Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 4
,
A
ugu
st
2016
, pp
. 17
17
~
1
724
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
4.9
877
1
717
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Design of Microwave LNA Ba
sed on Ladder Matching
Networks for WiMAX Applications
Abu Bakar
Ibrahim, Ahma
d Z
a
mz
uri Moh
a
mad
Ali
Faculty
of
Art, Computing
and Creative
Indus
tr
y
,
Sultan Idr
i
s Education Univer
sity
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Ja
n
6, 2016
Rev
i
sed
Jun
29,
201
6
Accepte
d
J
u
l 10, 2016
Advancement in
the wireless industr
y
,
intern
et
access without borders and
increasing demand for high data rate
wireless digital
communication moving
us toward the optimal develop
m
ent
of commu
nication technolog
y
.
Wireless
communication
is a techno
log
y
that pl
a
y
s
an
im
portant
role
in
curren
t
techno
log
y
tran
sformation.
Broa
dband communication is a
method of
telecommunication that are av
ailable fo
r transmitting larg
e amounts of data,
voice
and vid
e
o
over long distan
ce using
diff
erent frequen
c
ie
s. Specifically
,
Low Noise Am
plifie
r which
is
loca
ted
at
the
fir
s
t block
of r
ece
i
v
er s
y
s
t
em
,
m
a
kes it one of
the im
portan
t
e
l
em
ent in im
prov
ing signal
trans
m
ition. Th
is
stud
y
was aimed to design
a microwav
e
Low
Noise Amplifier for wireless
appli
cat
ion th
at
will work
at 5
.
8 GHz using h
i
gh-perform
anc
e
low noise
superHEMT transistor FHX76L
P manuf
actured
b
y
Eud
y
na Technologies.
The low noise
amplifier (LN
A
) produced gain o
f
16.8 dB and n
o
ise figure
(NF) of 1.20 dB
. The input reflection (S
11
) and output return loss (S
22
) are -
10.5 dB and -13.3 dB respectiv
ely
.
The
bandwid
th of the am
plifi
e
r recorded
is 1.2 GHz.
The input sensitivity
is compliant with th
e I
E
EE 802.16
sta
nda
rds.
Keyword:
Lad
d
er m
a
t
c
hi
ng
net
w
o
r
k
LNA
R
a
di
o fre
q
u
enc
y
U
l
t
r
a wi
de
ban
d
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
A
b
u
Bak
a
r Ib
rah
i
m
,
Facu
lty of
Art, Co
m
p
u
tin
g and
Creativ
e Indu
stry,
Su
ltan
Id
ris Edu
catio
n Un
iversity,
Tan
j
o
n
g
M
a
l
i
m
, 359
00
, Pe
ra
k M
a
l
a
y
s
i
a
.
Em
a
il: b
a
k
a
r@fsk
i
k
.
u
p
s
i
.
edu
.
my
1.
INTRODUCTION
W
i
rel
e
ss C
o
m
m
uni
cat
i
on Sy
st
em
pl
ay
s a m
a
jo
r
rol
e
i
n
t
o
d
a
y
’
s com
m
uni
cat
i
on
by
ena
b
l
i
ng c
o
n
s
t
a
nt
connection in
5.8
Ghz
freque
ncy.
Devel
opm
ents in t
h
e
wireless industry,
internet
acce
ss
without
borde
r
s a
nd
i
n
creasi
n
g
de
m
a
nd f
o
r
hi
g
h
dat
a
rat
e
w
i
rel
e
ss di
gi
t
a
l
com
m
uni
cat
ion m
ovi
n
g
us
t
o
war
d
t
h
e
opt
i
m
al
devel
opm
ent
o
f
com
m
uni
cat
ion t
e
c
h
n
o
l
o
gy
.
W
i
rel
e
ss c
o
m
m
uni
cat
i
on i
s
a t
echn
o
l
o
gy
t
h
at
pl
ay
s an i
m
port
a
nt
rol
e
i
n
t
h
e
de
v
e
l
opm
ent
of
t
h
e cu
rre
nt
t
r
a
n
sf
orm
a
t
i
on.
At
p
r
esent
,
d
r
i
v
en
by
com
m
erci
al
dem
a
nd f
o
r t
h
e de
vi
ce i
s
ne
ver sat
i
s
fi
e
d
wi
t
h
va
ri
et
y
of st
a
nda
r
d
l
o
w c
o
st
an
d l
o
w
p
o
we
r m
obi
l
e
radi
o f
r
e
q
uency
.
The
r
ef
ore
,
the
researcher a
n
d e
ngi
neers
are i
n
spi
r
ed t
o
devel
o
p
ne
w c
o
m
m
uni
cat
i
on t
echni
q
u
e t
h
at
al
l
o
ws
hi
g
h
-
p
e
r
f
o
rm
ance t
o
l
o
w c
o
st
pr
o
d
u
c
t
desi
g
n
s
o
l
u
t
i
ons
.
Th
erefo
r
e,
n
e
w tech
no
log
y
in
co
mm
u
n
i
cati
o
n
h
a
s b
e
en
built
to
m
eet
cu
rren
t d
e
m
a
n
d
s
, fo
r exam
p
l
e, wireless
com
m
uni
cat
i
on
devi
ces i
s
m
obi
l
e
such a
s
m
obi
l
e
ph
on
es pa
gers
,
wi
r
e
l
e
ss l
o
cal
are
a
net
w
o
r
k
(
W
L
AN
),
Worldwide
Interopera
bility for Mi
crowave
Access
(W
i
M
AX), Bluet
o
ot
h a
n
d gl
oba
l positioning
syste
m
(GP
S
)
p
h
one
s
and
ul
t
r
a
wi
de
ban
d
(
U
W
B
) t
echn
o
l
o
gi
es a
r
e all exam
ples of porta
b
le
wireless comm
unication
devi
ces
[
1
]
.
B
r
oa
dba
n
d
c
o
m
m
uni
cat
i
on i
s
a t
y
pe
o
f
t
e
l
ecom
m
uni
cati
o
n th
at av
ailable for tran
sm
itt
in
g
t
h
e larg
e
am
ount
s
o
f
dat
a
, v
o
i
ce an
d
vi
deo
o
v
er
l
o
ng
di
st
ance
usi
n
g
a di
f
f
ere
n
t
f
r
eq
uency
.
Thi
s
i
s
al
so co
nsi
d
ere
d
wi
t
h
sev
e
ral techn
o
l
o
g
i
es with transmissio
n
rates
ab
ov
e t
h
e
fa
stest sp
eed
av
ailab
l
e ov
er a telep
hon
e lin
e. In
m
o
s
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
17
–
1
724
1
718
h
i
gh
-frequ
en
cy
co
mm
u
n
i
cat
io
n
system
,
Galliu
m
-
Arse
n
i
d
e
(GaAs)
m
e
tal-se
m
i
co
ndu
ctor-field
-effect
t
r
ansi
st
o
r
(M
E
SFET
)
an
d
het
e
ro
j
unct
i
o
n
bi
pol
a
r
t
r
a
n
si
st
or
(HB
T
) s
h
o
w
t
h
ei
r st
r
o
ng
p
r
e
s
ence i
n
R
F
p
r
od
uct
because they
give hi
gh pe
rf
ormance on
out
put power [2].
Usu
a
lly th
e first activ
e sig
n
a
l p
r
o
cessing
b
l
ock
afte
r th
e an
t
e
n
n
a
is Lo
w
no
ise am
p
lifier
(LNA). The
am
plitude of the receive
d signal at
the input
LNA m
a
y vary from
few nV th
at is
less than -130 dBm
for GPS
sig
n
a
ls t
o
tens m
V
. Th
e LNA
shou
ld
b
e
cap
ab
le of
am
p
l
ifyin
g
all th
ese sign
als
with
ou
t cau
s
ing
an
y
si
gni
fi
ca
nt
di
st
ort
i
o
n. T
h
i
s
re
qui
res t
h
at
ve
r
y
l
i
t
t
l
e
noise from
the LNA be introduced t
o
the e
n
tire re
ceiver
[3]
,
[4]
.
Figure 1 is t
h
e basic to the struct
ure of the R
F
receive
r.
As
the firs
t bl
oc
k is active after the ante
nna
,
LNA
has the adva
ntage
of hi
gh a
nd s
h
ould
be able to
reduce noise in the
syste
m
. The s
i
gnal receive
d
from
th
e an
tenn
a
wi
ll b
e
screened
an
d
will b
e
amp
lified
b
y
th
e LNA and
will b
e
sen
t
to
th
e b
a
ndp
ass with
a
lo
cal
oscillator. Afte
r the dem
odul
ated, m
odul
ated signal will be used for ana
l
og-to-digital (ADC
) that converts
an
alog
sign
als
to
d
i
g
ital sign
als. Dig
ital sig
n
al p
r
o
cessing
(DSP) will process th
e d
i
g
ital sig
n
a
l
p
r
o
d
u
c
es b
y
an
an
alog
-t
o
-
d
i
g
ital (ADC). Th
erefore, a lo
t
can
aff
ect t
h
e
LNA
p
a
ram
e
te
r sen
s
itiv
ity and
p
e
rform
a
n
ce o
f
th
e
ove
rall recei
ve
r
noise.
Figure
1. Struc
t
ure
of the R
F
receiver
The m
i
crowa
v
e LNA is
one
of t
h
e m
o
st importan
t c
o
m
p
onents
of in c
o
mmunication receiver. The
LNA
re
qui
res
a
m
plifying the
receive
d signal with suffi
ci
ent gain a
n
d if possibl
e ha
vi
ng a little addi
tional
noi
se
. N
o
i
s
e F
i
gu
re has a m
a
jo
r i
m
pact
on
deci
di
n
g
t
h
e s
y
st
em
’s overal
l
i
n
LN
A.
An
LNA
can
be
d
e
si
gne
d
with di
ffe
rent
circuit topologies;
each m
e
thod
proposes to accom
m
odate
a
wide
bandwidth through input a
nd
out
put
i
m
pedance m
a
t
c
hi
ng.
Suc
h
as, sh
u
n
t
-
seri
es feed
ba
c
k
t
opol
ogy
i
s
ha
vi
n
g
br
oa
d
b
an
d be
havi
or as
wel
l
as
g
ood
inpu
t and o
u
t
pu
t m
a
tch
i
n
g
ch
ar
acter
is
t
i
cs. A ca
pacitor is use
d
i
n
seri
es with
feedba
ck to a
v
oid t
h
e
effect
of
t
h
e
o
u
t
p
ut
v
o
l
t
a
ge at
t
h
e
op
t
i
m
u
m
basi
ng
poi
nt
i
n
I
V
c
u
r
v
e.
Th
erefo
r
e th
e
h
i
gh
er g
a
i
n
is
ach
iev
e
d
wh
en th
e
po
wer consu
m
p
tio
n
is l
o
w.
An
i
n
du
ctive lo
ad
wh
ich
im
pro
v
es t
h
e out
put
n
o
i
s
e p
e
rf
orm
a
nce as wel
l
as overc
o
m
es t
h
e gai
n
d
e
gra
d
at
i
o
n at
hi
g
h
er f
r
e
que
n
c
i
e
s i
s
e
m
p
l
o
y
ed
.
Ano
t
h
e
r in
du
ctor
is ad
d
e
d
in
seri
es with
fee
d
b
a
ck
to
g
i
v
e
an
ad
d
ition
a
l g
a
in
at h
i
g
h
e
r frequen
c
ies.
The i
n
d
u
ct
i
v
e
dege
ne
rat
e
d t
o
pol
ogy
ha
d a supe
ri
o
r
per
f
o
r
m
ance as co
m
p
are
d
t
o
i
t
s
com
m
on gat
e
. Al
so t
h
i
s
t
o
p
o
l
o
gy
p
r
ovi
des si
m
u
l
t
a
neo
u
s i
n
p
u
t
m
a
t
c
hi
ng a
n
d m
i
nim
u
m
Noi
s
e fi
gu
r
e
[
1
]
,
[
2
]
.
2.
THEORETICAL
Initially, when designi
ng an am
plifier, the input
and output m
a
tching network a
r
e consider t
o
ach
iev
e
th
e req
u
i
red
stab
ility, s
m
all
sig
n
a
l g
a
in
, an
d
ba
ndwid
th. Sup
e
r
hig
h
frequ
e
n
c
y a
m
p
lifier is a
t
y
p
i
cal
act
i
v
e ci
rcui
t
u
s
ed t
o
am
pl
i
f
y
t
h
e am
pl
it
ude
of R
F
si
g
n
al
.
B
a
si
c conce
p
t
and c
o
nsi
d
e
r
at
i
on i
n
desi
gn
of
supe
r
hi
g
h
f
r
eq
ue
nc
y
am
pl
i
f
i
e
r i
s
prese
n
t
e
d i
n
t
h
i
s
pape
r. T
h
e LNA
desi
g
n
e
d, t
h
e
fo
rm
ula and e
quat
i
o
n
we
re
refe
rre
d t
o
[
5
]
.
Fi
gu
re 2, s
h
o
w
s a t
y
pi
cal
singl
e st
age am
pl
i
f
i
e
r i
n
cl
u
d
i
n
g i
n
p
u
t
o
u
t
p
ut
m
a
t
c
hi
ng net
w
o
r
k
s
.
The
basi
c co
n
cept
o
f
hi
gh
f
r
eq
ue
ncy
am
p
l
i
f
i
e
r desi
g
n
i
s
t
o
m
a
t
c
h i
nput
/
o
ut
p
u
t
of
a t
r
ansi
st
o
r
at
hi
g
h
fre
que
nci
e
s
usi
n
g
S
-
pa
ram
e
t
e
rs f
r
e
que
ncy
c
h
aract
eri
s
t
i
c
s a
t
a speci
fi
c D
C
-bi
a
s
p
o
i
n
t
w
i
t
h
so
urce
i
m
pedance
an
d
lo
ad
im
p
e
d
a
n
c
e. In
pu
t/ou
t
pu
t
m
a
tch
i
n
g
circu
it is esse
n
tial to
red
u
ce
th
e u
n
wan
t
ed
reflectio
n
of sign
al and
to im
prove
efficiency of the
transm
i
ssi
on f
r
o
m
source t
o
l
o
a
d
[5]
,
[6]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Mi
cr
ow
ave
LN
A B
a
sed
o
n
L
a
dder
Mat
c
hi
ng
N
e
t
w
ork f
o
r Wi
MA
X ..
.. (
A
bu
Bak
a
r
Ibr
a
hi
m)
1
719
2
21
12
22
11
2
2
2
21
|
)
(
)
1
)(
1
(
|
)
|
|
1
)(
|
|
1
(
|
|
L
S
L
S
L
S
avs
L
T
S
S
S
S
S
P
P
source
the
from
Available
Power
load
the
to
delivered
Power
G
2
22
2
2
21
2
|
1
|
|
|
1
|
|
|
|
1
1
supplied
L
L
in
in
L
P
S
S
P
P
amplifier
the
to
power
load
the
to
delivered
Power
G
Fi
gu
re
2.
Ty
pi
cal
am
pl
i
f
i
e
r d
e
si
gn
2.
1.
Power Gain
Seve
ral
po
we
r
gai
n
s
were
defi
ned i
n
o
r
der t
o
u
nde
rst
a
nd
o
p
erat
i
o
n
of s
upe
r hi
g
h
f
r
eq
ue
ncy
a
m
p
lif
ier
.
Figu
r
e
3
,
show
t
h
at pow
er
g
a
i
n
s
o
f
2-
po
r
t
cir
c
u
it n
e
t
w
ork
w
ith
pow
er i
m
p
e
d
a
n
c
e or
lo
ad
im
pedance
at
po
we
r am
pl
i
f
i
e
r.
The
p
o
w
er
am
pl
i
f
i
e
rs rep
r
esente
d
with
scattering coe
f
ficients are
cla
ssified
into Ope
r
atin
g Po
wer Gai
n
,
T
r
ans
d
ucer
P
o
w
e
r Gain
a
n
d Av
ailable
Po
wer
Gain [
5
]
,
[
6
]
.
Fi
gu
re
3.
I/
O
c
i
rcui
t
o
f
2-
p
o
rt
net
w
or
k
2.
2.
Operating P
o
wer Gain
Op
erating
po
wer g
a
in
is th
e ratio
o
f
lo
ad
po
wer (P
L
) d
e
livered
to
th
e lo
ad
(Z
L
) to
in
pu
t p
o
wer
(P
in
) su
p
p
l
i
e
d t
o
2-
p
o
rt
net
w
or
k. P
o
wer
del
i
v
ered t
o
t
h
e
l
o
a
d
is the
differe
n
ce
betwee
n the powe
r re
flected a
t
t
h
e
out
put
p
o
rt
an
d t
h
e i
n
p
u
t
po
we
r, a
n
d
po
wer
su
p
p
l
i
e
d t
o
2-
p
o
rt
net
w
o
r
k
i
s
t
h
e
di
ffe
r
e
nce
bet
w
ee
n t
h
e i
n
p
u
t
po
we
r at
t
h
e
i
n
put
p
o
rt
a
n
d t
h
e refl
ect
e
d
po
wer
.
T
h
e
r
ef
or
e,
Op
er
a
tin
g Pow
e
r G
a
i
n
is represente
d by
(1
)
whe
r
e,
in
indicates reflection c
o
efficient of l
o
ad
at th
e inpu
t po
r
t
o
f
2-
por
t n
e
twor
k
and
s
is reflection
co
efficien
t o
f
po
wer
sup
p
lied to
th
e
i
n
pu
t po
rt.
2.
3.
Transducer P
o
wer Gain
Transdu
cer
Power
Gain
is the ratio
of
avs
P
,
m
a
xim
u
m
power
available from source to
L
P
, pow
er
del
i
v
ere
d
t
o
t
h
e l
o
ad. A
s
m
a
xi
m
u
m
powe
r
i
s
obt
ai
ne
d w
h
en i
n
p
u
t
im
pedance
of ci
rc
ui
t
net
w
o
r
k i
s
equal
t
o
con
j
ugat
e
com
p
l
e
x
n
u
m
b
er o
f
p
o
we
r i
m
peda
nce, i
f
in
=
s
,
t
r
a
n
s
duce
r
p
o
we
r g
a
i
n
i
s
re
p
r
esent
e
d by
(2)
whe
r
e,
L
indicates loa
d
re
flection coe
fficie
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
17
–
1
724
1
720
L
L
S
IN
S
S
S
S
22
21
12
11
*
1
S
S
L
OUT
S
S
S
S
11
21
12
22
*
1
2.
4.
Available Pow
er
Gain
Av
ailab
l
e Power Gain,
A
G
is th
e ratio
of
avs
P
, power available from
the source
, to
avn
P
, power
avai
l
a
bl
e fr
om
2-
p
o
rt
net
w
o
r
k
,
t
h
at
i
s
,
avs
avn
A
P
P
G
. Power g
a
in
is
avn
P
whe
n
in
=
s
*
. There
f
ore
Available
Po
wer Gai
n
i
s
gi
ve
n by
:
(3
)
That is, t
h
e a
b
ove
form
ula indicates power
gain
w
h
en
i
n
p
u
t
an
d
o
u
t
p
ut
a
r
e m
a
t
c
hed [
6
]
,
[7]
.
2.
5.
Noise
Figure
Sig
n
a
ls an
d
noises ap
p
lied
t
o
th
e in
pu
t po
rt
o
f
am
p
lifier were am
p
lified
b
y
th
e g
a
in
o
f
t
h
e am
p
lifier
and
noi
se
of a
m
pli
f
i
e
r i
t
s
el
f is adde
d t
o
t
h
e
out
put
. T
h
ere
f
ore
,
SNR
(Si
g
nal
t
o
Noi
s
e R
a
t
i
o
) of t
h
e
out
put
p
o
r
t
is s
m
aller th
an
th
at o
f
th
e inp
u
t
p
o
rt. Th
e
ratio
o
f
SNR of
in
pu
t p
o
rt to
th
at o
f
ou
tpu
t
po
rt is referred
to
as
noi
se
fi
g
u
r
e a
n
d i
s
l
a
r
g
e
r
t
h
a
n
1
dB
. Ty
pi
cal
l
y
, noi
se
fi
g
u
r
e
of
2
-
p
o
rt
t
r
a
n
si
st
o
r
has a
m
i
nim
u
m
val
u
e at
t
h
e
specified adm
i
ttance
gi
ve
n by
fo
rm
ul
a:
(4
)
whe
r
e, R
N
i
s
the eq
ui
val
e
nt
noi
se resi
st
a
n
c
e
of t
w
o p
o
r
t
s
. F
mi
n
i
s
t
h
e
m
i
nim
u
m
noi
s
e
fact
or o
b
t
a
i
n
ed by
ad
ju
sting
tun
e
rs at th
e i
n
put o
f
t
h
e am
p
l
i
f
ier.
T
h
e
normalized prese
n
ted
by the t
une
rs at F
mi
n
is Y
opt
.
Wi
t
h
Y
s
=Y
s
/Z
o
b
e
ing
th
e act
u
a
l no
rm
alize
d
ad
m
ittan
ce. Fo
r l
o
w
no
ise tran
sistors,
man
u
f
act
u
r
es
u
s
ually
pr
o
v
i
d
e
opt
N
Y
R
F
,
,
min
by
fre
que
nci
e
s.
N
de
fi
ne
d by
f
o
rm
ul
a
fo
r desi
re
d n
o
i
s
e
fi
gu
re:
(5
)
2.
6.
Co
nditi
on for
Ma
tchin
g
Th
e scatteri
n
g
co
efficien
ts
o
f
transisto
r
were d
e
term
in
ed
.
Th
e on
ly
flex
ib
ility p
e
rmit
ted
to
t
h
e
desi
g
n
er i
s
t
h
e
i
n
p
u
t
/
out
put
m
a
t
c
hi
ng ci
rc
u
i
t
.
The i
n
put
c
i
rcui
t
sh
oul
d
m
a
t
c
h t
o
t
h
e s
o
u
r
ce a
nd t
h
e
out
put
circu
it sho
u
l
d
match
to
th
e lo
ad
i
n
ord
e
r to
d
e
liv
er
m
a
x
i
m
u
m p
o
w
er to th
e lo
ad. After stab
ility o
f
activ
e
devi
ce i
s
dem
a
nd
, i
n
p
u
t
/
out
pu
t
m
a
t
c
hi
ng ci
rc
ui
t
s
sh
o
u
l
d
be
desi
g
n
e
d
s
o
t
h
at
refl
ect
i
o
n
co
effi
ci
ent
of
eac
h
po
rt
is correlated
with conjugate c
o
m
p
le
x n
u
m
b
er as
gi
ve
n
bel
o
w [
8
]
,
[
9
]
:
(6
)
(7
)
The
noise
figure of the
first st
age
of t
h
e recei
ver
ov
errules
noise fi
gure
of t
h
e whole system
. To get a
m
i
nim
u
m
noi
se fi
g
u
re
usi
n
g
a t
r
ansi
st
or,
po
we
r re
fl
ect
i
on
coe
ffi
ci
ent
sho
u
l
d
m
a
t
c
h wi
t
h
opt
a
n
d
l
o
a
d
reflection
co
efficien
t sho
u
l
d
match
with
*
out
s
=
opt
(
8
)
2
22
2
21
2
11
2
|
1
|
1
|
|
|
1
|
|
|
1
L
S
S
avs
avn
A
S
S
S
P
P
source
the
from
available
Power
amplifier
the
from
available
Power
G
2
min
|
|
opt
s
S
N
Y
Y
G
R
F
F
2
0
min
2
2
|
1
|
/
4
|
|
1
|
|
opt
N
S
opt
s
Z
R
F
F
N
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Mi
cr
ow
ave
LN
A B
a
sed
o
n
L
a
dder
Mat
c
hi
ng
N
e
t
w
ork f
o
r Wi
MA
X ..
.. (
A
bu
Bak
a
r
Ibr
a
hi
m)
1
721
3.
DESIG
N
OF LNA
The Fi
g
u
r
e 4
(
a
)
i
s
t
h
e m
a
t
c
h
i
ng
net
w
or
k f
o
r i
n
p
u
t
m
a
t
c
hing
net
w
or
k
po
rt
, w
h
i
l
e
t
h
e Fi
gu
re 4
(
b) i
s
t
h
e m
a
t
c
hi
ng
n
e
t
w
o
r
k
uses
f
o
r o
u
t
put
p
o
rt
r
e
s
p
ectiv
el
y
t
o
p
r
o
v
i
d
e
r th
e
go
od
p
e
rform
a
n
ce in
term
o
f
stab
ility,
po
we
r
gai
n
an
d S
-
Pa
ram
e
t
e
r. The
goal
s
i
n
L
N
A
de
si
g
n
a
r
e
t
o
m
a
xim
i
ze i
t
s gai
n
a
n
d m
i
nim
i
ze i
t
s
noi
se
fi
g
u
re
wi
t
h
su
ffi
ci
ent
l
i
n
eari
t
y
and i
m
pedance m
a
tchi
n
g
[
4
]
,
[
9
]
,
[
10]
,
[
1
1
]
.
I
n
or
der t
o
ac
hi
eve
t
h
e key
dem
a
nds f
o
r
W
i
M
AX
receiver characteris
tics, a LNA is designe
d s
h
oul
d be m
e
t are the noise figure
less than 3 dB and
po
we
r gai
n
s
h
oul
d be m
o
re t
h
an
15
dB
. Al
so g
o
od i
n
p
u
t
and
out
put
i
m
peda
nce m
a
t
c
hi
ng t
o
ac
hi
eve
d
t
h
e s-
param
e
ter valu
es.
(a)
(b)
Fi
gu
re
4(a
)
a
n
d
(b
).
The
Lad
d
er
m
a
t
c
hi
ng n
e
t
w
o
r
k
f
o
r
I
n
p
u
t
an
d
o
u
t
p
ut
Fi
gu
re
5(a
)
s
h
ows
,
t
h
e c
o
m
p
let
e
schem
a
t
i
c
ci
rcui
t
o
f
5.
8
GHz
a si
ngl
e
s
t
age o
f
Lo
w
n
o
i
s
e am
pl
i
f
i
e
r.
It
was
si
m
u
l
a
t
e
d
usi
n
g t
h
e sa
m
e
soft
wa
re t
o
fi
ne
an
d
fu
rt
h
e
r
opt
i
m
i
zed for
a
bet
t
e
r
per
f
o
rm
ance. F
o
r
pu
r
pose
of fa
brication,
the inductance
and ca
p
acitan
c
e n
eed
to
b
e
co
nv
erted
to
mi
cr
o
str
i
p
layou
t. Fig
u
r
e
5(
b)
sh
ow
s,
th
e co
m
p
lete sch
e
m
a
tic la
yo
ut. Th
e
Du
ri
o
d
5
880
TYL-
0200 was
selected
for fabricate. The
L
N
A para
meter
i
s
sh
ow
n i
n
a
T
a
bl
e 1
.
(a
)
(b)
Fi
gu
re
5(a
)
a
n
d
(b
):
T
h
e Sc
h
e
m
a
t
i
c
C
i
rcui
t
and
Lay
o
u
t
of
LNA
Tabl
e 1.
LN
A Param
e
t
e
rs
Co
m
ponent
W
i
dth (
m
m
)
L
e
ngth (m
m
)
TL
1
=3.
24nH
W
= 1.
554
L
=
15.
25
TL
2
=1.
23nH
W
= 1.
554
L
=
6.
07
TL
3
=0.
40pF
W
= 1.
554
L
=
12.
44
TL
3
=0.
24pF
W
= 1.
554
L
=
10.
44
TL
4
=1.
55nH
W
= 1.
554
L
=
7.
64
TL
5
=1.
62nH
W
= 1.
554
L
=
7.
98
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
17
–
1
724
1
722
5
.
25
.
4
5
.
65
.
8
6
.
06
.
2
6
.
4
6
.
6
6
.
8
5.
0
7
.
0
-2
0
-1
0
0
10
-3
0
20
f
r
eq,
GH
z
d
B
(S
(2
,
1
))
m1
d
B
(S
(1
,
2
))
m2
m1
fr
e
q
=
d
B
(S
(2
,
1
)
)
=
1
7
.
2
1
5
5
.
80
0G
H
z
m2
fr
e
q
=
d
B
(S
(
1
,
2
))
=
-
1
9
.
9
3
6
5
.
80
0G
H
z
5.
2
5
.
4
5.
6
5
.
8
6.
0
6
.
2
6.
4
6
.
6
6.
8
5.
0
7
.
0
-1
5
-1
0
-5
-2
0
0
fr
e
q
,
G
H
z
d
B
(S
(1
,
1
))
m3
d
B
(S
(2
,
2
))
m4
m3
fr
e
q
=
dB
(S
(1
,
1
))
=
-
1
7
.
8
6
2
5.
800G
H
z
m4
fr
e
q
=
d
B
(
S
(
2
,
2
)
)
=
-
19.
639
5.
800G
H
z
5.
2
5
.
4
5.
6
5
.
8
6.
0
6
.
2
6.
4
6
.
6
6.
8
5.
0
7
.
0
0.
95
1.
00
1.
05
1.
10
0.
90
1.
15
fr
e
q
,
G
H
z
S
t
abF
a
c
t
1
m5
m5
fr
eq
=
St
ab
F
a
c
t
1=
1
.
02
3
5.
80
0
G
H
z
5
.
2
5
.4
5.6
5
.8
6.0
6
.2
6.
4
6
.
6
6.
8
5.
0
7
.
0
1
2
3
4
0
5
f
r
eq,
GH
z
nf
(
2
)
m6
NF
m
i
n
m7
m6
fr
e
q
=
nf
(
2
)
=
0.
914
5.
8
00G
H
z
m7
fr
e
q
=
N
F
m
i
n=
0
.
33
0
5.
800
GH
z
4.
SIMULATION RESULT
The si
m
u
l
a
t
e
d resul
t
s
o
f
S
-
P
a
ram
e
t
e
r out
p
u
t
of t
h
e m
i
cr
owa
v
e L
NA a
r
e sh
o
w
n i
n
F
i
gu
re 6.
It
i
s
sim
u
l
a
t
e
d usi
n
g
Ad
va
nce
d
D
e
si
gn
Sy
st
em
(AD
S
).
T
h
e si
m
u
l
a
t
i
on r
eco
r
d
ed
t
h
at
t
h
e
p
o
we
r
gai
n
s S
21
is 17
.2
d
B
. Th
e i
n
pu
t
retu
rn
l
o
ss
S
11
is -
1
8
.
9
d
B
,
over
a
ll no
ise f
i
g
u
r
e
(N
F)
o
f
0.914
d
B
an
d th
e
ou
tpu
t
r
e
t
u
rn
loss S
22
i
s
-1
9.
6
dB
.
T
h
e
refl
ect
i
o
n l
o
ss
S
12
is -19
.
9
d
B
. Th
ese valu
es
were
with
in
t
h
e
d
e
sign
sp
ecification
an
d were
accepted. Figure 6(a) s
h
ows t
h
e forwa
r
d
tra
n
sfe
r
a
nd
output return l
o
ss.
While, Fi
gure
6(b) s
h
ows the
input
reflection
an
d
th
e o
u
t
p
u
t
reflectio
n
lo
ss. Fi
g
u
re 6(c) an
d
(d
) are sh
ows th
e No
ise Fig
u
re an
d
Stab
ility Facto
r
respectively.
Figure
6(a).
S
21
an
d S
12
Fig
u
r
e 6(
b)
. S
11
and
S
22
Figu
re 6(c). No
ise
Figure
Figu
re 6(d).
Stab
ility Facto
r
5.
MEASUREMENT RESUL
T
The m
easurement setup s
h
own in Figure
7,
t
h
e S p
a
ram
e
ter
o
f
th
e am
p
lifier; S
11
, S
12
, S
21
and S
22
ar
e
measured
using the net
w
ork
analyzer.
Gai
n
and Noise Figure also a
r
e meas
ure
d
u
s
i
n
g i
n
sam
e
set
up. B
e
fo
re
r
ecor
d
i
n
g
all
measu
r
em
en
t, a stan
d
a
r
d
p
r
oced
ur
e
o
f
calibr
a
tio
n
is co
nducted
to
ensur
e
th
at th
e m
easu
r
em
en
t
to
o
l
s were
calib
rated
.
Fig
u
r
e
7
.
Setup fo
r
d
e
v
i
ce under
test S Measur
em
en
t u
s
in
g
N
e
two
r
k
An
alyzer
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Desi
g
n
of
Mi
cr
ow
ave
LN
A B
a
sed
o
n
L
a
dder
Mat
c
hi
ng
N
e
t
w
ork f
o
r Wi
MA
X ..
.. (
A
bu
Bak
a
r
Ibr
a
hi
m)
1
723
The m
easurement res
u
lt for a
m
i
crowa
v
e L
NA is
prese
n
te
d in Ta
ble 2. T
h
e S
11
pa
ram
e
ter m
easured
is -10
.
5
d
B
.
This is -0
.6
d
B
less th
an
targ
eted
v
a
l
u
e wh
ich
is b
e
tter and
accep
tab
l
e. S
22
m
easured i
s
-1
3.
3 dB
whic
h is less than ta
rgete
d
a
nd acce
pt
able
.
The ret
u
rn los
s
require
d
S
12
obt
ai
ne
d i
s
l
e
s
s
t
h
an
-2
1.
8
d
B
. The
rel
a
t
e
d m
easured gai
n
S
21
f
o
r
t
h
e LNA am
pl
i
f
i
e
r i
s
16.
8 dB
m
easured
usi
n
g t
h
e set
u
p
.
Th
e noi
se fi
g
u
re
val
u
es
obt
ai
ne
d i
s
1.
2
0
dB
w
h
i
c
h c
o
m
p
li
ed wi
t
h
t
h
e t
a
rget
ed
val
u
e of l
e
ss
3
dB
.
The
use
of l
a
d
d
er m
a
t
c
hi
ng
n
e
t
w
o
r
k
and m
i
crost
r
i
p
l
i
n
e
m
a
t
c
hi
ng t
echni
q
u
e at
t
h
e i
n
put
o
f
t
h
e LNA c
ont
ri
b
u
t
e
s t
h
e best
per
f
o
r
m
a
nce for t
h
e
a
m
p
lifier [12
]
,[13
]. Th
is m
a
t
c
h
i
ng
techn
i
que was
u
s
ed
t
o
p
r
ov
id
e
h
i
gh
-l
o
a
d
e
d
Q fact
o
r
for b
e
tter sen
s
itiv
ity
and thus m
i
nimized the
nois
e
figure
.
Table
2. Meas
urem
ent Results
Targeted
Measured
I
nput Reflection S
11
dB
<-
10 dB
-
10.
6
Return Loss S
12
dB
<-
10 dB
-
31.
8
Forward t
r
ansf
er S
21
dB
>15 dB
16.
8
Output ReflectionS
22
dB
<-
10 dB
-
13.
3
NF dB
<3 dB
1.
20
BW
M
H
z
>1000
1200
The elem
ents of
Ladde
r
-network we
re
rea
lized in
the
form
of lum
p
re
active elem
ents and m
i
cro
st
ri
p l
i
n
e
i
m
pedance
.
T
h
e
3
d
B
ba
nd
wi
dt
h
f
o
r
t
h
e
am
pl
i
f
i
e
r i
s
m
easure
d
usi
n
g s
e
t
u
p.
It
i
s
sh
ow
n
i
n
Fi
gu
re
8
.
Th
e
3d
B
b
a
ndw
id
th ob
tain
ed is 1.2 GH
z com
p
l
i
an
t with
t
a
rg
eted
resu
lt
o
f
m
o
re th
an
1 GHz. It is
ob
serv
ed
th
at th
e
3
d
B
gain
is 16
.8
d
B
. Th
e m
easu
r
ed p
a
ram
e
ters for th
e
LNA
were also
co
m
p
lia
n
t
with th
e equatio
n
(1) to (9)
u
s
ing
Math
C
A
D an
alysis. Tab
l
e
III sh
ows th
e perfo
r
m
a
n
ce summary o
f
th
e
measu
r
em
en
t resu
lt of
pre
v
i
o
usl
y
p
u
b
l
i
s
hed resea
r
c
h
ers i
n
com
p
ari
s
on
wi
t
h
res
u
l
t
s
obt
ai
ne
d i
n
t
h
e pr
op
ose
d
de
s
i
gn.
It
i
s
pr
ove
n t
h
at
t
h
e achi
e
ve
d
n
o
i
s
e fi
gu
re
fo
r
pr
o
pose
d
LN
A
i
s
1
.
2
dB
w
h
i
c
h i
s
m
u
ch
bet
t
e
r t
h
a
n
ot
he
rs.
Fi
gu
re
8.
Fre
q
uency
R
e
s
p
on
s
e
Table
3. C
o
m
p
arison
of m
eas
urem
ent res
u
lts
Published W
o
r
k
s
Ar
chitectur
es
Gain (
d
B)
NF (
d
B)
BW
(
M
Hz)
Par
k
,
et.
al.,
2010 [7]
Single Stage
23
5.
6
54
L
i
n et.
al.
,
2010
Single Stage
12.
3
4.
2
7500
G.
L
.
Ning ,
et.
al.,
2011
[4]
Single Stage
5.
9
1.
7
3400
Jin-
Fa Chang,
et.
al.
,
2012
Single Stage
9.
7
6.
0
6500
T
h
is wor
k
Single Stage
16.
8
1.
2
1200
6.
CO
NCL
USI
O
N
The m
i
crowa
v
e l
o
w
n
o
i
s
e am
pl
i
f
i
e
r
wi
t
h
l
a
d
d
er m
a
t
c
hi
ng
n
e
t
w
o
r
k
has
bee
n
m
easured
an
d
desi
g
n
e
d
.
It’s obse
rve
d
to com
p
liant with IEEE
standa
rd 802.16 W
i
MAX
ap
plications
. It is obse
r
ved that the m
easure
d
an
d targ
eted
resu
lts g
i
v
i
ng
al
m
o
st th
e sam
e
fig
u
re
as re
qui
red
.
It
ob
se
rv
e
d
that t
h
e
gain
of the m
easure
d
anal
y
s
i
s
i
s
16.
8 dB
.
It
i
s
im
port
a
nt
t
o
t
a
ke
not
e
whe
n
de
si
gni
ng t
h
e am
pli
f
i
e
r t
o
m
a
t
c
h the am
pl
i
f
i
e
r circui
t
s
.
The
5.
8 G
H
z
m
i
crowa
v
e L
N
A ha
s bee
n
de
vel
o
ped
succe
s
s
ful
l
y
an
d t
h
e
ci
rcui
t
co
nt
ri
b
u
t
e
d t
o
t
h
e
fr
o
n
t
en
d
receiver at t
h
e
desc
ribe
d
fre
que
ncy. Fo
r better pe
rform
a
nce i
n
gain of the am
plifier, it can be
achi
e
ved
by
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 4
,
Au
gu
st 2
016
:
17
17
–
1
724
1
724
i
n
creasi
n
g t
h
e
num
ber
of
st
ages t
o
i
m
prov
e t
h
e g
a
i
n
a
n
d
n
o
i
s
e fi
g
u
r
e
o
f
t
h
e
desi
gn
[
1
2]
-[
1
5
]
.
Hi
ghe
r gai
n
wo
ul
d
ex
pa
nd
t
h
e co
ve
rage
o
r
c
o
m
m
uni
cat
ion
di
st
a
n
ce.
ACKNOWLEDGMENTS
I wo
u
l
d
lik
e to
tak
e
th
is opp
ortun
ity to
th
an
k t
h
e R
e
se
arch M
a
nage
m
e
nt
& In
no
v
a
t
i
on C
e
nt
re
(
R
MI
C)
of
Su
l
t
an
I
d
r
i
s Ed
ucatio
n
Un
iv
ersity f
o
r
p
e
r
m
it
tin
g
an
d
supp
or
ting
in
th
is r
e
search
(
201
5-0
052-
104
-
01
).
REFERE
NC
ES
[1]
M
.
S
t
eer
, “
M
icr
o
wave and
RF
D
e
s
i
gn,”
A System Approach I
n
ter
national
Edition,
2010.
[2]
R. L
.
W
a
ng
,
et a
l
.
, “2 - 6
GHz C
u
rrent-Reused
LNA with Tr
ansformer-ty
p
e Indu
ctors,”
IE
EE
Pr
o
ceed
ing
, 2008.
[3]
C. P. Ch
ang,
et al.
, “Linearity
I
m
provement of
Cascode CMOS LNAUsing a Diode
Connected NMOS
Transistor
W
ith A Para
lle
l
RC Circui
t,
”
Progress in Electr
omagnetic Res
e
arch
, vo
l. 17, pp. 2
9
-38, 2010
.
[4]
G.
L. Ning,
et al.
, “Design
of Concurren
t
Low Noise am
plifie
r For Mul
ti-Band Appl
ic
a
tions,”
Progress
Electromagnetic Research
, vo
l. 2
2
, pp
. 165-178
,
2011.
[5]
M. A. Leon,
et
al
., “Comparison of LNA Topolog
y
for Wimax Applic
ation in a Standard 90-nm CMOS Process,”
12th Int
e
rnation
a
l Conf
erence o
n
Computer Mo
delling
and S
i
mulation,
pp. 642-6
47, 2010
.
[6]
D. M. Pozar, “Microwave and
R
F
Wireless S
y
stem,” Third Aven
ue
, N
.
Y. John W
iley
& Sons, 200
1.
[7]
J.
Pa
rk,
et al.
, “
A
Direct Conv
ersion CMOS RF Receiver R
econ
f
igurable From 2 to 6 GHz,”
IEEE Transactions
On Microwave T
h
eory and T
echn
i
ques
, vo
l. 58, p
p
. 2326-2333
, 2
010.
[8]
G. Gonzalez, “
M
icrowave
Tr
an
sistor Amplifier,” 1996.
[9]
B. Liu
and J. M
a
o, “
D
esign of a
0.
5 V CMOS Cascode Low Noi
s
e Am
plifier for
Multi-Gigah
e
rt
z Applic
ations,
”
Journal of Semiconductor
, vo
l/iss
u
e: 33(1)
, 2012
.
[10]
A. B. Ibrah
i
m,
et al.
, “
T
he Casc
ode LNA with
RF Am
plifier at
5.8 GHz Using T-Match
i
ng Network for WiMAX
Applications,”
Journal of Telecommunication Elec
tronic and Computer Engineering,
vol/issue: 4(1), pp. 15-21,
2012.
[11]
T.
V. Hoi,
et al.
, “Design and F
a
brication
of High Ga
in Low N
o
ise Am
plifier
a
t
4Ghz,
”
International Journal
o
f
Engineering and
Innovation Tech
nology (
I
JEIT)
,
vol/issue: 4(7),
2
015.
[12]
“
I
EEE Com
puter S
o
ciet
y
and IEEE Microwav
e
Theor
y
T
echn
i
que and S
o
ciet
y,”
Part 16 Air Inte
rface
For Fix
Broadband Wireless System,
IEEE Standard 802
.16,
2004
.
[13]
I. J. Bahl, “Fundamentals of
RF and
Microwave Transistor Amplif
ier, 2009.
[14]
A. B. Ibrah
i
m,
et al.
, “
L
ow Nois
e Am
plifier with
Cas
c
ode and
Ca
s
caded T
echn
i
qu
es
at 5
.
8 GHz Us
ing T-M
a
tch
i
ng
Network for WiMAX Applications,”
Internatio
nal Journal of Electrica
l
and Computer Engineering (
I
JECE)
,
vol/issue:
1(1), p
p
. 1-8
,
2011
.
[15]
K. Pongot,
et al.
, “Design an
d Analy
s
is High Gain
PHEMT LNA for Wi
reless
Application at 5.8 GHz,”
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
,
vol/issue:
5(3), pp
. 611-62
0, 2015
.
BIOGRAP
HI
ES OF
AUTH
ORS
Abu Bakar
I
b
r
a
him
rece
ived
t
h
e B.S
c
d
e
gre
e
in el
ectr
i
c
a
l
eng
i
neer
ing and m
a
s
t
er degre
e
from
Universiti T
e
kn
ologi Mala
y
s
i
a
i
n
1998 and 2000 respectiv
el
y
.
I
am
received th
e
PhD in Electro
nic
Engineering (Co
m
m
unication) fr
om
Universiti T
e
kni
kal Malay
s
i
a
Melak
a
in
y
e
ar
’s 2013. Resear
ch
inter
e
st includ
es the developm
en
t of low noise am
plifier,
Radio Frequency
om
munication S
y
stem,
Instruction
a
l Technolog
y
,
Eng
i
n
eering Technolo
g
y
and Engineering Education
.
Currently
, I am,
works at Sult
an I
d
ris Educ
ation
Universit
y
,
Pera
k of Mal
a
y
s
ia
Email: bakar@fs
kik.upsi.edu.m
y
Ahmad
Zam
z
u
r
i M
o
hammad Ali
receiv
e
d B.S
c
degree in
elec
tric
al eng
i
neering and m
a
s
t
er
degree of Univ
ersiti Tekno
logi Malay
s
ia 199
8 and 2000
respectiv
ely
.
He
received
PhD in
Multim
edia (Ed
u
cat
ion) from
Universiti Sain
s Mala
y
s
i
a
. He resear
ch inte
rest includ
es th
e
Multim
edia Des
i
gn, Intructional
Technolog
y
,
IC
T in
Education,
Open Source Educat
ion and User
Intera
ction
.
No
w he jo
ined
Sult
an Idris
Educ
at
ion University
, P
e
rak of
Malay
s
ia.
Em
ail:
zam
zur
i
@fs
k
ik.ups
i.edu
.
m
y
Evaluation Warning : The document was created with Spire.PDF for Python.