I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l
a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
3
0
9
~
2
3
2
0
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v7
i
5
.
p
p
2
3
0
9
-
2
320
2309
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Wind In
tegra
ted
Ther
m
a
l
Uni
t
Co
mm
i
t
m
ent
Soluti
o
n
u
sing
G
rey Wo
l
f
O
pti
miz
e
r
S.
Siv
a
Sa
k
t
hi
1
,
R.
K.
Sa
nthi
2
,
N.
M
ura
li K
rish
na
n
3
,
S.
G
a
nes
a
n
4
,
S.
Su
bra
m
a
n
ia
n
5
1
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
,
Krish
n
a
sa
m
y
Co
ll
e
g
e
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
lo
g
y
,
In
d
ia
2
,
4,
5
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
A
n
n
a
m
a
lai
Un
iv
e
rsit
y
,
An
n
a
m
a
lai
Na
g
a
r,
T
a
m
il
Na
d
u
,
In
d
ia
3
De
p
a
rtme
n
t
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
i
n
e
e
rin
g
,
M
a
il
a
m
En
g
in
e
e
rin
g
Co
ll
e
g
e
,
M
a
il
a
m
,
In
d
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
24
,
2
0
1
6
R
ev
i
s
ed
A
p
r
2
6
,
2
0
1
7
A
cc
ep
ted
J
u
n
1
4
,
2
0
1
7
T
h
e
a
u
g
m
e
n
t
o
f
e
c
o
lo
g
ica
l
sh
ield
a
n
d
t
h
e
p
r
o
g
re
ss
iv
e
e
x
h
a
u
stio
n
o
f
trad
it
io
n
a
l
f
o
ss
il
e
n
e
rg
y
so
u
rc
e
s
h
a
v
e
in
c
re
a
se
d
th
e
in
tere
sts
in
in
teg
ra
ti
n
g
re
n
e
wa
b
le
e
n
e
rg
y
so
u
rc
e
s
in
to
e
x
isti
n
g
p
o
w
e
r
s
y
st
e
m
.
W
in
d
p
o
w
e
r
is
b
e
c
o
m
in
g
w
o
rld
w
id
e
a
sig
n
if
ic
a
n
t
c
o
m
p
o
n
e
n
t
o
f
th
e
p
o
w
e
r
g
e
n
e
ra
ti
o
n
p
o
rtf
o
li
o
.
P
r
o
f
u
se
li
tera
tu
re
s
h
a
v
e
b
e
e
n
re
p
o
rted
f
o
r
t
h
e
t
h
e
rm
a
l
Un
it
Co
m
m
it
m
e
n
t
(UC)
so
lu
ti
o
n
.
I
n
th
is
w
o
rk
,
th
e
UC
p
ro
b
lem
h
a
s
b
e
e
n
f
o
r
m
u
late
d
b
y
in
teg
ra
ti
n
g
w
in
d
p
o
w
e
r
g
e
n
e
ra
to
rs
a
lo
n
g
w
it
h
th
e
rm
a
l
p
o
w
e
r
s
y
ste
m
.
T
h
e
W
in
d
G
e
n
e
ra
to
r
I
n
teg
ra
ted
UC
(
WG
IUC)
p
ro
b
le
m
is
m
o
r
e
c
o
m
p
lex
in
n
a
tu
re
th
a
t
n
e
c
e
ss
it
a
tes
a
p
ro
m
isin
g
o
p
ti
m
iza
ti
o
n
t
o
o
l
.
He
n
c
e
,
th
e
m
o
d
e
rn
b
io
-
i
n
sp
ired
a
lg
o
ri
th
m
n
a
m
e
l
y
,
G
re
y
W
o
l
f
Op
ti
m
iz
a
ti
o
n
(G
WO)
a
lg
o
rit
h
m
h
a
s
b
e
e
n
c
h
o
se
n
a
s
t
h
e
m
a
in
o
p
t
im
iza
ti
o
n
to
o
l
a
n
d
re
a
l
c
o
d
e
d
sc
h
e
m
e
h
a
s
b
e
e
n
in
c
o
r
p
o
ra
ted
t
o
h
a
n
d
le
t
h
e
o
p
e
ra
ti
o
n
a
l
c
o
n
str
a
in
ts.
T
h
e
sta
n
d
a
rd
tes
t
sy
ste
m
s
a
re
u
se
d
to
v
a
li
d
a
te
th
e
p
o
ten
ti
a
l
o
f
th
e
G
WO
a
lg
o
rit
h
m
.
M
o
re
o
v
e
r,
th
e
ra
m
p
ra
te
li
m
it
s
a
re
a
ls
o
in
c
lu
d
e
d
in
th
e
m
a
th
e
m
a
ti
c
a
l
WG
IUC
f
o
r
m
u
latio
n
.
T
h
e
sim
u
latio
n
re
su
lt
s
p
r
o
v
e
th
a
t
th
e
in
ten
d
e
d
a
lg
o
rit
h
m
h
a
s
th
e
c
a
p
a
b
il
it
y
o
f
o
b
tain
in
g
e
c
o
n
o
m
ica
l
r
e
so
lu
t
io
n
s
w
it
h
g
o
o
d
so
lu
ti
o
n
q
u
a
li
ty
.
K
ey
w
o
r
d
s
:
Gen
er
atio
n
s
c
h
ed
u
lin
g
Gr
e
y
w
o
l
f
o
p
ti
m
izatio
n
R
a
m
p
r
at
e
li
m
it
Un
it c
o
m
m
i
t
m
e
n
t
W
in
d
p
o
w
er
g
en
er
atio
n
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
S.Siv
a
s
ak
th
i,
Dep
ar
t
m
en
t o
f
E
lectr
ical
an
d
E
lectr
o
n
ics E
n
g
i
n
ee
r
in
g
,
Kr
is
h
n
asa
m
y
C
o
lle
g
e
o
f
E
n
g
i
n
ee
r
in
g
an
d
T
ec
h
n
o
lo
g
y
,
C
u
d
d
alo
r
e
-
6
0
7
1
0
9
,
T
am
il N
ad
u
,
I
n
d
ia.
E
m
ail: s
iv
a
s
ak
th
i_
g
a
y
u
@
y
a
h
o
o
.
co
.
in
1.
I
NT
RO
D
UCT
I
O
N
1
.
1
.
Wind
G
ener
a
t
o
r
I
nte
g
ra
t
ed
Unit
Co
mm
it
m
e
nt
T
h
e
aim
o
f
th
e
U
n
it
C
o
m
m
it
m
en
t
(
UC
)
p
r
o
b
le
m
is
to
id
en
ti
f
y
th
e
o
p
ti
m
u
m
g
en
er
ati
n
g
s
c
h
ed
u
le,
th
at
m
i
n
i
m
izes
th
e
to
tal
o
p
er
atio
n
al
co
s
ts
a
n
d
s
ati
s
f
y
i
n
g
t
h
e
s
y
s
te
m
lo
ad
d
e
m
a
n
d
,
b
y
co
n
s
id
er
in
g
s
e
v
er
al
p
h
y
s
ical,
in
ter
-
te
m
p
o
r
al
co
n
s
tr
ai
n
t
s
o
f
g
en
er
ati
n
g
u
n
it
s
,
tr
an
s
m
i
s
s
io
n
an
d
s
y
s
te
m
r
eliab
ilit
y
r
eq
u
ir
e
m
en
ts
.
I
n
r
ec
en
t
y
ea
r
s
,
as
w
i
n
d
p
o
w
er
is
s
u
s
t
ain
ab
le
a
n
d
g
r
ee
n
p
o
w
er
,
its
p
en
etr
atio
n
i
n
p
o
w
er
s
y
s
te
m
h
as
i
n
cr
ea
s
ed
s
ig
n
i
f
ica
n
tl
y
an
d
i
s
e
x
p
ec
ted
t
o
p
er
s
is
t
r
is
i
n
g
in
th
e
f
u
t
u
r
e.
F
u
r
th
er
m
o
r
e,
i
t
i
n
cr
ea
s
es
t
h
e
co
m
p
lex
i
t
y
o
f
p
o
w
er
s
y
s
te
m
o
p
er
atio
n
s
d
u
e
to
its
i
n
ad
eq
u
ate
p
r
ed
ictab
ilit
y
a
n
d
v
a
r
iab
ilit
y
.
Nu
m
er
o
u
s
r
ep
o
r
ts
h
a
v
e
b
ee
n
ad
d
r
ess
ed
f
o
r
s
o
lv
i
n
g
t
h
er
m
al
UC
p
r
o
b
lem
.
As
t
h
e
W
in
d
Gen
er
ato
r
I
n
teg
r
ated
U
C
(
W
GI
UC
)
is
t
h
e
e
m
er
g
i
n
g
f
ie
ld
o
f
r
esear
c
h
,
v
er
y
f
e
w
r
esear
ch
r
ep
o
r
ts
d
etail
th
e
W
GI
U
C
s
o
lu
tio
n
.
Hen
ce
,
th
e
s
o
l
u
tio
n
q
u
alit
y
o
f
W
GI
UC
p
r
o
b
lem
c
an
b
e
i
m
p
r
o
v
is
ed
b
y
ex
p
lo
r
in
g
th
e
s
ea
r
c
h
s
p
ac
e.
T
h
is
m
o
tiv
a
tes,
to
d
ev
elo
p
a
p
r
o
m
i
n
e
n
t
m
eth
o
d
to
d
eter
m
in
e
th
e
m
o
s
t e
co
n
o
m
ic
U
C
s
c
h
ed
u
le
f
o
r
W
GI
UC
.
1
.
2
.
E
x
is
t
ing
So
lutio
n M
et
ho
ds
T
h
e
UC
is
a
n
o
n
-
co
n
v
ex
,
lar
g
e
-
s
ca
le
m
i
x
ed
in
te
g
er
n
o
n
li
n
e
ar
p
r
o
g
r
am
m
in
g
p
r
o
b
le
m
.
D
eter
m
in
a
tio
n
o
f
t
h
e
o
p
ti
m
al
s
o
lu
tio
n
f
o
r
U
C
p
r
o
b
le
m
w
i
th
in
r
ea
s
o
n
ab
le
co
m
p
u
ta
tio
n
al
ti
m
e
a
n
d
m
e
m
o
r
y
r
eq
u
ir
e
m
e
n
t
is
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
3
0
9
-
2
3
2
0
2310
v
er
y
d
if
f
ic
u
lt.
T
h
e
ex
ac
t
s
o
lu
t
io
n
o
f
th
e
U
C
p
r
o
b
lem
ca
n
b
e
d
eter
m
i
n
ed
b
y
co
m
p
lete
en
u
m
er
atio
n
ap
p
r
o
ac
h
.
B
u
t
th
i
s
i
s
n
o
t
ap
p
licab
le
to
p
r
ac
ti
ca
l
p
o
w
er
s
y
s
te
m
s
,
s
i
n
ce
th
e
co
m
p
u
tatio
n
al
ti
m
e
r
eq
u
ir
e
m
en
t
is
h
i
g
h
.
T
h
e
ab
o
v
e
h
as
m
o
ti
v
ated
th
e
r
esea
r
ch
er
s
,
to
in
v
es
tig
ate
alter
n
ate
ap
p
r
o
ac
h
es
to
o
b
tain
ap
p
r
o
x
im
ate
s
o
lu
tio
n
s
f
o
r
r
ea
lis
tic
U
C
p
r
o
b
lem
in
r
ea
s
o
n
ab
le
co
m
p
u
tatio
n
al
ti
m
e.
Nu
m
er
o
u
s
tec
h
n
iq
u
e
s
h
a
v
e
b
ee
n
d
ev
elo
p
ed
an
d
ap
p
lied
to
s
o
lv
e
th
e
U
C
p
r
o
b
le
m
s
.
T
h
e
y
ca
n
b
e
clas
s
i
f
ie
d
in
to
m
at
h
e
m
atica
l,
m
eta
-
h
eu
r
is
tic
a
n
d
h
y
b
r
id
m
et
h
o
d
s
.
a)
M
a
t
he
m
a
t
ica
l
M
et
ho
ds
:
T
h
e
d
eter
m
in
is
tic
m
e
th
o
d
s
f
o
r
th
er
m
a
l
U
C
i
n
cl
u
d
e
P
r
io
r
ity
L
i
s
t
(
P
L
)
[
1
]
,
D
y
n
a
m
ic
P
r
o
g
r
a
m
m
i
n
g
(
DP
)
[
2
]
,
B
r
an
ch
-
a
n
d
-
B
o
u
n
d
(
B
B
)
[
3
]
,
L
ag
r
a
n
g
ian
R
ela
x
atio
n
(
L
R
)
[
4
]
an
d
Mix
ed
I
n
te
g
er
P
r
o
g
r
a
m
m
i
n
g
(
MI
P
)
[
5
]
m
et
h
o
d
s
.
T
h
e
i
m
p
r
o
v
ed
v
er
s
io
n
s
o
f
P
L
,
DP
an
d
L
R
s
u
c
h
a
s
E
x
ten
d
ed
P
L
(
E
P
L
)
[
6
]
,
I
n
tell
ig
en
t
DP
(
I
DP
)
[
7
]
,
E
n
h
an
ce
d
A
d
ap
ti
v
e
L
R
(
E
AL
R
)
[
8
]
an
d
I
m
p
r
o
v
ed
L
R
(
I
L
R
)
[
9
]
h
a
v
e
b
ee
n
d
ev
e
lo
p
ed
.
Mo
s
t
o
f
th
e
ab
o
v
e
tec
h
n
i
q
u
es
s
u
f
f
er
f
r
o
m
n
u
m
er
ical
c
o
n
v
er
g
e
n
ce
a
n
d
s
o
lu
tio
n
q
u
alit
y
p
r
o
b
le
m
.
T
h
e
y
ar
e
in
ad
eq
u
ate
in
h
a
n
d
lin
g
lar
g
e
n
u
m
b
er
o
f
g
e
n
er
ati
n
g
u
n
it
s
a
n
d
n
o
n
co
n
v
e
x
s
ea
r
ch
s
p
ac
e
o
f
th
e
U
C
p
r
o
b
lem
.
B
ec
au
s
e
o
f
h
ig
h
n
o
n
lin
ea
r
it
y
a
n
d
h
i
g
h
co
m
p
lex
i
t
y
n
a
tu
r
e
o
f
t
h
e
p
r
ac
tical
UC
p
r
o
b
lem
,
s
o
f
t c
o
m
p
u
ti
n
g
m
e
th
o
d
s
ar
e
u
s
ed
as a
lter
n
ati
v
e
to
th
e
clas
s
ical
ap
p
r
o
ac
h
es.
b)
M
e
t
a
-
H
euristic
M
et
ho
ds
:
Var
io
u
s
ar
ti
f
icial
in
telli
g
en
ce
t
ec
h
n
iq
u
es
s
u
ch
as
Si
m
u
lated
An
n
ea
lin
g
(
S
A
)
[
1
0
]
,
Gen
etic
A
l
g
o
r
ith
m
(
G
A
)
[
1
1
]
,
E
x
p
er
t
S
y
s
te
m
(
E
S)
[
1
2
]
,
E
v
o
lu
tio
n
ar
y
P
r
o
g
r
a
m
m
i
n
g
(
E
P
)
[
1
3
]
,
Neu
r
al
Ne
t
w
o
r
k
(
NN)
[
1
4
]
,
f
u
zz
y
m
eth
o
d
s
[
1
5
]
,
T
a
b
u
Sea
r
ch
(
T
S)
[
1
6
]
,
P
a
r
ticle
S
w
ar
m
Op
ti
m
iza
tio
n
(
P
SO)
[
1
7
]
,
Fire
Fly
(
F
F)
alg
o
r
ith
m
[
1
8
]
,
[
1
9
]
,
A
n
t
C
o
lo
n
y
S
y
s
te
m
(
A
C
S)
alg
o
r
it
h
m
[
2
0
]
,
Dif
f
er
en
tial
E
v
o
lu
tio
n
(
DE
)
[
2
1
]
,
[
2
2
]
,
B
a
cter
ial
Fo
r
ag
i
n
g
Alg
o
r
it
h
m
(
B
FA
)
[
2
3
]
,
Sh
u
f
f
led
Fro
g
L
e
ap
in
g
Alg
o
r
it
h
m
(
SF
L
A
)
[
2
4
]
,
Gr
av
itat
io
n
al
Se
ar
ch
A
l
g
o
r
ith
m
(
GS
A
)
[
2
5
]
,
[
2
6
]
an
d
Me
m
etic
Alg
o
r
it
h
m
(
MA
)
[
2
7
]
h
a
v
e
b
ee
n
ap
p
lied
to
s
o
lv
e
th
e
th
er
m
al
U
C
p
r
o
b
lem
s
.
T
h
e
i
m
p
r
o
v
ed
v
er
s
io
n
s
o
f
G
A
,
p
ar
allel
r
ep
air
GA
[
2
8
]
,
I
n
te
g
er
-
C
o
d
ed
GA
(
I
C
G
A
)
[
2
9
]
an
d
B
in
ar
y
-
r
ea
l
-
C
o
d
ed
GA
(
B
C
G
A
)
[
3
0
]
h
av
e
b
ee
n
d
ev
e
lo
p
ed
to
s
o
lv
e
th
er
m
al
U
C
p
r
o
b
lem
.
T
h
e
m
o
d
if
ied
v
er
s
io
n
s
o
f
S
A
n
a
m
el
y
,
E
n
h
a
n
ce
d
S
A
(
E
SA
)
[
3
1
]
,
[
3
2
]
,
A
d
ap
tiv
e
S
A
(
AS
A
)
[
3
3
]
an
d
m
o
d
if
ied
v
er
s
io
n
s
o
f
P
SO
n
a
m
el
y
,
H
y
b
r
id
P
SO
[
3
4
]
,
p
s
eu
d
o
-
in
s
p
ir
ed
w
ei
g
h
t
-
i
m
p
r
o
v
ed
cr
az
y
P
SO
[
3
5
]
h
av
e
b
ee
n
ev
o
lv
e
d
to
s
o
lv
e
th
e
UC
p
r
o
b
lem
.
Fire
w
o
r
k
s
al
g
o
r
ith
m
[
3
6
]
is
o
n
e
t
y
p
e
s
w
ar
m
o
p
tim
izatio
n
al
g
o
r
ith
m
s
r
ec
e
n
tl
y
d
e
v
elo
p
ed
an
d
ap
p
lie
d
to
s
o
lv
e
th
e
UC
p
r
o
b
lem
.
Var
io
u
s
h
y
b
r
id
m
e
th
o
d
s
co
m
b
in
in
g
m
e
tah
e
u
r
is
t
ic
w
i
th
tr
ad
itio
n
al
tech
n
iq
u
es
o
r
o
th
er
m
e
tah
eu
r
i
s
ti
c
ar
e
d
ev
elo
p
ed
to
ex
p
lo
r
e
th
e
s
ea
r
ch
s
p
ac
e
in
lar
g
e
s
ize
U
C
p
r
o
b
lem
s
.
H
y
b
r
id
m
e
th
o
d
s
i
n
clu
d
e
h
y
b
r
id
f
u
zz
y
NN
-
E
S
[
3
7
]
,
L
R
an
d
G
A
[
3
8
]
,
L
R
an
d
E
P
[
3
9
]
,
E
P
an
d
T
S
[
4
0
]
,
E
S
an
d
E
lite
P
SO
[
4
1
]
,
Hy
b
r
id
T
ag
u
ch
i
(
HT
)
-
AC
S
[
4
2
]
,
L
R
an
d
P
SO
[
4
3
]
,
GA
an
d
DE
[
4
4
]
an
d
h
y
b
r
id
h
ar
m
o
n
y
s
ea
r
ch
/r
a
n
d
o
m
s
ea
r
ch
al
g
o
r
ith
m
[
4
5
]
.
Qu
an
tu
m
-
i
n
s
p
ir
ed
ev
o
lu
tio
n
ar
y
co
m
p
u
ti
n
g
tec
h
n
i
q
u
es
s
u
c
h
as
Q
u
an
t
u
m
-
in
s
p
ir
ed
E
v
o
lu
tio
n
ar
y
A
l
g
o
r
ith
m
(
QE
A
)
[
4
6
]
,
Qu
an
tu
m
-
i
n
s
p
ir
ed
B
in
ar
y
P
SO
(
QB
P
SO)
[
4
7
]
,
A
d
v
an
ce
d
Qu
a
n
tu
m
-
i
n
s
p
ir
ed
E
v
o
lu
tio
n
ar
y
A
l
g
o
r
ith
m
(
A
Q
E
A
)
[
4
8
]
an
d
Qu
an
t
u
m
-
i
n
s
p
ir
ed
B
in
ar
y
GS
A
(
QB
GS
A
)
[
4
9
]
h
av
e
b
ee
n
ap
p
lied
to
s
o
lv
e
UC
p
r
o
b
le
m
.
1
.
3
.
Why
G
re
y
Wo
lf
O
pti
m
i
za
t
io
n Alg
o
rit
h
m
?
T
h
e
ex
is
ti
n
g
m
eta
h
eu
r
i
s
tic
a
p
p
r
o
ac
h
es
f
i
n
d
d
if
f
ic
u
lt
to
d
eter
m
i
n
e
t
h
e
p
r
o
x
i
m
it
y
o
f
th
e
esti
m
ated
s
o
lu
tio
n
to
th
e
o
p
ti
m
al
s
o
lu
tio
n
.
P
ar
a
m
eter
s
elec
tio
n
p
la
y
s
a
v
ital r
o
le
i
n
s
u
cc
es
s
o
f
th
e
s
e
te
ch
n
iq
u
es b
u
t it
is
a
ti
m
e
co
n
s
u
m
i
n
g
p
r
o
ce
s
s
as
it
r
eq
u
ir
es
co
m
p
lete
k
n
o
w
led
g
e
ab
o
u
t
th
e
alg
o
r
ith
m
.
R
ec
e
n
tl
y
,
in
t
h
e
f
ie
ld
o
f
s
w
ar
m
i
n
tell
ig
e
n
ce
co
m
p
u
tati
o
n
s
,
a
n
e
w
o
p
ti
m
izatio
n
al
g
o
r
ith
m
,
n
a
m
el
y
Gr
e
y
W
o
lf
Op
ti
m
izat
io
n
(
GW
O)
[
5
0
]
h
as
b
ee
n
d
ev
elo
p
ed
.
T
h
is
is
in
s
p
ir
ed
b
y
d
e
m
o
cr
atic
b
eh
av
io
u
r
a
n
d
t
h
e
h
u
n
ti
n
g
m
ec
h
a
n
i
s
m
o
f
g
r
a
y
w
o
l
v
es
i
n
th
e
n
at
u
r
e.
I
n
a
p
ac
k
,
t
h
e
w
o
lv
e
s
f
o
llo
w
s
o
cial
le
ad
er
s
h
ip
h
ier
ar
c
h
y
.
Se
y
ed
ali
Mir
j
alili
et
a
l
.
,
h
av
e
p
r
o
p
o
s
ed
th
e
GW
O
al
g
o
r
ith
m
a
n
d
th
e
a
lg
o
r
it
h
m
is
i
n
s
p
ec
ted
w
it
h
s
ta
n
d
ar
d
test
f
u
n
ct
io
n
s
.
I
t
y
ield
s
co
m
p
eti
tiv
e
s
o
l
u
tio
n
s
co
m
p
ar
ed
w
i
t
h
o
th
er
h
e
u
r
is
tic
al
g
o
r
ith
m
s
.
Th
e
m
er
it
s
o
f
t
h
e
GW
O
ar
e
s
i
m
p
le,
ea
s
y
i
m
p
le
m
en
ta
tio
n
a
n
d
r
eq
u
ir
e
f
e
w
p
ar
a
m
eter
s
to
ad
j
u
s
t.
1
.
4
.
Resea
rc
h G
a
p a
nd
Co
ntr
ibu
t
io
n
P
r
o
f
u
s
e
liter
atu
r
es
h
av
e
b
ee
n
ad
d
r
ess
ed
th
er
m
al
UC
s
o
l
u
tio
n
.
Fe
w
r
e
s
ea
r
ch
w
o
r
k
s
h
as
b
ee
n
ca
r
r
ied
in
t
h
e
f
ield
o
f
U
C
co
n
s
id
er
in
g
w
i
n
d
p
o
w
er
g
en
er
atio
n
[
2
6
]
,
[
4
9
]
,
[
5
1
]
.
T
h
e
in
teg
r
at
i
o
n
o
f
w
i
n
d
p
o
w
er
in
cr
ea
s
es
f
u
r
t
h
er
th
e
n
o
n
-
l
in
e
ar
s
o
lu
tio
n
s
p
ac
e,
h
e
n
ce
d
ete
r
m
in
in
g
t
h
e
b
est
f
ea
s
ib
le
s
c
h
ed
u
le
h
a
s
b
ec
o
m
e
cr
u
cial.
T
h
o
u
g
h
,
n
u
m
er
o
u
s
s
o
f
t
co
m
p
u
ti
n
g
tech
n
iq
u
e
s
h
a
v
e
b
ee
n
r
ep
o
r
ted
f
o
r
th
e
UC
s
o
lu
tio
n
,
i
m
p
r
o
v
in
g
th
eir
s
o
lu
t
io
n
q
u
alit
y
is
s
till
a
in
ter
esti
n
g
r
esear
c
h
tas
k
.
T
h
e
ad
v
an
ta
g
e
s
o
f
GW
O
ag
ai
n
s
t
o
th
er
p
o
p
u
latio
n
b
ased
alg
o
r
ith
m
s
m
o
tiv
ate
u
s
to
u
s
e
it
as
t
h
e
m
ai
n
o
p
ti
m
izat
io
n
to
o
l
to
s
o
lv
e
th
e
W
GI
UC
p
r
o
b
lem
s
.
T
h
e
r
ea
l
co
d
ed
s
ch
e
m
e
is
ad
o
p
ted
in
GW
O
alg
o
r
ith
m
in
o
r
d
er
to
h
an
d
le
th
e
o
p
er
atio
n
al
co
n
s
tr
ain
ts
an
d
is
ap
p
lied
f
o
r
th
e
f
ir
s
t ti
m
e
to
s
o
lv
e
W
GI
UC
p
r
o
b
lem
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Win
d
I
n
teg
r
a
ted
Th
erma
l U
n
it
C
o
mmitmen
t S
o
lu
tio
n
u
s
in
g
Grey
W
o
lf Op
timi
z
er
(
S
.
S
iva
S
a
kth
i
)
2311
1
.
5
.
P
a
per
O
rg
a
niza
t
i
o
n
T
h
e
r
em
ai
n
d
er
o
f
th
e
p
ap
er
is
o
r
g
an
ized
as
f
o
llo
w
s
:
Sec
tio
n
2
d
escr
ib
es
th
e
UC
p
r
o
b
le
m
an
d
p
r
esen
ts
t
h
e
m
at
h
e
m
at
ical
f
o
r
m
u
latio
n
o
f
th
e
p
r
o
b
le
m
.
I
n
Sectio
n
3
,
i
m
p
le
m
e
n
tatio
n
o
f
GW
O
is
p
r
esen
ted
.
Sectio
n
4
d
etail
s
t
h
e
n
u
m
er
ical
r
esu
l
ts
a
n
d
d
is
c
u
s
s
io
n
s
.
T
h
e
p
er
f
o
r
m
an
ce
an
a
l
y
s
is
o
f
th
e
GW
O
al
g
o
r
ith
m
i
s
p
r
esen
ted
in
s
ec
t
io
n
5
.
Fi
n
al
l
y
,
Sectio
n
6
s
u
m
m
ar
izes t
h
e
co
n
clu
s
io
n
.
2.
P
RO
B
L
E
M
F
O
R
M
UL
AT
I
O
N
2
.
1
.
O
bje
ct
i
v
e
F
un
ct
io
n
T
h
e
to
tal
co
s
t,
o
v
er
th
e
en
tire
s
ch
ed
u
lin
g
p
er
io
d
is
th
e
s
u
m
o
f
th
e
r
u
n
n
i
n
g
co
s
t,
s
tar
t
u
p
co
s
t
an
d
s
h
u
t
d
o
w
n
co
s
t o
f
all
th
e
u
n
its
[
6
]
.
A
cc
o
r
d
in
g
l
y
,
t
h
e
o
v
er
all
o
b
j
ec
tiv
e
f
u
n
ctio
n
o
f
th
e
U
C
p
r
o
b
lem
is
s
tated
as:
m
i
n
T
t
N
i
i
i
i
i
t
t
SD
t
SC
t
P
F
F
1
1
)
(
)
(
))
(
(
(
1
)
Gen
er
all
y
,
t
h
e
f
u
el
co
s
t,
F
i
(P
i
(
t
)
)
o
f
u
n
i
t
i
in
an
y
g
i
v
en
ti
m
e
in
ter
v
al
t
is
a
f
u
n
ctio
n
o
f
th
e
g
en
er
ato
r
p
o
w
er
o
u
tp
u
t.
T
h
e
p
r
o
d
u
ctio
n
co
s
t
o
f
u
n
it
i
ca
n
b
e
ap
p
r
o
x
im
ated
as
a
q
u
ad
r
atic
f
u
n
ctio
n
o
f
th
e
r
ea
l
p
o
w
er
o
u
tp
u
ts
f
r
o
m
t
h
e
g
e
n
er
ati
n
g
u
n
its
a
n
d
ca
n
b
e
ex
p
r
ess
ed
as:
)
(
)
(
))
(
(
2
t
P
c
t
P
b
a
t
P
F
i
i
i
i
i
i
t
(
2
)
T
h
e
g
en
er
ato
r
s
tar
t
u
p
co
s
t
d
ep
en
d
s
o
n
th
e
ti
m
e,
t
h
e
u
n
it
h
a
s
b
ee
n
o
f
f
p
r
io
r
to
s
tar
t
u
p
.
I
n
th
is
w
o
r
k
,
ti
m
e
-
d
ep
en
d
en
t
s
ta
r
t u
p
co
s
t is
u
s
ed
an
d
is
d
ef
in
ed
as
f
o
llo
w
s
:
i
h
o
u
r
s
c
o
f
f
i
T
o
f
f
i
X
;
i
t
c
i
h
o
u
r
s
c
o
f
f
i
T
o
f
f
i
X
o
f
f
i
T
;
i
t
h
i
SC
c
o
s
c
o
s
(
3
)
T
h
e
SD
co
s
t
is
u
s
u
a
ll
y
g
i
v
en
a
co
n
s
tan
t
v
al
u
e
f
o
r
ea
ch
u
n
it.
I
n
th
i
s
p
ap
er
,
th
e
SD
co
s
t
h
as
b
ee
n
tak
e
n
eq
u
al
to
ze
r
o
f
o
r
ea
ch
u
n
it.
T
h
e
o
b
j
ec
tiv
e
f
u
n
ctio
n
,
i.e
.
,
m
i
n
i
m
izatio
n
o
f
to
tal
co
s
t
F
t
is
s
u
b
j
ec
t
to
th
e
s
y
s
te
m
an
d
g
en
er
at
in
g
u
n
it c
o
n
s
tr
ai
n
t
s
w
h
ic
h
ar
e
as f
o
llo
w
s
:
2
.
2
.
Sy
s
t
em
Co
n
s
t
ra
int
P
o
w
er
B
a
la
nce
Co
ns
t
ra
int:
T
h
e
to
tal
p
o
w
er
g
e
n
er
ated
b
y
th
e
co
m
b
i
n
atio
n
o
f
th
er
m
al
a
n
d
w
i
n
d
g
e
n
er
atin
g
u
n
i
ts
m
u
s
t
m
ee
t th
e
lo
ad
d
e
m
a
n
d
P
d
(
t)
o
n
h
o
u
r
l
y
b
asi
s
:
N
i
w
i
P
t
P
t
Pd
1
)
(
)
(
(
4
)
2
.
3
.
Unit
Co
ns
t
ra
ints
T
h
e
g
en
er
atin
g
u
n
i
t o
p
er
atio
n
al
co
n
s
tr
ain
ts
[
6
]
,
[
2
1
]
ar
e
as f
o
llo
w
s
:
a)
G
ener
a
t
io
n
L
i
m
it
s
:
T
h
e
r
ea
l
p
o
w
er
g
e
n
er
atio
n
o
f
ea
ch
g
e
n
er
ato
r
h
as
a
lo
w
er
an
d
u
p
p
er
lim
it,
s
o
th
at
g
en
er
atio
n
s
h
o
u
ld
lie
w
it
h
i
n
th
is
b
o
u
n
d
ar
y
.
T
h
is
i
n
eq
u
alit
y
i
s
s
tated
as f
o
llo
w
s
:
a.
ma
x
mi
n
)
(
i
i
i
P
t
P
P
(
5
)
b.
m
a
x
m
i
n
)
(
w
w
w
P
t
P
P
(
6
)
b)
Unit
M
ini
m
u
m
Up/Do
w
n
T
i
m
e
Co
ns
t
ra
ints:
T
h
e
in
eq
u
alit
y
co
n
s
tr
ain
ts
o
f
m
i
n
i
m
u
m
u
p
/d
o
w
n
t
i
m
e
li
m
it
s
o
f
g
e
n
er
ati
n
g
u
n
it
s
is
g
i
v
en
b
y
:
a.
of
f
i
of
f
i
on
i
on
i
X
T
X
T
(
7
)
c)
Up/Do
w
n Ra
m
p L
i
m
it
s
:
T
h
e
u
p
an
d
d
o
w
n
r
a
m
p
l
i
m
its
o
f
t
h
e
th
er
m
al
u
n
i
ts
ar
e
g
i
v
e
n
b
y
,
a.
i
i
i
i
UR
t
P
t
P
DR
)
1
(
)
(
(
8
)
d)
Unit
I
nitia
l St
a
t
us
:
T
h
e
in
itia
l statu
s
at
th
e
s
tar
t o
f
t
h
e
s
c
h
e
d
u
lin
g
p
e
r
io
d
m
u
s
t b
e
tak
en
i
n
to
ac
co
u
n
t.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
3
0
9
-
2
3
2
0
2312
3.
UNIT
CO
M
M
I
T
M
E
NT
B
ASE
D
O
N
G
WO
T
h
e
GW
O
alg
o
r
ith
m
h
a
s
ess
e
n
tial
s
tep
s
s
u
ch
a
s
s
o
cial
h
ier
ar
ch
y
,
e
n
cir
clin
g
,
h
u
n
ti
n
g
,
at
t
ac
k
in
g
a
n
d
s
ea
r
ch
f
o
r
p
r
e
y
.
T
h
e
i
m
p
le
m
e
n
tatio
n
o
f
GW
O
alg
o
r
it
h
m
f
o
r
s
o
lv
i
n
g
U
C
p
r
o
b
lem
i
s
d
etaile
d
in
th
i
s
s
ec
tio
n
.
3
.
1
.
Def
ini
t
io
n o
f
Wo
lf
a
nd
I
nitia
l P
o
pu
la
t
io
n
I
n
th
e
i
n
te
g
er
co
d
ed
GW
O,
ea
ch
u
n
it
s
eq
u
e
n
ce
o
f
t
h
e
o
p
er
atin
g
m
o
d
e
(
ON/O
FF
)
c
y
c
le
d
u
r
atio
n
is
in
d
icate
d
b
y
a
s
eq
u
e
n
ce
o
f
i
n
teg
er
n
u
m
b
er
s
w
h
ic
h
r
ep
r
esen
t
s
t
h
e
W
o
lf
P
o
s
itio
n
(
W
P
)
in
t
h
e
U
C
h
o
r
izo
n
.
T
h
e
d
u
r
atio
n
o
f
co
n
ti
n
u
o
u
s
O
N
an
d
O
FF
s
tate
i
s
i
n
d
icate
d
b
y
p
o
s
iti
v
e
a
n
d
n
e
g
ati
v
e
i
n
te
g
e
r
s
in
W
P
.
B
ased
o
n
n
u
m
b
er
o
f
lo
ad
p
ea
k
s
d
u
r
i
n
g
t
h
e
U
C
h
o
r
izo
n
an
d
t
h
e
s
u
m
o
f
th
e
m
i
n
i
m
u
m
u
p
a
n
d
d
o
w
n
ti
m
es
o
f
t
h
e
u
n
i
t,
th
e
n
u
m
b
er
o
f
a
u
n
it
’
s
ON
/OFF
c
y
cles
i
s
de
cid
ed
.
Fo
r
b
ase,
m
ed
iu
m
,
a
n
d
p
ea
k
lo
ad
u
n
i
ts
,
th
e
n
u
m
b
er
s
o
f
ON/OFF c
y
cle
s
ar
e
2
,
3
,
an
d
5
r
esp
ec
tiv
el
y
.
T
o
o
v
er
co
m
e
th
e
r
estrictio
n
o
f
s
ea
r
ch
s
p
ac
e
f
o
r
b
ase
an
d
m
ed
i
u
m
u
n
i
ts
d
u
e
to
r
ed
u
ctio
n
o
f
c
y
cl
es,
th
e
n
u
m
b
er
o
f
c
y
cle
s
o
f
al
l
u
n
i
ts
s
a
m
e
as
n
u
m
b
er
o
f
c
y
c
les
p
ea
k
lo
ad
u
n
i
ts
ar
e
s
elec
ted
.
Fo
r
d
ay
s
ch
ed
u
li
n
g
(
D)
,
NC
is
eq
u
al
to
D
×
5
.
E
ac
h
s
o
lu
t
io
n
co
n
tai
n
s
N
×
D
×
5
v
ar
iab
les
f
o
r
D
-
d
ay
s
ch
ed
u
li
n
g
.
T
h
e
in
itial p
o
p
u
latio
n
o
f
t
h
e
G
W
O
is
g
en
er
ated
as
f
o
llo
w
s
:
T
h
e
r
u
n
n
i
n
g
d
u
r
atio
n
o
f
th
e
fi
r
s
t
c
y
cle
o
f
u
n
it
i
,
T
i
1
i
s
in
i
tiali
ze
d
b
y
co
n
s
id
er
in
g
u
n
it
i
o
p
er
atin
g
s
tate
o
f
th
e
las
t c
y
cle
o
f
th
e
p
r
ev
io
u
s
s
ch
ed
u
li
n
g
d
a
y
to
a
v
o
id
v
io
l
atio
n
o
f
m
in
i
m
u
m
u
p
/d
o
w
n
t
i
m
e
co
n
s
tr
ain
t
s
.
0
if
),
,
)
,
0
(
(
m
a
x
0
if
),
,
)
,
0
(
(
m
a
x
0
0
0
0
1
i
i
o
f
f
i
i
i
on
i
i
T
T
T
T
R
a
n
d
T
T
T
T
R
a
n
d
T
(
9
)
Fo
r
c
<
N
C
,
th
e
o
p
er
atin
g
p
er
io
d
o
f
th
e
c
th
cy
c
le
o
f
u
n
it
i
,
c
i
T
is
d
eter
m
i
n
ed
b
y
ta
k
i
n
g
i
n
to
ac
co
u
n
t
o
f
th
e
m
i
n
i
m
u
m
u
p
a
n
d
d
o
w
n
ti
m
e
co
n
s
tr
ain
ts
o
f
t
h
e
g
e
n
er
atin
g
u
n
i
ts
,
t
h
e
UC
s
c
h
ed
u
li
n
g
p
er
i
o
d
an
d
th
e
o
p
er
atin
g
p
er
io
d
o
f
th
e
c
-
1
p
r
io
r
cy
cle
s
o
f
o
p
er
atio
n
o
f
th
e
u
n
it.
Fo
r
0
1
c
i
T
,
cy
cle
c
is
i
n
ON
m
o
d
e
w
ith
d
u
r
atio
n
o
t
h
e
r
w
i
s
e
,
if
,
)
,
(
1
1
1
c
i
on
i
c
i
c
i
on
i
c
i
BT
T
BT
T
B
T
R
a
n
d
T
(
1
0
)
Fo
r
0
1
c
i
T
,
cy
cle
c
is
i
n
OF
F
m
o
d
e
w
it
h
d
u
r
atio
n
o
t
h
e
r
w
i
s
e
,
if
,
)
,
(
1
1
1
c
i
o
f
f
i
c
i
c
i
o
f
f
i
c
i
BT
T
BT
T
B
T
R
a
n
d
T
(1
1
)
w
h
er
e
1
c
i
BT
co
r
r
esp
o
n
d
s
to
th
e
s
ch
e
d
u
lin
g
ti
m
e
r
e
m
ai
n
i
n
g
af
ter
t
h
e
allo
ca
tio
n
o
f
th
e
fi
r
s
t
c
-
1
c
y
cles.
1
1
1
c
j
j
i
c
i
T
T
BT
(
1
2
)
B
y
ta
k
i
n
g
in
to
ac
co
u
n
t
th
e
r
an
d
o
m
l
y
g
e
n
er
ated
c
y
cle
d
u
r
atio
n
s
,
t
h
e
en
tire
s
c
h
ed
u
li
n
g
p
er
io
d
is
co
v
er
ed
w
i
th
th
e
fi
r
s
t
c
<
N
C
o
p
er
atin
g
c
y
cles.
T
h
e
r
e
m
ain
i
n
g
c
y
cle
s
ar
e
f
illed
w
it
h
ze
r
o
.
On
ce
i
n
itial
p
o
p
u
latio
n
is
d
eter
m
i
n
ed
,
th
e
u
n
i
t
m
i
n
i
m
u
m
u
p
an
d
d
o
w
n
-
ti
m
e
co
n
s
tr
ain
t
s
ar
e
s
atis
fied
au
t
o
m
a
ticall
y
.
3
.
2
.
G
WO
E
x
ec
utio
n f
o
r
W
G
I
U
C
I
n
th
is
s
ec
tio
n
,
t
h
e
al
g
o
r
it
h
m
i
c
s
tep
s
o
f
GW
O
f
o
r
W
GI
UC
ar
e
p
r
esen
ted
.
T
h
e
co
n
s
tr
ai
n
t
h
a
n
d
lin
g
s
ch
e
m
es a
r
e
al
s
o
b
r
ief
ed
:
1.
R
ea
d
th
e
s
y
s
te
m
d
ata
a
n
d
in
it
ialize
GW
O
p
ar
am
eter
s
s
u
c
h
as
p
o
p
u
latio
n
s
ize
(
P
S),
m
a
x
i
m
u
m
n
u
m
b
er
o
f
iter
atio
n
s
(
iter
-
m
a
x
)
an
d
t
h
e
v
ec
to
r
v
alu
e
(
a
,
A
an
d
C
).
2.
I
n
itializatio
n
a.
T
h
e
in
itial p
o
p
u
latio
n
(
X
t
)
is
g
en
er
ated
as f
o
llo
w
s
:
a)
T
h
e
en
tire
s
ch
ed
u
li
n
g
p
er
io
d
is
d
iv
id
ed
in
to
n
u
m
b
er
o
f
c
y
cle
s
an
d
is
d
en
o
ted
b
y
N
C
.
b)
A
ll t
h
e
u
n
i
ts
ar
e
co
m
m
itted
b
ased
o
n
th
eir
in
itial s
tate
co
n
d
it
io
n
s
.
c)
T
h
e
o
p
e
r
atin
g
d
u
r
atio
n
is
d
ete
r
m
in
ed
b
y
co
n
s
id
er
in
g
t
h
e
m
i
n
i
m
u
m
u
p
an
d
d
o
w
n
ti
m
e
co
n
s
t
r
ain
ts
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Win
d
I
n
teg
r
a
ted
Th
erma
l U
n
it
C
o
mmitmen
t S
o
lu
tio
n
u
s
in
g
Grey
W
o
lf Op
timi
z
er
(
S
.
S
iva
S
a
kth
i
)
2313
d)
T
h
is
p
r
o
ce
s
s
is
r
ep
ea
ted
f
o
r
a
ll
NC
-
1
c
y
cles
a
n
d
th
e
r
e
m
ai
n
in
g
ti
m
e
is
co
m
p
u
ted
w
h
ic
h
is
th
e
o
p
er
ati
n
g
d
u
r
atio
n
o
f
t
h
e
last
s
e
g
m
e
n
t.
e)
A
p
p
l
y
t
h
e
co
n
s
tr
ain
t
h
a
n
d
lin
g
s
ch
e
m
e
to
s
ati
s
f
y
t
h
e
o
p
er
atio
n
al
co
n
s
tr
ain
t
s
.
f)
T
h
e
o
n
lin
e
g
e
n
er
ati
n
g
u
n
its
al
o
n
g
w
it
h
d
ep
en
d
en
t
u
n
its
ar
e
i
d
en
tifie
d
w
i
th
i
n
t
h
eir
o
p
er
atio
n
al
li
m
it
s
.
3.
C
o
m
p
u
te
th
e
f
it
n
ess
o
f
ea
ch
in
d
iv
id
u
al,
an
i
n
d
iv
id
u
al
h
a
v
i
n
g
t
h
e
m
in
i
m
u
m
f
it
n
e
s
s
is
m
i
m
ic
k
ed
as
th
e
alp
h
a,
s
ec
o
n
d
m
i
n
i
m
u
m
is
b
et
a
an
d
th
ir
d
m
i
m
i
m
u
m
i
s
d
elta.
a.
Fit
n
e
s
s
=
F
t
+
O
C
V
(
1
3
)
b.
W
h
er
e:
OC
V
is
t
h
e
Op
er
atio
n
al
C
o
n
s
t
r
ai
n
t
Vio
latio
n
a
n
d
X
α
,
X
β
an
d
X
γ
ar
e
th
e
b
est,
s
ec
o
n
d
an
d
th
ir
d
s
ea
r
ch
ag
e
n
t
s
r
esp
ec
tiv
el
y
.
4.
iter
=
iter
+1
.
5.
Sear
ch
ag
e
n
t,
S
A
g
=
S
A
g
+1
.
6.
Mo
d
if
y
t
h
e
g
e
n
er
atio
n
o
f
N
-
1
o
n
lin
e
u
n
its
b
ased
o
n
t
h
e
h
u
n
ti
n
g
m
ec
h
an
i
s
m
.
a.
3
)
.(
)
.(
)
.(
γ
3
γ
β
2
β
α
1
α
1
D
A
X
D
A
X
D
A
X
X
t
(
1
4
)
b.
W
h
er
e:
D
α
=
|C
1
.X
α
-
X
|;
D
β
=
|C
2
.X
β
-
X
|;
D
γ
= |
C
3
.X
γ
-
X
|;
A
= 2
a
.
r
a
n
d
–
a
.
7.
A
p
p
l
y
co
n
s
tr
ai
n
t h
a
n
d
li
n
g
s
tr
ateg
y
.
8.
R
ep
ea
t step
5
f
o
r
all
s
ea
r
ch
ag
en
ts
.
Ot
h
er
w
is
e
g
o
to
n
ex
t ste
p
.
9.
Up
d
ate
th
e
v
ec
to
r
v
al
u
es o
f
(
a
,
A
an
d
C
).
10.
C
o
m
p
u
te
th
e
f
it
n
es
s
f
o
r
all
s
ea
r
ch
ag
e
n
ts
.
11.
Up
d
a
te
th
e
v
al
u
es o
f
X
α
,
X
β
an
d
X
γ
.
12.
T
er
m
in
at
io
n
cr
iter
io
n
.
a.
R
ep
ea
t th
e
p
r
o
ce
d
u
r
e
f
r
o
m
s
te
p
s
4
to
6
,
u
n
til t
h
e
m
ax
i
m
u
m
n
u
m
b
er
o
f
iter
atio
n
is
r
ea
ch
ed
.
4
.
SI
M
UL
AT
I
O
N
R
E
S
UL
T
S
AND
DIS
CUSS
I
O
NS
T
h
e
alg
o
r
ith
m
is
d
ev
e
lo
p
ed
in
Ma
tlab
p
lat
f
o
r
m
w
h
ich
is
ex
ec
u
ted
o
n
a
p
e
r
s
o
n
al
co
m
p
u
ter
co
n
f
i
g
u
r
ed
w
ith
I
n
tel
co
r
e
i3
p
r
o
ce
s
s
o
r
2
.
2
0
GHz
an
d
4
G
B
R
A
M.
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
th
e
GW
O
m
et
h
o
d
is
test
ed
o
n
th
e
s
tan
d
ar
d
test
s
y
s
te
m
w
h
ich
co
n
s
is
t
s
o
f
ten
th
e
r
m
al
g
e
n
er
atin
g
u
n
it
s
an
d
o
n
e
w
i
n
d
f
ar
m
o
v
er
a
p
lan
n
i
n
g
h
o
r
izo
n
o
f
2
4
h
o
u
r
s
.
T
h
e
g
en
er
ati
n
g
u
n
it
d
ata
a
n
d
lo
ad
d
e
m
an
d
s
ar
e
ad
o
p
ted
f
r
o
m
[
1
1
]
.
T
h
e
w
i
n
d
f
ar
m
co
n
s
is
t
s
o
f
2
0
n
u
m
b
er
o
f
s
a
m
e
m
o
d
el
w
i
n
d
tu
r
b
in
e
g
en
er
ato
r
s
w
h
ic
h
ar
e
o
p
er
atin
g
in
p
ar
allel.
T
h
e
w
i
n
d
p
o
w
er
g
e
n
er
atio
n
d
ata
[
5
1
]
ar
e
p
r
o
v
id
ed
in
T
a
b
le
1
.
T
h
e
y
ar
e
ca
lcu
la
ted
u
s
in
g
f
o
r
ec
asted
w
in
d
p
o
w
er
b
ef
o
r
eh
an
d
a
n
d
co
n
v
er
ted
i
n
t
o
elec
tr
ical
p
o
w
er
.
T
h
e
m
i
n
i
m
u
m
a
n
d
m
ax
i
m
u
m
o
u
tp
u
t
p
o
w
er
o
f
w
i
n
d
f
ar
m
is
1
5
MW
an
d
1
0
0
MW
r
esp
ec
tiv
el
y
.
T
h
e
w
i
n
d
f
ar
m
y
ield
s
t
h
e
m
i
n
i
m
u
m
a
n
d
m
a
x
i
m
u
m
o
u
t
p
u
t o
f
1
5
.
0
1
MW
at
10
th
h
o
u
r
an
d
9
8
.
5
5
9
MW
at
1
6
th
h
o
u
r
r
esp
ec
tiv
el
y
.
T
ab
le
1
.
W
in
d
p
o
w
er
g
en
er
ati
o
n
d
ata
I
n
t
e
r
v
a
l
(
h
)
1
2
3
4
5
6
W
i
n
d
p
o
w
e
r
(
M
W
)
4
2
.
6
0
2
3
5
.
4
0
9
60
1
7
.
1
9
3
20
3
1
.
3
0
9
I
n
t
e
r
v
a
l
(
h
)
7
8
9
10
11
12
W
i
n
d
p
o
w
e
r
(
M
W
)
40
3
2
.
8
0
2
2
1
.
7
8
4
1
5
.
0
1
2
4
.
3
8
3
2
7
.
0
5
8
I
n
t
e
r
v
a
l
(
h
)
13
14
15
16
17
18
W
i
n
d
p
o
w
e
r
(
M
W
)
4
1
.
2
3
3
5
0
.
4
7
8
80
9
8
.
5
5
9
7
2
.
1
9
4
4
9
.
6
5
5
I
n
t
e
r
v
a
l
(
h
)
19
20
21
22
23
24
W
i
n
d
p
o
w
e
r
(
M
W
)
3
6
.
4
4
5
7
.
1
8
5
6
4
.
2
4
3
8
5
.
5
4
1
7
0
.
6
7
7
6
1
.
2
9
8
T
h
e
s
i
m
u
la
tio
n
r
u
n
s
,
f
o
r
s
tan
d
ar
d
1
0
u
n
it
s
y
s
te
m
w
it
h
t
h
e
s
ch
ed
u
li
n
g
p
er
io
d
o
f
2
4
h
o
u
r
s
.
T
h
e
m
ax
i
m
u
m
n
u
m
b
er
o
f
c
y
cles
f
o
r
ea
ch
u
n
i
t
i
s
ta
k
e
n
as
5
.
Fo
r
ea
ch
p
r
o
b
le
m
s
et,
5
0
te
s
t
tr
i
als
ar
e
m
ad
e
w
i
th
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
3
0
9
-
2
3
2
0
2314
r
an
d
o
m
in
itia
l
p
o
p
u
latio
n
f
o
r
ea
ch
r
u
n
.
Mu
ltip
le
r
u
n
s
h
a
v
e
b
ee
n
p
er
f
o
r
m
ed
,
to
v
er
if
y
t
h
e
r
o
b
u
s
tn
ess
o
f
t
h
e
GW
O
in
s
o
l
v
i
n
g
UC
p
r
o
b
lem
.
T
h
e
f
o
llo
w
i
n
g
t
w
o
ca
s
e
s
t
u
d
ies
h
av
e
b
ee
n
co
n
d
u
cted
i
n
o
r
d
er
to
s
h
o
w
th
e
ef
f
ec
tiv
e
n
e
s
s
o
f
GW
O
i
n
s
o
l
v
in
g
UC
p
r
o
b
lem
.
T
h
e
T
ab
le
2
illu
s
tr
ates
t
h
e
co
n
f
i
g
u
r
atio
n
f
o
r
f
in
al
p
o
p
u
lat
io
n
to
W
GI
UC
p
r
o
b
lem
u
s
in
g
G
W
O.
T
ab
le
2
.
C
o
n
f
ig
u
r
atio
n
f
o
r
f
i
n
al
p
o
p
u
latio
n
to
W
GI
UC
p
r
o
b
l
e
m
u
s
i
n
g
GW
O
C
y
c
l
e
s
U
n
i
t
1
2
3
4
5
U1
24
0
U2
24
0
U3
-
5
16
-
3
U4
-
4
17
-
3
U5
-
2
20
-
2
U6
-
8
6
-
5
4
-
1
U7
-
8
6
-
5
3
-
2
U8
-
9
4
-
6
1
-
4
U9
-
10
2
-
12
0
0
U
1
0
-
11
1
-
12
0
0
4
.
1
.
UC
Co
ns
idering
Ra
m
p
Ra
t
es
I
n
g
e
n
er
al,
t
h
e
a
m
o
u
n
t
o
f
p
o
wer
g
en
er
ated
b
y
t
h
er
m
al
u
n
it
s
at
ea
c
h
ti
m
e
p
er
io
d
w
il
l
n
o
t
co
n
s
id
er
t
h
e
d
y
n
a
m
ic
o
f
th
er
m
al
u
n
i
ts
.
B
u
t
it
is
es
s
en
tial
to
in
c
lu
d
e
r
a
m
p
r
ate
co
n
s
tr
ain
t
s
in
lar
g
e
p
r
ac
tical
UC
p
r
o
b
le
m
.
T
h
ese
d
y
n
a
m
ic
co
n
s
tr
ai
n
t
s
en
f
o
r
ce
li
m
itatio
n
o
n
d
r
asti
c
ch
an
g
e
in
t
h
er
m
al
u
n
it
g
e
n
er
atio
n
o
u
tp
u
t
in
s
u
cc
e
s
s
i
v
e
ti
m
e
i
n
ter
v
a
l
.
T
h
ese
m
a
k
e
g
e
n
er
atio
n
le
v
els
o
f
t
w
o
s
u
cc
ess
i
v
e
p
er
io
d
s
ar
e
in
ter
r
elate
d
.
T
h
u
s
r
a
m
p
r
ate
r
estricts
t
h
e
r
ate
o
f
i
n
cr
e
ase
o
r
d
ec
r
ea
s
e
o
f
p
o
w
er
g
e
n
er
atio
n
o
f
ea
ch
u
n
i
t
co
n
s
id
er
i
n
g
t
h
e
t
h
er
m
al
a
n
d
m
ec
h
a
n
ical
in
er
tia
o
f
th
e
t
h
er
m
al
u
n
i
ts
.
Ho
w
ev
er
,
t
h
is
r
ed
u
ce
s
th
e
s
ea
r
ch
s
p
ac
e
f
o
r
o
b
tain
in
g
m
o
r
e
an
d
b
etter
f
ea
s
ib
le
s
o
l
u
tio
n
s
.
T
ab
le
3
d
em
o
n
s
tr
ates
t
h
at
t
h
e
b
est,
w
o
r
s
t
a
n
d
a
v
er
ag
e
o
p
er
atin
g
co
s
t
s
o
b
tain
ed
b
y
I
ter
ati
v
e
L
i
n
ea
r
A
l
g
o
r
ith
m
(
I
L
A
)
[
5
2
]
,
Qu
ad
r
atic
Mo
d
el
(
QM
)
[
2
5
]
,
Sem
i
-
D
efin
ite
P
r
o
g
r
a
m
m
i
n
g
(
S
DP
)
[
5
2
]
,
GSA
,
T
ea
ch
in
g
L
ea
r
n
i
n
g
B
ased
Op
ti
m
izatio
n
(
T
L
B
O)
alg
o
r
ith
m
[
5
2
]
,
Qu
asi
-
Op
p
o
s
itio
n
al
T
L
B
O
(
QOT
L
B
O)
[
5
2
]
an
d
GW
O.
T
h
is
ill
u
s
tr
ates
t
h
e
GW
O
ca
n
o
v
er
co
m
e
th
e
e
ar
l
y
co
n
v
er
g
e
n
ce
w
h
e
n
co
m
p
ar
ed
w
i
th
o
th
er
o
p
tim
izatio
n
al
g
o
r
ith
m
s
.
T
ab
le
3
.
Statis
tica
l to
tal
o
p
er
atin
g
co
s
t r
esu
l
t o
f
1
0
u
n
it
s
y
s
te
m
w
it
h
r
a
m
p
r
ate
co
n
s
tr
ai
n
t
s
M
e
t
h
o
d
s
B
e
st
C
o
s
t
(
$
)
W
o
r
st
C
o
st
(
$
)
M
e
a
n
C
o
st
(
$
)
I
L
A
[
5
2
]
5
7
0
3
9
6
.
4
NR
NR
Q
M
[
2
5
]
5
7
0
3
9
6
.
4
NR
NR
S
D
P
[
5
2
]
5
6
4
4
8
2
NR
NR
G
S
A
[
2
5
]
5
6
4
3
8
4
NR
NR
TL
B
O
[
5
2
]
5
6
4
4
0
2
.
9
5
6
4
5
9
4
.
6
5
6
4
4
9
7
.
4
Q
O
TL
B
O
[
5
2
]
5
6
4
3
9
4
.
0
5
6
4
4
4
3
.
7
5
6
4
4
0
5
.
3
G
W
O
5
6
4
0
0
6
.
6
3
5
6
4
1
4
9
.
1
9
5
6
4
0
9
8
.
5
9
4
.
2
.
UC
I
nte
g
ra
t
ed
w
it
h Wind
T
h
e
w
i
n
d
b
ec
o
m
i
n
g
a
n
i
n
cr
ea
s
in
g
l
y
co
m
m
o
n
elec
tr
ic
e
n
er
g
y
s
o
u
r
ce
.
T
h
is
i
n
tr
o
d
u
ce
s
n
e
w
tech
n
ical
an
d
ec
o
n
o
m
ical
ch
alle
n
g
es
to
p
o
w
er
s
y
s
te
m
o
p
er
ato
r
s
.
Th
is
m
a
k
es
W
i
n
d
T
h
er
m
al
Ge
n
e
r
atin
g
Sch
ed
u
li
n
g
(
W
T
GS)
p
r
o
b
lem
p
la
y
s
a
v
ita
l
r
o
le
in
p
r
o
d
u
cin
g
ze
r
o
ca
r
b
o
n
e
m
is
s
io
n
p
o
w
er
.
T
h
e
p
r
ep
ar
atio
n
o
f
g
en
er
ati
n
g
s
ch
ed
u
lin
g
is
a
co
m
p
le
x
o
p
tim
izatio
n
p
r
o
b
lem
t
h
at
h
a
s
to
d
eter
m
in
e
t
h
e
o
p
ti
m
al
s
c
h
ed
u
l
e
o
f
g
en
er
ati
n
g
u
n
it
s
w
it
h
i
n
a
p
o
w
er
s
y
s
te
m
s
u
b
j
ec
t
to
all
p
r
ev
ailin
g
co
n
s
tr
ai
n
t
s
.
Her
e
th
e
th
er
m
al
u
n
i
ts
g
e
n
er
atin
g
s
c
h
ed
u
le
is
d
eter
m
in
ed
b
y
u
s
i
n
g
GW
O
al
g
o
r
ith
m
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Win
d
I
n
teg
r
a
ted
Th
erma
l U
n
it
C
o
mmitmen
t S
o
lu
tio
n
u
s
in
g
Grey
W
o
lf Op
timi
z
er
(
S
.
S
iva
S
a
kth
i
)
2315
T
ab
le
4
s
h
o
w
s
t
h
at
th
e
m
i
n
i
m
u
m
u
p
/d
o
w
n
ti
m
e
li
m
it
s
a
n
d
i
n
itial
s
tat
u
s
o
f
u
n
i
ts
ar
e
s
ati
s
fied
f
o
r
all
th
er
m
a
l
g
e
n
er
ati
n
g
u
n
it
s
.
U1
an
d
U2
ar
e
co
m
m
itted
f
o
r
w
h
o
le
s
c
h
ed
u
li
n
g
p
er
io
d
,
s
in
ce
th
eir
co
m
m
i
t
m
e
n
t
p
r
io
r
ities
ar
e
h
i
g
h
w
h
en
co
m
p
ar
ed
to
o
th
er
th
er
m
al
u
n
its
.
T
h
ese
u
n
its
w
ill
o
p
er
ate
as
"
Mu
s
t
-
R
u
n
"
u
n
its
.
T
h
e
T
ab
le
4
illu
s
tr
ates
t
h
e
o
p
ti
m
u
m
U
C
s
c
h
ed
u
le
o
b
tain
ed
b
y
GW
O
an
d
r
ea
l
p
o
w
er
s
h
ar
i
n
g
o
f
o
n
li
n
e
g
e
n
er
ati
n
g
u
n
i
ts
.
T
h
e
i
n
teg
r
at
io
n
o
f
w
i
n
d
f
ar
m
w
it
h
t
h
er
m
al
g
e
n
er
ati
n
g
u
n
i
ts
m
ad
e
t
h
e
f
o
llo
w
in
g
c
h
an
g
es
i
n
t
h
er
m
al
u
n
i
t
s
ch
ed
u
lin
g
w
h
e
n
co
m
p
ar
ed
w
ith
[
4
5
]
.
T
h
e
p
o
w
er
g
e
n
er
atio
n
o
f
U2
is
r
e
d
u
ce
d
s
ig
n
i
f
ica
n
t
l
y
i
n
th
e
s
ch
ed
u
li
n
g
h
o
u
r
1
st
to
8
th
,
1
5
th
to
1
9
th
an
d
2
1
th
h
o
u
r
.
Sin
ce
t
h
e
i
n
cr
e
m
en
tal
f
u
el
co
s
t
o
f
t
h
is
u
n
it
i
s
h
ig
h
co
m
p
ar
ed
w
i
th
U1
.
T
h
e
co
n
s
id
er
ab
ly
r
ed
u
cti
o
n
o
f
d
is
p
atch
o
n
U5
f
o
r
th
e
s
ch
ed
u
li
n
g
p
er
io
d
h
o
u
r
s
5
to
9
,
1
3
t
o
1
5
an
d
1
8
t
o
2
1
.
T
h
e
less
er
p
o
w
er
d
is
p
atc
h
ca
n
b
e
r
ea
lized
o
n
U6
d
u
r
in
g
1
0
th
,
1
1
th
an
d
1
3
th
h
o
u
r
.
Si
m
i
lar
l
y
,
th
e
lo
ad
d
is
p
atch
b
y
U8
is
les
s
at
1
2
th
h
o
u
r
.
T
h
ese
r
ed
u
ce
d
d
is
p
atc
h
es
b
y
t
h
er
m
al
u
n
its
r
ea
lize
s
i
g
n
i
f
ica
n
t
a
m
o
u
n
t
o
f
f
u
e
l a
n
d
co
s
t sa
v
i
n
g
s
.
T
ab
le
4
.
W
in
d
co
m
b
in
ed
s
ch
e
d
u
le
o
f
1
0
-
u
n
it
s
y
s
te
m
w
it
h
o
u
t
r
am
p
r
ate
b
y
GW
O
H
o
u
r
U1
U2
U3
U4
U5
U6
U7
U8
U9
U
1
0
W
i
n
d
G
e
n
e
r
a
t
i
o
n
(
M
W
)
T
o
t
a
l
P
D
(
M
W
)
F
u
e
l
C
o
st
(
$
)
S
t
a
r
t
u
p
C
o
st
(
$
)
T
o
t
a
l
C
o
st
(
$
)
1
4
5
5
2
0
2
.
3
9
0
0
0
0
0
0
0
0
4
2
.
6
0
2
7
0
0
1
2
9
4
1
.
9
0
1
2
9
4
1
.
9
2
4
5
5
2
5
9
.
5
9
0
0
0
0
0
0
0
0
3
5
.
4
0
9
7
5
0
1
3
9
3
7
.
2
3
0
1
3
9
3
7
.
2
3
3
4
5
5
3
1
0
.
0
0
0
0
25
0
0
0
0
0
60
8
5
0
1
5
7
6
1
.
2
9
0
0
1
6
6
6
1
.
2
4
4
5
5
4
5
2
.
8
0
0
0
25
0
0
0
0
0
1
7
.
1
9
3
9
5
0
1
8
2
5
9
.
8
3
0
1
8
2
5
9
.
8
3
5
4
5
5
3
7
0
.
0
0
0
1
3
0
25
0
0
0
0
0
20
1
0
0
0
1
9
6
7
0
.
1
1
5
6
0
2
0
2
3
0
.
1
1
6
4
5
5
3
2
8
.
6
9
1
3
0
1
3
0
25
0
0
0
0
0
3
1
.
3
0
9
1
1
0
0
2
1
8
3
9
.
9
7
1
1
0
0
2
2
9
3
9
.
9
7
7
4
5
5
3
7
0
.
0
0
1
3
0
1
3
0
25
0
0
0
0
0
40
1
1
5
0
2
2
5
6
1
.
9
2
0
2
2
5
6
1
.
9
2
8
4
5
5
4
2
7
.
1
9
1
3
0
1
3
0
25
0
0
0
0
0
3
2
.
8
0
2
1
2
0
0
2
3
5
6
3
.
2
9
0
2
3
5
6
3
.
2
9
9
4
5
5
4
5
5
1
3
0
1
3
0
6
3
.
2
1
20
25
0
0
0
2
1
.
7
8
4
1
3
0
0
2
6
8
0
9
.
0
8
8
6
0
2
7
6
6
9
.
0
8
10
4
5
5
4
5
5
1
3
0
1
30
1
5
9
.
9
9
20
25
10
0
0
1
5
.
0
1
1
4
0
0
2
9
7
2
1
.
1
1
60
2
9
7
8
1
.
1
1
11
4
5
5
4
5
5
1
3
0
1
3
0
1
6
2
4
8
.
6
1
25
10
10
0
2
4
.
3
8
3
1
4
5
0
3
1
3
5
2
.
2
60
3
1
4
1
2
.
2
12
4
5
5
4
5
5
1
3
0
1
3
0
1
6
2
80
25
1
5
.
9
4
10
10
2
7
.
0
5
8
1
5
0
0
3
3
1
8
2
.
2
5
60
3
3
2
4
2
.
2
5
13
4
5
5
4
5
5
1
3
0
1
3
0
1
3
3
.
7
6
20
25
10
0
0
4
1
.
2
3
3
1
4
0
0
29
1
7
3
.
8
6
0
2
9
1
7
3
.
8
6
14
4
5
5
4
5
5
1
3
0
1
3
0
3
4
.
5
2
20
25
0
0
0
5
0
.
4
7
8
1
3
0
0
2
6
2
3
2
.
6
4
0
2
6
2
3
2
.
6
4
15
4
5
5
3
8
0
.
0
0
1
3
0
1
3
0
25
0
0
0
0
0
80
1
2
0
0
2
2
7
3
6
.
8
4
0
2
2
7
3
6
.
8
4
16
4
5
5
2
1
1
.
4
6
1
3
0
1
3
0
25
0
0
0
0
0
9
8
.
5
5
9
1
0
5
0
1
9
7
9
6
.
9
5
0
1
9
7
9
6
.
9
5
17
4
5
5
1
8
7
.
8
0
1
3
0
1
3
0
25
0
0
0
0
0
7
2
.
1
9
4
1
0
0
0
1
9
3
8
5
.
7
4
0
1
9
3
8
5
.
7
4
18
4
5
5
3
1
0
.
3
4
1
3
0
1
3
0
25
0
0
0
0
0
4
9
.
6
5
5
1
1
0
0
2
1
5
1
9
.
6
9
0
2
1
5
1
9
.
6
9
19
4
5
5
4
2
3
.
5
6
1
3
0
1
3
0
25
0
0
0
0
0
3
6
.
4
4
1
2
0
0
2
3
4
9
9
.
5
4
0
2
3
4
9
9
.
5
4
20
4
5
5
4
5
5
1
3
0
1
3
0
1
1
7
.
8
1
20
25
10
0
0
5
7
.
1
8
5
1
4
0
0
2
8
8
4
3
.
6
3
4
9
0
2
9
3
3
3
.
6
3
21
4
5
5
4
5
0
.
7
5
1
3
0
1
3
0
25
20
25
0
0
0
6
4
.
2
4
3
1
3
0
0
2
5
9
6
8
.
3
7
0
2
5
9
6
8
.
3
7
22
4
5
5
4
5
5
0
0
5
9
.
4
5
20
25
0
0
0
8
5
.
5
4
1
1
1
0
0
2
0
9
8
0
.
7
7
0
2
0
9
8
0
.
7
7
23
4
5
5
3
5
4
.
3
2
0
0
0
20
0
0
0
0
7
0
.
6
7
7
9
0
0
1
6
4
0
8
.
4
1
0
1
6
4
0
8
.
4
1
24
4
5
5
2
8
3
.
7
0
0
0
0
0
0
0
0
0
6
1
.
2
9
8
8
0
0
1
4
3
5
7
.
4
5
0
1
4
3
5
7
.
4
5
T
o
t
a
l C
o
s
t
(
$
)
5
3
8
5
0
4
.
0
0
4
0
9
0
.
0
0
5
4
2
5
9
4
.
0
0
B
y
o
b
s
er
v
i
n
g
T
ab
le
4
,
it
ca
n
b
e
co
n
clu
d
ed
th
at
th
e
g
e
n
er
ated
p
o
w
er
f
o
r
ea
ch
h
o
u
r
b
y
t
h
er
m
a
l
g
en
er
ati
n
g
u
n
its
(
U1
-
U1
0
)
al
o
n
g
w
it
h
w
in
d
p
o
w
er
p
lan
t
s
is
eq
u
iv
ale
n
t
to
th
e
p
o
w
er
d
em
a
n
d
P
d
(
t
)
.
T
h
e
g
en
er
atio
n
li
m
its
ar
e
als
o
s
a
tis
f
ied
in
t
h
i
s
ca
s
e
s
t
u
d
y
.
T
h
e
f
u
e
l,
s
tar
t u
p
an
d
to
tal
co
s
ts
o
b
tai
n
ed
in
t
h
is
ca
s
e
ar
e
$
5
3
8
5
0
4
.
0
0
,
$
4
0
9
0
.
0
0
an
d
$
5
4
2
5
9
4
.
0
0
r
esp
ec
tiv
el
y
.
4
.
3
.
Ra
m
p Ra
t
e
Co
ns
t
ra
ine
d
WG
I
UC
T
o
v
er
if
y
t
h
e
ef
f
icie
n
c
y
a
n
d
s
u
p
er
io
r
it
y
o
f
th
e
GW
O
alg
o
r
it
h
m
,
t
h
e
r
a
m
p
r
ate
i
s
co
n
s
id
er
ed
f
o
r
th
e
s
a
m
e
tes
t
s
y
s
te
m
o
v
er
2
4
h
o
u
r
h
o
r
izo
n
.
W
h
en
th
e
r
a
m
p
r
ate
co
n
s
tr
ain
ts
ar
e
in
cl
u
d
ed
,
it
h
as
b
ee
n
ass
u
m
ed
th
at
th
e
v
alu
e
o
f
DR
a
n
d
UR
o
f
ea
c
h
u
n
it
is
s
a
m
e
[
5
3
]
.
T
h
e
r
am
p
r
ate
li
m
it
s
o
f
ea
c
h
u
n
it a
r
e
p
r
esen
ted
i
n
t
h
e
T
ab
le
5.
R
ef
er
r
in
g
T
a
b
les
4
an
d
7
,
t
h
e
r
ea
l
p
o
w
er
o
u
tp
u
t
o
f
U2
is
in
cr
ea
s
ed
in
th
e
1
6
th
in
ter
v
al
d
u
e
to
in
clu
s
io
n
o
f
r
a
m
p
r
ate
li
m
its
.
T
h
e
g
en
er
ati
o
n
r
ea
llo
ca
tio
n
a
m
o
n
g
o
n
l
in
e
u
n
its
i
s
r
eq
u
ir
ed
t
h
at
lead
s
t
o
s
lig
h
t
i
n
cr
ea
s
e
i
n
f
u
e
l c
o
s
t
h
e
n
ce
r
ai
s
e
i
n
th
e
to
t
al
o
p
er
atin
g
co
s
t
f
o
r
t
h
e
p
la
n
n
in
g
h
o
r
izo
n
.
I
t i
s
al
s
o
o
b
s
er
v
e
d
f
r
o
m
T
ab
les 4
an
d
7
,
th
at
n
o
ch
a
n
g
e
in
s
ch
ed
u
li
n
g
o
f
co
m
m
itted
u
n
i
ts
.
Ho
wev
er
th
e
d
is
p
atc
h
es
o
f
o
n
-
lin
e
th
er
m
al
u
n
its
ar
e
ch
an
g
ed
b
ec
au
s
e
o
f
r
a
m
p
r
at
e
co
n
s
tr
ai
n
ts
.
T
h
e
o
b
tain
ed
UC
s
c
h
ed
u
le
an
d
r
ea
l
p
o
w
er
s
h
ar
i
n
g
o
f
o
n
li
n
e
g
en
er
ati
n
g
u
n
i
ts
f
o
r
s
ta
n
d
ar
d
1
0
u
n
it
s
y
s
te
m
co
n
s
id
er
in
g
r
a
m
p
r
ate
li
m
it
s
ar
e
p
r
esen
ted
i
n
t
h
e
T
ab
le
7
.
T
h
e
w
i
n
d
g
en
er
ati
n
g
u
n
i
ts
alo
n
g
w
it
h
th
er
m
al
u
n
its
m
ee
t
t
h
e
p
o
w
er
d
e
m
a
n
d
i
n
ea
c
h
i
n
ter
v
al
.
T
h
e
o
b
tain
ed
f
u
el,
s
tar
t u
p
an
d
to
tal
co
s
ts
ar
e
$
5
3
8
5
0
9
.
1
0
,
$
4
0
9
0
.
0
0
an
d
$
5
4
2
5
9
9
.
1
0
r
esp
ec
tiv
el
y
.
T
h
e
to
tal
o
p
er
atin
g
h
o
u
r
s
o
f
a
ll
th
er
m
al
u
n
it
s
f
o
r
b
o
th
ca
s
e
s
ar
e
lis
ted
i
n
T
ab
le
6
.
I
t
is
o
b
s
er
v
ed
th
at
th
e
u
n
its
w
it
h
h
i
g
h
er
co
m
m
i
t
m
en
t
p
r
io
r
ities
h
av
e
lo
n
g
er
o
p
er
atin
g
h
o
u
r
s
in
th
e
p
lan
n
i
n
g
h
o
r
izo
n
ex
ce
p
t
U6
an
d
U7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
3
0
9
-
2
3
2
0
2316
T
ab
le
5
.
R
am
p
r
ate
li
m
its
o
f
t
h
er
m
al
g
e
n
er
atin
g
u
n
it
s
U
n
i
t
U
p
/
D
o
w
n
r
a
mp
r
a
t
e
(
M
W
/
h
r
)
U
n
i
t
U
p
/
D
o
w
n
r
a
mp
r
a
t
e
(
M
W
/
h
r
)
U1
1
6
0
U6
60
U2
1
6
0
U7
60
U3
1
0
0
U8
40
U4
1
0
0
U9
40
U5
1
0
0
U
1
0
40
T
ab
le
6
.
T
o
tal
o
p
er
atin
g
h
o
u
r
s
o
f
th
er
m
a
l u
n
it
s
Un
it
O
p
e
r
a
t
i
n
g
h
o
u
r
s
U
n
i
t
O
p
e
r
a
t
i
n
g
h
o
u
r
s
U1
24
U6
10
U2
24
U7
9
U3
16
U8
5
U4
17
U9
2
U5
20
U
1
0
1
T
ab
le
7
.
W
in
d
co
m
b
in
ed
s
ch
e
d
u
le
o
f
1
0
-
u
n
it
s
y
s
te
m
w
it
h
r
am
p
r
ate
b
y
GW
O
5
.
P
E
RF
O
RM
ANCE AN
AL
YS
I
S
5
.
1
.
So
lutio
n Q
ua
lity
T
h
e
n
u
m
er
ical
v
al
u
es
p
r
ese
n
t
ed
in
T
ab
les
3
,
4
an
d
7
s
h
o
w
th
at
GW
O
a
lg
o
r
it
h
m
y
ie
ld
s
t
h
e
o
p
ti
m
al
s
ch
ed
u
lin
g
o
f
th
er
m
al
u
n
its
c
o
m
p
ar
ed
w
it
h
ea
r
lier
r
ep
o
r
ted
alg
o
r
ith
m
s
.
T
h
e
s
ta
tis
t
ical
an
al
y
s
i
s
is
ca
r
r
ied
o
u
t
an
d
p
r
esen
ted
i
n
T
ab
le
3
f
o
r
s
tan
d
ar
d
1
0
u
n
it
s
y
s
te
m
w
it
h
r
a
m
p
r
ate
co
n
s
tr
ai
n
t.
I
t
ca
n
b
e
co
n
clu
d
e
d
f
r
o
m
T
ab
le
3
,
th
e
b
est,
w
o
r
s
t
a
n
d
m
ea
n
co
s
t
o
b
tain
ed
b
y
th
e
G
W
O
ar
e
s
ig
n
if
ican
t
l
y
les
s
co
m
p
ar
ed
w
it
h
o
th
er
ex
is
t
in
g
m
et
h
o
d
s
.
T
h
e
m
ea
n
c
o
s
t
o
f
g
en
er
atio
n
is
b
etter
f
o
r
o
p
tim
a
l
s
ch
ed
u
li
n
g
p
r
o
b
le
m
s
,
it
m
ea
n
s
GW
O
h
ad
an
ab
ilit
y
o
f
r
ea
c
h
in
g
g
lo
b
al
m
i
n
i
m
u
m
in
co
n
s
is
te
n
t
m
a
n
n
e
r
.
GW
O
m
et
h
o
d
ex
h
ib
it
s
e
x
ce
llen
t
p
er
f
o
r
m
a
n
ce
i
n
f
i
n
d
in
g
th
e
b
etter
s
o
l
u
tio
n
.
5
.
2
.
Ro
bu
s
t
nes
s
I
n
ca
s
e
o
f
s
to
ch
a
s
tic
s
i
m
u
la
t
io
n
tec
h
n
iq
u
es
li
k
e
GW
O,
t
h
e
in
it
ial
p
o
p
u
latio
n
is
g
e
n
er
a
ted
u
s
i
n
g
r
an
d
o
m
n
u
m
b
er
s
.
T
h
is
m
a
k
es
r
an
d
o
m
n
es
s
is
i
n
h
er
en
t
p
r
o
p
er
t
y
o
f
GW
O.
Hen
ce
t
h
e
p
er
f
o
r
m
a
n
ce
s
h
o
u
ld
b
e
H
o
ur
U1
U2
U3
U4
U5
U6
U7
U8
U9
U10
W
ind
Ge
n
e
r
a
t
i
o
n
(
M
W
)
T
ota
l
PD
(
M
W
)
F
ue
l
C
os
t(
$)
S
tar
t
up
C
os
t(
$)
T
ota
l
C
os
t(
$)
1
455
202.
38
0
0
0
0
0
0
0
0
42.
602
700
12941.
74
0
12941.
74
2
455
259.
58
0
0
0
0
0
0
0
0
35.
409
750
13937.
16
0
13937.
16
3
455
310.
00
0
0
25
0
0
0
0
0
60
850
15761.
28
900
16661.
28
4
455
452.
81
0
0
25
0
0
0
0
0
17.
193
9
50
18259.
99
0
18259.
99
5
455
370.
00
0
130
25
0
0
0
0
0
20
1000
19670.
23
560
20230.
23
6
455
328.
69
130
130
25
0
0
0
0
0
31.
309
1100
21840.
11
1100
22940.
11
7
455
370.
00
130
130
25
0
0
0
0
0
40
1150
22562.
01
0
22562.
01
8
455
427.
20
130
130
25
0
0
0
0
0
32
.
802
1200
23563.
39
0
23563.
39
9
455
455
130
130
63.
22
20
25
0
0
0
21.
784
1300
26809.
26
860
27669.
26
10
455
455
130
130
159.
99
20.
61
25
10
0
0
15.
01
1400
29721.
3
60
29781.
3
11
455
455
130
130
162
48.
62
25
10
10
0
24.
383
1450
31352.
41
60
31412.
41
12
455
455
130
130
162
80
25
15.
95
10
10
27.
058
1500
33182.
49
60
33242.
49
13
455
455
130
130
133.
77
20
25
10
0
0
41.
233
1400
29174.
04
0
29174.
04
14
455
455
130
130
34.
53
20
25
0
0
0
50.
478
1300
26232.
83
0
26232.
83
15
455
380.
00
130
130
25
0
0
0
0
0
80
1200
227
36.
93
0
22736.
93
16
455
220.
00
121.
46
130
25
0
0
0
0
0
98.
559
1050
19799.
59
0
19799.
59
17
455
187.
81
130
130
25
0
0
0
0
0
72.
194
1000
19385.
83
0
19385.
83
18
455
310.
35
130
130
25
0
0
0
0
0
49.
655
1100
21519.
77
0
21519.
77
19
455
423.
56
130
130
25
0
0
0
0
0
36.
44
1200
23499.
63
0
23499.
63
20
455
455
130
130
117.
82
20
25
10
0
0
57.
185
1400
28843.
82
490
29333.
82
21
455
450.
76
130
130
25
20
25
0
0
0
64.
243
1300
25968.
48
0
25968.
48
22
455
455
0
0
59.
46
20
25
0
0
0
85.
541
1100
20980.
96
0
20980.
96
23
455
354
.
32
0
0
0
20
0
0
0
0
70.
677
900
16408.
48
0
16408.
48
24
455
283.
69
0
0
0
0
0
0
0
0
61.
298
800
14357.
37
0
14357.
37
T
o
t
a
l C
o
s
t
(
$
)
5
3
8
5
0
9
.
1
0
4
0
9
0
.
0
0
5
4
2
5
9
9
.
1
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Win
d
I
n
teg
r
a
ted
Th
erma
l U
n
it
C
o
mmitmen
t S
o
lu
tio
n
u
s
in
g
Grey
W
o
lf Op
timi
z
er
(
S
.
S
iva
S
a
kth
i
)
2317
ascer
tain
ed
b
y
n
u
m
b
er
o
f
tr
ail
s
.
Se
v
er
al
tr
ail
s
h
av
e
b
ee
n
ca
r
r
ied
o
u
t
to
f
i
n
d
t
h
e
o
p
ti
m
al
s
o
lu
tio
n
.
Si
n
ce
UC
i
s
a
r
ea
l
ti
m
e
p
r
o
b
lem
,
it
i
s
e
x
p
ec
ted
th
at
ea
c
h
r
u
n
o
f
t
h
e
e
x
ec
u
tio
n
s
h
o
u
ld
ap
p
r
o
ac
h
n
ea
r
to
g
lo
b
al
o
p
ti
m
u
m
s
o
lu
tio
n
.
T
o
ascer
tain
t
h
e
r
o
b
u
s
t
n
ess
o
f
GW
O,
5
0
n
u
m
b
er
o
f
tr
ail
s
ar
e
m
ad
e
to
d
ete
r
m
in
e
t
h
e
o
p
ti
m
a
l
s
ch
ed
u
lin
g
.
Fi
g
u
r
e
s
1
an
d
2
t
h
at
clea
r
l
y
ill
u
s
tr
ates
th
a
t
GW
O
alg
o
r
ith
m
h
a
s
s
i
g
n
i
f
ica
n
t
r
o
b
u
s
t
n
ess
co
m
p
ar
ed
w
it
h
o
th
er
r
ep
o
r
ted
alg
o
r
ith
m
s.
Fig
u
r
e
1
.
R
o
b
u
s
t
n
ess
c
h
ar
ac
te
r
is
tics
o
f
1
0
u
n
it tes
t
s
y
s
te
m
w
it
h
o
u
t r
a
m
p
r
ate
Fig
u
r
e
2
.
R
o
b
u
s
t
n
ess
c
h
ar
ac
te
r
is
tics
o
f
1
0
u
n
it tes
t
s
y
s
te
m
w
it
h
r
a
m
p
r
ate
5
.
3
.
Su
cc
ess
Ra
t
e
I
t
is
t
h
e
i
n
d
icatio
n
th
a
t
i
n
h
o
w
m
a
n
y
tr
ails
th
e
o
b
tain
ed
to
tal
co
s
t
is
les
s
t
h
an
th
e
m
ea
n
co
s
t.
I
n
b
o
t
h
ca
s
es,
th
e
s
u
cc
es
s
r
ate
o
f
GW
O
is
g
r
ea
ter
th
an
8
5
%.
I
t
is
also
n
o
ticed
th
at
th
e
d
if
f
er
en
ce
b
et
w
ee
n
th
e
m
ea
n
an
d
w
o
r
s
t
co
s
t
i
s
les
s
.
I
t
ca
n
b
e
in
f
er
r
ed
th
at
GW
O
al
g
o
r
ith
m
h
a
s
g
o
o
d
s
u
cc
es
s
r
ate
an
d
r
o
b
u
s
tn
e
s
s
co
m
p
ar
ed
w
it
h
o
th
er
e
x
i
s
t
in
g
al
g
o
r
ith
m
.
6
.
CO
NCLU
SI
O
N
T
h
is
p
ap
er
p
r
esen
ts
a
n
o
v
el
s
w
ar
m
i
n
telli
g
en
ce
ap
p
r
o
ac
h
k
n
o
w
n
a
s
GW
O
to
s
o
lv
e
th
e
W
GI
UC
p
r
o
b
lem
.
T
h
e
o
b
j
ec
tiv
e
f
u
n
cti
o
n
is
t
h
e
s
u
m
o
f
t
h
e
o
b
j
ec
tiv
es
an
d
co
n
s
tr
ai
n
ts
,
w
h
ic
h
ar
e
f
u
e
l c
o
s
t,
s
tar
t
-
u
p
co
s
t
an
d
p
o
w
er
d
e
m
an
d
.
T
h
e
u
p
an
d
d
o
w
n
r
a
m
p
co
n
s
tr
ain
ts
ar
e
also
s
atis
f
ied
f
o
r
ea
ch
u
n
it.
T
h
e
n
u
m
er
ical
r
esu
lt
s
f
o
r
s
tan
d
ar
d
ten
u
n
i
t
s
y
s
te
m
a
r
e
v
alid
ated
u
s
in
g
GW
O
alg
o
r
ith
m
.
T
h
e
in
co
r
p
o
r
atio
n
o
f
r
a
m
p
r
ate
co
n
s
tr
ai
n
t
s
w
it
h
ab
o
v
e
s
y
s
te
m
also
p
r
es
en
ted
.
I
t
is
clea
r
f
r
o
m
th
e
r
esu
lt
s
th
a
t
th
e
i
n
te
n
d
ed
s
ch
e
m
e
n
o
t
o
n
l
y
y
ield
s
m
o
n
etar
y
b
en
e
f
it
a
n
d
also
t
h
e
f
u
e
l
co
n
s
u
m
p
tio
n
a
n
d
e
m
is
s
io
n
o
f
th
er
m
al
g
e
n
er
ati
n
g
u
n
its
ar
e
r
ed
u
ce
d
s
ig
n
i
f
ica
n
tl
y
.
T
h
e
i
m
p
le
m
en
ta
tio
n
o
f
GW
O
i
s
ea
s
y
a
n
d
it
h
an
d
led
t
h
e
o
p
er
atio
n
al
co
n
s
t
r
ain
ts
s
u
cc
e
s
s
f
u
ll
y
.
GW
O
co
n
s
is
te
n
tl
y
f
i
n
d
o
p
tim
u
m
s
o
l
u
tio
n
f
o
r
W
GI
UC
p
r
o
b
lem
.
R
e
s
u
lts
r
ev
ea
l
t
h
at
G
W
O
is
a
co
m
p
eten
t
m
et
h
o
d
to
s
o
l
v
e
t
h
e
W
GI
UC
p
r
o
b
lem
.
F
u
r
t
h
er
GW
O
ca
n
b
e
ex
te
n
d
ed
to
lo
n
g
ter
m
,
r
elia
b
ilit
y
a
n
d
s
ec
u
r
it
y
co
n
s
tr
ain
ed
t
h
er
m
a
l p
o
w
er
s
c
h
ed
u
lin
g
p
r
o
b
le
m
s
alo
n
g
w
it
h
w
i
n
d
en
e
r
g
y
.
RE
F
E
R
E
NC
E
S
[1
]
A
.
J.
W
o
o
d
a
n
d
B.
F
.
W
o
ll
e
n
b
e
r
g
,
“
P
o
w
e
r
Ge
n
e
ra
ti
o
n
Op
e
ra
ti
o
n
a
n
d
Co
n
tro
l,
”
Ne
w
Yo
rk
:
W
il
e
y
,
2
0
0
2
,
p
p
.
1
3
1
-
1
6
0
.
[2
]
W
.
L
.
S
n
y
d
e
r
Jr.,
e
t
a
l
.
,
“
D
y
n
a
m
ic
p
ro
g
ra
m
m
in
g
a
p
p
ro
a
c
h
to
u
n
it
c
o
m
m
it
m
e
n
t,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
P
o
we
r
S
y
ste
ms
,
v
o
l
/i
ss
u
e
:
P
W
RS
-
2
(
2
),
p
p
.
3
3
9
–
3
4
8
,
M
a
y
1
9
8
7
.
[3
]
A
.
I.
Co
h
e
n
a
n
d
M
.
Y
o
sh
im
u
ra
,
“
A
b
ra
n
c
h
-
a
n
d
-
b
o
u
n
d
a
lg
o
rit
h
m
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r A
p
p
a
ra
tu
s
a
n
d
S
y
ste
ms
,
v
o
l/
issu
e
:
P
A
S
-
1
0
2
(
2
),
p
p
.
4
4
4
–
4
5
1
,
F
e
b
.
1
9
8
3
.
[4
]
S
.
Virm
a
n
i,
e
t
a
l
.,
“I
m
p
lem
e
n
tatio
n
o
f
a
Lag
ra
n
g
i
a
n
re
lax
a
ti
o
n
b
a
se
d
u
n
i
t
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
P
o
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
4
(4
)
,
p
p
.
1
3
7
3
–
1
3
8
0
,
Oc
t.
1
9
8
9
.
[5
]
S
a
m
e
r
T
a
k
rit
i
a
n
d
Jo
h
n
R
.
Bir
g
e
,
“
Us
in
g
in
teg
e
r
p
ro
g
ra
m
m
in
g
to
re
f
in
e
L
a
g
ra
n
g
ian
-
b
a
se
d
u
n
it
c
o
m
m
it
m
e
n
t
so
lu
ti
o
n
s,”
I
EE
E
T
r
a
n
s
a
c
ti
o
n
s o
n
Po
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
1
5
(
1
)
,
p
p
.
1
5
1
–
1
5
6
,
F
e
b
.
2
0
0
0
.
[6
]
T
o
m
o
n
o
b
u
S
e
n
jy
u
,
e
t
a
l
.,
“
A
fa
st
tec
h
n
iq
u
e
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
b
y
e
x
t
e
n
d
e
d
p
ri
o
rit
y
li
st,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
1
8
(2
)
,
p
p
.
8
8
2
-
8
8
8
,
M
a
y
2
0
0
3
.
[7
]
Z.
Ou
y
a
n
g
a
n
d
S
.
M
.
S
h
a
h
i
d
e
h
p
o
u
r,
“
A
n
in
telli
g
e
n
t
d
y
n
a
m
i
c
p
ro
g
ra
m
m
in
g
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
a
p
p
li
c
a
ti
o
n
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
6
(
3
),
p
p
.
1
2
0
3
–
1
2
0
9
,
A
u
g
.
1
9
9
1
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
5
,
Octo
b
er
2
0
1
7
:
2
3
0
9
-
2
3
2
0
2318
[8
]
W
e
e
r
a
k
o
rn
On
g
sa
k
u
l
a
n
d
Nit
P
e
tch
a
ra
k
s,
“
Un
it
c
o
m
m
it
m
e
n
t
b
y
e
n
h
a
n
c
e
d
a
d
a
p
ti
v
e
L
a
g
ra
n
g
ian
re
lax
a
ti
o
n
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
1
9
(1
)
,
p
p
.
6
2
0
-
6
2
8
,
F
e
b
.
2
0
0
4
.
[9
]
T
.
S
e
k
i,
e
t
a
l
.,
“
Ne
w
lo
c
a
l
se
a
rc
h
m
e
th
o
d
s
f
o
r
im
p
ro
v
in
g
th
e
L
a
g
ra
n
g
ian
-
re
lax
a
ti
o
n
-
b
a
se
d
u
n
it
c
o
m
m
it
m
e
n
t
so
lu
ti
o
n
,
”
IEE
E
T
ra
n
s
a
c
ti
o
n
s o
n
Po
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
2
5
(
1
)
,
p
p
.
4
8
9
-
4
9
6
,
F
e
b
.
2
0
1
0
.
[1
0
]
A
.
H.
M
a
n
taw
y
,
e
t
a
l
.,
“
A
si
m
u
late
d
a
n
n
e
a
li
n
g
a
lg
o
rit
h
m
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t,
”
IEE
E
T
r
a
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
1
3
(1
)
,
p
p
.
1
9
7
–
2
0
4
,
A
u
g
.
1
9
9
8
.
[1
1
]
S
.
A
.
Ka
z
a
rli
s,
e
t
a
l
.,
“
A
g
e
n
e
ti
c
a
lg
o
rit
h
m
so
lu
ti
o
n
t
o
th
e
u
n
i
t
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
1
1
(1
)
,
p
p
.
83
–
92,
F
e
b
.
1
9
9
6
.
[1
2
]
Z
.
Ou
y
a
n
g
a
n
d
S
.
M
.
S
h
a
h
id
e
h
p
o
u
r,
“
S
h
o
rt
-
term
u
n
it
c
o
m
m
it
m
e
n
t
e
x
p
e
rt
s
y
ste
m
,
”
El
e
c
tric
Po
we
r
S
y
ste
ms
Res
e
a
rc
h
,
v
o
l/
issu
e
:
2
0
(
1
),
p
p
.
1
-
13,
De
c
.
1
9
9
0
.
[1
3
]
K.
A
.
Ju
ste
,
e
t
a
l
.
,
“
A
n
e
v
o
lu
ti
o
n
a
ry
p
ro
g
ra
m
m
in
g
so
lu
ti
o
n
t
o
t
h
e
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
IE
EE
T
ra
n
s
a
c
ti
o
n
s
o
n
Po
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
1
4
(
4
),
p
p
.
1
4
5
2
–
1
4
5
9
,
N
o
v
.
1
9
9
9
.
[1
4
]
Om
o
ro
g
iu
w
a
E
se
o
sa
a
n
d
S
.
O.
On
o
h
a
e
b
i
,
“
A
rti
f
i
c
ial
n
e
u
ra
l
n
e
tw
o
rk
b
a
se
d
e
c
o
n
o
m
ic
g
e
n
e
ra
ti
o
n
sc
h
e
d
u
li
n
g
i
n
Nig
e
ria
p
o
we
r
n
e
t
w
o
rk
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
r
n
a
l
o
f
A
d
v
a
n
c
e
s
in
Ap
p
li
e
d
S
c
ien
c
e
s
,
v
o
l/
issu
e
:
3
(4
),
p
p
.
206
–
2
1
4
,
De
c
.
2
0
1
4
.
[1
5
]
DM
A
ti
a
,
"
M
o
d
e
li
n
g
a
n
d
c
o
n
tro
l
P
V
-
w
in
d
h
y
b
rid
sy
ste
m
b
a
s
e
d
o
n
f
u
z
z
y
lo
g
ic
c
o
n
tro
l
tec
h
n
i
q
u
e
,
”
T
EL
KOM
NIKA
T
e
lec
o
mm
u
n
ica
ti
o
n
,
Co
m
p
u
t
in
g
,
El
e
c
tro
n
ics
a
n
d
C
o
n
tro
l.
,
v
o
l.
1
0
,
n
o
.
3
,
p
p
.
4
3
1
-
4
4
1
,
2
0
1
2
.
[1
6
]
A
.
H.
M
a
n
taw
y
,
e
t
a
l
.,
“
A
u
n
it
c
o
m
m
it
m
e
n
t
b
y
tab
u
se
a
rc
h
,
”
IEE
Pro
c
-
Ge
n
e
r.
T
ra
n
sm
.
Distrib
.
,
Ja
n
.
1
9
9
8
,
v
o
l/
issu
e
:
1
4
5
(1
)
,
p
p
.
56
–
6
4
.
[1
7
]
M
o
h
a
m
m
a
d
S
a
d
e
g
h
Ja
v
a
d
i
,
“S
e
c
u
rit
y
c
o
n
stra
in
t
u
n
it
c
o
m
m
it
m
e
n
t
c
o
n
si
d
e
rin
g
li
n
e
a
n
d
u
n
i
t
c
o
n
ti
n
g
e
n
c
ies
-
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
iza
ti
o
n
,
”
In
ter
n
a
ti
o
n
a
l
J
o
u
rn
a
l
o
f
Ap
p
li
e
d
Po
we
r E
n
g
i
n
e
e
rin
g
,
v
o
l/
issu
e
:
1
(1
),
p
p
.
1
3
–
2
0
,
A
p
r.
2
0
1
2
.
[1
8
]
K.
Ch
a
n
d
ra
se
k
a
ra
n
a
n
d
S
ish
a
j
P
.
S
im
o
n
,
“
Ne
tw
o
rk
a
n
d
re
l
iab
il
it
y
c
o
n
stra
in
e
d
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
u
sin
g
b
in
a
ry
re
a
l
c
o
d
e
d
f
ire
f
l
y
a
lg
o
rit
h
m
,
”
El
e
c
tri
c
a
l
Po
we
r
a
n
d
E
n
e
rg
y
S
y
ste
ms
,
v
o
l/
issu
e
:
43(
1
),
p
p
.
921
–
9
3
2
,
De
c
.
2
0
1
2
.
[1
9
]
OJ
P
e
ti
n
ri
n
,
M
S
h
a
a
b
a
n
,
"
Ov
e
rc
o
m
in
g
Ch
a
ll
e
n
g
e
s
o
f
Re
n
e
w
a
b
le
En
e
rg
y
o
n
F
u
tu
re
S
m
a
rt
G
rid
,
"
T
EL
KOM
NIKA
T
e
lec
o
mm
u
n
ica
ti
o
n
,
Co
m
p
u
t
in
g
,
El
e
c
tro
n
ics
a
n
d
C
o
n
tro
l
,
v
o
l.
1
0
,
n
o
.
2
,
p
p
.
2
2
9
-
2
3
4
,
2
0
1
2
.
[2
0
]
S
ish
a
j
P
.
S
im
o
n
,
e
t
a
l
.,
“
An
a
n
t
c
o
lo
n
y
s
y
ste
m
a
p
p
ro
a
c
h
fo
r
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
El
e
c
trica
l
Po
we
r
a
n
d
En
e
rg
y
S
y
ste
ms
,
v
o
l/
issu
e
:
28(
5
),
p
p
.
3
1
5
–
3
2
3
,
J
u
n
.
2
0
0
6
.
[2
1
]
S
.
P
a
tra,
e
t
a
l
.,
“
Dif
f
e
re
n
ti
a
l
e
v
o
lu
ti
o
n
a
lg
o
ri
th
m
f
o
r
so
lv
in
g
u
n
it
c
o
m
m
it
m
e
n
t
w
it
h
ra
m
p
c
o
n
stra
in
ts,
”
El
e
c
tric
P
o
we
r
Co
mp
o
n
e
n
ts
a
n
d
S
y
ste
ms
,
v
o
l/
iss
u
e
:
3
6
(8
),
p
p
.
7
7
1
–
7
8
7
,
Ju
n
.
2
0
0
8
.
[2
2
]
Dili
p
Da
tt
a
a
n
d
S
a
p
tars
h
i
Du
tt
a
,
“
A
b
in
a
r
y
-
re
a
l
-
c
o
d
e
d
d
iff
e
re
n
ti
a
l
e
v
o
lu
ti
o
n
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
El
e
c
trica
l
Po
we
r a
n
d
En
e
rg
y
S
y
st
e
ms
,
v
o
l/
issu
e
:
4
2
(1
)
,
p
p
.
5
1
7
-
5
2
4
,
No
v
.
2
0
1
2
.
[2
3
]
M
.
Eslam
ian
,
e
t
a
l
.,
“
Ba
c
teria
l
f
o
ra
g
in
g
-
b
a
se
d
so
lu
ti
o
n
to
t
h
e
u
n
i
t
-
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
I
EE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
2
4
(
3
)
,
p
p
.
1
4
7
8
-
1
4
8
8
,
A
u
g
.
2
0
0
9
.
[2
4
]
Ja
v
a
d
Eb
ra
h
im
i
,
e
t
a
l
.,
“
Un
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
so
lu
ti
o
n
u
si
n
g
sh
u
f
f
led
f
ro
g
le
a
p
in
g
a
lg
o
rit
h
m
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
2
6
(2
)
,
p
p
.
5
7
3
-
5
8
1
,
M
a
y
2
0
1
1
.
[2
5
]
P
ro
v
a
s
Ku
m
a
r
Ro
y
,
“
S
o
lu
ti
o
n
o
f
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
u
sin
g
g
ra
v
it
a
ti
o
n
a
l
se
a
rc
h
a
lg
o
rit
h
m
,
”
El
e
c
t
ric
a
l
Po
we
r
a
n
d
En
e
rg
y
S
y
ste
ms
,
v
o
l.
53
,
p
p
.
85
-
9
4
,
De
c
.
2
0
1
3
.
[2
6
]
Bi
n
Ji,
e
t
a
l
.,
“
Im
p
ro
v
e
d
g
ra
v
it
a
ti
o
n
a
l
se
a
rc
h
a
lg
o
rit
h
m
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
c
o
n
si
d
e
rin
g
u
n
c
e
rtain
ty
o
f
w
in
d
p
o
w
e
r
,
”
En
e
rg
y
,
v
o
l.
67
,
p
p
.
52
-
6
2
,
A
p
r.
2
0
1
4
.
[2
7
]
Jo
rg
e
V
a
len
z
u
e
la
a
n
d
A
li
c
e
E.
S
m
it
h
,
“
A
s
e
e
d
e
d
m
e
m
e
t
i
c
a
l
g
o
r
i
t
h
m
f
o
r
l
a
r
g
e
u
n
i
t
c
o
m
m
i
t
m
e
n
t
p
r
o
b
l
e
m
s
,
”
J
o
u
rn
a
l
of
He
u
ristics
,
v
o
l/
iss
u
e
:
8
(2
)
,
p
p
.
1
7
3
-
1
9
5
,
M
a
r.
2
0
0
2
.
[2
8
]
Jo
se
M
a
n
u
e
l
A
rro
y
o
a
n
d
An
to
n
io
J.
Co
n
e
jo
,
“
A
p
a
ra
ll
e
l
re
p
a
ir
g
e
n
e
ti
c
a
lg
o
rit
h
m
to
so
lv
e
th
e
u
n
i
t
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
1
7
(
4
)
,
p
p
.
1
2
1
6
-
1
2
2
4
,
No
v
.
2
0
0
2
.
[2
9
]
I
o
a
n
n
is
G
.
Da
m
o
u
sis,
e
t
a
l
.,
“
A
so
lu
ti
o
n
t
o
th
e
u
n
it
-
c
o
m
m
it
m
e
n
t
p
ro
b
lem
u
sin
g
in
teg
e
r
-
c
o
d
e
d
g
e
n
e
ti
c
a
lg
o
rit
h
m
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r S
y
st
e
ms
,
v
o
l/
issu
e
:
1
9
(2
)
,
p
p
.
1
1
6
5
-
1
1
7
2
,
M
a
y
2
0
0
4
.
[3
0
]
Dili
p
Da
tt
a
,
“
Un
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
w
it
h
ra
m
p
ra
te
c
o
n
stra
in
t
u
si
n
g
a
b
in
a
ry
-
re
al
-
c
o
d
e
d
g
e
n
e
ti
c
a
lg
o
rit
h
m
,
”
Ap
p
li
e
d
S
o
ft
Co
mp
u
ti
n
g
,
v
o
l/
issu
e
:
1
3
(
9
)
,
p
p
.
3
8
7
3
-
3
8
8
3
,
S
e
p
.
2
0
1
3
.
[3
1
]
S
u
z
a
n
n
a
h
Yin
W
a
W
o
n
g
,
“
A
n
e
n
h
a
n
c
e
d
si
m
u
late
d
a
n
n
e
a
li
n
g
a
p
p
ro
a
c
h
to
u
n
i
t
c
o
m
m
it
m
e
n
t,
”
El
e
c
trica
l
Po
we
r
a
n
d
En
e
rg
y
S
y
ste
ms
,
v
o
l/
issu
e
:
2
0
(
5
),
p
p
.
3
5
9
-
3
6
8
,
Ju
n
.
1
9
9
8
.
[3
2
]
Dim
it
ris
N.
S
i
m
o
p
o
u
lo
s
,
e
t
a
l
.,
“
Un
it
c
o
m
m
it
m
e
n
t
b
y
a
n
e
n
h
a
n
c
e
d
sim
u
late
d
a
n
n
e
a
li
n
g
a
lg
o
rit
h
m
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r
S
y
ste
ms
,
v
o
l/
issu
e
:
2
1
(1
)
,
p
p
.
68
-
7
6
,
F
e
b
.
2
0
0
6
.
[3
3
]
G
rz
e
g
o
rz
Du
d
e
k
,
“
A
d
a
p
ti
v
e
si
m
u
late
d
a
n
n
e
a
li
n
g
sc
h
e
d
u
le
to
th
e
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
El
e
c
tric
Po
we
r
S
y
ste
ms
Res
e
a
rc
h
,
v
o
l/
issu
e
:
8
0
(4
)
,
p
p
.
4
6
5
-
4
7
2
,
A
p
r.
2
0
1
0
.
[3
4
]
T
.
O.
T
in
g
,
e
t
a
l
.,
“
A
n
o
v
e
l
a
p
p
ro
a
c
h
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
p
r
o
b
lem
v
ia
a
n
e
ff
e
c
ti
v
e
h
y
b
rid
p
a
rti
c
le
sw
a
r
m
o
p
ti
m
iza
ti
o
n
,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
Po
we
r S
y
ste
ms
,
v
o
l/
iss
u
e
:
2
1
(
1
)
,
p
p
.
4
1
1
-
4
1
8
,
F
e
b
.
2
0
0
6
.
[3
5
]
A
n
u
p
S
h
u
k
la
a
n
d
S
.
N.
S
i
n
g
h
,
“
A
d
v
a
n
c
e
d
th
re
e
-
sta
g
e
p
se
u
d
o
-
in
sp
ired
w
e
ig
h
t
-
im
p
ro
v
e
d
c
ra
z
y
p
a
rti
c
le
s
w
a
r
m
o
p
ti
m
iza
ti
o
n
f
o
r
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
En
e
rg
y
,
v
o
l.
96
,
p
p
.
23
-
3
6
,
F
e
b
.
2
0
1
6
.
[3
6
]
B
.
S
a
ra
v
a
n
a
n
,
e
t
a
l
.,
“
A
so
l
u
ti
o
n
t
o
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
u
sin
g
f
ire
w
o
rk
s
a
lg
o
rit
h
m
,
”
El
e
c
trica
l
Po
we
r
a
n
d
En
e
rg
y
S
y
ste
ms
,
v
o
l.
77
,
p
p
.
2
21
-
2
2
7
,
M
a
y
2
0
1
6
.
[3
7
]
Na
ra
y
a
n
a
P
ra
sa
d
P
a
d
h
y
,
e
t
a
l
.,
“
A
h
y
b
rid
f
u
z
z
y
n
e
u
ra
l
n
e
two
rk
-
e
x
p
e
rt
s
y
ste
m
f
o
r
a
sh
o
rt
ter
m
u
n
it
c
o
m
m
it
m
e
n
t
p
ro
b
lem
,
”
M
ic
ro
e
lec
tro
n
.
Relia
b
.
,
v
o
l/
issu
e
:
3
7
(5
)
,
p
p
.
7
3
3
-
7
3
7
,
M
a
y
1
9
9
7
.
[3
8
]
Ch
u
a
n
-
P
i
n
g
Ch
e
n
g
,
e
t
a
l
.,
“
Un
it
Co
m
m
it
m
e
n
t
b
y
L
a
g
ra
n
g
ian
re
lax
a
ti
o
n
a
n
d
g
e
n
e
ti
c
a
lg
o
rit
h
m
s,
”
IEE
E
T
ra
n
sa
c
ti
o
n
s
o
n
P
o
we
r S
y
ste
ms
,
v
o
l/
issu
e
:
1
5
(
2
)
,
p
p
.
7
0
7
-
7
1
4
,
M
a
y
2
0
0
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.