Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
5, N
o
. 5
,
O
c
tob
e
r
201
5, p
p
. 1
012
~101
7
I
S
SN
: 208
8-8
7
0
8
1
012
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Complementary Split Ring Reso
nator Based Sensor for Crack
Detection
Rajni *, Am
anpreet
Kaur
**, Anupm
a Marwaha***
*Associate Professor, Departmen
t
of
ECE,
SBSSTC (PTU), Kapu
rtha
la, Punjab, I
ndia.
** M.
Tech
., Research Scho
lar
,
Department o
f
ECE, SBSSTC (PTU), Kapur
thala, Punjab
, Ind
i
a.
*** Associate Pr
ofessor,
Depar
tment of
ECE,
S
L
IET
(Deem
ed
Univers
i
t
y
),
Lon
gowal, P
unj
ab,
I
ndia.
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 22, 2015
Rev
i
sed
Au
g
13
, 20
15
Accepted Aug 26, 2015
In this pap
e
r, the performan
ce of
Com
p
lem
e
ntar
y Spli
t Ring
Resonato
r
(CSRR) based sensor is explor
ed b
y
v
a
r
y
ing
the geometrical par
a
meters of
a
sub m
illim
eter
crack
. Beh
a
vior
anal
ys
is of
th
e CSRR based
sensor is
performed b
y
v
a
riation in
the
paramete
rs of
crack. V
a
riation
in resonant
frequency
of sensor is observed in
ever
y
case and is noteworth
y
for our
purpose. Th
is signifies
the sen
s
or’s
abilit
y
to
dete
ct
cra
c
k o
f
differ
e
n
t
geometrical p
a
rameters on a
m
e
t
a
l s
u
rfac
e
.
T
he
ef
fect
ivenes
s
of th
e s
e
ns
or is
being con
t
emplated
through this a
pproach
which is appr
eciable. An
illustrious perfo
r
m
ance of the
cr
ack de
tec
tion se
nsor has been di
scovered in
this anal
ysis
. Sim
u
lated resul
t
s show th
e feasibi
lit
y of de
te
cting
ver
y
sm
a
l
l
cracks
up
to 25
ߤ
m
width, i
n
th
e
m
e
talli
c s
u
rf
aces
.
Keyword:
C
o
mp
l
e
me
n
t
a
r
y
Crack detection
Hi
g
h
fre
que
nc
y
Micro
s
trip lin
e
Sp
lit ring
reson
a
tor
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Am
anpreet
Ka
ur
,
Depa
rt
m
e
nt
of
El
ect
roni
cs
an
d C
o
m
m
uni
cati
on
E
ngi
neeri
n
g
,
Punja
b
Techni
cal
Uni
v
ersity,
Kapurthala.
Em
a
il: a
m
an
n
a
tk
aur@g
m
ail.c
o
m
1.
INTRODUCTION
Detection of irregularities s
u
c
h
as
crac
k
was
a criti
cal issue
earlier i
n
all s
t
ructural c
o
m
pone
nts t
h
at
lead
s to failure of th
e system
.
In 1
9
9
0
’
s,
near
-fi
el
d
m
i
cr
owa
v
e a
n
d m
i
ll
im
et
er-wa
v
e t
echni
que
s
hav
e
bee
n
use
d
ext
e
n
s
i
v
el
y
for det
ect
i
ng m
e
t
a
l
fatigue a
n
d asse
ssi
ng t
h
ei
r va
ri
o
u
s cha
r
act
e
r
i
s
t
i
c
s [1-
3
]
.
These
tech
n
i
qu
es
were em
p
l
o
y
ed
to
find
th
e ex
ten
t
o
f
co
rrosion
precurso
r
p
ittin
g
and
h
a
v
e
d
i
stin
gu
ish
e
d
cred
its
ove
r a
n
other s
t
anda
rd technique
lik
e
NDT
,
whe
n
ide
n
tifying c
r
acks
in
uncove
red and c
ove
re
d s
u
rfaces.
M
o
re
ove
r, t
h
e
y
are rel
i
a
bl
e
and c
o
st
ef
f
e
ctiv
e tech
n
i
qu
es. I
n
[4
], op
en-
e
nd
ed
w
a
v
e
gu
id
e sensor
and
du
al-
beha
vior resonator (DBR) fil
t
ers we
re also
propounde
d for detection of
micro-crac
ks i
n
m
e
ta
llic surfaces.
Howev
e
r, th
ese works h
a
d
so
m
e
li
mi
tatio
n
s
lik
e
low sen
s
itiv
ity an
d lo
w
o
p
e
ration
a
l frequ
en
cy. So
,
a
com
p
lem
e
ntary
split-rin
g
res
onat
o
r
(CSRR)
with a m
i
cro-
strip
lin
e was
u
s
ed
in
[5
] to
d
e
tect cracks in
m
e
ta
l
surfaces as
narrow as 100
ߤ
m
while operati
n
g around 5
GHz.
A C
S
R
R
sen
s
or i
s
pri
n
t
e
d o
v
er
gr
o
u
n
d
pl
a
n
e o
f
a
m
i
crost
r
i
p
l
i
n
e an
d
pri
n
t
e
d ci
rc
ui
t
boa
r
d
t
ech
nol
ogy
was u
s
ed
fo
r
fab
r
i
cat
i
o
n
.
B
e
i
ng s
u
b
-
wave
l
e
ngt
h
reso
nat
o
rs,
C
S
R
R
are
very
s
m
al
l
t
h
an t
h
e
t
r
adi
t
i
onal
m
i
crost
r
i
p
res
onat
o
rs
. C
S
R
R
be
have
s as
an
el
ect
ri
c
dipole that
can be
excited
by
an a
x
ial
electric field. CSRR
geom
etery pre
s
ente
d in [5
] is also
b
e
i
n
g used
f
o
r
finding
defects
in m
e
tallic surfaces,
usi
n
g a s
ubs
t
r
ate inte
grated wa
ve
gui
de (SIW) as
in
[6].
Max
i
m
u
m
met
a
m
a
terial tran
smissio
n
lin
es h
a
v
e
b
e
en
acco
m
p
lish
e
d
b
y
lo
ad
ing
th
e
host lin
es with
ser
i
es cap
acitan
ces and
shu
n
t
in
du
ctan
ces
(
l
u
m
p
e
d
o
r
semi-
l
u
m
p
e
d
)
[
7–9]. Ho
w
e
v
e
r, artif
icial lin
es load
ed
with
electrically s
m
a
ll reso
n
a
tors, su
ch
as sp
lit-ri
n
g
reso
nato
rs (
S
RRs) also k
n
o
w
n
as left-
h
ande
d
m
e
t
a
m
a
t
e
ri
al
[10
-
11]
o
r
C
S
R
R
s [1
2-
1
3
]
are
bei
n
g re
gi
st
er
ed an
d em
pl
oy
ed i
n
t
h
e
desi
g
n
i
n
g o
f
ant
e
nn
as and
no
vel
m
i
crowa
v
e ci
rc
ui
t
s
[
1
4-
15]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
101
2
–
10
17
1
013
Mater
i
al r
eactio
n to
electrodyn
amic f
i
eld
s
i
s
b
a
sed
on
their
electr
i
cal pro
p
e
r
ties, lik
e per
m
eab
ili
ty
,
p
e
rm
itt
iv
ity an
d
con
d
u
c
tiv
ity. So
, to
ob
serv
e ch
an
g
e
s in
m
a
terial
Characterizati
on of
t
h
ese pro
p
e
r
t
i
e
s are
im
port
a
nt
. M
a
t
e
ri
al
im
perfect
i
ons
, suc
h
as subm
i
l
lim
et
er c
r
acks in m
e
tallic, alte
r the electrom
a
gnetic near-
fi
el
d di
st
ri
but
i
o
n
.
Thi
s
vari
a
t
i
on i
n
t
h
e
di
s
t
ri
but
i
o
n
of fi
el
d (i
.e.
pha
se
and m
a
gni
t
u
d
e
) i
s
an o
u
t
c
o
m
e of
a
m
en
d
m
en
ts in
th
e m
e
d
i
u
m
effectiv
e
essential sp
ecifica
t
i
ons
. T
h
ese
va
r
i
at
i
ons are
u
s
e
d
as a
n
i
n
di
cat
i
on
f
o
r
t
h
e pu
rp
ose
of
det
ect
i
ng crac
k
,
i
s
t
h
e key
el
em
ent
behi
nd this crack detection m
echanism
e
m
ployed in metal
surfaces. Akin
approach is be
i
n
g
us
ed
to figure out def
ects
in a
n
alum
inum plate.
In t
h
e
pre
s
ent
e
d w
o
r
k
, a se
nso
r
based
o
n
si
ngl
e C
S
RR is u
s
ed
to
d
e
tect
s
m
all crack of va
rious
specification.
The a
n
alysis of CSRR se
nsor is ca
rried
out
by
vary
i
ng t
h
e pa
ram
e
t
e
rs o
f
crac
k
.
Here
per
f
o
r
m
a
nce anal
y
s
i
s
of
sens
or i
s
of
p
r
i
m
e
conce
r
n.T
h
e s
a
m
e
m
odel
ha
s bee
n
u
s
e t
o
det
ect
1
00
ߤ
m crac
k
p
r
ev
iou
s
ly, in
th
is wo
rk
cracks s
m
aller th
an
1
0
0
ߤ
m
are conside
r
ed t
h
at has not
bee
n
a
n
alyzed with previous
p
r
op
o
s
ed
stru
ctu
r
e. Ex
am
in
ing
th
e sen
s
itiv
ity o
f
sen
s
o
r
to
b
e
ab
le to detect crack
s of d
i
fferen
t
wid
t
h
s
i
n
micro
m
e
t
ers an
d
d
e
p
t
h
s
in
milli
meter is b
e
i
n
g
en
co
urag
ed
h
e
re. In
th
is p
a
p
e
r, a b
a
ck
grou
nd
of th
e
work
do
ne
i
n
t
h
e area ex
p
l
ore
d
i
s
gi
ve
n i
n
Sect
i
on
1. Se
ct
i
on 2
prese
n
t
s
t
h
e desi
g
n
an
d w
o
r
k
i
n
g o
f
C
S
R
R
based s
e
ns
or.
Sect
i
on
3
gi
v
e
s
res
u
l
t
s
an
d a
n
al
y
s
i
s
. Sect
i
on
4
gi
ves
co
ncl
u
si
on
o
f
pape
r.
2.
DESIG
N
A
N
D
W
O
R
K
IN
G
OF
CS
RR
B
A
SED
SE
NS
OR
C
S
R
R
are sm
al
l
st
ruct
ures
havi
ng s
u
b
-
wa
vel
e
n
g
t
h
res
o
n
a
nt
fre
que
ncy
.
These st
ruct
u
r
e exhi
bi
t
s
reso
na
nt
be
ha
v
i
or
due
t
o
t
h
e
i
n
t
e
rnal
i
n
d
u
ct
ance a
n
d
capa
c
itance present
in it, acc
or
di
n
g
t
o
Pe
nd
ry
'
s
wo
rk
[16
]
. Th
e CSR
R
h
a
s an
equ
i
v
a
len
t
LC reson
a
n
t
circu
it and
is u
s
ed
for
min
i
atu
r
iazatio
n
[17
-
1
8
]
, m
u
lti-b
a
nd
o
p
e
ration
[19
]
, in
wid
e
b
a
nd
filters [2
0
]
and d
e
tectio
n
pu
rp
o
s
e. A sing
le CSRR etch
ed
o
u
t
fro
m
th
e
g
r
ou
nd
plane
of the
microstri
p
line a
c
t as a crac
k
detection se
ns
o
r
as s
h
o
w
n i
n
F
i
gu
re
1.
Electri
c field
perpe
n
dicular
to se
nsor s
u
rface stim
ulates the CSRR se
nsor i
n
a
similar way t
o
m
o
st em
ployed SRR structure
whic
h
requ
ires Magnetic field
fo
r ex
citatio
n
[2
1-22
]. At re
sona
nce freque
n
cy of CSRR an
appreciable enhance
m
ent
in
en
erg
y
d
e
n
s
ities o
f
electric an
d
m
a
g
n
e
tic field
aro
und
the reson
a
tor can
b
e
o
b
s
erv
e
d. Th
e p
e
rtu
r
b
a
nce o
f
th
e Field
aroun
d
reso
n
a
t
o
r lead
to
a sh
ift i
n
th
e frequ
e
n
c
y an
d th
is sh
ift
d
e
p
e
nd
s
o
n
t
h
e
m
a
terial u
n
d
er test.
The va
rious integral param
e
ters of the m
a
terial are
important for c
h
aracterizing
chan
g
e
s in
th
e
materia
l
l
eadi
n
g
t
o
a
va
ri
at
i
on i
n
r
e
so
n
a
nce
fre
que
ncy
.
Figu
r
e
1 CSR
R
str
u
ct
u
r
e
In t
h
i
s
p
r
o
p
o
se
d w
o
r
k
, a vari
a
t
i
on i
n
t
h
e reso
nant
f
r
eq
ue
ncy
i
s
t
h
e i
ndi
cat
or of t
h
e p
r
o
p
e
r
wo
rki
n
g o
f
t
h
e sens
or
. A
n
al
y
z
i
ng t
h
e per
f
o
r
m
a
nce of t
h
e senso
r
by
va
ry
i
ng t
h
e
para
m
e
t
e
rs of crac
k i
s
m
a
i
n
conc
ern
of
th
is wo
rk
. Th
e sen
s
o
r
is d
e
sig
n
e
d
b
y
etch
i
n
g
CSRR
o
u
t
f
r
o
m
th
e g
r
o
und o
f
m
i
cr
o
s
tr
ip
an
d is ex
cited
b
y
a
micro
s
trip
lin
e as illu
strated
i
n
Fi
g
u
re
2
.
Th
i
s
micro
s
trip
li
ne act as a feed
i
n
g elem
en
t to
th
e sen
s
o
r
. Th
is h
a
s
b
een used earlier as a st
o
p
b
a
n
d
filter i
n
[12
]
. Th
erefo
r
e it wo
rk
s i
n
th
at
frequ
ency rang
e
wh
ere th
e
transm
ission coefficient is minim
u
m
.
A
R
oge
rs R
O
43
50 s
u
bst
r
at
e wi
t
h
a di
el
ect
ri
c const
a
nt
o
f
3.
6
6
,
th
ick
n
e
ss o
f
0
.
7
5
m
m
a
p
e
rm
i
ttiv
ity
ሺߝ
ሻ
o
f
3
.
66
,
an
d a lo
ss tangen
t
δ
of
0.003
1
h
a
s b
e
en
ch
o
s
en
for
d
e
sign of
sen
s
o
r
with
the wid
t
h
of th
e
m
i
cro
s
trip
line eq
u
a
l
to
1
.
68
mm
. It is we
ll k
n
o
wn
th
at
CSRR's d
i
m
e
n
s
io
ns
depe
n
d
on
i
t
s
r
e
so
nant
fre
q
u
e
n
cy
. S
o
,
l
a
rge
r
di
m
e
nsi
ons
of
C
S
R
R
assum
e
s hi
g
h
e
r
val
u
es o
f
i
n
d
u
ct
an
ce an
d
capaci
t
a
nce, t
h
us l
o
wer i
s
i
t
s
reso
na
nt
fre
q
u
e
ncy
.
Di
m
e
nsi
ons
o
f
a = 3m
m
,
g = s = 0.1
6
m
m
and t
= 0
.
2
7
mm
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Co
mp
lemen
t
a
r
y Sp
lit Rin
g
Reso
na
t
o
r Ba
sed
S
e
nso
r
fo
r Crack Detection
(Am
anp
reet Kau
r
)
1
014
are selected
for the
fa
bricate
d
se
ns
or. T
h
e
sens
or
op
erate
s
nea
r
around
5GHz
when pl
aced
ove
r al
uminu
m
pl
at
e co
vere
d
by
a l
a
y
e
r
of
t
h
i
n
Te
fl
o
n
fi
l
m
wi
t
h
t
h
i
c
kn
ess o
f
0.
07
6
2
.
Ac
qui
ri
n
g
res
ona
nce at
e
x
a
c
t
an
d
part
i
c
ul
a
r
f
r
e
q
uency
he
re i
s
o
f
l
east
i
m
port
a
nce.
Fi
gu
re
2.
Sca
n
ni
n
g
m
echani
s
m
of sens
or
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
The
geom
et
ri
cal
param
e
t
e
rs of c
r
ac
k l
i
k
e c
r
ack
wi
dt
h (
w
)
an
d crac
k
hei
ght
/
dept
h
(h
)
are va
ri
ed
t
o
analyze the pe
rform
a
nce of the se
nsor.
To t
e
st
t
h
e p
o
t
e
nt
i
a
l
of se
ns
or t
o
be a
b
l
e
t
o
det
ect
cracks
of
v
a
ri
o
u
s
wi
dt
h
s
an
d de
pt
hs
we ha
ve c
onsi
d
ere
d
se
ve
ral
cases. Ge
o
m
et
ri
cal
param
e
t
e
rs of c
r
ac
k l
i
k
e wi
dt
h an
d
dept
h
are va
ri
ed
kee
p
i
ng
o
n
e
of t
h
es
e param
e
t
e
rs c
onst
a
nt
at
o
n
e t
i
m
e
as di
scuss
e
d
bel
o
w.
A
n
y
val
u
e i
n
t
h
e
ra
nge
o
f
sub
-
m
i
ll
im
et
er fo
r c
r
ac
k wi
dt
h a
n
d
i
n
m
i
l
lim
et
er fo
r crac
k
de
pt
h ca
n
be c
hos
en
f
o
r t
e
st
i
n
g
t
h
e
pe
rf
orm
a
nce
of
sen
s
o
r
.
So, in
th
is wo
rk
in
itially we h
a
v
e
sel
ected
(i) a crack
with
wid
t
h
of 75
ߤ
m
,
keepi
n
g t
h
e wi
dt
h c
o
nst
a
nt
i
n
t
h
i
s
case an
d va
ry
i
ng t
h
e
dept
h o
f
t
h
e cr
ack f
r
om
1m
m to
1
.
5
m
m
,
th
en
to
2
m
m
resp
ectiv
ely. (ii) A crack
wi
t
h
de
pt
h of
2m
m
i
s
kept
fi
xed
a
n
d
va
ri
o
u
s
crac
k wi
dt
hs are
c
o
n
s
i
d
ere
d
m
easuri
n
g 2
5
ߤ
m,
5
0
ߤ
m
an
d 75
ߤ
m.
Secondly, anal
yses has also been ca
rried
out for the case whe
n
there is
m
o
re than one
crack on m
e
ta
l plate
unde
r test, c
o
nsidering t
w
o parallel cracks
on the m
a
terial
surface. In thi
s
case a
n
alysis has
bee
n
carri
ed
out
by
va
ry
i
n
g t
h
e
separat
i
o
n
di
st
ance
bet
w
ee
n t
h
e c
r
acks
f
r
om
1m
m
t
o
3m
m
respect
i
v
el
y
.
3.
1.
Perfor
ma
nce An
al
ysi
s
of
t
h
e
Sens
or by
V
a
ryi
n
g Wi
dt
h and
De
pth
o
f
Crac
k
i.
Effect
of
crac
k
de
pt
h
o
f
1m
m
,
1.
5 m
m
and
2
m
m
An
y ano
m
alie
s in
th
e
m
a
ter
i
al l
i
k
e
crack
s, lead
to
ch
ang
e
s in
th
e con
s
titu
en
t properties o
f
th
e
material. Thes
e cha
n
ges i
n
t
h
e
properties a
r
e
very im
por
t
a
nt
i
n
det
ect
i
o
n
pu
r
pos
es.
Su
ch
defect
s
l
i
k
e
sm
all
microm
e
t
er cracks influe
nce
the nea
r
fi
el
d
di
st
ri
b
u
t
i
on
o
f
el
ect
rom
a
gn
et
i
c
fi
el
d. The
di
st
ur
ba
nce o
f
fi
el
d
around
resonat
o
r ca
uses a s
h
ift in the res
onant fre
quen
cy,
whic
h indicates the detection of c
r
ack
by s
e
ns
or.
So,
h
e
re
we
t
e
st
t
h
e
per
f
o
rm
ance
of
t
h
e
se
nso
r
by
passi
n
g
i
t
ove
r a
def
ect
ed al
um
i
n
u
m
pl
at
e havi
n
g
c
r
ac
k
wi
dt
h of 75
ߤ
m
on i
t
wi
t
h
1
m
m
hei
ght
of
crack
. D
u
ri
ng
scan
ni
n
g
i
t
i
s
obs
er
ved t
h
at
t
h
e nea
r
fi
el
d a
r
o
u
nd
reso
nat
o
r i
s
di
st
ur
bed
t
h
at
cl
earl
y
sh
ows t
h
at
sens
or i
s
a
b
l
e
t
o
det
ect
c
r
a
c
k
of
7
5
ߤ
m
wi
dt
h a
n
d 1m
m
hei
g
ht
.
Du
e to wh
ich th
e
reson
a
n
t
freq
u
e
n
c
y exp
e
rien
ce a downward
sh
ift as illu
st
rated
i
n
Figu
re 3
.
Sim
ilarly, a
g
ai
n
for the sam
e
cr
ack widt
h of 75
ߤ
m
,
whi
l
e
ch
angi
ng t
h
e crac
k de
pt
h f
r
o
m
1
m
m
t
o
1.5m
m
,
t
h
e scanni
ng i
s
do
n
e
by m
oving t
h
e
sens
or
over t
h
e
m
e
tal surface
and a
g
ai
n
a s
h
ift in res
o
nanc
e
fre
que
ncy towards l
o
we
r
range is
not
i
ced as s
h
o
w
n i
n
Fi
gu
re 3
.
Fu
rt
her a
g
ai
n
keepi
n
g t
h
e cr
ack wi
dt
h co
ns
t
a
nt
t
h
e dept
h i
s
vari
ed
fr
om
1.5m
m
to
2
m
m
an
d
si
milar resu
lts are
re
gistered. T
h
is a
n
alysis clearly de
picts th
at th
e sen
s
o
r
is proficien
t
en
ou
gh
t
o
det
ect
crac
k i
r
r
e
spect
i
v
e
of
t
h
e ge
om
et
ri
c vari
at
i
ons i
n
c
r
ac
k
di
m
e
nsi
ons.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
101
2
–
10
17
1
015
Fi
gu
re
3.
Tra
n
s
m
i
ssi
on coe
ffi
c
i
ent
o
f
t
h
e
se
ns
or
f
o
r
crac
k
wi
dt
h
o
f
75
ߤ
m
com
p
ared with al
um
i
num
pl
at
e, f
o
r
crack
de
pt
h
o
f
1 m
m
, 1.5 m
m
and
2
m
m
ii.
Effect
of crac
k widt
hs
25
ߤ
m,
5
0
ߤ
m
and
7
5
ߤ
m.
In t
h
i
s
case t
h
e crack de
pt
h i
s
fi
xed t
o
2m
m
and an anal
y
s
i
s
i
s
done by
vary
i
n
g t
h
e w
i
dt
h o
f
crac
k.
Th
e sen
s
itiv
ity o
f
sen
s
or toward
s a crack
o
f
d
i
fferen
t
wid
t
hs can
b
e
o
b
serv
ed
h
e
re. As a
sen
s
o
r
is p
a
ssed
ov
er
a defect
e
d
m
e
tal
pl
at
e, a vari
at
i
on i
n
t
h
e
res
ona
nt
f
r
eq
ue
nc
y
i
s
obser
ve
d
whe
n
crac
k
de
pt
h
of
2m
m
and wi
dt
h
of 25
ߤ
m
is considere
d
on the
metal su
rface.
Sim
ilar is observe
d whe
n
cra
c
k widt
h is inc
r
eased
from
25
ߤ
m t
o
50
ߤ
m
.
Fu
rt
her
i
n
creasi
n
g
t
h
e wi
dt
h
fr
om
5
0
ߤ
m t
o
7
5
ߤ
m
of crac
k
we a
g
ain follow the
sam
e
sensi
ng
mechanism
and agai
n a cha
n
ge is obse
r
v
e
d
i
n
t
h
e res
o
na
nt
fre
q
u
ency
a
s
sh
ow
n i
n
Fi
gu
re 4
.
T
h
i
s
v
a
ri
at
i
on
shows
that the
sens
or is
able t
o
detect crac
ks
of
diffe
re
n
t
wi
d
t
h
s
. It is inv
e
stig
ated
th
at even
b
y
in
creasing
th
e
crack wi
dth from
25 t
o
75
ߤ
m
th
e sen
s
itiv
ity o
f
t
h
e sen
s
o
r
is still go
od
.
Thu
s
th
e CSRR b
a
sed
sen
s
or i
s
capabl
e
o
f
det
ect
i
ng crac
ks of di
ffe
rent
di
m
e
nsi
ons a
n
d
i
s
ext
r
em
el
y
app
r
op
ri
at
e fo
r t
h
e pu
rp
ose
.
Thi
s
in
exp
e
nsiv
e tech
n
i
q
u
e
o
f
cr
ack
d
e
tectio
n can
b
e
em
p
l
o
y
ed
w
ith
ou
t an
y
secon
d
tho
ught and
h
a
s a clear
cu
t
edge
o
v
e
r
ot
he
r m
i
crowave
t
e
chni
que
s.
Fi
gu
re
4.
Tra
n
s
m
i
ssi
on coe
ffi
c
i
ent
pl
ot
o
f
se
n
s
or
wi
t
h
crac
k
dept
h
of
2m
m
com
p
ared
wi
t
h
al
um
i
n
u
m
pl
at
e,
fo
r c
r
ack
wi
dth
o
f
25
ߤ
m,
5
0
ߤ
m
and 7
5
ߤ
m
3.
2.
Effect
of Varying the Dist
ance between Parallel Cracks
We
have
c
onsi
d
ere
d
di
f
f
ere
n
t
ge
om
et
ri
c par
a
m
e
t
e
rs fo
r c
r
a
c
k i
n
t
h
e
ab
o
v
e
m
e
nt
i
oned
w
o
rk
an
d
ha
ve
seen
th
at sen
s
or is still ab
le to
d
e
tect crack
s for
b
o
t
h
th
e cases in
wh
ich
eith
er wi
d
t
h
o
f
crack
is i
n
creased
t
o
cert
a
i
n
val
u
e
o
r
de
pt
h
of c
r
ac
k i
s
i
n
crease
d
.
A
go
o
d
per
f
o
r
m
a
nce by
t
h
e
s
e
ns
or
has
bee
n
de
pi
ct
ed i
n
t
h
e w
o
r
k
do
ne s
o
far
.
I
n
vest
i
g
at
i
n
g t
h
e
per
f
o
rm
ance
of
sens
o
r
by
consi
d
eri
n
g
so
m
e
di
ffe
rent
a
s
pect
f
o
r
t
h
e c
r
ack
i
s
introduced. Furtherm
ore, the
perform
a
nce of se
nsor is
bei
n
g exam
ined
by co
nsid
er
i
n
g
m
o
r
e
than
one
crac
k
on m
e
t
a
l pl
at
e and va
ry
i
ng t
h
e di
st
ance (
d
)
bet
w
een t
h
e
parallel cracks. In this approa
ch, for chec
ki
ng t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Co
mp
lemen
t
a
r
y Sp
lit Rin
g
Reso
na
t
o
r Ba
sed
S
e
nso
r
fo
r Crack Detection
(Am
anp
reet Kau
r
)
1
016
effect
i
v
e
n
ess
o
f
se
nso
r
we
ha
ve c
o
n
s
i
d
ere
d
t
w
o
pa
ral
l
e
l
cr
acks
o
n
t
h
e
al
um
i
n
u
m
pl
at
e havi
ng
se
parat
i
on
o
f
1mm initial
l
y
betwee
n them
and a
r
e
placed at equal
dist
ance from
the center
of
plate.
The se
nor is
m
oved
ove
r t
h
i
s
defec
t
ed pl
at
e. T
h
e
fi
el
ds ar
o
u
n
d
t
h
e se
nso
r
get
di
st
ur
be
d. S
o
,
t
h
e res
o
n
a
nt
f
r
e
que
ncy
get
s
s
h
i
f
t
e
d
to
ward
s left wh
ich
is d
e
sirable. Si
m
i
lar is s
een
wh
en
the
distance is increased
f
r
o
m
1
mm
to
2
mm a
n
d
then
after
2
mm to
3mm as il
lu
strated
in
Figu
re
5
.
So
, th
is sign
ifi
e
s th
at th
is senso
r
h
a
s t
h
e capacity to
d
e
tect m
o
re
than
one c
r
ack
on sam
e
m
e
ta
l surface a
n
d e
v
en ca
n
det
ect a
t
diffe
re
nt dista
n
ce
of
sepa
ration bet
w
een cra
c
ks.
Fi
gu
re
5.
T
r
an
sm
i
ssi
on c
o
ef
fi
ci
ent
pl
ot
f
o
r
t
h
e
paral
l
e
l
plac
ed c
r
ack at se
paration of
d =
1mm
,
2
m
m
and
3m
m
4.
CO
NCL
USI
O
N
The
per
f
o
r
m
a
nce of t
h
e C
S
R
R
based se
ns
o
r
by
va
ry
i
n
g g
e
om
et
ri
c dim
e
nsi
o
ns
of c
r
ac
k has
bee
n
anal
y
zed a
n
d
di
scl
o
se
d i
n
t
h
i
s
w
o
r
k
.
Th
e
p
r
o
f
i
c
i
e
ncy
of
t
h
e se
ns
or
i
s
c
o
nt
em
pl
at
ed by
vary
i
n
g ei
t
h
er
crac
k
wi
dt
h
o
r
c
r
ac
k
hei
g
ht
,
kee
p
i
n
g
one
pa
ram
e
ter c
onst
a
nt
at
a
t
i
m
e
and al
s
o
by
co
nsi
d
eri
n
g
m
o
re t
h
an
o
n
e
crac
k
on m
e
t
a
l
pl
at
e. Thi
s
anal
y
s
i
s
expl
ore
d
th
at th
e downward
sh
ifting
of reson
a
n
t
fre
que
ncy
in all the cases is an
in
d
i
cator of the ab
ility o
f
th
e sen
s
o
r
t
o
d
e
te
ct crack
o
f
sub-m
i
lli
meter d
i
men
s
io
n
s
up
to 2
5
ߤ
m
.
Thus
t
h
r
o
ug
h
th
is an
alysis we can
say that a rem
a
rk
ab
le p
e
rform
a
n
ce h
a
s b
e
en
u
nveiled
b
y
th
e sen
s
o
r
. Essen
t
i
a
lly, th
e
shi
f
t
i
n
g of t
h
e
reso
na
nt
fre
qu
ency
refl
ects the effective
n
es
s of the sens
or a
nd i
n
t
u
r
n
i
s
al
so a go
od e
v
i
d
ence
for th
is an
alysis.
REFERE
NC
ES
[1]
R. Zoughi
and S
.
Kharkovsk
y
, “Microwave
and
m
illim
eter wav
e
sensors for crackdetection
”
,
Fatigue Fract.
Eng.
Mate
r.
Struc
t
.
, Vol. 31
, No
. 8
,
pp
. 695– 713
, Aug.
2008.
[2]
N. Qaddoumi, E. Ranu, and R
.
Zoughi, “Microwave detection
of
stress induced f
a
tigue
cr
acks in
steel and
potential
of cra
c
k op
ening
det
e
rm
ination
u
s
ing a n
e
w phas
e
sensitiv
e
appro
ach b
a
sed on
a
waveguide
m
a
gi
c t
ee”
,
i
n
Re
vi
ew
of Progress in Q
uantitat
i
ve
Nond
estructi
ce
Evalu
a
tion
, Vol. 18A
, D. O.
Thompson a
nd D. E. Chimenti,
Eds.
New
York: Kluwer, p
p
. 569–576
, 199
9.
[3]
N. Qaddoumi, E. Ranu
, J.D. Mc Colske
y
,
R. Mirshahi, and
R. Zoughi, “Mic
rowave detection of stress-induced
fatigu
e
cracks in steel and poten
ti
al for crack opening determination”,
Res
.
Nondestruct. Eva
l
., Vol. 12, No. 2, pp.
87–103, Oct. 20
00.
[4]
C.Y. Yeh and R. Zoughi, “A nov
el
microwave method for detection of
long surfa
ce cracks in metals”,
IEEE Trans.
Instrum.
Me
as.
,
Vol. 43
, No. 5, p
p
. 719–725
, Oct. 1994.
[5]
A.
M.
Albishi,
M.
S.
Boy
b
ay
, and O.
M. R
a
m
a
hi,
“
C
om
plem
entar
y
spli
t-ring
resonator for
cr
ack d
e
te
ction
in
m
e
talli
c s
u
rf
aces
”,
I
E
EE Microw. Wire
less Compon. Lett
, vol. 22
, no. 6, pp.
330–3
32, Jun. 2012.
[6]
Yun, T. L
i
m
,
S. High-Q and m
i
niaturi
zed c
o
m
p
lem
e
ntar
y split ring r
e
sona
tor-load
e
d substrate
integr
at
ed
waveguide m
i
cr
owave sensor for crack det
e
ction
in m
e
tallic
m
a
t
e
rials. Sens. Actu
ators A. Phy
s
.,
Vol. 214, pp. 25–
30, 2014
.
[7]
A.K. I
y
er and G.V. Elefth
eriad
e
s, “Negative re
fractiv
e index metamateri
als suppor
ting 2-D waves”,
in Proc. IEEE
-
MTT Int.
Mic
r
ow.
Sy
mp
, Seattle, WA, USA, Vol.
2, pp. 412–415,
Jun. 2002.
[8]
A.A. Oliner
, “A periodic-structu
r
e negative-r
e
fractiv
e-index med
i
um
without resona
nt elements”,
in Pr
oc. I
E
EE-
AP-S USNC/URSI Nat. Rad
i
oSci Meeting
, SanAn
t
onio, TX, USA, p.41
, Jun.2002
.
[9]
C. Caloz and T
.
Itoh, “
A
pplicat
io
n of the transm
ission line th
eor
y
of left-hand
e
d (LH) m
a
terials to
the real
iza
tion o
f
a m
i
crostrip
LH
transm
ission li
ne”,
in
Proc.
IE
EE-A
P
-S USNC/
URSI
Nat. Radio Sci. Meetin
g
, SanAntonio, TX,
USA, Vol. 2, pp.
412–415, Jun. 2
002.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
JECE Vo
l. 5
,
N
o
. 5
,
O
c
tob
e
r
20
15
:
101
2
–
10
17
1
017
[10]
F. Martín
, F.
Fa
lcone
, J.
Bonac
h
e, R
.
Marqu
é
s,
and M.
Sorolla
,
“
S
plit ring
reso
nator b
a
sed l
e
ft
handed
coplan
ar
waveguide”,
Ap
pl. Phys.
L
e
tt
.
, V
o
l. 83
, pp
. 4652–
4654, Dec. 2003
.
[11]
P.K. Singhal an
d Bim
a
l Garg, “Design and Charact
erizat
i
on of Com
p
act Microstrip Patch Anten
n
a Using “Split
Ring” Shap
ed M
e
tamaterial Stru
cture”,
Vol. 2
,
No
. 5
,
pp
. 655–662
, October
2012.
[12]
F.
Falcon
e, T. Lopete
gi,
J
.
D.
Baen
a, R
.
M
a
r
qués
,
F
.
M
a
r
tín
, and
M
.
S
o
roll
a,“
E
ffe
ctiv
e neg
a
tiv
e- s
t
op-ban
d
m
i
crostrip lines based on com
p
lem
e
ntar
y
spli
t rin
g
resonators”,
IEEE Microw. Wir
e
less Compon. Lett,
Vol.
14,
No.
6, pp
. 280–282
,
Jun. 2004.
[13]
J
.
D. Baena
,
J
.
B
onache
,
F
.
M
a
rtí
n
, R.
Marqués,
F. Falcone, T.
L
opetegi,
M.
A.
G. Laso,
J.
Ga
rc
ía
,
I. Gil, M. Flore
s
-
Portillo,
and M
.
Sorolla
, “
E
qui
valen
t
cir
c
ui
t m
odels fo
r split
ring resonators
and com
p
lem
e
n
t
ar
y spli
t rings
resonators coupled to pl
anar tr
ansmission lines”,
IEEE T
r
ans
. Micr
ow. T
h
eor
y
T
ech.
, Vol. 53, No. 4, pp. 1451–
1461, Apr. 2005.
[14]
R.
Ma
rqué
s
,
F.
Ma
rtín, a
n
d M.
Sorolla
, “M
etam
ater
ials
wi
th Ne
gativ
e P
a
ram
e
ter
s
”,
Theory, Design and Microwave
Applica
tions
. Hoboken, NJ, USA: Wiley
,
2007
.
[15]
Jordi Naqui, Mi
guel Durán-Sind
reu, Ferr
an Mar
tín,
“
M
odeling
Split-Ring Reso
nator (SRR) and
Com
p
lem
e
ntar
y
Split-Ring Reso
nator (CSRR) L
o
aded Tr
ansm
ission Lines E
xhi
biting Cross-Polariz
a
tion
Effe
cts
”
, IE
EE Ant
e
nn
as
and Wireless Propa
gation Letter
s, Vol. 12, 2013
[16]
J.B. pendr
y
,
A.J. Holden, D.J. R
obbins and W.
J. Stewart,
“Magnetism from co
nductors and enhanced nonlin
ear
phenomena”, 47
(11): 2075-2084
, Nov 1999.
[17]
O Necibi, A Fer
c
hich
i, TP Vuong, A Gharsallah
,
“Min
iaturized CSRR TAG Ant
e
nnas
for 60GHz Applications”,
Vol. 4
,
No. 1, pp
. 64–74
, Febur
ar
y
2014.
[18]
Raoul O. Ouedr
a
ogo, Edward J.
Rothwe
ll, Alejandro R. Diaz, Kazuko Fuchi,
Andrew Temme, “Miniaturization
of
Patch Antenn
a
using a Metama
terial-inspir
e
d Techniqu
e”,
IEEE Transaction o
n
Antennasand
Propagation
, V
o
l.
60, No. 5, May
2
012.
[19]
Sm
riti, Jaswinder Kaur, “
C
om
pl
em
entar
y
Split
Ring Resona
tors
based Dual-Ban
d Microstrip Antenna for W
L
AN
Applica
tions”,
I
n
ternational Jou
r
nal of Advanced Reaserac
h in Computrer and
Communication Engineering
, V
o
l
.
3, Issue 5
,
May
2014.
[20]
Koon-Tae Kim
,
Jae-H
y
eong Ko,
K
y
ung Choi
, H
y
eong-Seok
Kim
,
“Optim
um
Design of Wideband
Bandpass Filter
With CSRR-Loaded Transmission Li
ne Using Ev
olution Str
a
teg
y
”,
I
EEE Transactions on Magnetics,
Vol.
48,
No.
2, Feburar
y
201
2.
[21]
Rajni
and Anupma Marwaha, “
A
naly
sis of
mag
n
etic resonan
ce
in Metamateri
al
structure”, COM
S
OL conferen
ce,
2011.
[22]
Rajni, Gursharan Kaur, Amanpreet Kaur
and
Anupma
Mar
w
aha, “Investig
ation on Frequ
e
ncy
Analy
s
is
of
Metamater
i
al Structure”, In
ternational conf
eren
ce El
ectronics Design Innovtion
a
nd Technolog
ies, EDIT-2015,
Vol-2, pp
. 166-1
68, April 2015.
BIOGRAP
HI
ES OF
AUTH
ORS
Rajni is
current
l
y
As
s
o
cia
t
e P
r
of
es
s
o
r at S
B
S
S
t
ateT
echni
cal
Ca
m
pus
F
e
rozepur, India. S
h
e
has
completed her
M.E. from NITTTR, Chandig
a
rh, I
ndia and B.Tech from
NIT, Kur
ukshetra India.
She is pursuing
her Ph.D
. in
m
e
tam
a
teri
al
an
tennas. She h
a
s approx. 17
y
ears of academic
experi
enc
e
. S
h
e
has
author
ed
a n
u
m
b
er of res
e
arc
h
papers
in In
ter
n
ation
a
l
journals
, Nat
i
onal
and
Interna
tiona
l co
nferenc
e
s
.
Her
a
r
eas
of in
ter
e
s
t
includ
e W
i
rel
e
s
s
com
m
unicatio
n and Antenn
a
design.
Amanpreet Kaur
is curren
t
ly
pur
suing M.Tech
fr
om
S
B
S
S
t
ate T
echni
cal
Cam
pus
, F
e
rozepur
,
India. She has
completed B
.
Tech
from PTU Jalandh
ar in 201
3. Her ar
ea of
interest
includ
e
Antenna d
e
sign
Dr Anupm
a Marwaha is curr
ent
l
y
Associate Prof
essor at Sant
L
ongowal Institu
t
e
of Engg
. &
Tech
,
Logowal
(Sangrur). She h
a
s done h
e
r
Ph.D from GNDU,
Amritsar, M. Tech. from REC
Kurukshetra (N
ow NIT, Kuruk
s
hetra), B.E fro
m Punjab University
, Chandig
a
rh. She h
a
s 22
ye
ars
of acad
em
ic experi
em
ce. S
h
e has
authored
25 res
earch pap
e
rs
in Internation
a
l and Nation
a
l
Journals and 50 research p
a
pers in National and I
n
ternational conf
erences. She has supervised 02
Ph.D Thesis an
d 10 M.Tech th
esis and 04 ar
e
under progress. Her areas of interest
includ
e
Electromagnetics, Microwav
e C
o
mm, Wire
less communication and Antenna Design.
Evaluation Warning : The document was created with Spire.PDF for Python.