Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 2
,
A
p
r
il
201
6, p
p
.
85
1
~
85
8
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
2.9
538
8
51
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Use of Photovoltaics in Micr
ogrid as Energy Source and
Control Method using MATLAB/Simulink
Sumai
ya Rah
m
an,
H
a
sim
a
h Abdul
Rah
m
an
Centre
of
Ele
c
tr
i
cal
Ene
r
g
y
S
y
s
t
e
m
s (CEES), Insti
t
ute
of Futur
e
En
erg
y
, Faku
lti
Kej
u
rutera
an
Elek
tri
k
, Universi
ti
Teknologi Malay
s
ia (UTM), 813
10
Johor Bahru
,
Johor, Mala
y
s
ia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 13, 2015
R
e
vi
sed Dec 9,
2
0
1
5
Accepte
d Ja
n
3, 2016
Microgrid in po
wer s
y
stem has
drawn wi
de attention due
to its
significan
t
benefi
ts
in
term
s
of s
u
s
t
ain
a
ble
e
n
erg
y
s
y
s
t
em
in
recen
t
ye
ars
.
Thi
s
approac
h
is the most economical altern
ativ
e to
conventional energ
y
s
y
stem which uses
Renewable En
er
g
y
(RE)
resources.RE
s
ources
e
n
s
u
repollution fr
ee
and cl
ean
environm
ent b
y
em
itting zero CO
2
. This paper proposes a d
e
sign of a
microgrid s
y
stem using solar photovoltaic
s (PV) as the Distributed En
er
g
y
Resources (DER
s) and a
controlling
method for managing
the
components of
microgrid b
y
us
ing MATLAB/Simulink. Th
e results show that microgrid
s
y
s
t
em
is
prom
is
ingas
alt
e
rnat
iv
e to rep
l
ac
e th
e
fos
s
il fuel bas
e
d ener
g
y
s
y
s
t
em
. Int
e
grat
i
on of an effe
cti
v
e contro
ller
ca
n help to m
a
nag
e
the lo
ads
and res
our
ces
,
re
s
u
lting in
m
o
re s
t
abl
e
and
re
liab
l
e.
Keyword:
C
ont
r
o
l
l
e
r
D
i
s
t
r
i
bu
te
d
en
er
g
y
r
e
so
ur
c
e
s
Micr
o
g
r
i
d
Pho
t
ov
o
ltaic
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
H
a
sim
a
h
A
bdul Rah
m
an
B
l
ock P1
9a - 0
1
-
1
1-
00
,
P
u
sat
Si
st
em
Tenaga
El
ekt
r
i
k
(C
E
E
S),
Faku
lti Kejuru
t
e
raan Elek
tri
k
,
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia (UTM),
8
131
0 Joho
r B
a
h
r
u
,
Joho
r, M
a
laysia.
Pho
n
e
: +60
7
-55
5
700
2
/
7
006
Fax
:
+6
07-
555 70
05
Em
a
il: h
a
sh
imah
ar@u
tm
.
m
y
1.
INTRODUCTION
El
ect
ri
ci
t
y
dem
a
nd i
s
i
n
cr
easi
ng ra
pi
dl
y
wi
t
h
th
e in
creasing
po
pulatio
n
g
r
owth rate. Th
e
devel
opm
ent
i
n
t
ech
nol
o
g
i
e
s wo
rl
d
w
i
d
e i
s
al
so an
ot
he
r
key factor
for
high inc
r
ease i
n
electricity demand.
For t
h
ese rea
s
ons
, fossil fuels suc
h
as oil,
coal, ga
s
are
depleting ac
utely. Mean
wh
ile, u
s
e of
carbo
n b
a
sed
fuels
cause
s
ha
rm
ful effect t
o
the e
nvironm
e
n
t by
releas
i
n
g
t
o
n
n
es
o
f
t
oxi
c G
r
een
H
o
use
Gases
c
onsi
s
t
i
ng
o
f
C
a
rb
on
di
o
x
i
d
e, M
e
t
h
ane, Ni
t
r
o
u
s o
x
i
d
e,
O
z
one a
nd C
h
l
o
r
o
fl
ur
o car
bo
n e
v
ery
y
ear [1]
,
[
2
]
.
These ha
ve
m
a
de
i
t
e
x
t
r
e
m
e
l
y
n
e
c
e
s
s
a
r
y
t
o
s
e
ek
fo
r f
a
v
o
u
r
a
b
l
e
a
l
t
e
r
n
a
t
i
v
e
fo
r
t
h
e
s
e
fo
s
s
i
l
fu
e
l
s
,
w
h
i
c
h
a
r
e
s
u
ff
i
c
i
e
n
t
t
o
f
u
l
f
ill
t
h
e dem
a
nds and
do
not
dam
a
ge t
h
e en
vi
r
o
nm
ent
[3]
.
M
i
cro
g
ri
d (M
G
)
s
y
st
em
i
s
pot
ent
i
al
as alt
e
rnat
i
v
e as i
t
usesr
e
ne
wa
bl
e
ener
gy
,
red
u
ce
s car
bo
n em
i
ssi
on a
n
dbei
n
g
e
c
on
om
i
cal
ly
fri
endl
y
[4]
.
Howev
e
r, it is a great ch
allen
g
e
to
con
t
ro
l
Micro
g
rid
s
to
main
tain
b
a
lance in
th
e who
l
e syste
m
to
work as a coordinated
unit. T
h
is is consi
d
ered as a crucia
l co
nd
itio
n
i
n
the syste
m
[5
]. First o
f
all, th
is syste
m
basi
cal
l
y
uses
R
e
newa
bl
e E
n
ergy
as
ene
r
gy
so
urce
. T
h
ere
f
o
r
e,
va
ri
at
i
on
i
n
ge
ne
rat
i
o
n
of
R
E
s
o
u
r
ces
t
a
ke
s
place due t
o
the cha
nge
in
we
ather c
o
ndition which lea
d
s
t
o
poor
power quality
[6],
[7]. Whe
n
the syste
m
is
in
g
r
id-co
n
n
e
cted
m
o
d
e
,
so
m
e
d
i
sturb
a
n
ces in
u
tility
m
a
y
cau
se sev
e
re
d
a
m
a
g
e
in
M
G
syste
m
req
u
irin
g
a
cont
rol
l
e
r f
o
r
d
i
scon
nect
i
o
n fr
om
. As a conseque
nce o
f
di
s
c
on
nect
i
o
n, v
o
l
t
a
ge and f
r
eq
u
e
ncy
im
bal
a
nce
m
a
y
o
ccur in MG an
d
i
n
th
is case
for m
a
in
tain
in
g
harm
o
n
y
m
i
cros
ource c
o
ntrollers a
r
e
nee
d
ed [8]. Moreover, in
stan
d-alon
e con
d
ition
,
co
n
t
rollin
g
DERs are essen
tial to
estab
lish
vo
ltage an
d
frequ
en
cy stab
ility with
in
the
m
i
crogri
d
f
o
r t
h
e bal
a
nce i
n
di
ffe
re
nt
l
o
ads
and st
ora
g
e m
o
d
u
l
e
s as
wel
l
[9]
.
I
n
i
s
l
a
n
d
e
d
an
d l
o
w
gen
e
rat
i
o
n
condition, it is
necessa
ry
to feed the
m
o
st critical
lo
ads and sha
d
e the non-critical
loads. Hence
,
an intelligent
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
1 – 8
5
8
85
2
co
n
t
ro
ller is
need
ed
fo
r th
is task
. Th
us, co
n
t
ro
l re
q
u
i
r
e
m
ent
s
and t
e
c
hni
que
s are si
gni
fi
cant
l
y
di
f
f
ere
n
t
com
p
ared t
o
t
h
e co
nve
nt
i
o
n
a
l
powe
r
sy
st
em
. The aim
of t
h
i
s
p
r
o
j
ect
i
s
t
o
desi
gn and
pr
op
ose a
hi
gh
per
f
o
r
m
a
nce M
i
crog
ri
d
sy
st
em
by
i
n
t
e
g
r
a
tin
g DERs an
d an
au
to
m
a
ted
con
t
ro
ller.
1.1. Archi
t
ecture
Ofmi
cro-Grid (MG) System
Microgrid is a
sm
all scale powe
r
system
in
whic
h
R
e
ne
wabl
e Ene
r
gy
(R
E) so
urce
s
s
u
ch
as Sol
a
r
Ph
ot
o
vol
t
a
i
c
s,
W
i
nd T
u
r
b
i
n
es, Fuel
cel
l
s
, B
i
o
m
ass energy
and ot
her
s
[or k
n
o
w
n
a
s
Di
st
ri
but
e
d
Ener
gy
resources
(DE
R
s)] are
use
d
t
o
se
rve
a
sm
all comm
unity
[
1
0
-
12
]. MG can b
e
op
er
ated
usin
g non
-
R
E so
ur
ces
(i
.e. Fos
s
i
l
Fue
l
base
d gene
ra
t
o
rs
)
as wel
l
.
Ho
we
ver
,
E
n
e
r
gy
M
a
nagem
e
nt
Sy
st
em
i
n
m
i
crogri
d
i
s
di
ffe
rent
than the t
r
adit
ional power s
y
ste
m
as
it
uses di
f
f
ere
n
t
l
o
ad
s, a ra
n
g
e
of
Di
st
ri
b
u
t
e
d Ge
ne
rat
o
r
s
(D
Gs)
,
Di
st
ri
b
u
t
e
d
En
ergy
St
ora
g
es
(
D
ESs
)
a
n
d
c
o
n
v
ert
e
r
s
.
[1
3]
.
Basically, in
MG syste
m
s, local use
r
s ha
ve
m
o
re
co
nt
r
o
l
on
p
o
we
r so
u
r
ces and
uses
.
Al
so, i
n
t
h
ese
syste
m
s, som
e
low le
vel power-produ
cing sou
r
ces and
ele
m
en
ts are join
tly u
s
ed
to gen
e
rate, t
r
an
smit an
d
d
i
stribu
te electricity to
a sm
a
ll co
mm
u
n
i
t
y
, allo
wing
rem
a
rk
ab
ly less tran
sportatio
n
cost. Tho
s
e co
mp
on
en
ts
u
s
ually re
m
a
in
co
nn
ected
to
co
m
p
u
t
er system
s
fo
r m
o
n
ito
ring
, con
t
ro
lling
an
d
b
a
lan
c
i
n
g
en
erg
y
d
e
man
d
s,
supply a
nd
storages
[14]. T
h
e
s
e com
p
o
n
ent
s
can
p
r
o
v
i
d
e
fe
edbac
k
a
n
d al
s
o
ca
n t
a
ke
act
i
ons
acc
or
di
n
g
t
o
t
h
e
variation in e
n
ergy dem
a
nds
.
To inc
r
ease fle
x
ibility, MG
system
should
have self
-healing capa
b
ility. Figure 1
shows
a sce
n
ario of typical M
G
, i
n
wh
ich
,
main
co
m
p
on
en
ts are
so
lar PV, wi
nd
t
u
rb
in
e,
in
v
e
rters, con
t
ro
ller,
critical loads, non-cr
itical lo
ads and
b
a
ttery
.
Fi
gu
re
1.
A
r
chi
t
ect
ure
of M
i
c
r
og
ri
d
wi
t
h
m
u
lt
i
p
l
e
DE
Rs, bat
t
eries, critical load
,
no
nc
ri
t
i
cal
l
o
ad,
PC
C
a
n
d
Utility g
r
id
[15]
Power
system
of a
m
i
crogri
d
also c
o
nsists
of
e
n
e
r
gy st
orage m
odule,
powe
r
forecasting m
odule,
po
we
r c
o
n
v
ert
e
rs, c
o
nt
r
o
l
l
e
r
u
n
i
t
s
an
d c
o
m
m
uni
cat
i
on ne
t
w
or
k [1
6-2
0
]
. In
th
is stud
y, so
lar pho
tovoltaics,
wi
n
d
ener
gy
and f
u
el
cel
l
have bee
n
selected as energy source for the mi
crog
rid. Ho
wev
e
r, th
is p
a
p
e
r will
onl
y
di
scuss
o
n
t
h
e
use
o
f
P
V
as t
h
e M
G
a
n
d
t
h
e c
o
nt
rol
l
i
ng m
e
t
hod
t
o
m
a
nage t
h
e
co
m
ponent
s i
n
t
h
e M
G
syste
m
.
1.
2.
Mi
cro
gri
d
C
o
ntr
o
l
i
n
g S
y
ste
m
Co
n
s
i
d
eri
n
g
t
h
e in
teg
r
ation
of m
u
ltip
le DERs, in
co
rporatio
n
with
d
i
fferen
t
lo
ads
and
main
u
tili
t
y
gri
d
t
h
r
o
u
g
h
i
nve
rt
ers
i
n
M
G
[2
1]
, a m
a
n
a
gem
e
nt
sy
st
em
i
s
cert
a
i
n
l
y
neede
d
f
o
r
m
a
int
a
i
n
i
n
g a
ha
r
m
ony
i
n
t
h
e sy
st
em
. In
m
i
crogri
d
sy
st
em
operat
i
o
n,
m
oni
t
o
ri
ng
, co
nt
r
o
l
l
i
ng a
nd
o
p
t
i
m
i
zat
i
on are som
e
of t
h
e t
echni
ca
l
secto
r
s
wh
ich
n
eed to
b
e
fu
l
f
illed
to
en
su
re reliab
l
e and
m
o
re effectiv
e syste
m
[2
2
]
.
A co
n
t
ro
ller
fo
r t
h
e
syste
m
is n
eed
ed
fo
r
b
a
lan
c
i
n
g
th
e en
erg
y
, as well as th
e lo
ads with
i
n
a v
e
ry sh
ort ti
me p
e
ri
o
d
an
d
fo
r co
st
effective opera
tion [23].
T
h
e cont
rolle
r
of
Micro
g
rid uses lo
cal informatio
n
to con
t
rol th
e co
m
p
on
en
ts and
responds
withi
n
m
i
lliseconds
[24]. The
function of a c
ontroller in MG
consists
of im
provem
ents to MG
effi
ci
ency
,
po
wer
fl
o
w
co
nt
r
o
l
,
resy
nch
r
oni
zat
i
on bet
w
een
t
h
e M
G
an
d t
h
e m
a
i
n
gri
d
, a
d
j
u
st
m
e
nt
s of
vol
t
a
g
e
and
f
r
eq
ue
ncy
i
n
b
o
t
h
m
odes
[2
5,
2
6
]
.
M
G
co
nt
r
o
l
s
c
a
n
be cl
assi
fi
e
d
as
bel
o
w:
i.
Local
C
o
nt
rol
:
B
a
si
c cat
egor
y
of M
G
co
nt
r
o
l
i
s
by
cont
r
o
l
l
i
ng t
h
e o
p
era
t
i
ng p
o
i
n
t
s
o
f
t
h
e m
i
cros
ou
rc
es
and power-ele
ctronic adm
i
x
[27]. T
h
is c
ontrol is
l
o
w
co
st
d
u
e t
o
no
r
e
qui
rem
e
nt
of
com
m
uni
cat
ion
net
w
or
k,
an
d
no
rm
al
ly
em
pl
oy
ed i
n
i
s
l
a
nd
ed m
ode
by
m
easuri
n
g l
o
c
a
l
vol
t
a
ge
cu
r
r
ent
dat
a
[
2
8]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Use
of
P
hot
ov
ol
t
a
i
c
s i
n
Mi
cr
ogri
d
as
Ener
g
y
S
o
u
r
ce
an
d C
ont
r
o
l
Met
h
o
d
usi
n
g …
(Hasi
m
ah A.R.)
85
3
Connection a
n
d
disconnecti
o
n
of M
G
s
o
urc
e
s and c
o
m
ponents from
distributio
n network
a
r
e necess
a
ry
[2
9]
.
ii.
Cen
t
ralized
C
o
n
t
ro
l: Th
e
op
eratin
g h
y
p
o
t
h
e
sis is similar as Lo
cal con
t
rol b
u
t
is sm
arte
r an
d in
tellig
en
t
cont
rol
t
e
c
hni
q
u
e
[2
0]
.
Sui
t
a
b
l
e fo
r l
o
ads
a
n
d m
i
cros
ou
r
c
es w
ith co
mm
o
n
go
al
a
n
d sm
all scale MG
[23,
30].
It can be assum
e
d as hierarc
h
ical cont
rol with
L
o
cal cont
rol, Microgri
d
central c
o
ntroller (MGC
C)
and
Di
st
ri
but
i
o
n M
a
nagem
e
nt
Sy
st
em
(DM
S
) [
3
0]
, [
3
1]
.
iii.
Decent
r
alized
Control: To maximize
self-gove
rnm
e
nt of the microsour
ces and l
o
ads
is the target of
decent
r
alized c
ont
rol
[27].
He
lps to optimiz
e
production and e
x
portation
of e
n
ergy [27].
St
udi
es c
o
nd
uc
t
e
d by
[3
0]
sh
o
w
ed
t
h
e c
o
m
p
l
i
cat
i
on i
n
c
o
nt
r
o
l
l
i
ng
vari
o
u
s
com
pone
nt
s o
f
M
G
d
u
e t
o
their di
ffe
rent
characte
r
istics fo
r ex
am
pl
e di
sco
nnect
i
o
n
be
t
w
een t
h
e m
a
in g
r
i
d
a
n
d M
G
or
bet
w
ee
n M
G
an
d
n
on-critical load
s
th
at
will
lead
to hug
e
vo
ltag
e
and
freq
u
e
n
c
y im
b
a
lan
ce
[32
]
.
As a resu
lt, co
n
t
ro
l
l
er is
essent
i
a
l
for
pr
ope
r o
p
erat
i
o
n
of M
G
. T
h
i
s
pape
r p
r
ese
n
t
s
a cent
r
al
cont
r
o
l
l
e
r sy
st
em
for m
i
crog
ri
d w
h
i
c
h i
s
ado
p
t
e
d
an
d i
m
prove
d f
r
o
m
[3
3]
.
2.
METHODS
Thi
s
pa
pe
r p
r
e
s
ent
e
d a st
a
n
d
a
l
one M
G
sy
st
em
wher
e PV
is chose
n
as the energy sourc
e
. The
PV
gene
rat
i
n
g sy
st
em
and
t
h
e c
o
n
t
rol
l
e
r
ha
d
bee
n
desi
g
n
e
d
usi
n
g
M
A
T
L
AB
/
S
im
ul
i
nk,
w
h
o
s
e co
nfi
g
urat
i
o
n i
s
a
s
i
n
Fi
gu
re 2. T
h
e l
e
ft
part
of F
i
gu
re 2 sh
o
w
s a gene
ral
di
agr
a
m
of t
h
e cent
r
al
cont
r
o
l
l
e
r t
h
at
was use
d
m
a
i
n
l
y
to
con
t
ro
l th
e
circu
it break
ers o
f
no
n-critical lo
ad
s an
d
t
h
e
m
a
in
g
r
id
wh
ich
is th
e. The righ
t p
a
rt sho
w
s th
e
d
e
sign
ed
m
i
cro
g
rid system
m
o
d
e
l an
d sim
u
la
tio
n
m
o
del u
s
ed
in th
i
s
stud
y. Th
is con
t
ro
ller
h
a
s two
fun
c
tion
a
lities, su
ch
as, (i
) M
easu
r
i
n
g and
(i
i) Co
m
p
ar
ing
.
Usu
a
lly for a si
n
g
l
e
DER
un
it (PV on
ly) it req
u
i
res
onl
y
a
si
m
p
l
e
cont
rol
l
e
r.
The si
m
u
l
a
ti
on
s were pe
rf
or
m
e
d t
o
val
i
d
at
e t
h
e effect
i
v
e
n
ess o
f
t
h
e des
i
gne
d co
nt
r
o
l
l
e
r i
n
[3
3]
. In
th
e sim
u
latio
n
,
islan
d
e
d
m
o
de op
eration
was con
s
id
ered
in
ord
e
r t
o
u
n
d
e
rstan
d
th
e
ro
le of th
e contro
ller.
M
eanw
h
i
l
e
, t
h
e m
i
crog
ri
d
w
a
s desi
gne
d
us
i
ng t
h
ree
D
E
R
s
suc
h
a
s
S
o
l
a
r P
V
,
W
i
nd
T
u
r
b
i
n
e
an
d
Fu
el
C
e
l
l
.
Howev
e
r,
o
n
l
y
PV was used in
th
is sim
u
lati
o
n
.
There
are
three
operating m
o
des in m
i
crog
ri
d
,
w
h
i
c
h
are
[
1
7
]
[2
4]
[
34]
:
i.
Gri
d
c
o
n
n
ect
ed
m
ode (
N
o
r
m
a
l m
ode)
ii.
Isl
a
n
d
ed
m
ode
or
aut
o
n
o
m
ous
m
ode (
W
he
n
f
a
ul
t
s
occ
u
r
at
M
a
i
n
g
r
i
d
)
iii.
Tran
si
t
i
on
bet
w
een
g
r
i
d
s
co
n
n
ect
ed a
n
d i
s
l
a
nde
d m
ode.
Th
e lo
ad
s
were th
en
categ
ori
zed
in
t
o
two
sectio
n
s
in
accord
an
ce with
t
h
e
p
r
eferen
ces. So
m
e
critica
l
(i.e.
ho
sp
ital)
an
d non
-critical lo
ad
s (e
lectrical vehicle, s
o
m
e
residentia
l
loads
)
were
selected,
a
n
d
the first
t
y
pe of l
o
a
d
s
neede
d
co
nt
i
n
u
o
u
s ene
r
gy
sup
p
l
y
. O
n
t
h
e ot
her
ha
nd
,
t
h
e no
n
-
cri
t
i
cal
l
o
ads w
h
i
c
h we
re
con
n
ect
ed t
o
t
h
e m
i
crog
ri
d t
h
r
o
ug
h ci
rcui
t
break
ers (C
B
)
coul
d be i
g
no
re
d du
ri
n
g
t
h
e pea
k
t
i
m
e
. Thi
s
si
t
u
at
i
on
wo
ul
d be a
p
pl
i
e
d (
n
o
n
-
cri
t
i
cal
l
o
ads
di
sco
nnect
) w
h
e
n
t
h
e
ge
nerat
e
d p
o
w
er
by
sol
a
r
PV
was l
e
ss
t
h
an t
h
e
dem
a
nd i
n
t
h
e m
i
cr
og
ri
d
.
The c
o
n
t
rol
l
e
r f
u
nct
i
o
ned t
o
co
nt
r
o
l
t
h
e AC
v
o
l
t
a
ge t
h
at
ha
d t
h
e sam
e
v
o
ltag
e
lev
e
l at Po
in
t
o
f
C
o
mmo
n
Co
up
ling
(PCC). Th
e
lo
ad
s
were fu
lly su
pp
lied
b
y
ren
e
wab
l
e Solar PV
energy s
o
urce.
Figure 2 also
indicates that it is a
three-phase
AC MG syste
m
where three
voltage
measurem
ent
bloc
ks
were
us
ed to m
easure three
phase
voltage sign
als. Al
sothree RMS
blocks
we
re c
o
nnected
res
p
ectively
with each
voltage m
easurement bloc
k to
generate RMS
value. As for
the
control
syste
m
, a threshol
d level
was
set
i
n
t
h
e con
s
t
a
nt
val
u
e bl
oc
k, w
h
i
c
h was
t
h
e
R
M
S val
u
e o
f
t
h
ree pha
se vol
t
a
ge
(
a
t
PC
C
)
. At
t
h
i
s
st
ag
e
,
three c
o
m
p
arators
we
re c
o
nnected to t
h
e three RMS
bl
oc
ks, res
p
ectivel
y.
The com
p
arators of
the controller
co
m
p
ared
th
e v
o
ltag
e
v
a
l
u
e with
th
e t
h
resh
o
l
d
lev
e
l and
th
en
in
telligen
t d
ecision
s
were tak
e
n b
y
th
e
cont
rol
l
e
r
’
s l
o
gi
c gat
e
s acc
o
r
di
ngl
y
.
Fi
nal
l
y
, t
h
ese gat
e
s
were
directly connected to t
h
e circ
uit brea
kers
of
non-critical loads. T
h
e c
r
iti
cal
l
o
ads s
h
oul
d
h
a
ve co
nt
i
n
u
ous
po
we
r su
p
p
l
y
.
Hence
,
t
h
ose l
o
ad
s are
nee
d
e
d
t
o
b
e
co
nn
ected
co
n
s
isten
tly with
th
e system
. Th
eref
ore, CBs
were no
t co
nn
ected
to
critical lo
ad
s.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
1 – 8
5
8
85
4
Fi
gu
re
2.
Left
:
B
l
ock
di
ag
ram
o
f
a m
i
crog
ri
d
wi
t
h
ce
nt
ral
c
ont
rol
l
e
r
[
33]
;
R
i
ght
:
Desi
gne
d M
i
cr
og
ri
d
sy
st
em
in
Sim
u
lin
k
usin
g PV so
urce
with
co
n
t
ro
ller
Fig
u
r
e
3
shows th
e
pr
opo
sed Micr
og
r
i
d
sy
ste
m
w
ith
thr
e
e d
i
str
i
b
u
t
ed
en
erg
y
so
ur
ces
w
ith
so
m
e
critical loads and
non-critical
lo
ad
s.
For simu
latio
n
,
t
h
e MG was con
n
ect
ed
to
th
e m
a
in
g
r
id
t
h
ro
ugh
a p
o
i
n
t
o
f
co
mm
o
n
co
u
p
ling
,
wh
ile at th
e
m
a
in
g
r
id
sid
e
, a co
n
t
ro
ller
was u
s
ed
to
con
t
ro
l the lo
ad
s
o
f
M
G
. Th
e
whole system
was desi
gned
using MA
T
L
AB/Sim
ulink and the controller wa
s slightly m
odified according t
o
t
h
e pa
ram
e
t
e
rs of
PV
, si
nce t
h
ey
[3
3]
u
s
ed
Wi
nd
Tu
rbi
n
es a
n
d
sy
nc
hr
o
n
o
u
s
ge
nerat
o
r
.
Fi
gu
re
3.
Pr
o
p
o
se
d M
i
cr
og
ri
d
sy
st
em
wi
t
h
t
h
ree
DER
s
: So
lar Pho
t
ov
o
ltaics,
W
i
nd
Tu
rb
ines and
Fu
el Cell
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
3.
1 S
y
s
t
em
Co
mpone
n
ts
Tabl
e 1 i
ndi
ca
t
e
s t
h
e speci
fi
c
a
t
i
ons
of t
h
e
P
V
m
odul
e w
h
i
c
h we
re
used i
n
t
h
e si
m
u
l
a
t
i
on m
odel
of
MATLAB/Simu
lin
k in
t
h
is st
u
d
y
.
Tabl
e
1.
PV
da
t
a
t
a
ken
fr
om
t
h
e
KC
2
0
0
GT
s
o
l
a
r a
rray
dat
a
sheet
Na
m
e
Values
Short-circuit curre
n
t
Open-circuit volta
ge
Arra
y cur
r
ent at
maxi
m
u
m
power
point
Ar
r
a
y
voltage at
m
a
xim
u
m
power point
M
a
x
i
mu
m P
o
w
e
r
Irrad
i
an
ce
M
odule T
e
m
p
er
atur
e
Nu
m
b
er
of Ser
i
es
M
odules
Nu
m
b
er
of Parallel M
odules
I
s
c = 8.
21 A
Voc = 32.
9 V
Im
pp= 7.
61 A
Vm
pp = 26.
3 V
Pm
ax= 200 W
1000 W
/
m
2
25ºC
50
500
Tabl
e 2 l
i
s
t
s
t
h
e sam
e
l
o
ad pa
ram
e
t
e
rs used i
n
sim
u
l
a
t
i
on as i
n
[3
3]
. Am
ong t
h
ese 8 l
o
a
d
s,
5 we
re
set as critical loads a
n
d 3 lo
a
d
s
were
set as
non-critical.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Use
of
P
hot
ov
ol
t
a
i
c
s i
n
Mi
cr
ogri
d
as
Ener
g
y
S
o
u
r
ce
an
d C
ont
r
o
l
Met
h
o
d
usi
n
g …
(Hasi
m
ah A.R.)
85
5
Tab
l
e 2
.
Details
of
Lo
ad
p
a
rameter
Na
m
e
of th
e Co
mponents
Detailes
No. of
identical loads
Line to line voltage
Fr
equency
Active power
I
nductive power
Power f
actor
8
415 V
50 Hz
500kW
2421
61 VAr
0.
9
3.2 Sim
u
lati
on Res
u
lts
an
d
Discussion
In t
h
e sim
u
lation, during the
peri
od
when
gene
ra
ted
output powe
r
by PV becam
e
m
o
re than load
dem
a
nd, t
h
e l
i
ne v
o
l
t
a
ge at
t
h
e P
V
si
de
an
d l
o
a
d
si
d
e
we
re set at 415V
[11]. Figure 4
shows t
h
e criti
cal and
non-critical load cond
itions
when t
h
e total powe
r produce
d
by th
e MG
(5M
W
)
becam
e
higher t
h
an t
h
e
total
l
o
ad
dem
a
nd (
4
M
W). T
h
e fi
gu
re al
so s
h
o
w
s t
h
e
vol
t
a
ge
an
d
cu
rren
t l
e
v
e
ls at PCC. In
th
is case, th
e lin
e
v
o
ltag
e
h
a
d
i
n
cr
eased appr
oxi
m
a
tel
y
u
p
to 55
0V
. Figu
r
e
5
to
Figu
re 8 sh
ow
th
e cr
itical an
d non
-
c
r
itical
lo
ad
co
nd
itio
ns
wh
en
th
e to
tal power pro
d
u
c
ed
b
y
th
e MG (3
M
W)
was lesser
th
an
t
h
e to
tal l
o
ad d
e
m
a
n
d
(4M
W
),
with
th
e vo
ltage and
cu
rren
t l
e
v
e
ls at PCC.
In
th
e case of with
ou
t con
t
roller, th
e vo
ltage lev
e
l at PCC, critical and no
n-critical load side
ha
d
been
re
du
ced
by
2
5
%
(f
rom
t
h
e set
l
i
n
e
vol
t
a
ge val
u
e,
w
h
i
c
h was
4
1
5
V
)
. Thi
s
was
d
u
e
t
o
l
e
ss
out
put
po
we
r
t
h
an t
h
e l
o
ad
d
e
m
a
nds
(re
fer
Fi
gu
res
5 a
n
d
6)
.
Fi
gu
re
4.
V
o
l
t
a
ge
(t
o
p
) a
n
d c
u
rre
nt
(
b
ot
t
o
m
)
si
gnal
s
at
PC
C
(Left
)
cri
t
i
cal
l
o
ad
si
de
(Li
n
e
vol
t
a
ge
~
5
5
0
V
)
(R
i
ght
)
Fi
gu
re
5.
V
o
l
t
a
ge
(t
o
p
) a
n
d c
u
rre
nt
(
b
ot
t
o
m
)
si
gnal
s
at
PC
C
(t
he l
e
ft
si
de
sh
ows
d
r
op
o
f
Li
ne
vol
t
a
ge
b
e
l
o
w
4
00V,
wh
ile the righ
t sid
e
sh
ows increase of
Lin
e
v
o
ltag
e
to 40
0V after
u
s
i
n
g th
e con
t
ro
ller)
-
500
0
500
Vo
lta
g
e
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.
3
5
-2
-1
0
1
2
x 1
0
4
Ti
m
e
C
u
r
r
ent
-5
0
0
0
50
0
0
0.
05
0.
1
0
.15
0.2
0.
25
0.
3
0
.35
-4
0
0
0
-2
0
0
0
0
20
00
40
00
-
400
-
200
0
200
400
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
x 1
0
4
-4
0
0
-2
0
0
0
20
0
40
0
Vo
l
t
a
g
e
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
x 1
0
4
Ti
m
e
C
u
rren
t
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
1 – 8
5
8
85
6
Fi
gu
re
6.
V
o
l
t
a
ge
(t
o
p
) a
n
d c
u
rre
nt
(
b
ot
t
o
m
)
si
gnal
s
at
critical lo
ad
sid
e
(left) an
d at non
-critical lo
ad
si
de
(right)
(Li
n
e voltage droppe
d
below 400V
a
n
d becam
e bec
a
m
e
estim
a
tedly 320V)
Fo
r th
e case
wh
en
t
h
e co
n
t
ro
ller is in
operatio
n,
wh
en
th
e power level is less th
an d
e
m
a
n
d
,
t
h
e
co
n
t
ro
ller will in
stru
ct th
e ci
rcu
it
b
r
eak
e
rs
o
f
non
-criti
cal
lo
ad
s
t
o
b
e
d
i
scon
n
ected
. Th
is will
m
a
in
tain
th
e
v
o
ltag
e
lev
e
l t
h
at su
pp
lies the critical lo
ad
s.
The c
ont
r
o
l
l
e
r
fu
nct
i
o
ned t
o
com
p
are t
h
e R
M
S val
u
e
of
v
o
l
t
a
ge si
g
n
al
s,
as i
n
Fi
g
u
re
7
at
PV si
de.
Figure
8 indicates the curre
nt flow
for t
h
e
non-critical
load at zero, m
eaning th
at it was
disconne
c
t
ed. In
ad
d
ition
,
wh
en th
e RMS v
a
lue d
eclin
ed
t
o
belo
w
3
00V
, the co
n
t
ro
ller
wo
u
l
d
cu
t
o
f
f the n
o
n
-
critical l
o
ads,
an
d
all th
e p
o
wer wou
l
d
b
e
d
e
liv
ered
to
cri
tical
lo
ad
,
he
nc
e the voltage level increase
d
again. T
h
is m
e
ans the
cont
rol
l
e
r
co
ul
d se
nse t
h
at
t
h
e
R
M
S val
u
e
of
vol
t
a
ge
wa
s
be
l
o
w t
h
res
h
ol
d l
e
vel
(t
he set
p
o
i
nt
was
3
0
0
V
)
.
Figure
7. Thre
e phase
Voltage (RMS) val
u
e
s
at MG si
de
Fi
gu
re
8.
V
o
l
t
a
ge
(t
o
p
) a
n
d c
u
rre
nt
(
b
ot
tm
) si
gnal
s
at
cr
itical load side
(left
)
and
at
non-crit
ical load si
de
(righ
t). Lin
e
v
o
ltag
e
in
creased to
4
00V,
bu
t lin
e c
u
rrent
was
zero at non-c
ritical load si
de
-
400
-
200
0
200
400
0
0.
0
5
0.
1
0.
15
0.
2
0.
25
0.
3
0.35
-
3000
-
2000
-
1000
0
1000
2000
3000
-
400
-
200
0
200
400
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
2
5
0.
3
0.
3
5
-
1
000
-
500
0
500
1
000
-
200
0
200
Va
-
200
0
200
Vb
0
0.
0
5
0.1
0.
1
5
0.2
0.
2
5
0.3
0.
3
5
-
200
0
200
Ti
m
e
Vc
-4
0
0
-2
0
0
0
20
0
40
0
Vo
l
t
a
g
e
0
0.
0
5
0.
1
0.
1
5
0.
2
0.
25
0.
3
0.
35
-1
.
5
-1
-0
.
5
0
0.
5
1
1.
5
x 1
0
4
Ti
m
e
Current
-
400
-
200
0
200
400
Cur
r
en
t
Vo
l
t
a
g
e
0
0.
05
0.
1
0.1
5
0.
2
0.2
5
0.
3
0.3
5
-1
0
1
2
Ti
m
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Use
of
P
hot
ov
ol
t
a
i
c
s i
n
Mi
cr
ogri
d
as
Ener
g
y
S
o
u
r
ce
an
d C
ont
r
o
l
Met
h
o
d
usi
n
g …
(Hasi
m
ah A.R.)
85
7
From
t
h
e a
b
ov
e si
m
u
l
a
ti
on
re
sul
t
s
, i
t
i
s
pre
s
ent
e
d
t
h
at
, R
E
base
d m
i
crogri
d
s ca
n
w
o
r
k
a
s
i
ndi
vi
d
u
al
en
erg
y
g
e
n
e
rat
i
o
n
un
it for small co
mm
u
n
ity.
In
add
itio
n, the si
m
p
le co
n
t
ro
l tech
n
i
q
u
e
u
s
ed
in
th
e sim
u
l
a
tio
n
s
is able to m
a
nage e
n
ergy s
u
pply to the lo
ads
according
t
o
generation
a
n
d urge
ncy.[35]
4.
CO
NCL
USI
O
N
Micro
g
rid h
a
s v
a
lu
ab
le
po
ten
tial to
b
eco
m
e
th
e
g
l
ob
al en
erg
y
so
lu
tion
.
In
th
is system
, electrici
ty
gene
ration is m
a
inly done
by utilizing RE sources that
ens
u
re clean e
nvi
ronm
ent as well. As the
system
b
eco
m
e
s co
m
p
lex
b
ecau
s
e
o
f
d
i
fferen
t m
i
o
c
ro
sou
r
ces, su
itab
l
e con
t
ro
l syste
m
is req
u
i
red
fo
r flex
i
b
ility and
efficien
cy of th
e syste
m
. In
th
is p
a
p
e
r, simu
latio
n
on
th
e
m
i
cro
g
r
id
syste
m
th
at u
s
es DER (PV)
with
and
with
ou
t con
t
roller e
m
p
l
o
y
in
g critical an
d
non
-critical lo
ad
s
has
be
en pre
s
ent
e
d. The
si
m
u
l
a
t
i
ons res
u
l
t
s
sho
w
th
at con
tinu
ous power supp
ly to
th
e critical lo
ad
s an
d d
i
sco
n
n
ecting
t
h
e no
n-critical load
s
wh
en th
e
v
o
ltage
lev
e
l in
m
i
cro
g
r
i
d
sid
e
is l
o
wer t
h
an th
e t
h
resho
l
d
lev
e
l can
b
e
m
a
in
t
a
in
ed
effectiv
ely b
y
th
e con
t
ro
ller.
Fu
rt
h
e
r
stud
y will fo
cu
s on
co
n
t
ro
lling
M
G
at grid
failure p
e
riod
(i
n
grid
co
nn
ected
m
o
d
e
) u
s
ing
all th
ree
DERs su
ch
as so
lar PV, win
d
turb
i
n
e and fu
el cell. A m
o
re ad
v
a
n
c
ed
con
t
ro
ller will b
e
d
e
sig
n
e
d in
th
is
rega
rd
.
ACKNOWLE
DGE
M
ENTS
The aut
h
ors wi
sh to acknowle
dge
th
e su
ppo
rt f
r
o
m
M
i
n
i
str
y
o
f
Scien
ce, Tech
no
log
y
and I
n
nov
ation
(MOSTI) Malaysia an
d
Un
i
v
ersiti Tekn
o
l
o
g
i
Malaysia UT
M),
for t
h
e award of t
h
e
g
r
ant th
at h
a
s en
ab
l
e
d
t
h
e
researc
h
, leadi
n
g to t
h
is articl
e
unde
r t
h
e E
-
Scien
ce g
r
an
t (v
o
t
e No
:
R.J1
30
000
.7
923
.4
S06
8
)
.
REFERE
NC
ES
[1]
Chen, Y
.
K.,
et
a
l
.,
Design and
implementation o
f
en
ergy management
system w
i
th fuzzy con
t
rol for DC microgrid
sy
ste
m
s.
Power
Electronics, I
E
EE Tr
ansactions o
n
, 2013
. 28(4): p
.
1563-1570
.
[2]
Agency
,
U.
S.E.
P.
Overview
of Greenhouse Gases
. 2015 [cited 201
5 22 May
]
;
Availab
l
e from:
http://www.epa.gov/c
limatech
an
ge/ghgemissi
ons/gases.html.
[3]
Zhang, L., N.
Gari,
and L.V.
Hmurcik,
Energ
y
management
in a microgrid
w
ith distributed
energy resources.
Energ
y
Conv
ersion and Man
a
gement, 2014
. 78:
p. 297-305
.
[4]
Bagherian, A.
and
S.
M.
M.
Ta
fre
s
hi,
A developed Energy Mana
gement S
y
stem
f
o
r a Microgrid
i
n
the
Competi
tiv
e
Ele
c
tric
ity
Mark
et.
2009 I
e
ee Bu
charest Powertech, Vols 1-5
,
200
9: p. 1756-1761.
[5]
Mahmoud, M., S.A. Hussa
in, and M. Abido,
Modeling and
control of micro
g
rid: an overview.
Journal of th
e
Franklin Institute, 2014
. 351
(5):
p. 2822-2859
.
[6]
Palizb
a
n, O. and
K. Kauhaniemi,
Hierarchical co
ntrol structure in microgr
ids with distributed generation: Island
and grid-connected mode.
R
e
newable
and Sustainable Ener
g
y
Reviews, 2015
. 44: p. 797-813.
[7]
Arul,
P.
, V.
K.
Ramachandara
murth
y
,
and R. Rajkumar,
Control
strategies for a
hybrid
r
e
newabl
e en
er
gy s
y
s
t
em:
A
r
eview
.
R
e
newable
and Sustain
a
ble
Ener
g
y
Reviews, 2015. 42: p
.
597-608
.
[8]
Chowdhur
y
,
S.
and P. Crossley
,
Microgrids and active distribu
tion networks
. 20
09: The Institution of Engineerin
g
and Technolo
g
y
.
[9]
Mi
nc
ha
la
-Avi
l
a
, L
.
I.
, et
a
l
.,
A review
of op
timal
control
techn
i
qu
es
applied to
th
e energy management and
contro
l
of microgrids.
Pr
ocedia Computer Scien
c
e, 2015
.
52: p. 780-787.
[10]
Herbert, G.J
.
, et
al.,
A review o
f
wind energy technolog
ies.
Renewable and su
stainabl
e energ
y
Reviews, 2007.
11(6): p. 1117-1
145.
[11]
Li, H
.
and Z
.
C
h
en,
Over
view o
f
different wind
genera
tor systems and their comparisons.
IET Renewable Power
Generation, 200
8. 2(2): p. 123-1
38.
[12]
Liu, X. and B. Su.
Microgrids—an integration of re
newable ener
gy techno
logies
. i
n
Electricity Distribution, 2008.
CICED 2008. China Internation
a
l Conference o
n
. 2008
. IEEE.
[13]
Su, W. and J.
Wang,
Energy ma
nagement systems
in microgrid operations.
The
Electricity
Journ
a
l, 2012. 25(8):
p.
45-60.
[14]
Energ
y
, C
.
f.S
.
Microgrids
. 2015 [cited 2015 2
3
may
]
; Available from: h
ttps://en
e
rg
y
cen
ter
.
or
g/self-gen
eration
-
incen
tive-progr
a
m
/business/tech
nologies/m
icrog
r
id.
[15]
I-SMART, D.o.E.a.C.E.,
Realtime Simulation Platform
.
[16]
S
i
ow
, L.
, e
t
al.
Wi-Fi based
server in microgr
id energy manag
ement system
. i
n
TENCON 2009-2009 IEEE Region
10 Conferen
ce
. 2009.
IEEE.
[17]
Hatzi
a
rg
yriou
,
N
.
,
et
a
l
.
,
Microgrids.
Power and
Energ
y
Magazin
e
, IEEE, 2007. 5(4
)
: p. 78-94.
[18]
Chen, C., et al.,
Smart energy
management system for
optimal microgrid econ
o
mic operation
.
IET ren
e
wabl
e
power gen
e
ratio
n
, 2011
. 5(3): p.
258-267.
[19]
S
a
ns
everino, E
.
R., et
al.
,
An execution, monitor
i
ng and replanning approac
h for optimal energy management in
microgrids.
Ener
g
y
, 2011
. 36(5):
p. 3429-3436
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
6, No
. 2, A
p
ri
l
20
16
:
85
1 – 8
5
8
85
8
[20]
Kremers, E., J.
Gonzalez de
Du
rana,
and O. B
a
rambones,
Multi-agent modeling
for the simulation of a simple
smart
microgridPlease ch
eck an
d approve
the edit made in the article t
itl
e.
En
erg
y
Conversion and Managemen
t
,
2013. 75: p. 643
-650.
[21]
Pogaku, N., M. Prodanovi
c, an
d T.C
.
Green,
Modeling
,
analysis and testing
of autonomous
operation of an
inver
t
e
r
-
bas
ed micr
ogr
id.
Power
Electronics, I
E
EE Tr
ansactions o
n
, 2007
. 22(2): p
.
613-625
.
[22]
Vaccaro
,
A., e
t
al.
,
An integrated framework for sm
art
microgrids modeling, monito
ring, con
t
rol, communication
,
and verifica
tion
.
Proceed
ings of
t
h
e IE
EE
, 2011
.
99(1): p. 119-13
2.
[23]
Tsikalakis,
A.
G. and N.
D.
Hatziargy
r
iou.
C
e
ntra
lized control
for optimizing microgrids operation
. in
Power and
Energy So
ciety
General Meeting
,
2011
IEEE
. 20
11. IEEE.
[24]
La
sse
te
r,
R.
H.
M
i
crogrids
. in
Po
wer Engin
eering
Society
Win
t
er
Meeting, 2002. I
EEE
. 2002
. I
E
EE.
[25]
Bidram,
A. and A.
Davoudi,
Hierarchical structure of
mic
r
ogrids c
ontrol sy
ste
m
.
Sm
art Grid,
IE
EE T
r
ansac
tion
s
on, 2012
. 3(4): p
.
1963-1976
.
[26]
Ahmed,
O.
and J.
Bleijs
,
Pow
e
r flow
control Methods
for a
n
ultrac
apa
citor
bidirectiona
l converter
in D
C
microgrids—A comparative stud
y.
R
e
newab
l
e an
d Sustainab
l
e
En
erg
y
Rev
i
ews, 2
013. 26: p. 727-
738.
[27]
Zamora, R. and
A.K. Srivastava,
Controls for
microgrids with st
orage:
Review,
challenges, and research needs.
Renewable and Sustainable
En
er
g
y
Reviews, 201
0. 14(7): p. 2009
-2018.
[28]
Las
s
e
ter
,
R
.
,
et
al.
,
T
h
e
CERT
S
micr
ogr
id con
c
ept,
whit
e pap
er
on in
tegration
of
distributed energy
resources.
California Ener
g
y
Commission
, Office of Power Tec
hnolog
ies-US Department of Energ
y
,
LBNL-50829,
http://certs.lb
l
.g
ov, 2002
.
[29]
Hiske
n
s,
I.
A.
a
n
d E.
M.
Fle
m
ing.
Control of in
verter-connected
sources in autonomous microgrids
. in
Ameri
c
a
n
Control Confer
ence, 2008
. 2008. IEEE.
[30]
Hatziargy
r
iou,
N.
,
A.
Di
m
eas
, an
d A. Ts
ikalakis
,
Centralized and decen
tralized co
ntrol of microgrids.
International
Journal of D
i
stributed
Energ
y
Resources, 2005
. 1
(
3): p. 197-212
.
[31]
P
eas
Lopes
,
J
.
,
et a
l
.
Control s
t
rategies for microgrids emergency operation
. i
n
Future Pow
e
r Systems, 2005
International Co
nference on
. 200
5. IEEE.
[32]
H
a
tzi
a
rg
yriou
,
N
., e
t
al
.,
Micro
g
rids–large scale integration of
microgeneration
to low vo
ltag
e
grids.
CIGRE C6-
309, 2006
.
[33]
Kaur,
A.,
Modelling and Simulation of Central Co
ntro
ller to Con
t
rol Power Sharin
g In Microgrid
. 2014,
THAPAR
UNIVERSITY P
A
TIALA.
[34]
Selvi, M.
T.
,
A Power Quality Improvement for Microgrid In
verter Operated In Grid Connected and Grid
Disconnected M
odes.
Bulletin of
Electr
i
cal
Engin
eering
and
Infor
m
atics, 2014
. 3
(
2): p. 113-118.
[35]
Suma
iy
a
Ra
hma
n
,
H.
A.
R.,
Design of PV in Microgrid a
s
Energy Source and Control Method Using
MATLAB/SIMULINK
. 2015, IIC
IST.
BIOGRAP
HI
ES OF
AUTH
ORS
Suma
iy
a Ra
hmani
s
c
u
rre
nt
ly
purs
uing Master
in
Philosoph
y
deg
r
ee
in th
e C
e
ntr
e
of
Electr
ical
Energ
y
S
y
stem
s (CEES), I
n
stitute
of Futur
e
Energ
y
,
Fa
cul
t
y
of
Ele
c
tr
ica
l
Engin
eering
,
Universiti T
e
kn
ologi Mala
ysi
a
(UTM). She r
ece
ived her B
.
Sc. degr
ee in
Elec
tric
al and
Electronics Engineering from United Internationa
l University
, Dh
aka, B
a
nglad
esh, in 2014. Her
res
earch in
ter
e
s
t
s
include M
i
cro
g
rid Energ
y
Management S
y
stem, Smar
t Grid, and Renewable
Energ
y
et
c.
Email address:
s
u
maiy
a_r@
y
a
ho
o.com
Dr Has
i
m
a
h Abdul Rahm
an is
an As
s
o
ciate P
r
ofes
s
o
r at F
acul
t
y
of El
ec
tric
al
Engineer
ing,
Universiti Tekn
ologi Mala
ysia
(UTM). S
h
e ob
tain
ed her B.S
c
. in EEE from
Universit
y
of
Aberdeen
, UK in 1988, MSc in
Energ
y
Studies f
r
om
University
of Wales, College of Card
iff in
1995 and PhD i
n
Electrical Eng
i
neer
ing from UT
M in 2012. She is the Deputy
Director of
Centre of E
l
e
c
tri
cal En
erg
y
S
y
s
t
e
m
s
(CEES
), UTM
.
S
h
e has
m
o
re than 20
years
of
experi
ence
in
teaching electr
ical
eng
i
neering
courses and supervision of more
than 60 und
ergr
aduates and 6
post graduates students
and has authored and
co-author
ed fo
r more than 3
0
journal
and
conferen
ce pap
e
rs. She was
inv
o
lved
in th
e
“Nation
a
l
Energ
y
Conservation
Stud
y
”
under
th
e
M
i
nis
t
r
y
of
Ene
r
g
y
T
e
l
ecom
an
d P
o
s
t
, M
a
la
y
s
i
a
(M
ETP
) in 19
93. S
h
e has
als
o
s
e
rved as
an
energ
y
audit con
s
ultant on
behalf
of ISI, UT
M fo
r the
industries
and commercial b
u
ildings. She
also involv
e
s Solar Decathlon C
h
ina 2013 comp
etit
ion in d
e
signing UTM-Solar House. She is a
m
e
m
b
er of Instit
ute E
l
e
c
tri
c
a
l
E
l
ectron
i
c
Engin
e
e
r
(MIEEE)
, R
e
gi
stered Gradu
a
t
e
Engine
er with
the Board of
E
ngineers Mal
a
y
s
ia (BEM) and
Graduate Mem
b
er of Institu
tion
of Engine
ers
Malay
s
ia (I
EM). She holds a
Cert. Grid-PV (
I
SPQ-SEDA, Malay
s
ia). He
r r
e
s
earch in
teres
t
includ
es RE technolog
y
,
energ
y
efficiency
,
d
e
mand side man
a
gement
and its
environmental
im
pact.
Her s
p
ec
iali
ze
ar
ea
of r
e
s
earch
is
on
s
o
lar
P
V
.
Evaluation Warning : The document was created with Spire.PDF for Python.