I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
7
3
1
~2
737
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
5
.
pp
2
7
3
1
-
2
737
2731
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
RCS of
Chiral Ell
iptic
Cy
lin
der E
mbedded i
n Infi
nite
Chira
l Mediu
m
A
-
K
.
H
a
m
id
,
W.
O
ba
id
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
Co
m
p
u
ter E
n
g
in
e
e
rin
g
,
Co
l
leg
e
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsity
o
f
S
h
a
rjah
,
S
h
a
rjah
,
UA
E
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
J
an
2
9
,
2
0
1
7
R
ev
i
s
ed
J
u
n
10
,
2
0
1
7
A
cc
ep
ted
A
u
g
11
,
2
0
1
7
T
h
is
p
a
p
e
r
p
re
se
n
ts
a
n
a
n
a
ly
ti
c
s
o
lu
ti
o
n
to
th
e
sc
a
tt
e
rin
g
p
r
o
p
e
rti
e
s
o
f
c
h
iral
e
ll
ip
ti
c
c
y
li
n
d
e
r
e
m
b
e
d
d
e
d
in
in
f
in
it
e
c
h
iral
m
e
d
iu
m
d
u
e
to
in
c
i
d
e
n
t
p
lan
e
w
a
v
e
.
T
h
e
e
x
t
e
rn
a
l
e
lec
tro
m
a
g
n
e
ti
c
f
ield
s
a
s
we
ll
a
s
th
e
in
tern
a
l
e
lec
tro
m
a
g
n
e
ti
c
f
ield
s
a
re
w
rit
ten
in
term
s
M
a
th
ieu
f
u
n
c
ti
o
n
s
a
n
d
e
x
p
a
n
sio
n
c
o
e
ff
icie
n
ts.
In
o
rd
e
r
to
o
b
tain
b
o
th
t
h
e
in
tern
a
l
a
n
d
e
x
tern
a
l
u
n
k
n
o
w
n
f
ield
e
x
p
a
n
sio
n
c
o
e
f
f
icie
n
ts,
th
e
b
o
u
n
d
a
r
y
c
o
n
d
it
i
o
n
s
a
re
a
p
p
li
e
d
rig
o
r
o
u
sly
a
t
th
e
su
rf
a
c
e
o
f
d
iff
e
re
n
t
c
h
iral/ch
iral
m
a
teria
l.
Re
su
lt
s
a
re
p
lo
tt
e
d
g
ra
p
h
ica
ll
y
f
o
r
th
e
n
o
rm
a
li
z
e
d
sc
a
tt
e
rin
g
w
id
th
s
f
o
r
e
ll
ip
ti
c
c
y
li
n
d
e
rs
o
f
d
if
fe
re
n
t
siz
e
s
a
n
d
c
h
iral
m
a
teria
ls
t
o
sh
o
w
th
e
e
ff
e
c
ts
o
f
th
e
s
e
p
a
ra
m
e
ters
o
n
sc
a
tt
e
rin
g
c
ro
ss
w
id
th
s.
It
is
sh
o
w
n
n
u
m
e
rica
ll
y
b
y
a
d
d
in
g
th
e
e
x
tern
a
l
c
h
iral
m
a
teria
l
to
e
ll
ip
ti
c
c
y
li
n
d
e
r
p
ro
v
i
d
e
s m
o
re
p
a
ra
m
e
ters
to
c
o
n
tro
l
th
e
RC
S
.
K
ey
w
o
r
d
s
:
C
h
ir
al/c
h
ir
al,
E
llip
tic
c
y
li
n
d
er
,
Ma
th
ie
u
f
u
n
ctio
n
s
,
R
ad
ar
cr
o
s
s
s
ec
tio
n
,
Scatter
in
g
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
A
-
K.
Ha
m
id
,
Dep
ar
t
m
en
t o
f
E
lectr
ical
an
d
C
o
m
p
u
ter
E
n
g
in
ee
r
i
n
g
,
Un
i
v
er
s
it
y
o
f
S
h
ar
j
ah
,
B
o
x
2
7
2
7
2
,
Sh
ar
j
ah
,
UA
E
.
E
m
ail:
Ak
h
a
m
id
l@
S
h
ar
j
ah
.
ac
.
ae
1.
I
NT
RO
D
UCT
I
O
N
I
t
is
w
e
ll
k
n
o
w
n
t
h
at
a
r
ec
ip
r
o
ca
l
an
d
is
o
tr
o
p
ic
c
h
ir
al
m
ed
iu
m
i
s
c
h
ar
ac
ter
ized
b
y
d
i
f
f
er
en
t
p
h
as
e
v
elo
cities
f
o
r
r
i
g
h
t
-
an
d
lef
t
-
ci
r
cu
lar
l
y
p
o
lar
ized
(
R
C
P
an
d
L
C
P
)
w
a
v
es.
I
n
a
lo
s
s
le
s
s
is
o
tr
o
p
ic
ch
ir
al
m
ed
i
u
m
,
a
lin
ea
r
l
y
p
o
lar
ized
w
a
v
e
u
n
d
er
g
o
e
s
a
r
o
tatio
n
o
f
its
p
o
lar
izatio
n
w
h
ile
it
p
r
o
p
ag
ates.
N
u
m
er
o
u
s
d
ev
elo
p
m
en
t
s
lin
k
ed
to
ch
ir
al
m
ed
ia
o
v
er
all
ar
e
d
escr
ib
e
d
in
[
1
-
1
1
]
,
an
d
s
o
m
e
a
n
al
y
t
ical
an
d
n
u
m
er
ical
s
o
lu
tio
n
s
to
s
ca
tter
i
n
g
f
r
o
m
v
a
r
io
u
s
t
y
p
es o
f
ch
ir
al
o
b
j
ec
ts
ar
e
g
iv
e
n
i
n
[
1
2
-
2
1
]
.
T
h
e
ellip
tic
cy
li
n
d
er
is
a
g
eo
m
etr
y
t
h
at
h
as
b
ee
n
ex
ten
s
i
v
el
y
an
al
y
ze
d
in
th
e
liter
at
u
r
e
d
u
e
to
its
ab
ilit
y
to
cr
ea
te
c
y
li
n
d
r
ical
c
r
o
s
s
s
ec
tio
n
s
o
f
d
if
f
er
e
n
t
s
h
a
p
es
b
y
c
h
an
g
i
n
g
th
e
ax
ia
l
r
a
tio
o
f
t
h
e
ellip
s
e.
Fu
r
t
h
er
m
o
r
e,
s
in
ce
t
h
e
ellip
ti
c
cy
lin
d
r
ical
co
o
r
d
in
ate
s
y
s
te
m
is
o
n
e
o
f
th
e
co
o
r
d
in
ate
s
y
s
te
m
s
in
w
h
ic
h
t
h
e
w
a
v
e
eq
u
atio
n
is
s
ep
ar
ab
le,
s
o
lu
tio
n
s
to
p
r
o
b
lem
s
in
v
o
lv
in
g
ellip
tic
c
y
li
n
d
er
s
ca
n
b
e
o
b
tain
ed
in
ex
ac
t
f
o
r
m
.
I
n
th
i
s
p
ap
er
,
w
e
p
r
esen
t
a
s
o
l
u
tio
n
to
t
h
e
p
r
o
b
le
m
o
f
s
ca
t
ter
in
g
o
f
a
r
ig
h
t
-
cir
cu
lar
l
y
p
o
lar
i
ze
d
(
R
C
P
)
p
lan
e
w
a
v
e
f
r
o
m
a
ch
ir
al
elli
p
tic
cy
l
in
d
er
o
f
ar
b
itra
r
y
ax
ial
r
atio
p
lace
d
in
a
d
is
tin
ct
in
f
i
n
ite
ch
ir
al
m
ed
iu
m
,
w
h
ile
in
[
2
1
]
th
e
ch
ir
al
c
y
l
in
d
er
w
a
s
e
m
b
ed
d
ed
in
f
r
ee
s
p
ac
e.
B
o
th
ch
ir
al
m
ed
ia
in
th
is
p
r
o
b
le
m
ar
e
is
o
tr
o
p
ic.
T
h
e
p
r
esen
t
s
o
lu
tio
n
w
ill
r
e
q
u
ir
e
ex
p
an
d
i
n
g
th
e
f
ield
s
i
n
t
w
o
d
if
f
er
en
t
ch
ir
al
r
e
g
io
n
s
,
an
d
th
e
s
o
lu
tio
n
o
b
tain
ed
w
ill
th
er
e
f
o
r
e
s
u
p
p
ly
m
o
r
e
p
ar
a
m
eter
s
to
co
n
tr
o
l
th
e
n
o
r
m
alize
d
b
is
ta
tic
s
ca
t
ter
in
g
w
id
t
h
w
h
e
n
co
m
p
ar
ed
to
th
at
i
n
[
2
1
]
.
2.
T
H
E
O
RY
C
o
n
s
id
er
a
R
C
P
p
lan
e
w
a
v
e
t
h
at
is
p
r
o
p
ag
ati
n
g
in
an
in
f
i
n
ite
is
o
tr
o
p
ic
ch
ir
al
m
ed
iu
m
,
b
ei
n
g
i
n
cid
en
t
o
n
an
in
f
i
n
itel
y
lo
n
g
ellip
tic
c
y
li
n
d
er
at
a
n
a
n
g
le
i
w
i
th
r
esp
ec
t
to
th
e
m
in
u
s
x
-
a
x
is
o
f
a
C
ar
tesi
a
n
co
o
r
d
in
ate
s
y
s
te
m
lo
ca
ted
at
th
e
ce
n
ter
o
f
a
cr
o
s
s
s
ec
tio
n
o
f
th
e
c
y
li
n
d
er
w
ith
i
ts
z
-
ax
i
s
al
o
n
g
t
h
e
ax
i
s
o
f
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
3
1
–
2
7
3
7
2732
c
y
li
n
d
er
,
w
h
ic
h
i
s
m
ad
e
u
p
o
f
a
d
i
f
f
er
e
n
t
c
h
ir
al
m
ater
ial
an
d
o
f
m
aj
o
r
ax
i
s
le
n
g
t
h
2
a
an
d
m
in
o
r
a
x
i
s
len
g
th
2
b
.
Fo
r
a
R
C
P
p
lan
e
w
av
e
o
f
a
m
p
l
itu
d
e
,
0
E
th
e
in
c
id
en
t e
lectr
ic
f
ield
ca
n
b
e
w
r
itte
n
as
)]
(
c
o
s
e
x
p
[
)
ˆ
ˆ
(
1
0
i
R
i
i
jk
j
z
E
E
(
1
)
w
h
er
e
ˆ
is
a
u
n
i
t
v
ec
to
r
in
t
h
e
d
ir
ec
tio
n
o
f
in
cr
ea
s
in
g
,
1
R
k
is
th
e
wav
en
u
m
b
er
o
f
t
h
e
i
n
cid
en
t
p
la
n
e
w
av
e
,
an
d
)
,
(
ar
e
th
e
p
o
lar
co
o
r
d
in
ates
o
f
an
o
b
s
er
v
atio
n
p
o
i
n
t
w
it
h
r
esp
ec
t
to
th
e
ab
o
v
e
m
e
n
tio
n
ed
C
ar
tesi
a
n
co
o
r
d
in
ate
s
y
s
te
m
.
I
n
ac
co
r
d
an
ce
w
it
h
t
h
e
Dr
u
d
e
-
B
o
r
n
-
Fed
er
o
v
(
DB
F)
co
n
s
tit
u
ti
v
e
r
elat
i
o
n
s
t
h
at
h
a
v
e
b
ee
n
u
s
ed
in
t
h
i
s
p
ap
er
[
2
2
]
,
th
e
w
a
v
en
u
m
b
er
o
f
t
h
e
r
i
g
h
t c
ir
c
u
lar
l
y
p
o
lar
ized
w
av
e
i
s
g
i
v
e
n
b
y
1
1
1
0
1
1
0
1
1
r
r
r
r
R
k
k
k
(
2
)
w
h
er
e
0
k
is
th
e
w
a
v
e
n
u
m
b
er
in
f
r
ee
s
p
ac
e,
1
is
th
e
ch
ir
alit
y
p
a
r
a
m
eter
o
f
th
e
e
x
ter
n
al
c
h
ir
al
m
ed
iu
m
,
an
d
1
r
an
d
1
r
ar
e
th
e
r
elati
v
e
p
er
m
ea
b
ilit
y
an
d
r
elati
v
e
p
er
m
itti
v
i
t
y
o
f
th
e
e
x
ter
n
al
ch
ir
al
m
ed
iu
m
.
T
h
e
in
cid
en
t e
lectr
ic
f
ield
in
(
1
)
ca
n
n
o
w
b
e
ex
p
a
n
d
ed
in
ter
m
s
o
f
ellip
tical
v
ec
to
r
w
a
v
e
f
u
n
ctio
n
s
as
)]
,
(
)
,
(
[
1
)
1
(
1
)
1
(
1
,
0
i
r
M
r
N
E
R
om
em
R
om
em
m
om
em
c
c
A
(
3
)
in
w
h
ic
h
)
c
o
s
,
(
)
(
8
1
1
0
i
R
om
em
R
om
em
m
om
em
c
S
c
N
j
E
A
(
4
)
w
h
er
e
dv
v
c
S
c
N
R
om
em
R
om
em
2
2
0
1
1
]
)
c
o
s
,
(
[
)
(
(
5
)
w
it
h
,
1
1
F
k
c
R
R
)
c
o
s
,
(
v
c
S
qn
f
o
r
q
=
e
,
o
b
ein
g
t
h
e
a
n
g
u
lar
Ma
th
ie
u
f
u
n
c
tio
n
o
f
o
r
d
er
n
an
d
ar
g
u
m
e
n
ts
c
an
d
v
c
o
s
,
an
d
F
b
ein
g
t
h
e
s
e
m
i
-
f
o
ca
l
len
g
t
h
o
f
t
h
e
c
y
li
n
d
er
.
)
,
(
)
(
r
c
i
qm
Ξ
f
o
r
q
=
e
,
o
,
an
d
N
M,
Ξ
ar
e
d
ef
in
ed
i
n
[
2
3
-
2
4
]
in
ter
m
s
o
f
an
g
u
lar
a
n
d
r
ad
ial
Ma
th
ieu
f
u
n
ctio
n
s
,
w
it
h
r
d
es
ig
n
ati
n
g
t
h
e
ellip
tic
co
o
r
d
in
ate
d
y
ad
)
,
(
.
T
h
e
s
u
m
m
a
tio
n
o
v
er
m
in
(
3
)
s
tar
ts
f
r
o
m
0
f
o
r
e
v
en
(
e
)
f
u
n
ctio
n
s
a
n
d
f
r
o
m
1
f
o
r
o
d
d
(
o
)
f
u
n
ctio
n
s
,
a
n
d
is
t
h
e
s
a
m
e
f
o
r
th
e
o
th
er
f
ield
ex
p
a
n
s
io
n
s
g
i
v
en
b
elo
w
to
o
.
Ma
x
w
el
l’
s
eq
u
atio
n
s
ca
n
n
e
x
t
b
e
u
s
ed
to
ex
p
an
d
t
h
e
in
cid
e
n
t
m
ag
n
et
ic
f
ie
ld
in
ter
m
s
o
f
ellip
ti
ca
l v
ec
to
r
w
a
v
e
f
u
n
ctio
n
s
as
)]
,
(
)
,
(
[
1
)
1
(
1
)
1
(
1
,
0
1
i
r
M
r
N
H
R
om
em
R
om
em
m
om
em
c
c
A
Z
j
(
6
)
w
h
er
e
1
1
0
1
r
r
Z
Z
,
w
ith
0
Z
d
en
o
tin
g
th
e
f
r
ee
s
p
ac
e
w
a
v
e
i
m
p
ed
an
ce
.
As
t
h
e
e
ll
ip
tic
c
y
li
n
d
er
is
m
ad
e
u
p
o
f
a
n
is
o
tr
o
p
ic
ch
ir
al
m
a
t
er
ial
an
d
is
s
u
r
r
o
u
n
d
ed
b
y
a
n
o
th
er
is
o
tr
o
p
ic
ch
ir
al
m
ed
iu
m
,
th
e
s
ca
tter
ed
an
d
tr
an
s
m
itted
elec
tr
o
-
m
ag
n
etic
f
ield
s
w
ill
h
a
v
e
b
o
t
h
co
-
p
o
lar
an
d
cr
o
s
s
-
p
o
lar
co
m
p
o
n
en
ts
.
T
h
e
s
ca
tter
ed
f
ield
s
ca
n
h
en
ce
b
e
w
r
itte
n
a
s
s
xp
s
cp
E
E
E
s
,
1
s
xp
s
cp
/
)
(
Z
j
E
E
H
s
,
w
it
h
co
-
an
d
cr
o
s
s
-
p
o
lar
f
ield
s
s
cp
E
,
s
xp
E
ex
p
r
ess
ed
in
ter
m
s
o
f
ellip
tical
v
ec
to
r
w
a
v
e
f
u
n
ctio
n
s
as
)]
,
(
)
,
(
[
1
)
4
(
1
)
4
(
1
,
0
r
M
r
N
E
s
cp
R
om
em
R
om
em
m
om
em
c
c
B
(
7
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
C
S
o
f Ch
ir
a
l E
llip
tic
C
ylin
d
er E
m
b
ed
d
ed
in
I
n
fin
ite
C
h
ir
a
l Med
i
u
m
(
A
-
K
.
Ha
mid
)
2733
)]
,
(
)
,
(
[
1
)
4
(
1
)
4
(
1
,
0
r
M
r
N
E
s
xp
L
om
em
L
om
em
m
om
em
c
c
C
(
8
)
w
h
er
e
qm
B
an
d
qm
C
f
o
r
q
=
e
,
o
ar
e
th
e
u
n
k
n
o
w
n
f
ield
e
x
p
an
s
io
n
co
ef
f
icien
ts
,
,
1
1
F
k
c
L
L
w
it
h
th
e
w
av
e
-
n
u
m
b
er
1
L
k
f
o
r
th
e
le
f
t
-
cir
cu
lar
l
y
p
o
lar
ized
w
a
v
e
g
i
v
e
n
b
y
1
1
1
0
1
1
0
1
1
r
r
r
r
L
k
k
k
(
9
)
T
h
e
f
ield
s
tr
an
s
m
it
ted
in
s
id
e
th
e
ch
ir
al
ellip
tic
c
y
li
n
d
er
ca
n
also
b
e
ex
p
r
ess
ed
as
c
xp
c
cp
E
E
E
c
,
2
c
xp
c
cp
/
)
(
Z
j
E
E
H
c
,
w
it
h
c
cp
E
,
c
xp
E
ex
p
r
ess
ed
in
ter
m
s
o
f
ellip
tical
v
ec
to
r
w
av
e
f
u
n
ct
io
n
s
as
)]
,
(
)
,
(
[
2
)
1
(
2
)
1
(
1
,
0
r
M
r
N
E
c
cp
R
om
em
R
om
em
m
om
em
c
c
D
(
1
0)
)]
,
(
)
,
(
[
2
)
1
(
2
)
1
(
1
,
0
r
M
r
N
E
c
xp
L
om
em
L
om
em
m
om
em
c
c
G
(
11)
w
h
er
e
qm
D
an
d
qm
G
f
o
r
q
=
e
,
o
ar
e
th
e
u
n
k
n
o
w
n
f
ield
ex
p
a
n
s
io
n
co
ef
f
icien
ts
,
F
k
c
R
R
2
2
an
d
,
2
2
F
k
c
L
L
w
it
h
e
x
p
r
ess
io
n
s
f
o
r
2
R
k
an
d
2
L
k
o
b
tain
ed
f
r
o
m
(
2
)
an
d
(
9
)
,
r
esp
ec
tiv
el
y
,
b
y
c
h
a
n
g
i
n
g
th
e
s
u
b
s
cr
ip
t
1
in
th
ese
E
q
u
a
tio
n
s
,
to
2
.
T
h
e
u
n
k
n
o
w
n
e
x
p
an
s
io
n
co
e
f
f
icien
ts
ca
n
b
e
o
b
tain
ed
b
y
i
m
p
o
s
in
g
t
h
e
b
o
u
n
d
ar
y
co
n
d
itio
n
s
co
r
r
esp
o
n
d
in
g
to
th
e
co
n
ti
n
u
it
y
o
f
th
e
ta
n
g
en
t
ia
l
f
ield
co
m
p
o
n
e
n
ts
at
t
h
e
s
u
r
f
ac
e
s
o
f
th
e
ch
ir
al
ellip
tic
c
y
lin
d
er
[
2
5
]
,
w
h
ich
m
a
y
b
e
ex
p
r
ess
ed
m
a
th
e
m
atica
ll
y
as
s
s
|
ξ
|
ξ
ˆ
ˆ
)
(
c
s
i
E
E
E
(
1
2
)
s
s
|
ξ
|
ξ
ˆ
ˆ
)
(
c
s
i
H
H
H
(
1
3
)
w
h
er
e
ξ
ˆ
is
th
e
o
u
t
w
ar
d
u
n
i
t
n
o
r
m
al
to
th
e
s
u
r
f
ac
e
o
f
t
h
e
elli
p
tic
c
y
li
n
d
er
.
Su
b
s
tit
u
ti
n
g
th
e
ab
o
v
e
d
ev
elo
p
ed
ex
p
r
ess
io
n
s
i
n
to
th
e
f
ield
s
o
f
(
1
2
)
an
d
(
1
3
)
,
an
d
ap
p
ly
in
g
th
e
o
r
th
o
g
o
n
al
p
r
o
p
er
ty
o
f
th
e
an
g
u
lar
Ma
t
h
ie
u
f
u
n
ctio
n
s
,
y
ield
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
(
)]
,
(
)
,
(
[
1
2
2
)
1
(
1
2
2
)
1
(
1
1
1
)
4
(
1
1
)
4
(
1
)
1
(
R
L
qmn
s
L
qm
m
qm
R
R
qmn
s
R
qm
m
qm
R
L
qmn
s
L
qm
m
qm
R
qn
s
R
qn
qn
s
R
qn
qn
c
c
M
c
R
G
c
c
M
c
R
D
c
c
M
c
R
C
c
N
c
R
B
c
R
A
(
1
4
)
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
(
)]
,
(
)
,
(
[
1
2
2
)'
1
(
2
1
1
2
2
)'
1
(
2
1
1
1
1
)'
4
(
1
1
1
1
)'
4
(
1
)'
1
(
R
L
q
m
n
s
L
qm
m
qm
L
R
R
R
q
m
n
s
R
qm
m
qm
R
R
R
L
q
m
n
s
L
qm
m
qm
L
R
R
qn
s
R
qn
qn
s
R
qn
qn
c
c
M
c
R
G
k
k
c
c
M
c
R
D
k
k
c
c
M
c
R
C
k
k
c
N
c
R
B
c
R
A
(
1
5
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
3
1
–
2
7
3
7
2734
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
(
)]
,
(
)
,
(
[
1
2
2
)
1
(
2
1
1
2
2
)
1
(
2
1
1
1
1
)
4
(
1
1
)
4
(
1
)
1
(
R
L
qmn
s
L
qm
m
qm
R
R
qmn
s
R
qm
m
qm
R
L
qmn
s
L
qm
m
qm
R
qn
s
R
qn
qn
s
R
qn
qn
c
c
M
c
R
G
Z
Z
c
c
M
c
R
D
Z
Z
c
c
M
c
R
C
c
N
c
R
B
c
R
A
(
1
6
)
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
,
(
)
(
)]
,
(
)
,
(
[
1
2
2
)'
1
(
2
2
1
1
1
2
2
)'
1
(
2
2
1
1
1
1
1
)'
4
(
1
1
1
1
)'
4
(
1
)'
1
(
R
L
q
m
n
s
L
qm
m
qm
L
R
R
R
q
m
n
s
R
qm
m
qm
R
R
R
L
q
m
n
s
L
qm
m
qm
L
R
R
qn
s
R
qn
qn
s
R
qn
qn
c
c
M
c
R
G
Z
k
Z
k
c
c
M
c
R
D
Z
k
Z
k
c
c
M
c
R
C
k
k
c
N
c
R
B
c
R
A
(
1
7
)
f
o
r
q
=
e,
o
w
h
er
e
)
,
(
)
(
s
i
qn
c
R
is
t
h
e
r
ad
ial
Ma
th
ie
u
f
u
n
ctio
n
o
f
o
r
d
er
n
a
n
d
k
i
n
d
(
i
)
o
f
ar
g
u
m
e
n
t
s
c
an
d
s
,
an
d
)
,
(
c
c
M
n
qm
is
g
i
v
e
n
b
y
dv
v
c
S
v
c
S
c
c
M
qn
qm
q
m
n
2
0
)
c
o
s
,
(
)
c
o
s
,
(
)
,
(
(
1
8
)
T
h
e
s
u
m
m
atio
n
s
o
v
er
m
in
(
1
4
)
–
(
1
7
)
r
u
n
s
f
r
o
m
0
to
N
ma
x
-
1
f
o
r
ev
en
(
e
)
f
u
n
ctio
n
s
,
an
d
f
r
o
m
1
to
N
ma
x
f
o
r
o
d
d
(
o
)
f
u
n
c
tio
n
s
,
w
h
er
e
N
ma
x
is
th
e
n
u
m
b
er
o
f
ter
m
s
n
ee
d
ed
to
o
b
tain
a
co
n
v
er
g
e
n
t
s
o
lu
tio
n
.
I
n
(
1
4
)
-
(
1
7
)
,
n
=0
,
1
,
…,
N
ma
x
-
1
o
r
n
=
1
,
2
,
…,
N
ma
x
,
ac
co
r
d
in
g
to
w
h
e
th
er
q
=
e
o
r
q
=
o
.
T
h
e
s
y
s
te
m
o
f
eq
u
atio
n
s
i
n
(
1
4
)
-
(
1
7
)
ca
n
b
e
ex
p
r
ess
ed
in
m
atr
ix
f
o
r
m
a
n
d
s
o
lv
ed
,
to
o
b
tain
th
e
u
n
k
n
o
w
n
f
ield
ex
p
an
s
io
n
c
o
ef
f
icie
n
t
s
.
Usi
n
g
as
y
m
p
to
tic
ex
p
r
ess
io
n
s
o
f
th
e
r
ad
ial
Ma
th
ieu
f
u
n
ctio
n
s
o
f
t
h
e
f
o
u
r
th
k
in
d
a
n
d
th
eir
f
ir
s
t
d
er
iv
ativ
e
s
,
w
e
ca
n
w
r
ite
t
h
e
co
-
a
n
d
cr
o
s
s
p
o
lar
s
ca
tter
ed
elec
tr
ic
f
ield
s
in
t
h
e
f
ar
zo
n
e
as
)
(
)
e
x
p
(
)
ˆ
ˆ
(
1
1
s
cp
B
R
R
jk
k
j
j
z
E
(
1
9
)
)
(
)
e
x
p
(
)
ˆ
ˆ
(
1
1
s
xp
C
L
L
jk
k
j
j
z
E
(
2
0
)
W
h
er
e
o
e
q
R
qm
qm
m
m
B
c
S
B
j
,
1
1
,
0
)
c
o
s
,
(
)
(
(
2
1
)
)
(
C
is
o
b
tain
ed
f
r
o
m
(
2
1
)
,
b
y
ch
an
g
i
n
g
B
to
C
an
d
R
1
to
L
1
.
E
x
p
licit
ex
p
r
ess
io
n
s
f
o
r
th
e
n
o
r
m
alize
d
b
is
tatic
ec
h
o
w
id
t
h
o
f
th
e
r
i
g
h
t
-
an
d
le
f
t
-
p
o
lar
ized
w
av
e
s
ca
n
th
en
b
e
w
r
itte
n
as
2
)
(
B
R
R
,
2
)
(
C
L
L
(
2
3
)
W
h
en
,
i
(
2
3
)
y
ield
s
t
h
e
e
x
ac
t n
o
r
m
al
ized
co
-
an
d
cr
o
s
s
-
p
o
lar
b
is
tatic
ec
h
o
w
id
t
h
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
C
S
o
f Ch
ir
a
l E
llip
tic
C
ylin
d
er E
m
b
ed
d
ed
in
I
n
fin
ite
C
h
ir
a
l Med
i
u
m
(
A
-
K
.
Ha
mid
)
2735
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
Nu
m
er
ical
r
es
u
lts
ar
e
p
r
esen
ted
as
n
o
r
m
alize
d
ec
h
o
p
att
er
n
w
id
th
s
f
o
r
is
o
tr
o
p
ic
ch
ir
al
ellip
tic
c
y
li
n
d
er
s
o
f
d
i
f
f
er
en
t
ax
ia
l
r
atio
s
,
e
m
b
ed
d
ed
in
a
n
o
th
er
is
o
tr
o
p
ic
ch
ir
al
m
ed
iu
m
o
f
d
if
f
er
en
t
r
elat
iv
e
p
er
m
i
tti
v
ities
a
n
d
c
h
ir
alit
y
p
a
r
a
m
eter
s
.
First,
w
e
ch
o
s
e
th
e
p
ar
am
eter
s
,
0
.
1
1
r
,
0
.
1
1
r
0
.
0
1
0
k
f
o
r
th
e
ex
ter
io
r
r
eg
io
n
,
,
16
.
0
0
a
k
,
0
.
4
2
r
,
0
.
2
2
r
,
15
.
0
2
0
k
an
d
a
x
ial
r
atio
a
/
b
=
1
.
0
0
1
f
o
r
th
e
c
y
li
n
d
er
,
an
d
o
180
i
.
T
o
v
alid
ate
th
e
a
n
al
y
s
i
s
an
d
t
h
e
s
o
f
t
w
ar
e
u
s
ed
f
o
r
ca
lcu
lati
n
g
t
h
e
r
es
u
lts
,
w
e
co
m
p
u
ted
th
e
n
o
r
m
alize
d
ec
h
o
p
atter
n
w
id
t
h
s
f
o
r
t
h
e
ab
o
v
e
c
h
ir
al
c
y
li
n
d
er
w
h
en
it
i
s
e
x
cited
b
y
a
p
lan
e
w
a
v
e
t
h
at
i
s
tr
an
s
v
er
s
e
m
a
g
n
etica
ll
y
(
T
M)
p
o
lar
ized
in
th
e
ax
ial
z
-
d
ir
ec
tio
n
,
th
at
i
s
o
b
tain
ed
b
y
s
u
m
m
in
g
r
i
g
h
t
-
a
n
d
lef
t
-
cir
cu
lar
l
y
p
o
lar
ized
in
cid
en
t
w
a
v
es
o
f
eq
u
a
l
f
ield
a
m
p
li
tu
d
es.
T
h
e
r
esu
lts
ar
e
in
g
o
o
d
ag
r
ee
m
en
t
w
i
th
t
h
o
s
e
in
[
15
]
f
o
r
a
n
a
n
alo
g
o
u
s
c
h
ir
a
l
cir
cu
lar
c
y
l
i
n
d
er
i
n
f
r
ee
s
p
ac
e,
v
er
i
f
y
i
n
g
t
h
e
ac
c
u
r
ac
y
o
f
th
e
an
al
y
s
i
s
a
n
d
t
h
at
o
f
th
e
s
o
f
t
w
ar
e
u
s
ed
f
o
r
th
e
ca
lcu
latio
n
s
.
Fig
u
r
e
1
.
No
r
m
alize
d
co
-
p
o
lar
an
d
cr
o
s
s
p
o
lar
b
is
tatic
s
ca
tter
in
g
w
id
t
h
s
a
g
ai
n
s
t t
h
e
s
ca
tter
i
n
g
a
n
g
le,
f
o
r
a
ch
ir
al
ellip
tic
c
y
lin
d
er
o
f
a
x
i
al
r
atio
a
/
b
=
1
.
0
0
1
,
w
it
h
,
16
.
0
0
a
k
,
0
.
4
2
r
,
0
.
2
2
r
an
d
,
15
.
0
2
0
k
an
d
lo
ca
ted
in
f
r
ee
s
p
ac
e,
w
h
e
n
it is
e
x
cited
b
y
a
T
M
p
o
lar
iz
ed
p
lan
e
w
a
v
e
in
cid
e
n
t a
t t
h
e
an
g
le
180
o
i
.
Fig
u
r
e
2
d
is
p
la
y
s
t
h
e
n
o
r
m
ali
ze
d
r
ig
h
t
-
a
n
d
lef
t
-
p
o
lar
ized
ec
h
o
-
w
id
t
h
p
atter
n
s
f
o
r
a
ch
i
r
al
ellip
tic
c
y
li
n
d
er
o
f
ax
ial
r
atio
2
,
w
i
th
p
ar
a
m
eter
s
,
16
.
0
0
a
k
,
0
.
4
2
r
,
0
.
2
2
r
an
d
,
15
.
0
2
0
k
w
h
en
it
is
e
m
b
ed
d
e
d
in
a
ch
ir
al
m
ed
i
u
m
h
av
in
g
p
ar
a
m
eter
s
,
0
.
1
1
r
,
0
.
1
1
r
an
d
,
1
.
0
1
0
k
an
d
ex
cited
b
y
a
R
C
P
p
lan
e
w
av
e
in
cid
e
n
t a
t t
h
e
a
n
g
le
180
o
i
.
I
n
th
is
f
i
g
u
r
e,
t
h
e
d
o
m
i
n
an
t r
ig
h
t
-
p
o
lar
ized
ec
h
o
-
w
id
th
m
ag
n
i
t
u
d
e
d
ec
r
ea
s
es
g
r
ad
u
all
y
a
s
th
e
s
ca
t
ter
in
g
a
n
g
le
i
n
cr
ea
s
es
f
r
o
m
0
o
to
1
8
0
o
,
b
u
t
th
e
co
r
r
esp
o
n
d
in
g
lef
t
-
p
o
lar
ized
o
n
e
in
cr
ea
s
es
f
ir
s
t
f
r
o
m
0
o
to
1
2
0
o
,
an
d
th
en
d
ec
r
ea
s
e
s
.
Fig
u
r
e
3
s
h
o
w
s
th
e
r
ig
h
t
-
an
d
lef
t
-
p
o
lar
ized
ec
h
o
-
w
id
th
p
atter
n
s
f
o
r
th
e
ch
ir
al
ellip
tic
c
y
li
n
d
er
in
Fig
u
r
e
2
,
w
h
e
n
i
t
is
p
lace
d
in
a
ch
ir
al
m
ed
iu
m
w
h
ich
is
s
i
m
ilar
to
th
at
in
Fi
g
u
r
e
2
,
b
u
t
w
i
th
5
.
2
1
r
.
W
h
e
n
co
m
p
ar
ed
w
ith
t
h
e
p
lo
ts
in
Fig
u
r
e
2
,
w
e
s
ee
th
at
as
t
h
e
s
ca
tter
in
g
an
g
le
in
cr
ea
s
e
s
f
r
o
m
0
o
to
1
8
0
o
,
th
e
r
ed
u
ctio
n
o
f
t
h
e
r
i
g
h
t
-
p
o
lar
iz
ed
ec
h
o
-
w
id
t
h
m
a
g
n
it
u
d
e
is
m
u
c
h
h
i
g
h
er
.
A
l
s
o
th
e
lef
t
-
p
o
lar
ized
ec
h
o
-
w
id
th
m
ag
n
it
u
d
e
i
s
m
u
c
h
lo
w
er
f
o
r
a
ll scatter
i
n
g
an
g
le
s
,
t
h
o
u
g
h
its
b
eh
av
io
r
is
s
o
m
e
w
h
a
t si
m
i
lar
to
th
at
o
f
t
h
e
s
a
m
e
in
Fi
g
u
r
e
2
.
0
20
40
60
80
100
120
140
160
180
-
9
.
5
-9
-
8
.
5
-8
-
7
.
5
-7
-
6
.
5
-6
-
5
.
5
-5
(
d
e
g
)
(
)/
d
B
c
o
-
p
o
l
a
r
i
z
e
d
c
r
o
s
s
-
p
o
l
a
r
i
z
e
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
7
3
1
–
2
7
3
7
2736
Fig
u
r
e
2
.
No
r
m
alize
d
r
i
g
h
t
-
a
n
d
lef
t
-
p
o
lar
ized
b
is
tatic
s
ca
tter
in
g
w
id
th
s
ag
ai
n
s
t t
h
e
s
ca
tter
i
n
g
a
n
g
le
f
o
r
a
ch
ir
al
ellip
tic
c
y
lin
d
er
o
f
a
x
ial
r
atio
2
.
0
,
an
d
h
av
i
n
g
t
h
e
s
a
m
e
p
ar
am
eter
s
a
s
th
o
s
e
f
o
r
Fig
u
r
e
1,
b
u
t lo
ca
ted
in
a
ch
ir
al
m
ed
i
u
m
w
it
h
p
ar
a
m
et
er
s
,
0
.
1
1
r
,
0
.
1
1
r
an
d
,
1
.
0
1
0
k
w
h
en
i
t is e
x
cited
b
y
a
R
C
P
p
lan
e
w
av
e
in
cid
en
t a
t a
n
i
n
cid
en
t a
n
g
le
o
f
1
8
0
o
.
Fig
u
r
e
3
.
No
r
m
alize
d
r
i
g
h
t
-
a
n
d
lef
t
-
p
o
lar
ized
b
is
tati
c
s
ca
tter
in
g
w
id
th
s
ag
ai
n
s
t t
h
e
s
ca
tter
i
n
g
a
n
g
le
f
o
r
th
e
ch
ir
al
ellip
tic
c
y
lin
d
er
i
n
Fi
g
u
r
e
2
,
w
h
e
n
it is
p
lace
d
in
a
c
h
ir
al
m
ed
iu
m
w
h
ic
h
is
s
i
m
i
lar
to
th
at
i
n
Fi
g
u
r
e
2
,
b
u
t
w
ith
,
5
.
2
1
r
an
d
illu
m
i
n
ated
b
y
a
R
C
P
p
lan
e
w
a
v
e
in
cid
e
n
t a
t 1
8
0
o
.
4.
CO
NCLU
SI
O
N
An
ex
ac
t
s
o
lu
tio
n
to
t
h
e
p
r
o
b
le
m
o
f
s
ca
tter
in
g
o
f
a
R
C
P
p
lan
e
w
av
e
b
y
a
ch
ir
al
ell
ip
ti
c
c
y
li
n
d
er
p
lace
d
in
an
o
th
er
ch
ir
al
m
ed
i
u
m
,
p
r
ese
n
ted
u
s
i
n
g
th
e
m
et
h
o
d
o
f
s
ep
ar
atio
n
o
f
v
ar
iab
les.
R
esu
lts
h
av
e
b
ee
n
p
r
esen
ted
as
n
o
r
m
alize
d
b
is
ta
tic
r
ig
h
t
-
an
d
lef
t
-
p
o
lar
ized
ec
h
o
-
w
id
t
h
p
atter
n
s
f
o
r
ch
ir
al
ellip
tic
c
y
li
n
d
er
s
o
f
d
if
f
er
e
n
t
ax
ial
r
atio
s
an
d
ch
i
r
al
m
ater
ia
ls
,
to
s
h
o
w
th
e
e
f
f
ec
ts
o
f
t
h
ese
o
n
s
ca
tter
i
n
g
.
I
t
is
s
ee
n
th
at
t
h
e
p
r
esen
ce
o
f
t
w
o
d
i
f
f
er
e
n
t
c
h
i
r
al
m
ater
ial
s
co
u
ld
s
i
g
n
if
ican
t
l
y
i
n
f
l
u
en
ce
th
e
le
f
t
-
a
n
d
r
ig
h
t
-
p
o
lar
ized
p
atter
n
w
id
t
h
s
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
P
r
o
f
.
A
-
K.
Ha
m
id
w
o
u
ld
lik
e
to
ac
k
n
o
w
led
g
e
t
h
e
s
u
p
p
o
r
t
g
iv
e
n
b
y
t
h
e
U
n
i
v
er
s
it
y
o
f
S
h
ar
j
ah
,
Sh
ar
j
ah
,
Un
ited
A
r
ab
E
m
ir
ate
s
.
0
20
40
60
80
100
120
140
160
180
-
1
8
-
1
6
-
1
4
-
1
2
-
1
0
-8
-6
-4
-2
(
d
e
g
)
(
)
i
/
i
(
d
B
)
R
i
g
h
t
-
p
o
l
a
r
i
z
e
d
(
i
=
R
)
L
e
f
t
-
p
o
l
a
r
i
z
e
d
(
i
=
L
)
0
20
40
60
80
100
120
140
160
180
-
3
0
-
2
5
-
2
0
-
1
5
-
1
0
-5
0
(
d
e
g
)
(
)
i
/
i
(
d
B
)
R
i
g
h
t
-
p
o
l
a
r
i
z
e
d
(
i
=
R
)
L
e
f
t
-
p
o
l
a
r
i
z
e
d
(
i
=
L
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
R
C
S
o
f Ch
ir
a
l E
llip
tic
C
ylin
d
er E
m
b
ed
d
ed
in
I
n
fin
ite
C
h
ir
a
l Med
i
u
m
(
A
-
K
.
Ha
mid
)
2737
RE
F
E
R
E
NC
E
S
[1
]
D
.
L
.
J
a
g
g
a
rd
,
A
.
R.
M
ick
e
lso
n
,
a
n
d
C.
H.
P
a
p
a
s,
“
On
e
lec
tro
m
a
g
n
e
ti
c
w
a
v
e
s
in
c
h
iral
m
e
d
ia,”
A
p
p
l.
P
h
y
s.,
v
o
l.
1
8
,
p
p
.
2
1
1
-
2
1
6
,
1
9
7
9
.
[2
]
N.
En
g
h
e
ta an
d
P
.
P
e
let,
“
M
o
d
e
s
in
c
h
ir
o
-
w
a
v
e
g
u
id
e
s,” Op
t.
L
e
tt
.
,
v
o
l.
1
4
,
p
p
.
5
9
3
-
5
9
5
,
Ju
n
e
1
9
8
9
.
[3
]
C.
Ef
ti
m
iu
a
n
d
L
.
W
.
P
e
a
rso
n
,
“
G
u
id
e
d
e
lec
tro
m
a
g
n
e
ti
c
w
a
v
e
s
in
c
h
iral
m
e
d
ia,”
Ra
d
io
S
c
i.
,
v
o
l.
2
4
,
p
p
.
3
5
1
-
3
5
9
,
M
a
y
-
Ju
n
e
1
9
8
9
.
[4
]
N.
En
g
h
e
ta
a
n
d
S
.
Ba
ss
iri
,
“
On
e
-
a
n
d
tw
o
-
d
ime
n
sio
n
a
l
d
y
a
d
ic
G
re
e
n
’s
f
u
n
c
ti
o
n
s
i
n
c
h
iral
m
e
d
i
a
,
”
IEE
E
T
ra
n
s.
A
n
ten
n
a
s P
r
o
p
a
g
a
t.
,
v
o
l.
3
7
,
p
p
.
5
1
2
-
5
1
5
,
A
p
r.
1
9
8
9
.
[5
]
N.
En
g
h
e
ta
a
n
d
D.
L
.
Ja
g
g
a
rd
,
“
El
e
c
tro
m
a
g
n
e
ti
c
c
h
iralit
y
a
n
d
it
s
a
p
p
li
c
a
ti
o
n
s,’
’
IEE
E
A
n
ten
n
a
s
P
r
o
p
a
g
a
t.
S
o
c
.
Ne
w
sle
tt
e
r,
v
o
l.
3
0
,
p
p
.
6
-
1
2
,
Oc
t.
1
9
8
8
.
[6
]
S
.
Ba
ss
iri
,
C.
H.
P
a
p
a
s,
a
n
d
N.
En
g
h
e
ta,
“
El
e
c
tro
m
a
g
n
e
ti
c
w
a
v
e
p
ro
p
a
g
a
ti
o
n
th
r
o
u
g
h
a
d
iele
c
tri
c
-
c
h
ir
a
l
in
terf
a
c
e
a
n
d
th
ro
u
g
h
a
c
h
iral
sla
b
,
”
J.
Op
t.
S
o
c
.
Am
.
A
,
v
o
l.
5
,
p
p
.
1
4
5
0
-
1
4
5
9
,
S
e
p
t.
1
9
8
8
.
[7
]
W
.
S
.
W
e
ig
lh
o
f
e
r,
“
Iso
tro
p
ic ch
ir
a
l
m
e
d
ia an
d
sc
a
lar He
rtz p
o
ten
ti
a
ls,
”
J.
P
h
y
s.
A
,
v
o
l.
2
1
,
p
p
.
2
2
4
9
-
2
2
5
1
,
1
9
8
8
.
[8
]
D.
L
.
Ja
g
g
a
rd
,
X
.
S
u
n
,
a
n
d
N.
En
g
h
e
ta,
“
Ca
n
o
n
ica
l
so
u
rc
e
s
a
n
d
d
u
a
li
ty
in
c
h
iral
m
e
d
ia,”
I
EE
E
T
ra
n
s.
A
n
ten
n
a
s
P
r
o
p
a
g
a
t.
,
v
o
l
.
3
6
,
p
p
.
1
0
0
7
-
1
0
1
3
,
Ju
ly
1
9
8
8
.
[9
]
A
.
Lak
h
tak
i
a
,
V
.
V
.
V
a
ra
d
a
n
,
a
n
d
V
.
K.
V
a
ra
d
a
n
,
“
F
iel
d
e
q
u
a
ti
o
n
s,
H
u
y
g
e
n
s’s
p
rin
c
ip
le,
in
teg
r
a
l
e
q
u
a
ti
o
n
s,
a
n
d
th
e
o
re
m
s
f
o
r
ra
d
iatio
n
a
n
d
sc
a
tt
e
rin
g
o
f
e
lec
tro
m
a
g
n
e
ti
c
wa
v
e
s in
iso
tro
p
ic ch
i
ra
l
m
e
d
ia,” J.
Op
t.
S
o
c
.
Am
.
A
,
v
o
l.
5
,
p
p
.
1
7
5
-
1
8
4
,
F
e
b
.
1
9
8
8
.
[1
0
]
A
.
Lak
h
tak
ia,
V
.
V
.
V
a
ra
d
a
n
,
a
n
d
V
.
K.
V
a
ra
d
a
n
,
“
Ra
d
iati
o
n
b
y
a
stra
ig
h
t
th
in
-
w
ire
a
n
ten
n
a
e
m
b
e
d
d
e
d
i
n
a
n
iso
tro
p
ic ch
iral
m
e
d
ia,’’
IEE
E
T
r
a
n
s.
El
e
c
tro
m
a
g
n
.
Co
m
p
a
t.
,
v
o
l.
3
0
,
p
p
.
8
4
-
8
7
,
F
e
b
.
1
9
8
8
.
[1
1
]
B.
N.
Kh
a
ti
r
a
n
d
A
.
R.
S
e
b
a
k
,
“
S
lo
t
a
n
ten
n
a
o
n
a
c
o
n
d
u
c
ti
n
g
e
ll
ip
t
ic
c
y
li
n
d
e
r
c
o
a
ted
b
y
n
o
n
c
o
n
f
o
c
a
l
c
h
iral
m
e
d
ia,
”
P
r
o
g
.
El
e
c
tro
m
a
g
.
Re
s.
(P
IER),
v
o
l.
9
3
,
p
p
.
1
2
5
–
1
4
3
,
2
0
0
9
.
[1
2
]
M
.
S
.
Klu
sk
e
n
s
a
n
d
E
.
H.
Ne
wm
a
n
,
"
S
c
a
tt
e
rin
g
b
y
a
m
u
lt
il
a
y
e
r
c
h
iral
c
y
li
n
d
e
r,
"
IEE
E
T
ra
n
s.
A
n
ten
n
a
s
P
r
o
p
a
g
a
t.
,
v
o
l.
3
9
,
p
p
.
9
1
-
9
6
,
1
9
9
1
.
[1
3
]
A
.
Z.
El
sh
e
rb
e
n
i,
M
.
H
.
A
l
S
h
a
rk
a
wy
,
a
n
d
S
.
F
.
M
a
h
m
o
u
d
,
“
El
e
c
tro
m
a
g
n
e
ti
c
sc
a
tt
e
rin
g
f
ro
m
a
2
-
D
c
h
iral
stri
p
sim
u
late
d
b
y
c
ircu
lar
c
y
li
n
d
e
rs
f
o
r
u
n
if
o
rm
a
n
d
n
o
n
-
u
n
if
o
rm
c
h
iral
it
y
d
istri
b
u
ti
o
n
,
”
I
EE
E
T
ra
n
s.
A
n
t
e
n
n
a
s P
ro
p
a
g
a
t,
v
o
l.
5
2
,
p
p
.
2
2
4
4
-
2
2
5
2
,
2
0
0
4
.
[1
4
]
S
.
A
h
m
e
d
a
n
d
Q.
A
.
Na
q
v
i,
“
El
e
c
tro
m
a
g
n
e
ti
c
sc
a
tt
e
rin
g
f
ro
m
a
c
h
iral
c
o
a
ted
n
ih
il
it
y
c
y
li
n
d
e
r,
”
P
r
o
g
re
ss
in
El
e
c
tro
m
a
g
.
Re
s.
L
e
tt
.
,
v
o
l.
1
8
,
p
p
.
4
1
-
5
0
,
2
0
1
0
.
[1
5
]
R.
G
.
Ro
jas
,
"
In
teg
ra
l
e
q
u
a
ti
o
n
s
f
o
r
E
M
sc
a
tt
e
rin
g
b
y
h
o
m
o
-
g
e
n
e
o
u
s/in
h
o
m
o
g
e
n
e
o
u
s
tw
o
-
d
i
m
e
n
sio
n
a
l
c
h
iral
b
o
d
ies
"
,
IEE
P
ro
c
.
M
icro
w
a
v
e
An
ten
n
a
s
P
r
o
p
a
g
.
,
v
o
l.
1
4
1
,
p
p
.
3
8
5
-
3
9
2
,
1
9
9
4
.
[1
6
]
M
.
A
.
A
l
-
Ka
n
h
a
l
a
n
d
E.
A
rv
a
s,
“
El
e
c
tro
m
a
g
n
e
ti
c
sc
a
tt
e
rin
g
f
ro
m
a
c
h
iral
c
y
li
n
d
e
r
o
f
a
rb
it
ra
r
y
c
ro
s
s
se
c
ti
o
n
,
”
IEE
E
T
ra
n
s.
A
n
ten
n
a
s P
ro
p
a
g
.
,
v
o
l.
4
4
,
p
p
.
1
0
4
1
–
1
0
4
9
,
Ju
l.
1
9
9
6
.
[1
7
]
A
.
S
e
m
ich
a
e
v
sk
y
,
A
.
Ak
y
u
rtl
u
,
D.
Ke
rn
,
D.
H.
W
e
rn
e
r,
a
n
d
M
.
G
.
Bra
y
,
No
v
e
l
BI
-
F
D
T
D
a
p
p
ro
a
c
h
f
o
r
th
e
a
n
a
l
y
si
s
o
f
c
h
iral
c
y
li
n
d
e
rs an
d
sp
h
e
re
s,” I
EE
E
T
ra
n
s.
A
n
ten
n
a
s
P
ro
p
a
g
a
t.
,
v
o
l.
5
4
,
p
p
.
9
2
5
-
93
2
,
2
0
0
6
.
[1
8
]
S
.
S
h
o
u
k
a
t,
S
.
A
h
m
e
d
,
M
.
A
sh
ra
f
,
A
.
S
y
e
d
a
n
d
Q.
Na
q
v
i,
“
S
c
a
tt
e
rin
g
o
f
e
lec
tro
m
a
g
n
e
ti
c
p
lan
e
w
a
v
e
f
ro
m
a
c
h
iral
c
y
li
n
d
e
r
p
lac
e
d
i
n
a
c
h
iral
m
e
ta
m
a
teria
l,
”
J.
El
e
c
tro
m
a
g
.
W
a
v
e
s
A
p
p
li
c
.
,
v
o
l
.
2
7
,
p
p
.
1
1
2
7
-
1
1
3
5
,
2
0
1
3
.
[1
9
]
B.
N.
Kh
a
ti
r,
M
.
A
l
-
Ka
n
h
a
l
,
a
n
d
A
.
S
e
b
a
k
,
“
El
e
c
tro
m
a
g
n
e
ti
c
w
a
v
e
sc
a
tt
e
rin
g
b
y
e
ll
ip
ti
c
c
h
iral
c
y
li
n
d
e
r
,
”
J.
El
e
c
tro
m
a
g
.
W
a
v
e
s
A
p
p
li
c
.
,
v
o
l.
2
0
,
p
p
.
1
3
7
7
–
1
3
9
0
,
2
0
0
6
.
[2
0
]
A
-
K.
Ha
m
id
,
“
EM
sc
a
tt
e
rin
g
b
y
a
lo
ss
y
d
iele
c
tri
c
-
c
o
a
ted
n
ih
il
it
y
e
ll
ip
ti
c
c
y
li
n
d
e
r,
”
A
p
p
l.
Co
m
p
.
E
lec
tro
m
a
g
.
S
o
c
.
(A
CES
)
Jo
u
rn
a
l,
v
o
l
.
2
5
,
p
p
.
4
4
4
-
4
4
9
,
2
0
1
0
.
[2
1
]
A
-
K.
Ha
m
id
,
"
S
c
a
tt
e
rin
g
b
y
c
h
ira
l
lo
ss
y
m
e
ta
m
a
teria
l
e
ll
ip
ti
c
c
y
li
n
d
e
rs”
A
p
p
l.
Co
m
p
.
E
lec
tro
m
a
g
.
S
o
c
.
Jo
u
rn
a
l,
v
o
l.
2
7
,
p
p
.
6
0
3
-
6
0
9
,
2
0
1
2
.
[2
2
]
I.
V
.
L
in
d
e
ll
,
A
.
H.
S
ih
v
o
la,
S
.
A
.
T
re
t
y
a
k
o
v
,
a
n
d
A
.
J.
V
ii
tan
e
n
,
El
e
c
tro
ma
g
n
e
ti
c
W
a
v
e
s
in
Ch
ira
l
a
n
d
Bi
-
is
o
tro
p
ic
M
e
d
ia
,
A
rtec
h
Ho
u
se
,
Bo
st
o
n
,
U
S
A
,
1
9
9
4
.
[2
3
]
A.
-
K.
H
a
m
id
a
n
d
F
.
R.
Co
o
ra
y
,
“
S
c
a
tt
e
rin
g
f
ro
m
a
c
h
irall
y
c
o
a
te
d
DB
e
ll
ip
ti
c
c
y
li
n
d
e
r,
”
A
ËU,
v
o
l.
6
8
,
p
p
.
1
1
0
6
-
111
1
,
2
0
1
4
.
[2
4
]
A.
-
K.
Ha
m
id
a
n
d
F
.
R
.
Co
o
ra
y
,
“
Tw
o
-
d
ime
n
sio
n
a
l
sc
a
tt
e
rin
g
b
y
a
h
o
m
o
g
e
n
e
o
u
s
g
y
ro
tro
p
ic
-
ty
p
e
e
ll
ip
ti
c
c
y
li
n
d
e
r,
”
A
d
v
a
n
.
El
e
c
tro
m
a
g
.
,
v
o
l.
5
,
p
p
.
1
0
6
-
1
1
2
,
De
c
.
2
0
1
6
.
[2
5
]
A.
-
K.
Ha
m
id
,
“
S
c
a
tt
e
rin
g
b
y
a
c
h
iral
e
ll
ip
ti
c
c
y
li
n
d
e
r
p
lac
e
d
in
a
n
o
th
e
r
in
f
in
it
e
c
h
iral
m
e
d
iu
m
,
”
A
p
p
l.
Co
m
p
.
El
e
c
tro
m
a
g
.
S
o
c
.
Co
n
f
.
,
F
lo
re
n
c
e
,
M
a
rc
h
,
2
0
1
7
Evaluation Warning : The document was created with Spire.PDF for Python.