I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
1
,
Feb
r
u
ar
y
201
8
,
p
p
.
87
~
93
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
8
i
1
.
p
p
8
7
-
93
87
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
Ev
a
lua
tion o
f
Energ
y
Cons
u
m
p
tion
using
Rece
iv
e
r
–
Centric
M
AC P
ro
toco
l i
n
Wireless
Se
nso
r
Netw
o
rk
s
Ana
nd
a
K
u
m
a
r
K
S
1
,
B
a
la
kris
hn
a
R
2
1
De
p
t
o
f
IS
E,
Ra
jaRa
jes
w
a
ri
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
-
5
6
0
0
7
4
,
In
d
ia
2
Ra
jaRa
jes
wa
ri
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
-
5
6
0
0
7
4
,
I
n
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
A
p
r
2
,
2
0
1
7
R
ev
i
s
ed
A
u
g
2
0
,
2
0
1
7
A
cc
ep
ted
Sep
4
,
2
0
1
7
A
t
p
re
s
e
n
t
d
a
y
’s
w
ir
e
les
s
se
n
so
r
n
e
tw
o
rk
s,
o
b
tain
a
lo
t
c
o
n
sid
e
ra
ti
o
n
to
re
se
a
rc
h
e
rs.
M
a
x
i
m
u
m
n
u
m
b
e
r
o
f
se
n
so
r
n
o
d
e
s
a
re
sc
a
tt
e
re
d
th
a
t
c
a
n
c
o
m
m
u
n
ica
te
w
it
h
a
ll
o
th
e
rs.
Re
li
a
b
le
d
a
ta
c
o
m
m
u
n
ica
ti
o
n
a
n
d
e
n
e
rg
y
c
o
n
su
m
p
ti
o
n
a
re
th
e
m
a
in
l
y
si
g
n
if
ica
n
t
p
a
ra
m
e
te
rs
th
a
t
a
re
r
e
q
u
ired
i
n
w
irele
ss
s
e
n
so
r
n
e
tw
o
rk
s.
M
a
n
y
o
f
M
A
C
p
ro
to
c
o
ls
h
a
v
e
b
e
e
n
p
lan
n
e
d
to
im
p
ro
v
e
th
e
e
ff
icie
n
c
y
m
o
re
b
y
e
n
h
a
n
c
in
g
th
e
th
r
o
u
g
h
p
u
t
a
n
d
e
n
e
rg
y
c
o
n
su
m
p
ti
o
n
.
T
h
e
m
a
jo
rit
y
o
f
th
e
p
re
se
n
ted
m
e
d
iu
m
a
c
c
e
ss
c
o
n
tro
l
p
ro
to
c
o
ls
to
o
n
ly
m
a
k
e
a
v
a
il
a
b
l
e
,
re
li
a
b
le
d
a
ta
d
e
li
v
e
ry
o
r
e
n
e
rg
y
e
ff
icie
n
c
y
d
o
e
s
n
o
t
o
f
fe
r
to
g
e
th
e
r
a
t
th
e
sa
m
e
ti
m
e
.
I
n
th
is
re
se
a
rc
h
w
o
rk
th
e
a
u
th
o
r
p
ro
p
o
se
s
a
n
o
v
e
l
a
p
p
r
o
a
c
h
b
a
se
d
o
n
Re
c
e
iv
e
r
Ce
n
tri
c
-
M
A
C
is
i
m
p
le
m
e
n
ted
u
sin
g
NS2
sim
u
lato
r.
He
re
,
th
e
a
u
th
o
r
f
o
c
u
se
s
o
n
th
e
f
o
ll
o
w
in
g
p
a
ra
m
e
tri
c
m
e
a
su
re
s
li
k
e
-
e
n
e
rg
y
c
o
n
su
m
p
ti
o
n
,
re
li
a
b
il
it
y
a
n
d
b
a
n
d
w
id
th
.
RC
-
M
A
C
p
ro
v
id
e
s
h
ig
h
b
a
n
d
w
id
th
w
it
h
o
u
t
d
e
c
re
a
sin
g
e
n
e
rg
y
e
ff
icie
n
c
y
.
T
h
e
re
su
lt
s
sh
o
w
th
a
t
0
.
1
2
%
o
f
les
s
e
n
e
rg
y
c
o
n
su
m
p
ti
o
n
,
re
li
a
b
il
i
ty
i
m
p
ro
v
e
d
b
y
2
0
.
8
6
%
a
n
d
b
a
n
d
w
id
th
in
c
re
a
se
d
b
y
2
7
.
3
2
%
o
f
RC
-
M
A
C
c
o
m
p
a
re
d
w
it
h
M
A
C
IEE
E
8
0
2
.
1
1
.
K
ey
w
o
r
d
:
B
an
d
w
id
t
h
E
n
er
g
y
co
n
s
u
m
p
tio
n
Me
d
iu
m
ac
ce
s
s
co
n
tr
o
l
R
ec
eiv
er
c
e
n
tr
ic
M
A
C
W
ir
eless
s
en
s
o
r
n
et
w
o
r
k
s
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
An
a
n
d
a
Ku
m
ar
K
S,
Dep
t o
f
I
SE,
R
aj
aRaj
es
w
ar
i Co
lle
g
e
o
f
E
n
g
in
ee
r
in
g
,
B
an
g
alo
r
e
-
5
6
0
0
7
4
,
I
n
d
ia.
E
m
ail:
a
n
an
d
g
d
k
@
g
m
ai
l.c
o
m
1.
I
NT
RO
D
UCT
I
O
N
T
h
e
W
ir
eless
Se
n
s
o
r
Net
w
o
r
k
(
W
SN)
i
s
ad
v
an
ce
d
tech
n
o
lo
g
y
a
n
d
b
u
ild
u
p
w
it
h
t
h
a
t
h
a
s
b
ee
n
in
co
r
p
o
r
ated
in
to
o
n
e
o
f
th
e
b
est
e
m
er
g
in
g
ar
ea
s
i
n
th
e
c
o
m
m
u
n
icatio
n
in
d
u
s
tr
y
[
1
]
.
A
n
u
m
b
er
o
f
s
m
al
l
w
ir
ele
s
s
s
e
n
s
o
r
n
o
d
es
ar
e
u
s
e
d
to
ex
ch
an
g
e
i
n
f
o
r
m
atio
n
f
o
r
a
lo
n
g
ti
m
e
w
it
h
a
li
m
ited
b
atter
y
p
o
w
er
ca
p
ac
it
y
in
w
ir
eles
s
s
e
n
s
o
r
n
et
w
o
r
k
s
.
T
h
e
m
o
s
t
i
m
p
o
r
ta
n
t
p
o
w
er
f
ac
t
o
r
co
n
s
u
m
p
tio
n
o
f
a
n
o
d
e
is
r
a
d
io
.
MA
C
p
r
o
to
co
l
co
n
tr
o
ls
th
e
r
ad
io
o
f
th
e
s
e
n
s
o
r
n
o
d
e
[
2
].
Gen
er
all
y
,
w
ir
e
less
s
en
s
o
r
n
et
w
o
r
k
s
co
n
s
tit
u
te
m
a
n
y
n
u
m
b
e
r
s
o
f
n
o
d
es.
I
n
F
ig
u
r
e
1
d
ep
ic
ts
th
at
th
e
f
u
n
ctio
n
alit
y
f
o
r
d
is
s
i
m
ilar
t
y
p
es
o
f
n
o
d
es
th
at
ap
p
ea
r
an
ce
a
w
ir
eles
s
n
et
w
o
r
k
to
ex
i
s
t
to
co
n
tr
o
l
th
eir
s
p
atial
m
o
b
il
it
y
e
x
cl
u
s
i
v
e
o
f
lo
s
e
f
u
n
ctio
n
alit
y
.
No
d
es
s
h
o
u
ld
b
e
ca
p
ab
le
to
d
etec
t
n
eig
h
b
o
r
n
o
d
es
in
a
n
et
w
o
r
k
an
d
to
v
ig
o
r
o
u
s
l
y
co
r
r
elate
to
co
o
r
d
in
at
o
r
s
b
ased
o
n
th
eir
p
o
s
itio
n
[
3
]
.
E
ac
h
n
o
d
e
is
co
n
n
ec
ted
to
eith
er
o
n
e
o
r
m
an
y
n
o
d
es.
C
o
n
s
id
er
a
g
en
er
ic
co
m
m
u
n
icat
io
n
n
et
w
o
r
k
,
th
at
n
et
w
o
r
k
co
m
b
in
e
n
o
d
es
an
d
co
m
m
u
n
icatio
n
li
n
k
s
.
E
v
er
y
n
o
d
e
p
r
o
d
u
ce
s
in
f
o
r
m
atio
n
d
esig
n
e
d
f
o
r
ea
ch
n
o
d
e
an
d
all
o
th
er
n
o
d
es
in
th
e
n
et
w
o
r
k
.
Di
s
ti
n
cti
v
e
r
o
u
ti
n
g
s
ch
e
m
e
co
n
s
id
er
s
to
d
ea
l
w
it
h
v
ar
io
u
s
g
r
o
u
p
in
g
o
f
th
e
f
o
llo
w
a
)
m
i
n
i
m
ize
t
h
e
co
s
t
a
n
d
co
m
p
le
x
it
y
b
)
p
r
ev
en
tio
n
o
f
u
n
r
eliab
l
e
co
m
m
u
n
icatio
n
li
n
k
s
,
c
)
m
a
x
i
m
ize
n
et
w
o
r
k
t
h
r
o
u
g
h
p
u
t d
)
m
in
i
m
ize
e
n
d
to
en
d
d
ela
y
[
4
]
.
Sen
s
o
r
n
o
d
es
o
p
er
ate
w
it
h
a
t
in
y
b
atter
y
t
h
at
co
n
s
u
m
e
s
m
o
r
e
p
o
w
er
w
h
ile
p
r
o
p
ag
atio
n
o
f
a
s
ig
n
al
,
s
o
th
at
en
er
g
y
ef
f
icie
n
c
y
i
s
c
o
n
s
id
er
ed
as
m
aj
o
r
cr
iter
ia
f
o
r
d
esig
n
in
g
s
ev
er
al
M
A
C
p
r
o
to
co
ls
.
R
ad
io
is
t
h
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
1
,
Feb
r
u
ar
y
201
8
:
87
–
93
88
ce
n
tr
al
p
ar
t
o
f
an
y
s
en
s
o
r
n
o
d
e
an
d
t
h
at
co
n
s
u
m
e
s
m
o
r
e
p
o
w
er
d
u
r
in
g
co
m
m
u
n
icatio
n
.
T
h
e
co
m
p
ete
n
t
M
AC
p
r
o
to
co
l
is
ca
p
ab
le
o
f
en
h
an
ci
n
g
li
f
eti
m
e
o
f
s
ev
er
al
s
e
n
s
o
r
n
et
w
o
r
k
s
.
M
A
C
la
y
er
p
r
o
to
co
ls
in
w
ir
eless
s
en
s
o
r
n
et
w
o
r
k
ar
e
c
l
ass
if
ied
in
to
f
o
u
r
ca
te
g
o
r
ies:
a
)
s
y
n
c
h
r
o
n
o
u
s
a
w
a
k
i
n
g
o
f
n
o
d
es,
b
)
as
y
n
ch
r
o
n
o
u
s
a
w
a
k
i
n
g
o
f
n
o
d
es,
c)
s
lo
ttin
g
o
f
f
r
a
m
e
s
an
d
d
)
m
u
l
ti c
h
a
n
n
el
ap
p
r
o
ac
h
.
Du
t
y
c
y
cle
is
o
n
e
o
f
th
e
f
o
r
e
m
o
s
t
attr
ib
u
te
o
f
as
y
n
ch
r
o
n
o
u
s
an
d
s
y
n
ch
r
o
n
o
u
s
p
r
o
to
co
ls
,
at
th
i
s
j
u
n
ctu
r
e
a
n
y
n
o
d
e
ca
n
e
x
ch
a
n
g
e
a
m
o
n
g
s
leep
an
d
ac
ti
v
e
s
tates
to
s
a
v
e
e
n
er
g
y
,
w
h
i
le
n
o
d
es
ar
e
ab
le
to
co
m
m
u
n
icate
i
n
ac
ti
v
e
s
ta
te.
As
y
n
c
h
r
o
n
o
u
s
M
A
C
p
r
o
to
co
ls
ar
e
b
ased
o
n
th
e
t
y
p
e
o
f
co
m
m
u
n
icat
io
n
b
et
w
ee
n
t
w
o
n
o
d
es
d
i
s
s
i
m
ilar
in
ac
ti
v
e
/s
leep
m
o
d
e.
I
n
s
y
n
c
h
r
o
n
o
u
s
MA
C
p
r
o
to
co
ls
,
all
n
o
d
es
ar
e
s
y
n
ch
r
o
n
ized
at
th
e
s
a
m
e
ti
m
e
[5
]
.
Me
d
iu
m
A
cc
es
s
C
o
n
tr
o
l
i
s
tr
ad
itio
n
all
y
v
ie
w
ed
as
an
ele
m
en
t
o
f
t
h
e
d
ata
l
in
k
la
y
er
i
n
t
h
e
O
SI
m
o
d
el.
Her
e
,
co
o
r
d
in
ates
t
h
e
u
s
e
o
f
a
co
m
m
o
n
tr
a
n
s
m
is
s
io
n
m
ed
iu
m
i
n
m
u
l
tiu
s
er
s
y
s
te
m
s
an
d
en
s
u
r
e
r
eliab
le
co
m
m
u
n
icatio
n
g
r
ea
ter
th
a
n
in
ter
f
er
en
ce
f
r
ee
ch
a
n
n
els
f
o
r
ea
ch
o
n
e
u
s
er
[
6
]
,
[
1
0
]
.
T
h
e
f
u
n
d
a
m
e
n
tal
p
r
er
eq
u
is
ite
o
f
a
s
en
s
o
r
n
et
wo
r
k
is
r
eliab
le
d
eliv
er
y
o
f
i
n
f
o
r
m
at
io
n
w
it
h
lo
w
est
a
m
o
u
n
t
laten
c
y
a
n
d
en
er
g
y
co
n
s
u
m
p
tio
n
.
On
t
h
e
o
th
er
h
an
d
,
t
h
e
m
aj
o
r
ity
M
AC
p
r
o
to
co
ls
w
er
e
p
r
o
p
o
s
es o
f
t
h
eir
co
n
ce
r
n
ed
ab
o
u
t t
h
e
u
s
er
s
ar
e
s
elf
-
g
o
v
er
n
in
g
o
f
ea
c
h
o
th
er
a
n
d
ch
alle
n
g
e
f
o
r
th
e
u
s
e
o
f
t
h
e
g
en
er
al
tr
an
s
m
is
s
io
n
c
h
an
n
el.
Ou
ts
tan
d
i
n
g
to
th
e
s
tr
ict
r
eso
u
r
ce
co
n
s
tr
ai
n
t
o
f
s
e
n
s
o
r
n
et
w
o
r
k
s
,
t
w
o
p
r
o
p
er
ties
o
f
th
e
s
y
s
te
m
w
er
e
f
r
eq
u
en
tl
y
e
x
p
lo
ited
f
o
r
d
esig
n
in
g
s
e
n
s
o
r
n
et
w
o
r
k
M
AC
p
r
o
to
co
ls
:
a
)
th
e
ap
p
li
ca
tio
n
–
n
ee
d
y
o
b
j
ec
tiv
es
an
d
b
)
th
e
h
elp
f
u
l n
a
t
u
r
e
o
f
t
h
e
s
ca
tter
ed
s
en
s
o
r
s
[
7
]
.
C
SM
A
is
o
n
e
o
f
t
h
e
m
ai
n
l
y
a
cc
ep
ted
ch
o
ices
f
o
r
r
an
d
o
m
a
cc
ess
n
et
w
o
r
k
s
d
u
e
to
it
s
s
i
m
p
licit
y
a
n
d
ef
f
icien
t
d
esi
g
n
.
E
ac
h
u
s
er
h
a
s
a
co
m
m
u
n
icatio
n
to
t
r
a
n
s
m
i
t
f
ir
s
t
s
e
n
s
e
s
t
h
e
ch
a
n
n
el
to
s
ee
w
h
et
h
er
o
r
n
o
t
th
er
e
is
an
en
d
u
r
in
g
tr
a
n
s
m
i
s
s
i
o
n
f
r
o
m
f
u
r
t
h
er
u
s
er
s
b
ef
o
r
e
it
tr
an
s
m
it
its
o
w
n
d
ata
f
o
r
co
m
m
u
n
icat
io
n
.
He
n
ce
an
atte
m
p
t
w
a
s
m
ad
e
to
a
v
o
i
d
co
llis
io
n
w
it
h
o
th
er
u
s
er
s
.
W
h
en
a
co
llis
io
n
o
cc
u
r
s
at
th
e
d
es
tin
a
tio
n
,
ea
c
h
tr
an
s
m
itti
n
g
u
s
er
w
ait
f
o
r
a
u
n
s
y
s
te
m
atic
b
ac
k
i
n
ti
m
e
b
ef
o
r
e
it
m
ak
e
s
a
ch
alle
n
g
e
to
tr
an
s
m
it
t
h
e
m
e
s
s
a
g
e
ag
ain
.
W
id
el
y
ad
o
p
ted
p
r
o
to
co
l
th
e
m
u
l
tip
le
ac
ce
s
s
with
co
lli
s
io
n
a
v
o
id
an
ce
(
M
AC
A
)
p
r
o
to
co
l
th
at
in
tr
o
d
u
ce
a
th
r
ee
w
a
y
h
a
n
d
s
h
ak
e
b
et
w
ee
n
th
e
tr
an
s
m
itter
an
d
r
ec
eiv
er
to
s
o
lv
e
th
e
f
a
m
il
iar
h
id
d
en
ter
m
in
a
l
pr
o
b
lem
p
r
esen
t i
n
u
s
u
a
l CS
M
A
[
8
].
T
h
r
ee
-
w
a
y
h
an
d
s
h
a
k
e
p
lan
n
e
d
in
M
A
C
A
r
eso
lv
e
t
h
i
s
d
if
f
icu
lt
y
b
y
h
av
in
g
e
v
er
y
u
s
er
t
r
an
s
m
it
a
R
eq
u
est
-
To
-
Se
n
d
(
R
T
S)
m
e
s
s
ag
e.
A
t
an
y
ti
m
e
it
h
a
s
a
p
ac
k
et
to
s
e
n
d
,
r
ep
r
esen
tin
g
t
h
e
d
esti
n
atio
n
an
d
t
h
e
len
g
th
o
f
t
h
e
d
elib
er
ate
d
ata
t
r
an
s
m
is
s
io
n
.
T
h
e
d
esti
n
atio
n
u
s
er
s
u
cc
ess
f
u
ll
y
r
ec
ei
v
es
t
h
e
R
T
S
m
es
s
ag
e
a
n
d
h
as
n
o
t
f
u
l
f
il
led
a
h
an
d
s
h
ak
e
p
r
ev
io
u
s
l
y
w
it
h
f
u
r
th
er
n
o
d
es;
it
th
en
d
ec
id
es
to
r
esp
o
n
d
w
i
t
h
a
C
lear
-
T
o
-
Sen
d
(
C
T
S)
p
ac
k
et
in
d
icatin
g
t
h
at
i
t
is
s
et
f
o
r
th
e
r
ec
ep
tio
n
.
T
h
e
s
o
u
r
ce
th
e
n
s
e
n
d
s
a
n
i
n
f
o
r
m
atio
n
p
ac
k
et
to
t
h
e
d
esti
n
atio
n
o
n
ce
t
h
e
C
T
S a
r
e
r
ec
eiv
ed
[
9
]
.
T
h
e
m
ec
h
a
n
is
m
o
f
C
T
S a
n
d
R
T
S is
s
h
o
w
n
i
n
Fi
g
u
r
e
2.
P
ei
Hu
an
g
et
al,
p
r
o
p
o
s
ed
a
n
o
v
el
m
eth
o
d
in
b
y
i
m
p
r
o
v
in
g
th
e
th
r
o
u
g
h
p
u
t
u
n
d
er
th
e
h
e
av
y
tr
a
f
f
i
c
lo
ad
o
n
w
ir
eles
s
s
e
n
s
o
r
n
et
wo
r
k
s
.
T
h
e
y
d
is
cu
s
s
ed
t
h
e
r
ec
eiv
er
ce
n
tr
ic
d
ev
e
lo
p
m
en
t
b
y
u
tili
zi
n
g
th
e
d
ata
g
ath
er
i
n
g
tr
ee
s
tr
u
ct
u
r
e
i
n
w
ir
eless
s
e
n
s
o
r
n
et
w
o
r
k
s
[
1
]
.
Yea
h
–
ti
m
e
Yo
n
g
et
al,
p
r
o
p
o
s
ed
in
th
e
m
et
h
o
d
o
f
d
if
f
er
e
n
t
tr
an
s
m
i
s
s
io
n
r
an
g
e
an
d
s
en
s
in
g
r
an
g
e
f
o
r
m
an
a
g
i
n
g
d
y
n
a
m
ic
tr
a
f
f
i
c
lo
ad
s
in
w
ir
ele
s
s
s
e
n
s
o
r
n
et
w
o
r
k
s
.
Her
e
li
m
itatio
n
s
a
r
e
ti
m
e
o
f
f
er
o
f
a
tr
an
s
m
is
s
io
n
,
r
etr
an
s
m
is
s
io
n
a
n
d
h
i
g
h
f
r
eq
u
e
n
c
y
o
f
r
etr
an
s
m
is
s
io
n
[
2
]
.
U
m
es
h
et
al
p
r
o
p
o
s
ed
R
C
-
M
AC
p
r
o
t
o
co
l
f
o
cu
s
ed
o
n
en
d
to
en
d
r
eliab
le
co
m
m
u
n
icat
io
n
an
d
i
n
cr
ea
s
e
th
e
lif
eti
m
e
o
f
t
h
e
s
e
n
s
o
r
n
e
t
w
o
r
k
[
4
]
.
Fig
u
r
e
1
.
W
ir
eless
Sen
s
o
r
Netw
o
r
k
Fig
u
r
e
2
.
Me
ch
an
i
s
m
s
o
f
C
T
S a
n
d
R
T
S
2.
RE
S
E
ARCH
M
E
T
H
O
D
2
.
1
.
Alg
o
rit
h
m
f
o
r
RC
-
M
AC
Ste
p
1
:
E
ac
h
n
o
d
e
s
e
n
d
s
a
b
e
ac
o
n
m
ess
a
g
e
f
o
r
c
h
ec
k
in
g
t
h
e
n
o
d
e
s
ta
tu
s
.
A
n
o
d
e
s
ta
tu
s
d
ef
i
n
es
w
h
et
h
er
t
h
e
n
o
d
e
is
s
leep
n
o
d
e
o
r
w
ak
e
u
p
a
n
o
d
e
(
n
ib
)
.
n
ib
-
n
ei
g
h
b
o
r
id
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8708
E
va
lu
a
tio
n
o
f E
n
erg
y
C
o
n
s
u
m
p
tio
n
u
s
in
g
R
ec
eive
r
–
C
en
tr
ic
MAC P
r
o
t
o
co
l in
….
(
A
n
a
n
d
a
K
u
ma
r
K
S
)
89
Ste
p
2
:
I
t
s
en
d
s
t
h
e
R
T
S/C
T
S
m
ess
a
g
e
f
o
r
g
etti
n
g
t
h
e
c
h
a
n
n
el
s
ta
tu
s
.
Af
ter
it
f
o
r
m
s
th
e
f
r
a
m
e
i
n
te
r
m
s
o
f
b
an
d
w
id
t
h
a
n
d
s
lo
t ti
m
e
T
X
Ste
p
3
:
Ma
x
i
m
u
m
allo
w
ed
q
u
eu
e
p
r
o
ce
s
s
to
b
e
u
tili
ze
d
at
ev
er
y
tr
an
s
m
is
s
io
n
s
lo
ts
at
T
-
s
ec
.
T
-
s
ec
–
T
r
an
s
m
is
s
io
n
s
ec
o
n
d
s
Ste
p 4
:
Tr
-
>p
r
o
p
ag
atio
n
v
ar
ia
n
ce
o
f
d
ela
y
w
h
e
n
tr
a
n
s
m
itter
r
ec
eiv
er
d
is
tan
ce
is
r
x
.
T
r
-
T
r
a
n
s
m
i
s
s
io
n
r
ate,
rx
–
r
ec
ep
tio
n
r
ate
Ste
p 5
:
P
r
o
b
ab
ilit
y
o
f
d
eliv
er
e
d
r
ate
o
f
n
e
w
e
n
tit
y
i
n
(
n
b
)
ac
ce
s
s
s
lo
t
s
.
n
b
-
n
ei
g
h
b
o
r
n
o
d
e
Ste
p
6
:
I
t
en
ter
s
t
h
e
c
h
a
n
n
e
l
s
c
h
ed
u
li
n
g
f
o
r
as
s
i
g
n
th
e
ch
an
n
el
to
co
m
m
u
n
icate
.
C
h
an
n
el
s
ca
n
n
i
n
g
i
s
co
m
p
leted
b
y
n
u
m
b
er
o
f
s
lo
t
s
p
er
s
u
p
er
-
f
r
a
m
e.
Ste
p
7
:
R
ec
eiv
er
n
o
d
e
estab
lis
h
th
a
t
av
er
ag
e
o
n
e
h
o
p
d
ela
y
is
h
ig
h
it
ch
o
o
s
es
a
s
h
o
r
test
p
ath
.
E
n
er
g
y
lev
el
is
b
ey
o
n
d
a
s
p
ec
if
ied
th
r
e
s
h
o
ld
ti
m
e
s
c
h
ed
u
le
o
f
h
elp
er
is
n
o
t a
f
f
ec
ted
Ste
p
8
:
First
an
d
s
ec
o
n
d
c
y
c
le
in
cl
u
d
es
a
co
o
p
er
ativ
e
tr
a
n
s
m
is
s
io
n
an
d
n
o
d
e
u
p
d
ates
it
s
s
ta
tu
s
in
f
o
r
m
at
io
n
to
in
ter
m
ed
iate
n
o
d
es.
Ste
p 9
:
R
ec
eiv
er
n
o
d
es h
av
e
a
d
v
an
ce
d
th
a
n
tr
an
s
m
itter
n
o
d
e
th
en
co
-
o
p
er
ativ
e
tr
an
s
m
i
s
s
io
n
w
ill b
e
ap
p
lied
.
Ste
p
1
0
:
A
n
al
y
ze
th
e
esti
m
at
ed
s
ig
n
al
i
n
ter
f
er
e
n
ce
lev
el.
A
d
j
u
s
ted
o
f
ea
ch
f
r
a
m
e
is
d
o
n
e
as
p
er
n
u
m
b
er
o
f
ac
ce
s
s
s
lo
t
s
.
I
f
it r
ea
ch
es l
i
m
it
ed
th
r
esh
o
ld
it p
r
o
ce
s
s
ed
a
d
u
r
atio
n
.
Ste
p 1
1
:
T
h
en
it e
n
ter
s
n
o
i
s
e
i
n
ter
f
er
e
n
ce
le
v
el
an
d
es
ti
m
ate
th
e
le
v
el.
P
ac
k
ets ar
e
as
s
i
g
n
ed
in
to
p
r
io
r
it
y
le
v
el.
P
ac
k
et
tr
an
s
m
is
s
io
n
s
b
eg
i
n
w
i
th
co
n
g
esti
o
n
d
an
ce
.
2
.
2
.
F
lo
w
cha
rt
f
o
r
RC
-
M
AC
Alg
o
rit
h
m
I
n
f
lo
w
c
h
ar
t
to
tr
an
s
m
it
d
ata,
it’
s
m
o
v
ed
f
r
o
m
to
p
to
b
o
t
to
m
,
f
o
llo
w
ed
b
y
d
if
f
er
en
t
l
ev
els
li
k
e
ch
an
n
el
s
ca
n
n
in
g
,
s
en
d
R
T
S,
w
ait
C
T
S,
co
n
g
esti
o
n
av
o
i
d
an
ce
an
d
p
r
o
ce
s
s
in
g
.
I
n
F
ig
u
r
e
3
,
th
e
au
th
o
r
p
r
o
p
o
s
ed
th
e
n
e
w
ap
p
r
o
ac
h
in
th
e
f
o
r
m
o
f
al
g
o
r
ith
m
.
I
t e
x
p
la
in
s
t
h
e
d
etails i
n
t
h
e
f
o
r
m
o
f
f
l
o
w
c
h
ar
t.
Fig
u
r
e
3
.
Flo
w
c
h
ar
t f
o
r
R
C
-
M
AC
A
l
g
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
1
,
Feb
r
u
ar
y
201
8
:
87
–
93
90
3.
RE
SU
L
T
S
A
ND
AN
AL
Y
SI
S
NS
2
is
ch
o
s
e
n
f
o
r
t
h
e
s
i
m
u
l
atio
n
as
s
et
-
u
p
co
n
s
is
t
s
o
f
th
e
m
a
s
s
i
v
e
n
et
w
o
r
k
.
Set
-
up
co
n
tai
n
s
1
0
0
n
o
d
es;
s
ize
o
f
th
e
p
ac
k
et
is
7
8
0
b
y
tes,
r
o
u
ti
n
g
p
r
o
to
co
l
is
A
ODV.
MA
C
P
r
o
to
co
ls
u
s
ed
ar
e
I
E
E
E
8
0
2
.
1
1
an
d
RC
-
M
AC
.
T
o
p
o
lo
g
y
u
s
ed
is
MA
NE
T
.
Her
e
tab
le
1
g
iv
es
t
h
e
in
f
o
r
m
atio
n
s
u
s
ed
in
s
i
m
u
latio
n
s
o
f
ex
p
er
i
m
e
n
ts
.
T
ab
le
1
.
Netw
o
r
k
Si
m
u
la
tio
n
P
ar
am
eter
s
P
a
r
a
me
t
e
r
N
a
me
Pa
r
a
me
t
e
r
V
a
l
u
e
N
o
O
f
N
o
d
e
s
1
0
0
N
o
d
e
Ty
p
e
S
t
a
t
i
c
A
r
e
a
O
f
S
i
mu
l
a
t
i
o
n
1
0
0
0
x
1
0
0
0
T
r
a
f
f
i
c
C
b
r
C
h
a
n
n
e
l
Ty
p
e
W
i
r
e
l
e
ss C
h
a
n
n
e
l
3
.
1
.
Ana
ly
s
is
o
f
E
nerg
y
co
ns
u
m
p
t
io
n,
Relia
bil
it
y
a
nd
B
a
nd
w
i
dth
in RC
-
M
AC
Fig
u
r
e
4
,
s
h
o
w
n
th
e
r
es
u
lt
s
o
f
p
r
o
p
o
s
ed
w
o
r
k
in
ter
m
s
of
en
er
g
y
co
n
s
u
m
p
t
io
n
v
er
s
u
s
s
i
m
u
latio
n
ti
m
e
an
d
in
s
lo
ts
o
f
s
i
m
u
latio
n
ti
m
e
i
n
1
0
,
1
5
&
2
0
s
ec
.
E
v
er
y
ti
m
e
en
er
g
y
co
n
s
u
m
p
tio
n
w
ill
in
cr
ea
s
e
w
it
h
s
i
m
u
lat
io
n
ti
m
e.
T
h
e
RC
-
M
A
C
p
r
o
to
co
l
u
s
ed
as
M
A
C
p
r
o
t
o
co
l
in
th
e
w
ir
ele
s
s
s
en
s
o
r
n
et
w
o
r
k
s
.
W
h
e
n
n
o
d
e
r
eso
lu
te
to
s
en
d
i
n
f
o
r
m
atio
n
p
ac
k
et,
b
y
co
m
m
u
n
icat
io
n
m
ed
ia
lik
e
w
ir
eles
s
m
ed
ia.
I
t
w
ill
s
en
d
th
e
d
ata,
else
g
o
es to
w
a
it.
E
ac
h
ti
m
e
i
n
f
o
r
m
atio
n
s
h
o
u
ld
b
e
m
o
v
e
d
f
r
o
m
th
e
ap
p
licatio
n
la
y
er
to
th
e
p
h
y
s
ical
la
y
er
.
T
h
e
m
ea
s
u
r
e
m
e
n
t
m
ad
e
f
o
r
p
er
f
o
r
m
an
ce
ch
ar
ac
ter
i
s
tic
o
f
RC
-
M
AC
r
eliab
ilit
y
an
d
o
b
tai
n
v
alu
e
s
ar
e
s
h
o
w
n
in
Fig
u
r
e
5.
I
n
Fi
g
u
r
e
5
th
e
au
t
h
o
r
p
r
o
p
o
s
ed
in
th
i
s
w
o
r
k
t
h
e
s
lo
t
s
o
f
s
i
m
u
latio
n
ti
m
e
i
n
1
0
,
1
5
&
2
0
s
ec
.
E
v
er
y
ti
m
e
r
eliab
ilit
y
w
il
l
in
cr
ea
s
e
w
it
h
s
i
m
u
latio
n
ti
m
e.
T
h
e
RC
-
M
AC
p
r
o
to
co
l
u
s
e
d
as
M
AC
p
r
o
to
co
l
in
t
h
e
w
ir
e
less
s
e
n
s
o
r
n
et
w
o
r
k
s
.
R
eliab
il
it
y
i
n
w
ir
ele
s
s
s
en
s
o
r
n
et
w
o
r
k
s
b
e
ab
le
to
e
x
a
m
i
n
e
f
r
o
m
to
g
et
h
er
t
h
e
p
ac
k
et
lev
el
a
n
d
ev
e
n
t le
v
e
l.
Fig
u
r
e
4
.
RC
-
M
AC
: E
n
er
g
y
C
o
n
s
u
m
p
tio
n
Vs
Si
m
u
latio
n
ti
m
e
Fig
u
r
e
5
.
RC
-
M
AC
R
eliab
ili
t
y
Vs Si
m
u
la
tio
n
ti
m
e
Fig
u
r
e
6
.
RC
-
M
AC
: B
an
d
w
id
t
h
Vs Si
m
u
latio
n
ti
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8708
E
va
lu
a
tio
n
o
f E
n
erg
y
C
o
n
s
u
m
p
tio
n
u
s
in
g
R
ec
eive
r
–
C
en
tr
ic
MAC P
r
o
t
o
co
l in
….
(
A
n
a
n
d
a
K
u
ma
r
K
S
)
91
I
n
F
i
g
u
r
e
6
,
t
h
e
p
r
o
p
o
s
ed
w
o
r
k
is
th
e
s
lo
ts
o
f
s
i
m
u
lat
io
n
ti
m
e/b
an
d
w
id
t
h
i
n
1
0
,
1
5
&
2
0
s
ec
.
E
v
er
y
ti
m
e
b
an
d
w
id
t
h
w
ill i
n
cr
ea
s
e
s
w
i
t
h
s
i
m
u
lat
io
n
ti
m
e.
B
an
d
w
i
d
th
in
cr
ea
s
e
s
f
r
o
m
3
6
5
to
7
8
7
.
3
.
2
.
P
er
f
o
r
m
a
nce
Ana
ly
s
i
s
o
f
E
nerg
y
co
ns
u
m
pt
io
n,
Reli
a
bil
it
y
a
nd
B
a
nd
w
idth,
C
o
m
pa
ri
s
o
n
o
f
RC
-
M
AC
w
it
h
M
AC
I
E
E
E
8
0
2
.
1
1
E
n
er
g
y
co
n
s
u
m
p
tio
n
is
i
n
v
er
s
el
y
p
r
o
p
o
s
itio
n
al
to
t
h
e
e
n
er
g
y
ex
p
e
n
d
itu
r
e.
E
n
er
g
y
co
n
s
u
m
p
tio
n
i
s
ca
lcu
lated
b
y
i
m
p
le
m
en
t
in
g
MA
C
a
n
d
i
m
p
le
m
en
tin
g
RC
-
MA
C
.
Fig
u
r
e
7
co
m
p
ar
e
s
t
h
e
en
er
g
y
co
n
s
u
m
p
tio
n
o
f
M
A
C
p
r
o
to
co
l
an
d
R
C
-
M
AC
p
r
o
to
co
l.
E
n
er
g
y
co
n
s
u
m
p
tio
n
is
h
ig
h
i
n
M
AC
p
r
o
to
c
o
l;
it’
s
less
in
R
C
-
MA
C
p
r
o
to
co
l.
R
C
-
M
AC
p
r
o
to
co
l
th
at
allo
w
s
n
o
d
e
to
p
r
o
f
icien
tl
y
m
a
k
e
u
s
e
o
f
m
u
ltip
le
ch
an
n
el
b
y
d
r
o
p
p
in
g
n
ee
d
l
ess
ch
a
n
n
el
s
w
itc
h
i
n
g
.
R
ec
eiv
er
-
C
e
n
tr
ic
M
A
C
p
r
o
to
co
l
av
o
id
s
t
h
e
in
ter
f
er
en
ce
o
w
ed
to
g
et
b
etter
co
m
m
u
n
icatio
n
th
r
o
u
g
h
p
u
t
o
f
w
ir
ele
s
s
s
en
s
o
r
n
et
w
o
r
k
.
Fro
m
t
h
e
o
b
tain
ed
r
esu
lts
,
t
h
e
M
AC
w
ill
co
n
s
u
m
e
en
er
g
y
m
o
r
e
b
y
0
.
1
2
% th
an
R
C
-
M
AC
.
R
eliab
ilit
y
co
n
s
i
s
t
ca
p
ab
ilit
y
t
o
r
etr
an
s
m
it
lo
s
t
p
ac
k
et
s
,
lo
ca
ll
y
o
r
en
d
to
en
d
,
t
o
g
u
ar
an
tee
s
u
cc
e
s
s
f
u
l
d
eliv
er
y
.
Ho
w
ev
er
,
a
n
y
s
en
s
o
r
n
et
w
o
r
k
t
h
at
i
s
d
ep
lo
y
in
g
to
s
u
p
p
l
y
to
a
s
i
g
n
if
ica
n
t
a
p
p
licatio
n
w
ill
n
ee
d
m
ec
h
a
n
i
s
m
to
m
ak
e
s
u
r
e
t
h
at
r
eliab
ilit
y
o
f
d
ata
d
eliv
er
y
f
r
o
m
th
e
s
i
n
k
to
th
e
s
en
s
o
r
s
.
B
y
u
s
i
n
g
u
p
s
tr
ea
m
an
d
d
o
w
n
s
tr
ea
m
m
e
s
s
a
g
e
is
ca
r
r
ie
d
o
u
t
in
w
ir
ele
s
s
s
en
s
o
r
n
et
w
o
r
k
.
Fo
r
u
p
s
tr
ea
m
m
e
s
s
a
g
e,
t
h
e
s
en
d
er
is
a
s
en
s
o
r
n
o
d
e
an
d
r
ec
ei
v
er
n
o
d
e
is
a
s
i
n
k
n
o
d
e.
Fo
r
d
o
w
n
s
tr
ea
m
m
es
s
ag
e,
th
e
s
e
n
d
er
is
a
s
in
k
n
o
d
e
an
d
r
ec
ei
v
er
n
o
d
e
is
a
s
e
n
s
o
r
n
o
d
e.
Fig
u
r
e
8
s
h
o
w
s
t
h
at
co
m
p
ar
i
s
o
n
o
f
r
eli
ab
ilit
y
o
f
M
AC
an
d
R
C
-
M
AC
.
Her
e
R
C
-
M
AC
p
r
o
to
co
l
h
as
m
o
r
e
r
eliab
le
co
m
p
ar
ed
to
MA
C
p
r
o
to
co
l.
T
h
e
r
esu
lts
s
h
o
w
t
h
at
r
eliab
il
it
y
is
i
m
p
r
o
v
ed
b
y
2
0
.
8
6
% in
R
C
-
M
AC
,
co
m
p
ar
ed
w
it
h
M
A
C
.
Fig
u
r
e
7
.
C
o
m
p
ar
is
o
n
o
f
E
n
er
g
y
C
o
n
s
u
m
p
tio
n
o
f
MA
C
an
d
R
C
-
M
AC
Fig
u
r
e
8
.
C
o
m
p
ar
is
o
n
o
f
R
elia
b
ilit
y
o
f
M
AC
an
d
RC
-
M
AC
Fig
u
r
e
9
.
C
o
m
p
ar
is
o
n
o
f
B
a
n
d
w
id
t
h
o
f
M
AC
an
d
R
C
-
M
AC
B
an
d
w
id
t
h
r
ep
r
esen
ts
th
e
q
u
a
n
tit
y
o
f
d
ata
t
h
at
ca
n
b
e
tr
an
s
m
itted
o
v
er
a
n
e
t
w
o
r
k
i
n
a
g
i
v
en
q
u
a
n
tit
y
o
f
ti
m
e,
f
r
eq
u
e
n
tl
y
s
p
o
k
e
n
i
n
b
its
p
er
s
ec
o
n
d
o
r
b
p
s
in
w
ir
ele
s
s
s
e
n
s
o
r
n
e
t
w
o
r
k
.
Fi
g
u
r
e
9
s
h
o
w
s
t
h
at,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
1
,
Feb
r
u
ar
y
201
8
:
87
–
93
92
co
m
p
ar
is
o
n
o
f
b
a
n
d
w
id
th
o
f
MA
C
a
n
d
R
C
-
M
AC
p
r
o
to
co
ls
,
h
er
e
co
m
p
ar
ed
to
R
C
-
M
A
C
ex
is
t
in
g
M
AC
h
a
v
e
less
b
an
d
w
id
t
h
.
A
r
es
u
lt
s
h
o
w
s
t
h
at
b
an
d
w
id
t
h
i
n
cr
ea
s
ed
b
y
2
7
.
3
2
%
o
f
b
an
d
w
id
t
h
i
n
R
C
-
M
AC
co
m
p
ar
ed
w
it
h
M
AC
8
0
2
.
1
1
.
4.
CO
NCLU
SI
O
N
Fro
m
th
e
o
b
tain
ed
r
esu
l
ts
o
f
th
e
cu
r
r
en
t
p
r
o
p
o
s
ed
m
et
h
o
d
,
R
C
-
M
AC
p
r
o
to
co
l
m
ai
n
l
y
f
o
cu
s
o
n
en
er
g
y
co
n
s
u
m
p
tio
n
,
r
eliab
ilit
y
a
n
d
en
d
to
e
n
d
d
ela
y
.
T
h
e
f
a
cto
r
s
o
f
co
n
g
est
io
n
co
n
tr
o
l,
r
eliab
ilit
y
a
n
d
en
er
g
y
co
n
s
u
m
p
tio
n
w
o
u
ld
h
elp
i
n
d
r
o
p
p
in
g
p
ac
k
e
t
f
ail
u
r
e
r
ate
w
h
ic
h
r
es
u
lt
s
an
en
er
g
y
ef
f
ic
ien
t
p
r
o
ce
s
s
o
f
t
h
e
n
et
w
o
r
k
.
I
n
th
is
p
ap
er
s
y
s
te
m
atica
ll
y
e
v
al
u
ated
th
e
c
u
r
r
e
n
t
tec
h
n
iq
u
e
u
s
i
n
g
NS2
s
i
m
u
lato
r
,
th
e
s
i
m
u
latio
n
r
esu
lt
s
an
d
an
al
y
s
i
s
o
f
p
ar
a
m
e
tr
ic
m
ea
s
u
r
es
li
k
e
-
en
er
g
y
co
n
s
u
m
p
t
io
n
,
r
eliab
ilit
y
a
n
d
b
an
d
w
id
t
h
ar
e
ex
p
o
s
ed
an
d
co
m
p
ar
i
n
g
t
h
is
r
esu
lts
w
it
h
o
th
er
p
r
o
to
c
o
ls
.
Her
e,
th
e
RC
-
M
AC
p
r
o
to
co
l
s
h
o
w
n
b
etter
p
er
f
o
r
m
an
ce
an
d
ef
f
icien
c
y
.
T
h
e
p
r
o
p
o
s
ed
p
r
o
to
co
l
w
i
ll
s
h
o
w
s
b
etter
p
er
f
o
r
m
a
n
ce
i
n
ter
m
s
o
f
e
n
er
g
y
co
n
s
u
m
p
tio
n
an
d
r
eliab
ilit
y
.
Her
e,
th
e
p
r
o
p
o
s
ed
m
et
h
o
d
o
b
tain
ed
an
i
m
p
r
o
v
e
m
en
t
i
n
ter
m
s
o
f
0
.
1
2
%
o
f
less
e
n
er
g
y
co
n
s
u
m
p
tio
n
,
r
eliab
ilit
y
i
m
p
r
o
v
ed
b
y
2
0
.
8
6
%
an
d
b
an
d
w
i
d
th
in
cr
ea
s
ed
b
y
2
7
.
3
2
%
of
RC
-
M
AC
co
m
p
ar
ed
w
it
h
M
AC
I
E
E
E
8
0
2
.
1
1
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
w
o
u
ld
li
k
e
to
e
x
p
r
ess
s
i
n
ce
r
e
t
h
a
n
k
s
f
o
r
en
co
u
r
ag
e
m
e
n
t
an
d
co
n
s
ta
n
t
s
u
p
p
o
r
t
p
r
o
v
id
ed
b
y
t
h
e
Ma
n
a
g
e
m
e
n
t
R
R
GI
,
an
d
Prin
cip
al
R
aj
a
R
aj
es
w
ar
i
C
o
l
leg
e
o
f
E
n
g
in
ee
r
i
n
g
,
B
an
g
alo
r
e
-
7
4
,
I
n
d
ia
d
u
r
in
g
th
is
r
esear
c
h
w
o
r
k
.
RE
F
E
R
E
NC
E
S
[1
]
Hu
a
n
g
,
P
e
i
,
Ch
e
n
W
a
n
g
,
a
n
d
L
i
X
iao
,
"
RC
-
M
A
C:
A
r
e
c
e
i
v
e
r
-
c
e
n
tri
c
M
A
C
p
ro
to
c
o
l
f
o
r
e
v
e
n
t
-
d
ri
v
e
n
w
irele
s
s
se
n
so
r
n
e
tw
o
rk
s
,
"
IEE
E
T
ra
n
s
a
c
ti
o
n
s
o
n
C
o
mp
u
ter
s
6
4
.
4
:
1
1
4
9
-
1
1
6
1
,
2
0
1
5
[2
]
Yu
e
h
-
T
ia
m
Yo
n
g
,
C.
E.
T
a
n
,
Zen
,
K.
,
“
L
o
n
g
T
ra
n
s
m
issio
n
Ra
n
g
e
P
e
rf
o
rm
a
n
c
e
E
v
a
lu
a
ti
o
n
o
n
RI
-
M
A
C
p
ro
to
c
o
l
in
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
s
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
Res
e
a
rc
h
i
n
Co
m
p
u
ter
a
n
d
Co
mm
u
n
ica
ti
o
n
En
g
i
n
e
e
rin
g
,
V
o
l.
3
,
Iss
u
e
1
1
,
N
o
v
e
m
b
e
r
2
0
1
4
.
[3
]
D.
N.
W
a
te
g
a
o
n
k
a
r
a
n
d
V
.
S
.
De
sh
p
a
n
d
e
,
"
Ch
a
ra
c
ter
iza
ti
o
n
o
f
r
e
li
a
b
il
it
y
in
W
S
N,
"
2
0
1
2
W
o
rld
c
o
n
g
re
ss
o
n
In
f
o
rm
a
ti
o
n
a
n
d
Co
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
lo
g
ies
,
T
riv
a
n
d
ru
m
,
p
p
.
9
7
0
-
9
7
5
,
2
0
1
2
[4
]
UK
S
in
g
h
,
KC
P
h
u
leriy
a
,
RJ
Ya
d
a
v
,
“
R
e
a
l
T
i
m
e
Da
ta
Co
m
m
u
n
ica
ti
o
n
M
e
d
iu
m
a
c
c
e
ss
c
o
n
tro
l
(RCM
A
C)
P
r
o
to
c
o
l
f
o
r
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
s
(
W
S
Ns
)
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Eme
rg
in
g
T
e
c
h
n
o
l
o
g
y
a
n
d
A
d
v
a
n
c
e
d
En
g
i
n
e
e
rin
g
,
IS
S
N
2
2
5
0
-
2
4
5
9
,
Vo
lu
m
e
2
,
Iss
u
e
5
,
M
a
y
2
0
1
2
.
[5
]
A
n
a
n
d
a
Ku
m
a
r
K
S
;
Ba
lak
rish
n
a
R;
“
De
v
e
lo
p
m
e
n
t
o
f
En
e
rg
y
-
Eff
icie
n
t
a
n
d
Da
ta
Co
ll
e
c
ti
o
n
P
r
o
to
c
o
l
f
o
r
h
e
tero
g
e
n
e
o
u
s
W
ir
e
les
s
S
e
n
so
r
Ne
tw
o
rk
s
,
”
IT
S
I
T
ra
n
sa
c
ti
o
n
s
o
n
El
e
c
trica
l
a
n
d
El
e
c
tro
n
ics
E
n
g
i
n
e
e
rin
g
(
IT
S
I
-
T
EE
E)
,
I
S
S
N (
P
RINT
):
2
3
2
0
–
8
9
4
5
,
V
o
l
u
m
e
-
4
,
Iss
u
e
-
2
,
2
0
1
6
.
[6
]
A
n
a
n
d
a
Ku
m
a
r
K,
S
,
Ba
la
k
ris
h
n
a
R;
“
S
tu
d
y
o
n
En
e
rg
y
E
ff
i
c
ien
t
Ro
u
ti
n
g
P
ro
to
c
o
ls
in
W
irele
ss
s
e
n
so
r
Ne
tw
o
rk
s,”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
A
d
v
a
n
c
e
d
Res
e
a
rc
h
i
n
Co
mp
u
ter
S
c
ien
c
e
a
n
d
S
o
ft
w
a
re
En
g
i
n
e
e
rin
g
,
IS
S
N:
2
2
7
7
1
2
8
X,Vo
l
5
,
Iss
u
e
1
1
,
p
a
g
e
s 7
0
2
-
7
0
5
,
2
0
1
5
.
[7
]
A
n
a
n
th
ra
m
S
w
a
m
i,
Qin
g
Zh
a
o
,
Ya
o
-
W
in
Ho
n
g
,
Lan
g
T
o
n
g
,
“
W
i
re
les
s
S
e
n
so
r
Ne
t
w
o
rk
s:
S
ig
n
a
l
P
ro
c
e
ss
in
g
a
n
d
Co
m
m
u
n
ica
ti
o
n
s,”
Jo
h
n
W
il
e
y
&
S
o
n
s,
2
0
0
7
.
[8
]
A
.
K
a
k
ria
a
n
d
T
.
C.
As
e
ri,
"
S
u
rv
e
y
o
f
s
y
n
c
h
ro
n
o
u
s
M
A
C
p
ro
to
c
o
l
s
f
o
r
W
irele
ss
S
e
n
so
r
Ne
t
w
o
rk
s,
"
2
0
1
4
Rec
e
n
t
Ad
v
a
n
c
e
s i
n
En
g
i
n
e
e
rin
g
a
n
d
Co
mp
u
ta
ti
o
n
a
l
S
c
ien
c
e
s (
RA
ECS
)
,
C
h
a
n
d
ig
a
rh
,
p
p
.
1
-
4
,
2
0
1
4
[9
]
Ra
v
i
Ko
d
a
v
a
rti
,
"
Ov
e
r
c
o
m
in
g
Qo
S
,
S
e
c
u
rit
y
Iss
u
e
s in
V
o
W
LA
N
D
e
sig
n
s"
,
Tex
a
s In
stru
m
e
n
ts,
A
p
ril
,
2
0
0
3
.
[1
0
]
P
a
ti
l
,
A
.
V
.
,
a
n
d
A
.
Y.
Ka
z
i,
"
Per
fo
rm
a
n
c
e
a
n
a
lys
is
o
f
IEE
E
8
0
2
.
1
5
.
4
se
n
so
r
n
e
two
rk
s,
"
Co
m
p
u
ti
n
g
,
Co
m
m
u
n
ica
ti
o
n
s
a
n
d
Ne
tw
o
rk
in
g
T
e
c
h
n
o
lo
g
ies
(ICCCN
T
),
2
0
1
3
F
o
u
rt
h
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
.
IEE
E,
2
0
1
3
.
B
I
O
G
RAP
H
I
E
S O
F
AUTH
O
RS
An
a
n
d
a
K
u
m
a
r
K
S
.
O
b
tain
e
d
B.
T
e
c
h
De
g
re
e
f
ro
m
Ko
n
e
ru
L
a
k
sh
m
a
iah
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
G
u
n
tu
r,
A
c
h
a
r
y
a
N
a
g
a
rju
n
a
Un
iv
e
rsit
y
,
A
n
d
h
ra
p
ra
d
e
sh
.
O
b
tain
e
d
M
.
T
e
c
h
De
g
re
e
f
ro
m
R.
V
.
C
o
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
,
V
isv
e
sv
a
ra
y
a
T
e
c
h
n
o
l
o
g
ica
l
Un
iv
e
rsit
y
,
Be
la
g
a
v
i,
Ka
rn
a
tak
a
.
Cu
rre
n
tl
y
h
e
is
p
u
rsu
in
g
P
h
.
D
f
ro
m
V
isv
e
sv
a
ra
y
a
T
e
c
h
n
o
l
o
g
ica
l
Un
iv
e
rsit
y
,
Be
la
g
a
v
i,
Ka
rn
a
tak
a
.
He
is
W
o
rk
in
g
a
s
As
st.P
r
o
f
e
ss
o
r
in
De
p
t
o
f
In
f
o
r
m
a
ti
o
n
S
c
ien
c
e
a
n
d
En
g
in
e
e
rin
g
,
Ra
jaRa
jes
wa
ri
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
,
Ba
n
g
a
lo
re
,
In
d
ia.
His
Re
se
a
rc
h
a
re
a
in
tere
sts
a
re
in
th
e
f
ield
o
f
W
irele
ss
S
e
n
so
r
Ne
tw
o
rk
s,
Da
ta M
in
i
n
g
,
Bio
i
n
f
o
rm
a
ti
c
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2088
-
8708
E
va
lu
a
tio
n
o
f E
n
erg
y
C
o
n
s
u
m
p
tio
n
u
s
in
g
R
ec
eive
r
–
C
en
tr
ic
MAC P
r
o
t
o
co
l in
….
(
A
n
a
n
d
a
K
u
ma
r
K
S
)
93
B
a
la
k
r
is
h
n
a
R
is
c
u
rre
n
tl
y
w
o
r
k
in
g
a
s
a
P
rin
c
ip
a
l
&
P
r
o
f
e
ss
o
r,
in
Ra
jaRa
jes
w
a
ri
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
.
His
re
se
a
rc
h
a
n
d
p
ro
f
e
ss
io
n
a
l
c
a
re
e
r
sp
a
n
s
a
b
o
u
t
1
6
y
e
a
rs
o
f
T
e
a
c
h
in
g
&
r
e
se
a
r
c
h
,
1
Ye
a
r
In
d
u
strial
Ex
p
e
rien
c
e
a
t
T
C
S
.
His
e
x
p
e
rti
se
is
p
rima
ril
y
in
th
e
d
o
m
a
in
s
o
f
A
d
h
o
c
Ne
t
w
o
rk
s,
M
o
b
i
le
Co
m
p
u
ti
n
g
,
Ne
tw
o
rk
s,
a
n
d
Distrib
u
ted
OS
.
He
o
b
tain
e
d
h
is
M
.
T
e
c
h
.
f
ro
m
M
a
h
a
rsh
i
Da
y
a
n
a
d
Un
iv
e
rsit
y
a
n
d
su
b
se
q
u
e
n
tl
y
P
h
.
D
f
ro
m
S
ri
Krish
n
a
d
e
v
a
ra
y
a
Un
iv
e
r
sit
y
.
He
i
s
a
li
fe
m
e
m
b
e
r
o
f
p
ro
f
e
ss
io
n
a
l
b
o
d
ies
IS
T
E,
CS
I,
IA
EN
G
e
tc.
He
h
a
s
p
u
b
l
ish
e
d
4
2
p
a
p
e
rs
in
p
e
e
re
d
In
tern
a
ti
o
n
a
l
Jo
u
rn
a
ls,
2
3
p
a
p
e
rs
in
I
n
tern
a
ti
o
n
a
l
a
n
d
Na
ti
o
n
a
l
Co
n
f
e
re
n
c
e
s.
He
h
a
s
g
u
id
e
d
9
M
.
T
e
c
h
,
6
M
a
ste
rs
a
n
d
3
0
B.
E
stu
d
e
n
ts
p
r
o
jec
ts.
Cu
rre
n
t
ly
h
e
is
g
u
id
in
g
5
P
h
D
sc
h
o
lars
,
2
M
.
S
c
.
En
g
g
.
By
Re
s
e
a
rc
h
a
tV
T
U.
Evaluation Warning : The document was created with Spire.PDF for Python.