lt
s
s
h
o
w
t
h
at
at
0
.
0
1
5
-
0
.
0
2
s
ec
.
Sp
ee
d
an
d
T
o
r
q
u
e
r
ea
ch
es,
it‟s
s
et
v
alu
e
f
o
r
F
u
zz
y
co
n
tr
o
ller
,
a
n
d
f
o
r
P
I
co
n
tr
o
ller
it
r
ea
ch
e
s
till
0
.
0
8
-
0
.
0
9
s
ec
.
T
h
e
v
alu
e
o
f
i
n
itial
to
r
q
u
e
i
s
394N
-
M
f
o
r
PI
co
n
tr
o
ller
an
d
1
5
3
5
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
ax
cu
r
r
en
t
is
7
.
0
6
A
an
d
8
.
6
A
r
esp
ec
tiv
el
y
f
o
r
P
I
a
n
d
f
u
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
ig
u
r
e
1
6
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
ase
in
P
I
C
o
n
tr
o
l
ler
(
1
4
0
% R
ated
s
p
ee
d
&
Fix
L
o
a
d
)
Fig
u
r
e
1
7
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
C
o
n
tr
o
ller
(
1
4
0
% R
ated
s
p
ee
d
&
Fi
x
L
o
ad
)
4
.
3
.
2
.
Dy
na
m
ic
O
pera
t
io
n
T
L
=
0
t
o
T
L
=
1
5
0
N
-
M
a
t
I
ns
t
a
nce
0
.
1
2
s
ec
T
h
e
m
o
d
el
h
a
s
b
ee
n
s
i
m
u
late
d
f
o
r
d
y
n
a
m
ic
lo
ad
o
p
er
atio
n
;
lo
ad
to
r
q
u
e
is
i
n
it
iall
y
s
et
to
ze
r
o
an
d
at
0
.
1
2
s
ec
.
L
o
ad
to
r
q
u
e
is
s
u
d
d
en
l
y
ch
a
n
g
ed
to
1
5
0
N
-
M.
Fig
u
r
e
1
8
an
d
Fig
u
r
e
1
9
s
h
o
w
s
t
h
at
w
h
e
n
lo
ad
T
o
r
q
u
e
is
ap
p
lied
s
u
d
d
en
l
y
a
t
0
.
1
2
s
ec
.
(
Fro
m
T
L
=0
to
T
L
=1
5
0
N
-
M)
.
I
n
P
I
co
n
tr
o
ller
t
h
e
s
p
ee
d
f
alls
v
er
y
h
ea
v
i
l
y
(
3
8
.
7
r
p
s
)
.
T
h
e
r
ec
o
v
e
r
y
t
i
m
e
o
f
r
o
to
r
s
p
ee
d
t
o
co
m
e
b
ac
k
to
s
et
s
p
ee
d
is
b
et
wee
n
0
.
0
8
-
0
.
0
9
s
ec
s
.
W
h
ile
i
n
F
u
zz
y
co
n
tr
o
ller
t
h
e
s
p
ee
d
f
alls
v
er
y
s
lig
h
tl
y
a
n
d
r
ec
o
v
er
s
v
er
y
f
ast
l
y
(
a
f
ter
.
0
0
4
s
ec
)
.
T
h
e
v
al
u
e
o
f
in
itial
to
r
q
u
e
is
2
9
9
N
-
M
f
o
r
P
I
c
o
n
tr
o
ller
an
d
1
3
7
9
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
ax
cu
r
r
en
t is
6
.
0
9
A
a
n
d
1
0
.
4
A
f
o
r
P
I
c
o
n
tr
o
ller
&
6
.
2
A
an
d
1
0
.
4
A
f
o
r
f
u
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
0
0
.
0
3
5
0
.
0
7
0
0
.
1
0
5
0
.
1
4
0
0
.
1
7
5
0
.
2
1
-
5
0
0
50
100
150
200
250
300
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
p
h
a
s
e
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
0
.
1
0
.
1
2
0
.
1
4
0
.
1
6
0
.
1
8
0
.
2
-
2
0
0
0
200
400
600
800
1000
1200
1400
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
p
h
a
s
e
0
0
.
0
3
5
0
.
0
7
0
.
1
0
5
0
.
1
4
0
.
1
7
5
0
.
2
1
0
-
5
0
0
50
100
150
200
250
300
350
400
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
i
x
P
h
a
s
e
S
p
e
e
d
(
W
m
)
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
0
.
1
0
.
1
2
0
.
1
4
0
.
1
6
0
.
1
8
0
.
2
-
2
0
0
0
200
400
600
800
1000
1200
1400
1600
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
S
i
x
p
h
a
s
e
S
p
e
e
d
(
W
m
)
T
o
r
q
u
e
(
T
e
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
6
,
No
.
6
,
Dec
em
b
er
2
0
1
6
:
2
6
4
3
–
2
6
5
7
2652
Fig
u
r
e
1
8
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
P
I
C
o
n
tr
o
ller
(
1
4
0
% R
ated
S
p
ee
d
&
Dy
n
a
m
ic
L
o
ad
)
Fig
u
r
e
1
9
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
C
o
n
tr
o
ller
(
1
4
0
% R
ated
S
p
ee
d
&
D
y
n
a
m
ic
L
o
ad
)
4
.
4
.
Ca
s
e
V:
w
hen Speed i
s
5
0
%
re
du
ce
d
t
o
t
ha
t
o
f
R
a
t
ed
Sp
ee
d
4
.
4
.
1
.
L
o
a
d T
o
rque
is
F
ix
e
d
T
L
=
1
5
0
N
-
M
T
h
e
m
o
d
el
is
s
i
m
u
lated
at
f
i
x
lo
ad
T
o
r
q
u
e
(
T
L
=
1
5
0
N
-
M)
an
d
at
5
0
%
d
ec
r
ea
s
ed
i
n
r
ated
s
p
ee
d
Fig
u
r
e
20
an
d
Fi
g
u
r
e
21
s
h
o
w
s
to
r
q
u
e
r
esp
o
n
s
e,
r
o
to
r
s
p
e
ed
an
d
s
i
x
p
h
ase
cu
r
r
en
t
r
esp
ec
tiv
el
y
f
o
r
b
o
th
th
e
p
r
o
p
o
s
ed
s
ch
e
m
e.
T
h
e
s
i
m
u
l
atio
n
r
esu
lt
s
s
h
o
w
t
h
at
at
0
.
0
1
5
-
0
.
0
2
s
ec
.
Sp
ee
d
an
d
T
o
r
q
u
e
r
ea
ch
es,
it‟s
s
et
v
alu
e
f
o
r
F
u
zz
y
co
n
tr
o
ller
,
an
d
f
o
r
P
I
co
n
tr
o
ller
it
is
d
ela
y
e
d
till
0
.
0
8
-
0
.
0
9
s
ec
.
T
h
e
v
al
u
e
o
f
i
n
itial
to
r
q
u
e
i
s
216N
-
M
f
o
r
P
I
co
n
tr
o
ller
an
d
8
2
7
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
a
x
cu
r
r
en
t
is
7
.
0
6
A
an
d
8
.
6
A
r
esp
ec
tiv
el
y
f
o
r
P
I
a
n
d
f
u
z
z
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
Fig
u
r
e
2
0
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
P
I
C
o
n
tr
o
ller
(
5
0
% R
ated
S
p
ee
d
&
Fix
L
o
ad
)
F
ig
u
r
e
2
1
.
T
o
r
q
u
e,
Sp
ee
d
&
Six
p
h
a
s
e
in
F
u
zz
y
C
o
n
tr
o
ller
(
5
0
% R
ated
S
p
ee
d
&
Fi
x
L
o
ad
)
4
.
4
.
2
D
y
na
m
ic
O
pera
t
io
n
T
L
=
0
t
o
T
L
=
1
5
0
N
-
M
a
t
I
ns
t
a
nce
0
.
1
2
s
ec
T
h
e
m
o
d
el
h
a
s
b
ee
n
s
i
m
u
late
d
f
o
r
d
y
n
a
m
ic
lo
ad
o
p
er
atio
n
;
lo
ad
to
r
q
u
e
is
i
n
it
iall
y
s
et
to
ze
r
o
an
d
at
0
.
1
2
s
ec
.
L
o
ad
to
r
q
u
e
is
s
u
d
d
en
l
y
ch
a
n
g
ed
to
1
5
0
N
-
M.
Fig
u
r
e
2
2
an
d
Fig
u
r
e
2
3
s
h
o
w
s
t
h
at
w
h
e
n
lo
ad
T
o
r
q
u
e
is
ap
p
lied
s
u
d
d
en
l
y
at
0
.
1
2
s
ec
.
(
Fro
m
T
L
=
0
to
T
L
=1
5
0
N
-
M)
.
I
n
P
I
co
n
tr
o
ller
th
e
s
p
ee
d
f
al
ls
v
er
y
h
ea
v
i
l
y
(
1
7
.
8
r
p
s
).
T
h
e
r
ec
o
v
e
r
y
ti
m
e
o
f
r
o
to
r
s
p
ee
d
t
o
co
m
e
b
ac
k
to
s
et
s
p
ee
d
b
etw
ee
n
0
.
0
8
-
0
.
0
9
s
ec
.
W
h
ile
in
F
u
zz
y
co
n
tr
o
ller
th
e
s
p
ee
d
f
all
s
v
er
y
s
li
g
h
tl
y
(
2
1
.
5
r
p
s
)
an
d
r
ec
o
v
er
s
v
er
y
f
astl
y
(
a
f
t
er
0
.
0
0
4
s
ec
)
.
T
h
e
v
alu
e
o
f
i
n
itial
to
r
q
u
e
is
1
0
6
N
-
M
f
o
r
P
I
c
o
n
tr
o
ller
an
d
6
8
1
N
-
M
f
o
r
f
u
zz
y
co
n
tr
o
ller
.
T
h
e
v
alu
e
o
f
s
tead
y
s
tate
m
ax
c
u
r
r
en
t 1
.
9
A
a
n
d
7
.
0
6
A
f
o
r
PI
co
n
tr
o
ller
&
2
.
3
A
an
d
8
.
6
A
f
o
r
f
u
zz
y
lo
g
ic
b
ased
co
n
tr
o
ller
.
0
0
.
0
3
5
0
.
0
7
0
.
1
0
5
0
.
1
4
0
.
1
7
5
0
.
2
1
-
1
0
0
-
5
0
0
50
100
150
200
250
300
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
P
h
a
s
e
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
0
.
1
0
.
1
2
0
.
1
4
0
.
1
6
0
.
1
8
0
.
2
-
2
0
0
0
200
400
600
800
1000
1200
1400
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
S
i
x
p
h
a
s
e
0
0
.
3
5
0
.
7
1
.
0
5
1
.
4
1
.
7
5
2
.
1
-
5
0
0
50
100
150
200
250
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
S
p
e
e
d
(
W
m
)
S
i
x
P
h
a
s
e
T
o
r
q
u
e
(
T
e
)
0
0
.
0
2
0
.
0
4
0
.
0
6
0
.
0
8
0
.
1
0
.
1
2
0
.
1
4
0
.
1
6
0
.
1
8
0
.
2
-
1
0
0
0
100
200
300
400
500
600
700
800
900
T
i
m
e
T
e
,
W
m
,
S
i
x
p
h
a
s
e
S
i
x
p
h
a
s
e
T
o
r
q
u
e
(
T
e
)
S
p
e
e
d
(
W
m
)
Evaluation Warning : The document was created with Spire.PDF for Python.