I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
5
,
Octo
b
e
r
2
0
1
7
,
p
p
.
2
8
3
8
~
2
846
I
SS
N:
2088
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
7
i
5
.
pp
2
8
3
8
-
2
846
2838
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
O
pti
m
i
z
a
tion o
f
F
uzz
y
Tsu
k
a
m
o
to
M
e
m
be
rship
Fun
ction using
G
ene
tic
Alg
o
rith
m
to De
ter
m
in
e t
he River
Wa
ter
Q
o
irul K
o
t
i
m
a
h
,
Wa
y
a
n F
irda
us
M
a
h
m
ud
y
,
Viv
i N
ur
W
ij
a
y
a
nin
g
ru
m
F
a
c
u
lt
y
o
f
Co
m
p
u
ter S
c
ien
c
e
,
Bra
w
ij
a
y
a
Un
iv
e
rsit
y
,
In
d
o
n
e
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Oct
10
,
2
0
1
6
R
ev
i
s
ed
J
u
n
18
,
2
0
1
7
A
cc
ep
ted
Sep
t
11
,
2
0
1
7
S
o
m
e
a
q
u
a
ti
c
e
c
o
s
y
ste
m
s
in
riv
e
rs
d
e
p
e
n
d
o
n
t
h
e
riv
e
r
w
a
ter,
so
it
n
e
e
d
s
to
b
e
m
a
in
tain
e
d
b
y
m
e
a
su
rin
g
a
n
d
a
n
a
ly
z
in
g
th
e
riv
e
r
w
a
ter
q
u
a
li
t
y
.
S
T
ORET
is
o
n
e
o
f
th
e
m
e
th
o
d
s
u
se
d
to
m
e
a
su
re
th
e
riv
e
r
w
a
ter
q
u
a
li
ty
,
b
u
t
it
tak
e
s
a
q
u
it
e
h
ig
h
o
f
ti
m
e
a
n
d
c
o
sts.
F
u
z
z
y
T
su
k
a
m
o
to
is
a
n
a
lt
e
rn
a
ti
v
e
m
e
th
o
d
t
h
a
t
w
o
rk
s
b
y
g
ro
u
p
in
g
th
e
riv
e
r
w
a
t
e
r
d
a
ta,
b
u
t
it
is
d
if
f
icu
lt
to
d
e
term
in
e
th
e
m
e
m
b
e
rsh
ip
f
u
n
c
ti
o
n
v
a
lu
e
.
T
h
e
so
lu
ti
o
n
o
f
f
e
re
d
in
th
is
stu
d
y
is
th
e
u
se
o
f
g
e
n
e
ti
c
a
l
g
o
rit
h
m
to
d
e
ter
m
in
e
th
e
m
e
m
b
e
rsh
ip
f
u
n
c
ti
o
n
v
a
lu
e
o
f
e
a
c
h
c
rit
e
rio
n
.
Ba
se
d
o
n
t
h
e
tes
t
re
su
lt
s,
th
e
o
p
ti
m
iza
ti
o
n
o
f
f
u
z
z
y
m
e
m
b
e
rsh
ip
f
u
n
c
ti
o
n
u
si
n
g
g
e
n
e
ti
c
a
l
g
o
rit
h
m
p
ro
v
id
e
s
h
ig
h
e
r
a
c
c
u
ra
c
y
v
a
lu
e
th
a
t
is
9
5
%
,
w
h
il
e
th
e
a
c
c
u
ra
c
y
v
a
lu
e
w
it
h
o
u
t
o
p
ti
m
iza
ti
o
n
p
ro
c
e
ss
is
9
0
%
.
T
h
e
p
a
ra
m
e
ters
u
se
d
in
g
e
n
e
ti
c
a
lg
o
rit
h
m
a
re
a
s
f
o
ll
o
w
s:
p
o
p
u
lati
o
n
siz
e
is
8
0
,
g
e
n
e
ra
ti
o
n
n
u
m
b
e
r
is
1
7
5
,
c
r
o
ss
o
v
e
r
ra
te
(
cr
)
is
0
.
6
,
a
n
d
m
u
tatio
n
r
a
te
(
mr
)
is
0
.
4
.
K
ey
w
o
r
d
s
:
Fu
zz
y
ts
u
k
a
m
o
to
Gen
etic
al
g
o
r
ith
m
Me
m
b
er
s
h
ip
f
u
n
ctio
n
W
ater
q
u
alit
y
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
Viv
i
N
u
r
W
ij
ay
a
n
i
n
g
r
u
m
,
Facu
lt
y
o
f
C
o
m
p
u
ter
Scien
ce
,
B
r
a
w
ij
ay
a
U
n
i
v
er
s
it
y
,
R
OC
Ve
ter
an
R
o
ad
,
Ma
lan
g
,
I
n
d
o
n
esia
.
E
m
ail: l
s
n
t
l@
cc
u
.
ed
u
.
t
w
1.
I
NT
RO
D
UCT
I
O
N
W
ater
is
o
n
e
o
f
t
h
e
n
at
u
r
al
r
eso
u
r
ce
s
t
h
at
i
s
v
er
y
i
m
p
o
r
tan
t
to
h
u
m
a
n
b
ein
g
s
an
d
o
t
h
er
b
ein
g
s
.
T
h
e
r
iv
er
is
o
n
e
o
f
th
e
p
lace
o
r
c
o
n
tain
er
to
h
o
ld
th
e
w
ater
r
es
o
u
r
ce
s
f
lo
w
i
n
g
to
th
e
lo
w
e
s
t
p
o
in
t
o
n
th
e
ea
r
th
's
s
u
r
f
ac
e.
R
i
v
er
s
h
a
v
e
a
r
o
le
as
h
o
m
e
to
s
e
v
er
al
aq
u
atic
ec
o
s
y
s
te
m
s
o
n
ea
r
th
t
h
at
f
lo
w
s
f
r
o
m
u
p
s
tr
ea
m
to
d
o
w
n
s
tr
ea
m
.
T
h
e
r
iv
er
is
o
n
e
o
f
th
e
n
ea
r
e
s
t
w
ater
s
o
u
r
ce
s
f
o
r
s
o
m
e
r
esid
en
t
s
i
n
r
u
r
al
an
d
u
r
b
an
ar
ea
s
i
n
I
n
d
o
n
esia.
Ho
w
e
v
er
,
t
h
e
r
iv
er
w
h
ic
h
a
n
i
m
p
o
r
tan
t
p
ar
t
o
f
h
u
m
a
n
li
f
e
s
o
u
r
ce
s
h
av
e
b
ee
n
p
o
llu
ted
.
I
t
is
m
o
s
tl
y
ca
u
s
ed
b
y
h
u
m
an
ac
ti
v
it
y
th
a
t
o
cc
u
r
r
ed
in
th
e
ca
tch
m
en
t
a
r
ea
w
h
ic
h
b
ec
a
m
e
a
r
iv
er
w
at
er
s
u
p
p
l
y
an
d
th
e
n
f
lo
w
ed
to
r
esid
en
tial
ar
ea
s
.
I
n
cr
ea
s
ed
in
d
u
s
tr
ial
ac
ti
v
it
y
a
n
d
h
o
u
s
eh
o
ld
ac
ti
v
it
y
b
ec
a
m
e
o
n
e
o
f
th
e
m
ai
n
ca
u
s
e
s
o
f
p
o
llu
tio
n
th
at
o
cc
u
r
r
ed
in
th
e
w
ater
s
h
ed
.
T
h
e
d
is
p
o
s
al
o
f
in
d
u
s
tr
ial
waste
a
n
d
h
o
u
s
e
h
o
ld
w
as
te
t
h
at
d
o
es
n
o
t
d
o
th
e
s
cr
ee
n
in
g
p
r
o
ce
s
s
co
n
tr
ib
u
ted
to
a
d
ec
r
ea
s
e
in
th
e
q
u
a
lit
y
a
n
d
q
u
a
n
tit
y
o
f
t
h
e
r
i
v
er
w
ater
.
T
h
er
ef
o
r
e,
it
n
ee
d
s
a
n
e
f
f
o
r
t
to
m
ai
n
tai
n
t
h
e
q
u
alit
y
,
q
u
a
n
ti
t
y
,
a
n
d
co
n
ti
n
u
it
y
o
f
t
h
e
w
at
er
s
o
t
h
e
ec
o
s
y
s
te
m
s
t
h
at
e
x
is
t
t
h
er
ein
r
e
m
ai
n
b
alan
ce
d
[
1
]
.
T
h
is
is
d
o
n
e
b
y
m
o
n
ito
r
i
n
g
a
n
d
co
n
tr
o
lli
n
g
th
e
w
ater
p
o
ll
u
tio
n
r
e
g
u
lar
l
y
.
An
ef
f
o
r
t
to
m
o
n
ito
r
an
d
co
n
tr
o
l
th
e
w
ater
p
o
llu
ti
o
n
is
d
o
n
e
b
y
m
ea
s
u
r
i
n
g
an
d
an
al
y
zin
g
t
h
e
w
ater
q
u
alit
y
s
o
th
at
t
h
e
f
ac
to
r
s
af
f
ec
tin
g
t
h
e
p
o
llu
ti
o
n
ca
n
b
e
k
n
o
w
n
,
as
s
t
ip
u
lated
i
n
th
e
I
n
d
o
n
esian
Go
v
er
n
m
e
n
t
R
e
g
u
lat
io
n
No
.
8
2
o
f
2
0
0
1
.
B
ased
o
n
th
e
Mi
n
is
tr
y
o
f
th
e
L
i
v
i
n
g
E
n
v
ir
o
n
m
en
t
o
f
I
n
d
o
n
esia
No
.
1
1
5
o
f
A
r
ticle
2
o
f
2
0
0
3
,
th
e
g
u
id
elin
e
s
u
s
ed
to
d
eter
m
i
n
e
t
h
e
s
tat
u
s
o
f
t
h
e
w
a
ter
q
u
ali
t
y
is
u
s
i
n
g
t
h
e
ST
OR
E
T
m
et
h
o
d
o
r
P
o
llu
tio
n
I
n
d
ex
Me
th
o
d
.
Dete
r
m
i
n
atio
n
o
f
th
e
w
ater
q
u
alit
y
u
s
i
n
g
ST
OR
E
T
m
et
h
o
d
s
till
d
o
n
e
m
a
n
u
al
l
y
s
o
it
to
o
k
q
u
ite
a
lo
n
g
ti
m
e
an
d
n
ee
d
s
a
lab
o
r
ato
r
y
co
s
t
wh
ich
is
q
u
i
te
ex
p
en
s
i
v
e.
T
h
e
d
ev
elo
p
m
e
n
t
o
f
e
x
is
t
in
g
tec
h
n
o
lo
g
ies
ca
n
p
r
o
v
id
e
s
o
lu
tio
n
s
to
ass
is
t
i
n
th
e
ca
l
cu
latio
n
a
n
d
d
eter
m
i
n
atio
n
o
f
th
e
w
ater
q
u
alit
y
to
r
ed
u
ce
th
e
ti
m
e
an
d
co
s
t
r
eq
u
ir
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Op
timiz
a
tio
n
o
f F
u
z
z
y
Ts
u
ka
mo
to
Memb
ers
h
ip
F
u
n
ctio
n
u
s
in
g
Gen
etic
A
lg
o
r
ith
m
to
… (
Qo
ir
u
l Ko
tima
h
)
2839
On
e
o
f
th
e
r
esear
ch
r
elat
in
g
t
o
th
e
d
eter
m
i
n
atio
n
o
f
th
e
r
i
v
er
w
ater
q
u
alit
y
h
a
s
b
ee
n
co
n
d
u
cted
b
y
A
la
m
,
So
eb
r
o
to
,
an
d
De
w
i (
2
0
1
5
)
u
s
in
g
t
h
e
F
u
z
z
y
T
s
u
k
a
m
o
to
m
et
h
o
d
.
I
n
t
h
is
s
tu
d
y
,
th
e
r
iv
er
w
a
ter
q
u
alit
y
i
s
ca
lcu
lated
b
ased
o
n
t
h
e
cr
iter
i
a
o
f
c
h
e
m
ical
p
h
y
s
ics
t
h
at
h
a
v
e
b
ee
n
s
tip
u
lated
i
n
t
h
e
I
n
d
o
n
esia
n
Go
v
er
n
m
e
n
t
R
eg
u
latio
n
No
.
8
2
o
f
2
0
0
1
.
T
h
e
p
ar
am
eter
s
u
s
ed
i
n
th
i
s
s
tu
d
y
ar
e
T
SS
,
B
OD,
D
O,
p
H,
p
h
en
o
l
s
,
o
il,
a
n
d
g
r
ea
s
e.
T
h
is
s
tu
d
y
u
s
e
s
th
e
6
0
r
iv
er
w
a
ter
d
ata
to
ca
lcu
late
its
q
u
alit
y
u
s
i
n
g
th
e
F
u
zz
y
T
s
u
k
a
m
o
to
m
e
th
o
d
.
T
h
en
,
th
e
ca
lc
u
latio
n
r
es
u
lts
a
r
e
co
m
p
ar
ed
to
th
e
ST
OR
E
T
m
et
h
o
d
.
B
ased
o
n
te
s
t r
es
u
lt
s
o
b
tain
ed
,
th
er
e
ar
e
6
d
if
f
er
e
n
t
d
ata
b
et
w
ee
n
t
h
e
ca
l
cu
latio
n
s
u
s
i
n
g
t
h
e
F
u
zz
y
T
s
u
k
a
m
o
to
m
et
h
o
d
an
d
t
h
e
ST
OR
E
T
m
e
th
o
d
,
s
o
t
h
e
ac
cu
r
ac
y
v
al
u
e
o
b
tai
n
ed
is
9
0
%
[
2
]
.
An
o
p
ti
m
izatio
n
p
r
o
ce
s
s
o
n
t
h
e
f
u
zz
y
m
e
m
b
er
s
h
i
p
f
u
n
ct
io
n
o
f
ea
c
h
cr
iter
io
n
th
at
h
as b
ee
n
s
e
t is r
e
q
u
ir
ed
to
g
et
a
h
ig
h
er
ac
cu
r
ac
y
v
al
u
e.
R
ese
ar
ch
o
n
o
p
ti
m
izat
io
n
u
s
in
g
g
en
et
ic
al
g
o
r
ith
m
h
a
s
b
ee
n
s
u
cc
e
s
s
f
u
ll
y
ca
r
r
ied
o
u
t
b
y
s
o
m
e
p
r
ev
io
u
s
r
esear
c
h
er
s
to
s
o
lv
e
d
if
f
er
en
t
p
r
o
b
lem
s
.
T
h
e
g
e
n
etic
alg
o
r
it
h
m
h
as
b
ee
n
ap
p
li
ed
to
s
o
lv
e
f
le
x
ib
le
j
o
b
-
s
h
o
p
s
c
h
ed
u
li
n
g
p
r
o
b
lem
[
3
]
,
s
h
ip
'
s
r
o
u
te
s
c
h
ed
u
lin
g
[
4
]
,
an
d
f
r
o
ze
n
f
o
o
d
d
is
tr
ib
u
tio
n
[
5
]
.
T
h
er
ef
o
r
e,
th
is
r
esear
ch
u
s
e
s
t
h
e
g
e
n
etic
al
g
o
r
ith
m
to
o
p
tim
ize
th
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
i
n
t
h
e
f
u
zz
y
T
s
u
k
a
m
o
to
to
m
ea
s
u
r
e
th
e
r
i
v
er
w
ater
q
u
ali
t
y
.
T
h
e
w
ater
q
u
alit
y
w
il
l
b
e
d
iv
id
ed
in
to
f
o
u
r
cla
s
s
es
b
ased
o
n
s
o
m
e
p
r
ed
eter
m
in
ed
cr
iter
ia.
T
h
e
s
o
lu
tio
n
o
f
f
er
ed
in
th
is
r
esear
ch
i
s
f
o
r
m
i
n
g
a
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
in
t
h
e
f
u
zz
y
T
s
u
k
a
m
o
to
to
m
ea
s
u
r
e
th
e
r
i
v
er
w
a
ter
q
u
alit
y
to
o
b
tain
h
i
g
h
er
ac
c
u
r
ac
y
v
a
lu
e.
2.
WAT
E
R
W
ater
is
p
ar
t
o
f
th
e
li
f
e
o
f
t
h
e
ea
r
th
'
s
s
u
r
f
ac
e
t
h
at
h
a
s
a
n
i
m
p
o
r
tan
t
r
o
le.
W
ater
as
o
n
e
o
f
t
h
e
p
r
i
m
ar
y
m
ater
ials
r
eq
u
ir
ed
to
m
ee
t
t
h
e
n
ee
d
s
o
f
m
a
n
y
p
eo
p
le,
ev
en
b
y
all
l
iv
i
n
g
b
ein
g
s
.
A
cc
o
r
d
in
g
to
th
e
I
n
d
o
n
e
s
ian
Go
v
er
n
m
en
t Re
g
u
la
tio
n
No
.
8
2
o
f
2
0
0
1
,
th
e
w
ater
q
u
alit
y
cl
ass
i
f
icatio
n
d
ef
i
n
ed
in
to
f
o
u
r
class
es a
s
f
o
llo
w
s
:
C
las
s
I
:
w
ater
t
h
at
ca
n
b
e
u
s
e
d
f
o
r
d
r
in
k
i
n
g
an
d
o
r
o
th
er
u
s
es
t
h
at
r
eq
u
ir
e
t
h
e
w
ater
q
u
ali
t
y
eq
u
al
to
th
a
t
u
s
ab
ilit
y
.
C
las
s
I
I
:
w
ater
th
a
t
c
an
b
e
u
s
ed
f
o
r
in
f
r
a
s
tr
u
ct
u
r
e/
w
ater
r
ec
r
ea
tio
n
f
ac
ilit
ies,
f
r
e
s
h
w
a
te
r
f
is
h
f
ar
m
in
g
,
an
i
m
al
h
u
s
b
an
d
r
y
,
w
ater
to
i
r
r
ig
ate
cr
o
p
s
o
r
o
th
er
u
s
es
t
h
at
r
eq
u
ir
e
t
h
e
w
ater
q
u
ali
t
y
eq
u
al
to
t
h
at
u
s
ab
ilit
y
.
C
las
s
I
I
I
:
w
ater
t
h
at
ca
n
b
e
u
s
ed
f
o
r
f
r
esh
w
ater
f
i
s
h
f
ar
m
i
n
g
,
an
i
m
a
l
h
u
s
b
a
n
d
r
y
,
w
ater
to
i
r
r
ig
ate
cr
o
p
s
o
r
o
th
er
u
s
e
s
th
at
r
eq
u
ir
e
t
h
e
w
at
er
q
u
alit
y
eq
u
al
to
t
h
at
u
s
ab
ilit
y
.
C
las
s
I
V:
w
ater
t
h
at
ca
n
b
e
u
s
ed
to
ir
r
ig
ate
cr
o
p
s
o
r
o
th
er
u
s
es
th
a
t
r
eq
u
ir
e
t
h
e
w
ater
q
u
a
lit
y
eq
u
al
to
th
a
t
u
s
ab
ilit
y
.
B
ased
o
n
th
e
Mi
n
is
tr
y
o
f
th
e
L
i
v
i
n
g
E
n
v
ir
o
n
m
en
t o
f
I
n
d
o
n
e
s
ia
No
.
0
1
o
f
2
0
1
0
,
th
e
w
ater
p
o
llu
tio
n
i
s
d
ef
in
ed
as
th
e
en
tr
y
o
f
li
v
in
g
b
ein
g
s
,
s
u
b
s
ta
n
ce
s
,
en
er
g
y
o
r
o
th
er
co
m
p
o
n
e
n
t
s
in
to
th
e
w
at
er
ca
u
s
ed
b
y
h
u
m
an
ac
tiv
it
y
.
T
h
is
ca
n
d
e
g
r
ad
e
th
e
w
ater
q
u
al
it
y
u
p
to
a
ce
r
tain
lev
e
l,
w
h
ic
h
ca
u
s
es
t
h
e
w
a
ter
ca
n
n
o
t
f
u
n
ctio
n
ac
co
r
d
in
g
to
its
u
s
e
f
u
ln
e
s
s
.
T
h
e
w
a
ter
p
o
llu
tio
n
o
r
co
m
m
o
n
l
y
ca
lled
liq
u
id
w
ast
e
t
h
at
p
o
llu
te
s
th
e
w
ater
s
h
ed
ca
n
b
e
d
iv
id
ed
in
to
d
o
m
e
s
tic
w
a
s
te
an
d
i
n
d
u
s
tr
ial
w
aste.
3.
P
H
YSI
CO
CH
E
M
I
CAL P
A
RAM
E
T
E
RS
T
o
f
in
d
o
u
t
th
e
o
cc
u
r
r
en
ce
o
f
w
ater
p
o
llu
tio
n
,
w
ater
p
o
llu
ta
n
t
p
ar
a
m
eter
i
s
u
s
ed
as
an
in
d
i
ca
to
r
to
b
e
ab
le
to
c
o
n
d
u
ct
a
p
r
ev
en
tio
n
an
d
co
n
t
r
o
l
o
f
p
o
llu
tio
n
th
at
o
cc
u
r
r
ed
.
T
h
is
r
esear
ch
u
s
es
t
h
e
g
u
id
elin
e
s
o
f
th
e
Min
i
s
tr
y
o
f
t
h
e
L
iv
i
n
g
E
n
v
ir
o
n
m
e
n
t
o
f
I
n
d
o
n
esia
No
.
1
1
5
o
f
2
0
0
3
r
eg
ar
d
in
g
Gu
id
eli
n
es
f
o
r
Dete
r
m
i
n
atio
n
o
f
W
ater
Qu
alit
y
Stat
u
s
as
a
s
tan
d
ar
d
o
f
th
e
w
ater
q
u
alit
y
p
ar
am
eter
s
.
W
h
er
ea
s
t
h
e
w
at
er
q
u
alit
y
s
ta
n
d
ar
d
r
ef
er
r
in
g
I
n
d
o
n
esia
n
Go
v
er
n
m
en
t
R
e
g
u
la
tio
n
No
.
8
2
o
f
2
0
0
1
r
eg
ar
d
in
g
W
ater
Qu
alit
y
Ma
n
a
g
e
m
en
t
a
n
d
P
o
llu
tio
n
C
o
n
tr
o
l.
So
m
e
p
ar
am
eter
s
o
f
p
h
y
s
ico
c
h
e
m
ica
l
to
test
th
e
q
u
alit
y
o
f
th
e
r
iv
er
wate
r
ar
e
as
f
o
llo
w
s
:
te
m
p
er
atu
r
e,
T
o
tal
Dis
s
o
lv
ed
So
lid
(
T
DS)
,
T
o
tal
Su
s
p
en
d
ed
So
lid
(
T
SS
)
,
d
eg
r
ee
o
f
ac
id
it
y
(
p
H)
,
B
io
lo
g
ical
Ox
y
g
e
n
De
m
a
n
d
(
B
OD)
,
C
h
e
m
ical
O
x
y
g
e
n
De
m
a
n
d
(
C
OD)
,
Dis
s
o
lv
ed
Ox
y
g
e
n
(
DO)
,
p
h
o
s
p
h
ate,
n
itra
t
e
(
NO3
)
,
Am
m
o
n
ia
-
Ni
tr
o
g
en
(
NH3
-
N)
,
ar
s
en
ic,
co
b
alt,
b
ar
iu
m
,
b
o
r
o
n
,
s
elen
i
u
m
,
ca
d
m
i
u
m
,
ch
r
o
m
i
u
m
(
VI
)
,
co
p
p
er
,
ir
o
n
,
an
d
lead
.
ST
OR
E
T
(
s
to
r
ag
e
an
d
r
etr
iev
al)
is
a
m
et
h
o
d
u
s
ed
to
ass
es
s
w
ater
q
u
alit
y
s
tatu
s
.
T
h
e
b
asic
co
n
ce
p
t
o
f
ST
OR
E
T
is
co
m
p
ar
i
n
g
t
h
e
d
ata
o
f
w
ater
q
u
al
it
y
an
d
i
ts
s
tan
d
ar
d
[
6
]
.
B
ased
o
n
t
h
e
g
u
id
eli
n
es
o
f
t
h
e
Min
i
s
tr
y
o
f
t
h
e
L
i
v
in
g
E
n
v
ir
o
n
m
e
n
t
o
f
I
n
d
o
n
esia
No
.
1
1
5
o
f
2
0
0
3
,
th
er
e
ar
e
4
8
p
ar
am
ete
r
s
o
f
w
ater
q
u
alit
y
s
tatu
s
ac
co
r
d
in
g
to
ST
OR
E
T
v
alu
e
s
y
s
te
m
ar
e
a
s
f
o
llo
w
s
:
T
o
tal
Dis
s
o
lv
ed
So
lid
(
T
DS)
,
w
ater
te
m
p
er
atu
r
e,
elec
tr
ical
co
n
d
u
c
tiv
it
y
(
DH
L
)
,
b
r
ig
h
t
n
es
s
,
m
er
cu
r
y
,
ar
s
e
n
ic,
b
ar
iu
m
,
f
lo
u
r
i
n
e,
ca
d
m
i
u
m
,
c
h
r
o
m
i
u
m
(
VI
)
,
m
an
g
a
n
ese,
s
o
d
iu
m
,
Nitr
ate
-
Nitr
o
g
en
(
NO3
-
N)
,
Nitr
ite
-
N
itro
g
en
(
NO2
-
N)
,
Am
m
o
n
ia
-
Nitr
o
g
en
(
NH3
-
N)
,
d
eg
r
ee
o
f
ac
id
it
y
(
p
H)
,
s
elen
iu
m
,
z
in
c,
c
y
an
id
e,
s
u
l
f
ate,
h
y
d
r
o
g
e
n
s
u
l
f
id
e,
co
p
p
er
,
lead
,
R
esid
u
al
So
d
iu
m
C
ar
b
o
n
ate
(
R
S
C
)
,
B
io
lo
g
ical
Ox
y
g
e
n
De
m
a
n
d
(
B
OD)
,
C
h
e
m
ical
Ox
y
g
en
De
m
a
n
d
(
C
OD)
,
f
at
s
,
o
ils
,
p
h
o
s
p
h
ate,
p
h
e
n
o
l,
c
h
lo
r
in
e,
b
o
r
o
n
,
n
ick
el,
b
icar
b
o
n
ate,
ca
r
b
o
n
d
io
x
id
e,
s
alin
it
y
,
Dis
s
o
l
v
ed
Ox
y
g
en
(
DO)
,
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l
.
7
,
No
.
5
,
Octo
b
er
201
7
:
2
8
3
8
–
2
8
4
6
2840
ald
r
in
,
d
ield
r
in
,
ch
lo
r
d
an
e,
d
ich
lo
r
o
d
ip
h
en
y
l
tr
ich
lo
r
o
eth
a
n
e
(
DDT
)
,
d
eter
g
en
t,
lin
d
a
n
e,
P
o
ly
c
h
lo
r
in
a
ted
B
ip
h
en
y
ls
(
P
C
B
)
,
en
d
r
in
e,
b
e
n
ze
n
e
h
ex
ac
h
lo
r
id
e
(
B
HC
)
,
f
ec
al
co
lif
o
r
m
,
an
d
to
tal
co
lif
o
r
m
.
Dete
r
m
i
n
atio
n
o
f
w
ater
q
u
alit
y
u
s
i
n
g
ST
OR
E
T
h
av
e
to
u
s
e
all
o
f
th
e
s
e
p
ar
a
m
eter
s
w
h
i
le
i
n
F
u
zz
y
T
s
u
k
a
m
o
to
,
th
e
w
ater
q
u
al
it
y
ca
n
b
e
ca
lcu
lated
o
n
l
y
w
it
h
8
p
ar
am
eter
s
as
f
o
llo
w
s
:
T
o
tal
Su
s
p
en
d
ed
So
lid
(
T
SS
)
,
B
io
lo
g
ical
Ox
y
g
e
n
De
m
a
n
d
(
B
OD)
,
C
h
e
m
ical
Ox
y
g
e
n
De
m
a
n
d
(
C
OD)
,
Dis
s
o
l
v
ed
Ox
y
g
en
(
DO)
,
d
eg
r
ee
o
f
ac
id
it
y
(
p
H)
,
p
h
en
o
l,
f
ats,
a
n
d
o
ils
.
T
h
e
u
s
e
o
f
Fu
z
z
y
T
s
u
k
a
m
o
to
to
d
eter
m
in
e
t
h
e
w
ate
r
q
u
alit
y
b
y
u
s
i
n
g
f
e
w
er
p
ar
a
m
eter
s
t
h
a
n
ST
OR
E
T
w
ill b
e
ab
le
to
s
av
e
t
h
e
co
s
t o
f
i
n
s
p
ec
tio
n
.
4.
F
U
Z
Z
Y
L
O
G
I
C
L
o
th
f
i
A
.
Z
ad
e
h
i
n
tr
o
d
u
ce
d
f
u
zz
y
lo
g
ic,
w
h
ic
h
i
s
th
e
s
et
t
h
e
o
r
y
o
f
lo
g
ic
to
o
v
er
co
m
e
t
h
e
co
n
ce
p
t
o
f
v
alu
e
b
et
w
ee
n
t
h
e
tr
u
th
v
al
u
e
s
'tr
u
e
'
a
n
d
'f
al
s
e
'
.
F
u
zz
y
lo
g
i
c
ad
o
p
ts
th
e
h
u
m
an
w
a
y
o
f
t
h
in
k
i
n
g
s
o
t
h
at
t
h
e
v
alu
e
i
s
n
o
t
o
n
l
y
0
an
d
1
,
b
u
t
also
all
th
e
p
o
s
s
ib
ilit
ies
b
et
w
e
en
0
an
d
1
[
7
]
.
T
h
e
lan
g
u
ag
e
v
ar
iab
les
in
tr
o
d
u
ce
d
to
d
escr
ib
e
f
u
zz
y
p
h
e
n
o
m
en
a
in
t
h
e
n
at
u
r
al
la
n
g
u
a
g
e
q
u
a
n
titati
v
el
y
.
I
f
th
e
v
al
u
e
i
s
e
x
p
r
ess
ed
in
ter
m
s
o
f
lan
g
u
a
g
e,
f
u
zz
y
tr
u
t
h
v
al
u
e
to
b
e
v
er
y
tr
u
e,
tr
u
e,
f
air
l
y
tr
u
e,
l
ess
tr
u
e,
a
n
d
n
o
t tr
u
e
[
8
]
.
I
n
f
u
zz
y
co
n
ce
p
t,
f
o
r
m
u
lati
n
g
an
i
n
p
u
t
to
an
o
u
tp
u
t
u
s
in
g
f
u
zz
y
lo
g
ic
ca
l
led
f
u
zz
y
r
ea
s
o
n
in
g
.
F
u
zz
y
r
ea
s
o
n
in
g
ca
n
b
e
s
o
lv
ed
u
s
in
g
T
s
u
k
a
m
o
to
,
Ma
m
d
a
n
i,
an
d
Su
g
en
o
.
E
ac
h
t
y
p
e
o
f
r
ea
s
o
n
in
g
w
i
ll
p
r
o
v
id
e
a
d
if
f
er
e
n
t
w
a
y
to
g
et
t
h
e
o
u
tp
u
t
.
Fu
zz
y
r
ea
s
o
n
i
n
g
co
n
s
is
ts
o
f
f
iv
e
m
a
in
p
ar
ts
as
f
o
llo
w
s
[
9
]
:
a.
Fu
zz
i
f
icatio
n
o
f
i
n
p
u
t
v
ar
iab
les in
t
h
e
f
o
r
m
o
f
cr
is
p
d
ata.
b.
T
h
e
u
s
e
o
f
f
u
zz
y
o
p
er
ato
r
(
OR
o
r
A
ND)
.
c.
T
h
e
i
m
p
licat
io
n
s
o
f
th
e
p
r
e
m
is
e.
d.
T
g
g
r
eg
atio
n
e
f
f
ec
t b
ased
o
n
th
e
r
u
le
b
ase
th
at
h
as b
ee
n
d
eter
m
i
n
ed
.
e.
Def
u
zz
if
icatio
n
.
5.
G
E
NE
T
I
C
A
L
G
O
RI
T
H
M
T
h
e
g
en
etic
al
g
o
r
ith
m
(
G
A
)
in
s
p
ir
ed
b
y
ev
o
l
u
tio
n
ar
y
b
i
o
lo
g
y
,
w
h
ic
h
u
s
ed
to
f
i
n
d
a
p
p
r
o
x
im
a
te
s
o
lu
tio
n
s
to
an
is
s
u
e,
esp
ec
iall
y
in
o
p
ti
m
iza
tio
n
p
r
o
b
lem
s
[
1
0
]
.
GA
h
as
a
p
o
p
u
latio
n
co
n
s
is
tin
g
o
f
s
o
m
e
ch
r
o
m
o
s
o
m
e
s
t
h
at
r
ep
r
esen
t
p
o
s
s
ib
le
s
o
lu
tio
n
s
.
G
A
h
a
s
t
h
r
ee
m
ai
n
p
r
o
ce
s
s
es
to
f
o
r
m
a
n
e
w
g
e
n
er
atio
n
i
n
ea
ch
iter
atio
n
t
h
at
is
cr
o
s
s
o
v
e
r
,
m
u
tatio
n
,
a
n
d
s
elec
tio
n
[
1
1
]
.
T
h
ese
p
r
o
ce
s
s
es
ar
e
th
e
b
asi
c
p
r
in
cip
les
o
f
G
A
to
co
n
d
u
ct
ex
p
lo
r
atio
n
an
d
e
x
p
lo
itatio
n
a
m
o
n
g
t
h
e
p
o
s
s
ib
le
s
o
lu
tio
n
s
[
1
2
]
.
T
h
e
p
r
o
ce
s
s
o
f
g
e
n
etic
al
g
o
r
ith
m
a
s
f
o
llo
w
s
[
1
3
]
:
a.
Gen
er
ati
n
g
a
p
o
p
u
latio
n
co
n
s
i
s
ti
n
g
o
f
s
e
v
er
al
r
an
d
o
m
in
d
iv
id
u
a
l
ch
r
o
m
o
s
o
m
es,
t
h
at
h
a
v
e
th
e
co
m
p
o
s
i
tio
n
o
f
s
p
ec
if
ic
g
en
e
s
.
b.
C
alcu
lati
n
g
t
h
e
f
itn
e
s
s
v
al
u
e
o
f
ea
ch
i
n
d
iv
id
u
al.
c.
C
o
n
d
u
ct
in
g
t
h
e
r
ep
r
o
d
u
ctio
n
p
r
o
ce
s
s
to
p
r
o
d
u
ce
o
f
f
s
p
r
in
g
b
y
p
er
f
o
r
m
i
n
g
cr
o
s
s
o
v
er
an
d
m
u
tatio
n
.
d.
Selectin
g
in
d
i
v
id
u
al
s
f
r
o
m
a
p
o
p
u
latio
n
co
n
s
is
ti
n
g
o
f
p
ar
en
ts
a
n
d
o
f
f
s
p
r
in
g
to
s
ta
y
al
iv
e
f
o
r
th
e
n
e
x
t
g
en
er
atio
n
s
to
r
ep
lace
th
e
o
ld
p
o
p
u
latio
n
.
6.
M
E
T
H
O
DO
L
O
G
Y
T
h
e
d
ata
u
s
ed
in
t
h
is
s
tu
d
y
co
n
s
is
ts
o
f
6
0
r
ec
o
r
d
s
o
f
th
e
r
iv
e
r
w
a
ter
s
a
m
p
le.
T
h
is
d
a
ta
w
i
ll
b
e
g
r
o
u
p
ed
in
to
f
o
u
r
cla
s
s
e
s
ac
co
r
d
in
g
to
t
h
e
clas
s
i
f
icatio
n
o
f
th
e
w
ater
q
u
al
it
y
th
a
t
h
as
b
ee
n
r
eg
u
lated
b
y
I
n
d
o
n
esia
n
Go
v
er
n
m
en
t
R
eg
u
latio
n
No
.
8
2
o
f
2
0
0
1
.
T
h
e
w
ater
q
u
alit
y
s
y
m
b
o
lized
b
y
A
f
o
r
cla
s
s
I
,
B
f
o
r
class
I
I
,
C
f
o
r
class
I
I
I
,
an
d
D
f
o
r
class
I
V.
6
.
1
.
Chro
m
o
s
o
m
e
Repre
s
e
nt
a
t
io
n
T
h
e
f
ir
s
t
s
tep
in
th
e
G
A
p
r
o
ce
s
s
i
s
d
eter
m
i
n
i
n
g
th
e
t
y
p
e
o
f
ch
r
o
m
o
s
o
m
e
r
ep
r
esen
tatio
n
t
h
at
w
il
l
b
e
u
s
ed
.
I
n
t
h
is
r
esear
c
h
,
th
e
t
y
p
e
o
f
ch
r
o
m
o
s
o
m
e
r
ep
r
ese
n
ta
tio
n
u
s
ed
is
a
r
ea
l
co
d
e.
E
ac
h
ch
r
o
m
o
s
o
m
e
h
as
g
en
e
s
as
m
u
c
h
as
2
0
w
h
ich
r
e
p
r
esen
ts
t
h
e
v
a
lu
e
o
f
th
e
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
f
o
r
a
ll
cr
iter
ia.
Fig
u
r
e
1
s
h
o
w
s
a
c
h
r
o
m
o
s
o
m
e
r
ep
r
esen
tatio
n
th
a
t c
an
b
e
f
o
r
m
ed
.
g
e
n
e
50
110
3
4
8
14
8
23
70
120
3
4
6
7
6
9
0
.
0
0
1
2
0
.
0
0
2
3
1
.
5
2
p
a
r
a
m
e
te
r
T
S
S
BOD
COD
DO
pH
p
h
e
n
o
l
f
a
ts
a
n
d
o
il
s
Fig
u
r
e
1
.
C
h
r
o
m
o
s
o
m
e
r
ep
r
esen
tatio
n
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Op
timiz
a
tio
n
o
f F
u
z
z
y
Ts
u
ka
mo
to
Memb
ers
h
ip
F
u
n
ctio
n
u
s
in
g
Gen
etic
A
lg
o
r
ith
m
to
… (
Qo
ir
u
l Ko
tima
h
)
2841
T
h
e
g
en
e
v
alu
e
s
in
ea
ch
ch
r
o
m
o
s
o
m
e
as
s
h
o
w
n
in
Fi
g
u
r
e
1
is
u
s
ed
as
b
o
u
n
d
ar
y
v
alu
e
s
o
f
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
o
n
f
u
zz
y
.
T
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
s
f
o
r
all
p
ar
am
eter
s
u
s
ed
ar
e
s
h
o
w
n
in
Fi
g
u
r
e
2
to
Fig
u
r
e
8
.
Fig
u
r
e
2
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
T
SS
Fig
u
r
e
3
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
B
OD
Fig
u
r
e
4
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
C
OD
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
50
1
1
0
T
otal S
uspen
de
d S
oli
d (T
S
S
)
B
ad
Go
o
d
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
3
4
8
14
B
iol
og
ica
l
Ox
y
g
e
n
De
mand
(B
OD
)
Ver
y
Go
o
d
B
ad
Go
o
d
P
r
etty
Go
o
d
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
8
23
70
1
2
0
C
he
mi
c
a
l Ox
y
g
e
n
De
mand
(COD
)
B
ad
Ver
y
Go
o
d
Go
o
d
P
r
etty
Go
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l
.
7
,
No
.
5
,
Octo
b
er
201
7
:
2
8
3
8
–
2
8
4
6
2842
Fig
u
r
e
5
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
DO
Fig
u
r
e
6
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
p
H
Fig
u
r
e
7
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
p
h
e
n
o
l
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
3
4
6
7
Dissol
ve
d Ox
y
g
e
n
(D
O)
B
ad
Ver
y
Go
o
d
P
r
etty
Go
o
d
Go
o
d
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
5
6
9
10
De
g
re
e
of
Ac
idi
ty
(pH
)
B
ad
Go
o
d
B
ad
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
0
.
0
0
1
2
0
.
0
0
2
3
P
he
nol
B
ad
Go
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Op
timiz
a
tio
n
o
f F
u
z
z
y
Ts
u
ka
mo
to
Memb
ers
h
ip
F
u
n
ctio
n
u
s
in
g
Gen
etic
A
lg
o
r
ith
m
to
… (
Qo
ir
u
l Ko
tima
h
)
28
43
Fig
u
r
e
8
.
Me
m
b
er
s
h
ip
f
u
n
ctio
n
o
f
f
ats a
n
d
o
ils
6
.
2
.
F
it
nes
s
F
un
ct
io
n
T
o
ca
lcu
late
th
e
f
it
n
es
s
v
al
u
es,
th
e
g
e
n
e
v
alu
e
s
o
n
ea
c
h
ch
r
o
m
o
s
o
m
e
ar
e
ap
p
lied
to
th
e
f
u
zz
y
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
ac
co
r
d
in
g
to
t
h
e
p
ar
a
m
eter
s
th
at
h
a
v
e
b
ee
n
d
eter
m
in
ed
.
T
h
e
n
,
6
0
r
ec
o
r
d
s
o
f
th
e
r
iv
er
w
ater
s
a
m
p
le
s
ar
e
p
r
ed
icted
th
eir
clas
s
t
y
p
e
u
s
i
n
g
f
u
zz
y
T
s
u
k
a
m
o
to
b
ased
o
n
th
e
m
e
m
b
e
r
s
h
ip
f
u
n
ctio
n
t
h
at
h
as
f
o
r
m
ed
.
Ha
v
i
n
g
o
b
tain
ed
th
eir
clas
s
t
y
p
e,
th
e
ac
cu
r
ac
y
v
alu
e
ca
lcu
lated
b
y
co
m
p
ar
i
n
g
t
h
e
clas
s
i
f
icatio
n
r
esu
lt
s
u
s
i
n
g
f
u
zz
y
T
s
u
k
a
m
o
t
o
w
it
h
t
h
e
clas
s
i
f
icatio
n
r
e
s
u
l
t
s
u
s
in
g
t
h
e
ST
OR
E
T
m
eth
o
d
.
T
h
e
f
itn
e
s
s
v
al
u
e
is
th
e
ac
cu
r
ac
y
v
al
u
e
ca
lc
u
lated
u
s
i
n
g
E
q
u
atio
n
(
1
)
.
r
eco
r
d
s
d
a
t
a
of
n
u
m
b
e
r
t
h
e
t
i
o
n
cl
as
s
i
f
i
ca
e
ap
p
r
o
p
r
i
at
an
of
n
u
m
b
e
r
t
h
e
f
i
t
n
e
s
s
(
1
)
6
.
3
.
Cro
s
s
o
v
er
T
h
e
cr
o
s
s
o
v
er
p
r
o
ce
s
s
w
o
r
k
s
b
y
e
x
ch
a
n
g
i
n
g
i
n
f
o
r
m
atio
n
b
e
t
w
ee
n
t
h
e
ch
r
o
m
o
s
o
m
es
o
f
t
wo
p
ar
en
ts
[
1
4
]
.
C
r
o
s
s
o
v
er
p
r
o
v
id
es a
m
e
th
o
d
to
ex
p
lo
r
e
a
n
e
w
r
eg
io
n
i
n
th
e
s
ea
r
ch
s
p
ac
e
[
1
5
]
.
T
h
e
ty
p
e
o
f
cr
o
s
s
o
v
er
m
e
th
o
d
u
s
ed
is
e
x
te
n
d
ed
in
ter
m
ed
iat
e
cr
o
s
s
o
v
er
,
w
h
ic
h
w
o
r
k
s
b
y
co
m
b
i
n
i
n
g
g
en
e
s
f
r
o
m
b
o
th
p
ar
en
t
s
to
p
r
o
d
u
ce
t
w
o
o
f
f
s
p
r
in
g
[
1
6
]
.
T
h
e
o
f
f
s
p
r
in
g
f
o
r
m
ed
u
s
i
n
g
E
q
u
ati
o
n
2
,
b
y
c
h
o
o
s
in
g
a
r
an
d
o
m
v
al
u
e
i
n
th
e
r
an
g
e
o
f
v
alu
es [
-
0
.
2
5
,
1
:2
5
]
f
o
r
.
2
1
2
2
1
2
1
1
Pa
r
e
n
t
Pa
r
e
n
t
Pa
r
e
n
t
O
f
f
s
p
r
i
n
g
Pa
r
e
n
t
Pa
r
e
n
t
Pa
r
e
n
t
O
f
f
p
s
p
r
i
n
g
(
2
)
6
.
4
.
M
ut
a
t
io
n
T
h
e
m
u
tatio
n
p
r
o
ce
s
s
p
r
ev
en
t
s
th
e
o
b
tain
ed
s
o
l
u
tio
n
s
f
all
i
n
to
lo
ca
l
o
p
ti
m
u
m
b
ec
au
s
e
it
p
r
o
v
id
es
a
d
iv
er
s
it
y
o
f
c
h
r
o
m
o
s
o
m
es
in
a
p
o
p
u
latio
n
[
1
4
]
.
Mu
tatio
n
p
la
y
s
a
r
o
le
i
n
r
esto
r
i
n
g
th
e
lo
s
t
g
en
etic
i
n
f
o
r
m
atio
n
as
w
e
ll a
s
d
is
t
u
r
b
s
g
e
n
etic
i
n
f
o
r
m
at
io
n
r
an
d
o
m
l
y
to
h
elp
t
h
e
ex
p
lo
r
atio
n
p
r
o
ce
s
s
in
th
e
s
ea
r
ch
s
p
ac
e
[
1
7
]
.
T
h
e
ty
p
e
o
f
m
u
tatio
n
u
s
ed
i
s
th
e
r
a
n
d
o
m
m
u
ta
tio
n
,
w
h
ic
h
w
o
r
k
s
b
y
ch
a
n
g
in
g
t
h
e
v
al
u
e
o
f
t
h
e
s
elec
ted
g
e
n
e
w
it
h
a
s
m
all
r
a
n
d
o
m
n
u
m
b
er
.
S
u
p
p
o
s
e
v
ar
iab
le
x
i
h
a
s
a
v
al
u
e
r
a
n
g
e
f
r
o
m
m
in
i
to
ma
x
i
a
n
d
o
f
f
s
p
r
in
g
f
o
r
m
ed
is
C
=
[
x'
i
,
.
.
.
,
x'
n
]
,
th
en
th
e
o
f
f
s
p
r
i
n
g
ca
n
b
e
f
o
r
m
ed
u
s
i
n
g
E
q
u
atio
n
3
,
b
y
c
h
o
o
s
in
g
a
r
an
d
o
m
v
alu
e
i
n
t
h
e
r
an
g
e
o
f
v
a
lu
e
s
[
-
0
.
1
,
0
.
1
]
f
o
r
r
.
i
i
r
i
x
i
x
m
i
n
m
a
x
'
'
(
3
)
6
.
5
.
Select
io
n
Selectio
n
i
s
a
s
tep
i
n
G
A
w
h
i
ch
is
u
s
ed
to
s
elec
t
i
n
d
i
v
id
u
al
s
th
at
w
i
ll
b
e
u
s
ed
in
t
h
e
n
e
x
t
g
en
er
atio
n
[
1
8
]
.
T
h
e
s
elec
tio
n
m
e
th
o
d
u
s
ed
is
elitis
m
.
T
h
is
s
elec
tio
n
t
y
p
es
w
o
r
k
b
y
s
elec
ti
n
g
in
d
i
v
id
u
als
w
h
o
h
av
e
a
g
r
ea
ter
f
it
n
es
s
f
o
r
s
u
r
v
i
v
al.
A
ll
ch
r
o
m
o
s
o
m
es
in
a
p
o
p
u
lat
io
n
co
n
s
i
s
ti
n
g
o
f
p
ar
en
t
s
a
n
d
o
f
f
s
p
r
in
g
ar
e
co
m
b
i
n
ed
in
to
o
n
e
an
d
th
e
n
s
o
r
ted
f
r
o
m
t
h
e
h
i
g
h
est
to
t
h
e
lo
w
est
f
it
n
es
s
v
al
u
e.
T
h
e
to
p
o
f
ch
r
o
m
o
s
o
m
es
i
n
t
h
e
p
o
p
u
latio
n
a
s
m
u
ch
a
s
p
o
p
u
latio
n
s
ize
(
p
o
p
s
ize)
tak
en
f
o
r
u
s
e
in
t
h
e
n
e
x
t
g
en
er
atio
n
[
1
9
]
.
7.
RE
SU
L
T
S
A
ND
D
I
SCU
SS
I
O
N
0
0
.
2
0
.
4
0
.
6
0
.
8
1
1
.
2
1
.
5
2
F
a
ts
a
nd Oils
B
ad
Go
o
d
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l
.
7
,
No
.
5
,
Octo
b
er
201
7
:
2
8
3
8
–
2
8
4
6
2844
T
ests
co
n
d
u
cted
in
th
i
s
s
t
u
d
y
co
n
s
is
t
o
f
t
h
r
ee
test
i
n
g
t
y
p
e
s
,
n
a
m
el
y
test
i
n
g
o
f
th
e
p
o
p
u
l
atio
n
s
ize,
test
i
n
g
o
f
t
h
e
co
m
b
in
a
tio
n
o
f
cr
an
d
m
r
,
an
d
test
i
n
g
th
e
g
e
n
er
atio
n
n
u
m
b
er
.
T
h
is
test
in
g
i
s
d
o
n
e
to
o
b
tain
th
e
b
est
p
ar
a
m
eter
s
o
f
th
e
g
e
n
etic
alg
o
r
it
h
m
.
E
ac
h
test
s
ce
n
ar
io
p
er
f
o
r
m
ed
1
0
ti
m
es
to
o
b
tain
an
a
v
er
ag
e
f
i
t
n
es
s
v
alu
e.
I
n
th
e
te
s
ti
n
g
o
f
p
o
p
u
latio
n
s
ize,
a
p
o
p
u
latio
n
th
at
i
s
u
s
e
d
is
th
e
n
u
m
b
er
s
w
it
h
m
u
lt
i
p
les
o
f
2
0
s
tar
tin
g
f
r
o
m
n
u
m
b
er
2
0
to
2
0
0
.
T
h
e
cr
v
al
u
e
u
s
ed
i
s
0
.
5
an
d
th
e
m
r
v
al
u
e
is
0
.
5
.
T
h
e
g
en
er
atio
n
n
u
m
b
er
u
s
ed
is
1
0
0
.
T
h
e
test
r
esu
lt
s
o
f
t
h
e
p
o
p
u
l
atio
n
s
ize
s
h
o
w
n
in
Fig
u
r
e
9
.
Fig
u
r
e
9
.
T
est r
esu
lts
o
f
t
h
e
p
o
p
u
latio
n
s
ize
Fig
u
r
e
9
s
h
o
w
s
t
h
at
th
e
b
est
av
er
ag
e
f
i
tn
e
s
s
v
al
u
e
p
r
o
d
u
ce
d
b
y
p
o
p
u
latio
n
s
ize
o
f
8
0
is
0
.
9
3
8
.
T
h
e
test
r
es
u
lts
s
h
o
w
t
h
at
t
h
e
b
i
g
g
er
a
p
o
p
u
latio
n
,
th
e
g
r
ea
ter
th
e
p
o
s
s
ib
ilit
y
to
o
b
tain
o
p
ti
m
u
m
s
o
l
u
tio
n
s
s
o
t
h
at
it
ca
n
p
r
o
d
u
ce
h
ig
h
f
itn
e
s
s
v
al
u
e
s
.
T
h
e
test
in
g
o
f
t
h
e
co
m
b
i
n
atio
n
o
f
cr
a
n
d
mr
u
s
ed
to
d
eter
m
in
e
t
h
e
m
o
s
t
o
p
ti
m
al
cr
an
d
mr
v
al
u
e
s
i
n
o
r
d
e
r
to
p
r
o
d
u
ce
th
e
b
est
s
o
lu
tio
n
.
T
h
e
p
o
p
u
latio
n
s
ize
u
s
e
d
is
8
0
.
T
h
e
g
en
er
atio
n
n
u
m
b
er
u
s
ed
is
1
0
0
.
T
h
e
test
r
esu
lts
o
f
t
h
e
co
m
b
i
n
atio
n
o
f
cr
an
d
mr
ar
e
s
h
o
w
n
i
n
Fi
g
u
r
e
1
0
.
Fig
u
r
e
1
0
.
T
est r
esu
lt o
f
t
h
e
c
o
m
b
i
n
atio
n
o
f
cr
a
n
d
mr
Fig
u
r
e
1
0
s
h
o
w
s
th
a
t
t
h
e
b
est
av
er
ag
e
f
it
n
es
s
v
alu
e
p
r
o
d
u
ce
d
b
y
t
h
e
co
m
b
i
n
atio
n
o
f
cr
i
s
0
.
6
an
d
m
r
is
0
.
4
.
B
ased
o
n
Fig
u
r
e
1
0
,
it
ca
n
b
e
s
ee
n
th
at
t
h
e
av
er
ag
e
f
itn
e
s
s
o
b
tain
ed
is
v
er
y
d
iv
e
r
s
e
b
ec
au
s
e
o
f
th
e
ab
s
en
ce
o
f
p
r
o
v
i
s
io
n
s
cr
an
d
m
r
t
h
at
s
h
o
u
ld
b
e
u
s
ed
to
o
b
tain
a
n
o
p
ti
m
al
s
o
lu
tio
n
.
E
ac
h
is
s
u
e
w
il
l
h
a
v
e
a
co
m
b
i
n
ed
v
al
u
e
o
f
cr
a
n
d
m
r
th
at
is
d
if
f
er
en
t.
I
f
th
e
v
al
u
e
o
f
cr
a
n
d
m
r
ar
e
n
o
t
w
el
l
d
ef
i
n
ed
,
t
h
en
th
e
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
ca
n
n
o
t
p
r
o
d
u
ce
a
s
o
lu
tio
n
th
at
is
f
av
o
r
ab
le,
s
o
p
r
em
at
u
r
e
co
n
v
er
g
e
n
ce
m
a
y
o
cc
u
r
[
2
0
]
.
T
h
e
test
in
g
o
f
g
e
n
er
atio
n
n
u
m
b
er
is
d
o
n
e
to
g
et
an
o
p
tim
al
g
en
er
atio
n
n
u
m
b
er
to
p
r
o
d
u
ce
a
n
o
p
ti
m
al
s
o
lu
tio
n
.
T
h
e
g
en
er
atio
n
n
u
m
b
er
u
s
ed
is
th
e
n
u
m
b
er
s
w
ith
m
u
ltip
les
o
f
2
5
s
tar
tin
g
f
r
o
m
n
u
m
b
er
2
5
to
2
5
0
.
0
.
9
2
4
0
.
9
3
2
0
.
9
2
8
0
.
9
3
8
0
.
9
3
3
0
.
9
3
5
0
.
9
3
7
0
.
9
3
7
0
.
9
3
5
0
.
9
3
7
0
.
9
1
5
0
.
9
2
0
0
.
9
2
5
0
.
9
3
0
0
.
9
3
5
0
.
9
4
0
20
40
60
80
1
0
0
1
2
0
1
4
0
1
6
0
1
8
0
2
0
0
A
v
e
ra
g
e
F
it
n
e
ss
V
a
lu
e
P
o
p
u
latio
n
S
ize
The
T
e
st of P
opulation
S
iz
e
0
.
9
2
3
0
.
9
3
3
0
.
9
3
3
0
.
9
3
2
0
.
9
3
3
0
.
9
3
3
0
.
9
3
7
0
.
9
3
0
0
.
9
3
3
0
.
9
3
5
0
.
9
3
3
0
.
9
1
5
0
.
9
2
0
0
.
9
2
5
0
.
9
3
0
0
.
9
3
5
0
.
9
4
0
0
0
.
1
0
.
2
0
.
3
0
.
4
0
.
5
0
.
6
0
.
7
0
.
8
0
.
9
1
A
v
e
ra
g
e
F
it
n
e
ss
V
a
lu
e
cr
V
a
lu
e
T
he
T
es
t
of
C
om
bi
nat
i
on
of
cr
and
mr
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2088
-
8708
Op
timiz
a
tio
n
o
f F
u
z
z
y
Ts
u
ka
mo
to
Memb
ers
h
ip
F
u
n
ctio
n
u
s
in
g
Gen
etic
A
lg
o
r
ith
m
to
… (
Qo
ir
u
l Ko
tima
h
)
2845
T
h
e
o
th
er
p
ar
am
eter
s
u
s
ed
ar
e
th
e
p
ar
a
m
eter
s
f
r
o
m
th
e
p
r
ev
i
o
u
s
tes
tin
g
r
es
u
lt
s
as
f
o
llo
w
s
:
th
e
p
o
p
u
latio
n
s
ize
is
8
0
,
th
e
cr
v
a
lu
e
is
0
.
6
,
an
d
th
e
m
r
v
al
u
e
i
s
0
.
4
.
T
h
e
test
in
g
r
es
u
lt
o
f
g
e
n
er
atio
n
n
u
m
b
er
is
s
h
o
w
n
in
Fi
g
u
r
e
11.
Fig
u
r
e
1
1
.
T
est r
esu
lt o
f
t
h
e
g
en
er
atio
n
n
u
m
b
er
B
ase
d
o
n
th
e
te
s
t
r
es
u
lt
s
o
f
t
h
e
g
en
er
atio
n
n
u
m
b
er
in
Fi
g
u
r
e
1
1
,
th
e
g
e
n
er
atio
n
n
u
m
b
er
a
s
m
u
c
h
as
1
7
5
p
r
o
d
u
ce
th
e
h
i
g
h
est
a
v
er
ag
e
f
itn
e
s
s
v
al
u
e.
T
h
e
g
e
n
er
atio
n
n
u
m
b
er
o
f
7
5
u
n
til
1
5
0
p
r
o
d
u
cin
g
u
n
s
tab
le
f
it
n
es
s
v
al
u
e.
W
h
ile
th
e
g
en
e
r
atio
n
n
u
m
b
er
o
f
1
7
5
u
n
til
2
5
0
h
as
s
tar
ted
to
s
h
o
w
s
tab
ilit
y
in
t
h
e
ab
s
en
ce
o
f
g
r
ea
t
c
h
an
g
e
o
n
t
h
e
av
er
a
g
e
f
it
n
es
s
v
al
u
e.
T
h
e
m
o
r
e
th
e
g
en
er
atio
n
n
u
m
b
er
,
t
h
e
lo
n
g
e
r
co
m
p
u
tat
io
n
t
i
m
e
r
eq
u
ir
ed
an
d
th
e
r
esu
lt
in
g
s
o
l
u
tio
n
is
n
o
t n
ec
es
s
ar
il
y
o
p
ti
m
al.
T
h
e
p
ar
am
eter
s
o
f
th
e
g
e
n
eti
c
alg
o
r
ith
m
w
h
ic
h
h
as
b
ee
n
o
b
tain
ed
f
r
o
m
t
h
e
tes
tin
g
r
es
u
lts
u
s
ed
to
class
i
f
y
t
h
e
6
0
r
ec
o
r
d
s
o
f
t
h
e
r
i
v
er
w
ater
s
a
m
p
le.
T
ab
le
1
s
h
o
w
s
a
co
m
p
ar
i
s
o
n
o
f
th
e
w
ater
q
u
ali
t
y
class
i
f
icatio
n
r
esu
lts
i
n
2
0
0
9
u
s
in
g
ST
OR
E
T
,
Fu
zz
y
T
s
u
k
a
m
o
to
,
an
d
o
p
tim
ized
Fu
zz
y
T
s
u
k
a
m
o
to
.
T
ab
le
2
.
C
o
m
p
ar
is
o
n
o
f
th
e
wate
r
q
u
alit
y
cla
s
s
i
f
icatio
n
r
esu
l
ts
in
2
0
0
9
M
o
n
t
h
s
W
a
t
e
r
Q
u
a
l
i
t
y
C
l
a
ssi
f
i
c
a
t
i
o
n
R
e
su
l
t
s
S
T
O
R
ET
F
u
z
z
y
T
su
k
a
mo
t
o
O
p
t
i
mi
z
e
d
F
u
z
z
y
T
su
k
a
mo
t
o
Jan
u
a
r
y
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
F
e
b
r
u
a
r
y
H
e
a
v
i
l
y
p
o
l
l
u
t
e
d
H
e
a
v
i
l
y
p
o
l
l
u
t
e
d
H
e
a
v
i
l
y
p
o
l
l
u
t
e
d
M
a
r
c
h
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
A
p
r
i
l
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
a
y
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
Ju
n
e
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
Ju
l
y
L
i
g
h
t
l
y
p
o
l
l
u
t
e
d
L
i
g
h
t
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
A
u
g
u
st
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
S
e
p
t
e
mb
e
r
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
O
c
t
o
b
e
r
H
e
a
v
i
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
H
e
a
v
i
l
y
p
o
l
l
u
t
e
d
N
o
v
e
mb
e
r
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
D
e
c
e
mb
e
r
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
M
o
d
e
r
a
t
e
l
y
p
o
l
l
u
t
e
d
B
ased
o
n
th
e
clas
s
i
f
icatio
n
r
esu
lt
s
u
s
i
n
g
f
u
zz
y
T
s
u
k
a
m
o
t
o
,
5
7
r
ec
o
r
d
s
o
f
th
e
r
iv
er
w
a
ter
s
a
m
p
le
p
r
o
d
u
ce
th
e
s
a
m
e
c
lass
t
y
p
e
o
f
cla
s
s
i
f
icatio
n
r
es
u
lt
s
w
er
e
p
er
f
o
r
m
ed
u
s
i
n
g
ST
OR
E
T
m
et
h
o
d
.
T
h
is
i
n
d
icate
s
th
at
t
h
e
ac
cu
r
ac
y
v
al
u
e
o
b
tain
ed
is
9
5
%.
8.
CO
NCLU
SI
O
N
B
ased
o
n
t
h
e
te
s
ti
n
g
r
es
u
lts
a
n
d
an
a
l
y
s
is
t
h
at
h
as
b
ee
n
d
o
n
e,
it
ca
n
b
e
co
n
clu
d
ed
t
h
at
th
e
g
e
n
etic
alg
o
r
ith
m
ca
n
b
e
u
s
ed
to
o
p
ti
m
ize
th
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
in
t
h
e
f
u
zz
y
T
s
u
k
a
m
o
to
to
d
eter
m
in
e
t
h
e
r
iv
er
w
ater
q
u
alit
y
b
y
u
s
i
n
g
a
r
ea
l
co
d
e
r
ep
r
esen
tatio
n
.
T
h
e
g
e
n
etic
al
g
o
r
ith
m
p
ar
a
m
eter
s
t
h
at
ar
e
u
s
ed
g
r
ea
tl
y
af
f
ec
t
t
h
e
b
est
c
h
r
o
m
o
s
o
m
e
t
h
at
w
il
l
b
e
u
s
ed
as
t
h
e
v
alu
e
o
f
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
in
th
e
f
u
zz
y
T
s
u
k
a
m
o
to
.
T
h
e
p
ar
am
eter
s
to
p
r
o
d
u
ce
t
h
e
b
est
s
o
l
u
tio
n
ar
e
as
f
o
llo
w
s
:
p
o
p
u
latio
n
s
ize
i
s
8
0
,
g
e
n
er
at
io
n
n
u
m
b
er
is
1
7
5
,
cr
is
0
.
6
,
an
d
m
r
is
0
.
4
.
T
h
e
o
p
tim
izat
io
n
p
r
o
ce
s
s
o
f
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
in
t
h
e
f
u
z
z
y
T
s
u
k
a
m
o
to
u
s
i
n
g
g
en
et
ic
alg
o
r
it
h
m
to
m
ea
s
u
r
e
th
e
r
iv
er
w
a
ter
q
u
alit
y
is
p
r
o
v
en
to
p
r
o
d
u
ce
h
ig
h
er
ac
c
u
r
ac
y
v
al
u
e
th
at
is
eq
u
a
l
to
9
5
% c
o
m
p
ar
ed
to
th
e
m
ea
s
u
r
e
m
e
n
t
w
it
h
o
u
t o
p
ti
m
izatio
n
th
at
is
9
0
%.
0
.
9
3
2
0
.
9
3
2
0
.
9
3
5
0
.
9
3
3
0
.
9
3
2
0
.
9
3
3
0
.
9
3
7
0
.
9
3
5
0
.
9
3
5
0
.
9
3
5
0
.
9
3
0
0
.
9
3
2
0
.
9
3
4
0
.
9
3
6
0
.
9
3
8
25
50
75
1
0
0
1
2
5
1
5
0
1
7
5
2
0
0
2
2
5
2
5
0
A
v
e
ra
g
e
Fi
tn
e
s
s
V
a
lu
e
G
e
n
e
ra
ti
o
n
Nu
m
b
e
r
The
T
e
st of Ge
ne
ra
ti
on
Numbe
r
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l
.
7
,
No
.
5
,
Octo
b
er
201
7
:
2
8
3
8
–
2
8
4
6
2846
I
n
f
u
r
t
h
er
r
esear
c
h
,
t
h
e
o
p
ti
m
i
za
tio
n
o
f
r
u
le
b
ase
i
n
F
u
zz
y
I
n
f
er
e
n
ce
S
y
s
te
m
T
s
u
k
a
m
o
to
c
an
b
e
d
o
n
e
u
s
i
n
g
th
e
g
en
e
tic
alg
o
r
it
h
m
s
o
th
at
th
e
ac
c
u
r
ac
y
v
alu
e
o
b
t
ain
ed
to
b
e
h
ig
h
er
th
a
n
th
e
o
p
ti
m
izatio
n
p
r
o
ce
s
s
th
at
i
s
o
n
l
y
d
o
n
e
i
n
t
h
e
m
e
m
b
er
s
h
ip
f
u
n
ctio
n
.
T
h
e
u
s
e
o
f
h
y
b
r
id
izatio
n
o
f
g
en
e
tic
al
g
o
r
ith
m
a
n
d
Var
iab
le
Neig
h
b
o
r
h
o
o
d
Sear
ch
(
VNS)
ca
n
also
b
e
d
ev
elo
p
ed
o
n
th
is
is
s
u
e
s
o
t
h
at
th
e
s
o
l
u
tio
n
o
b
t
ain
ed
o
p
ti
m
al
an
d
ef
f
icien
t [
2
1
]
.
RE
F
E
R
E
NC
E
S
[1
]
Bo
sk
id
is
I,
G
ik
a
s
GD
,
S
y
laio
s
G
,
T
sih
rin
tzis
V
A
.
“
W
a
ter
Qu
a
n
ti
ty
a
n
d
Qu
a
li
ty
A
ss
e
ss
m
e
n
t
o
f
L
o
w
e
r
Ne
sto
s
Riv
e
r,
”
G
re
e
c
e
.
J E
n
v
iro
n
S
c
i
He
a
l
P
a
rt
A
T
o
x
ic/Ha
z
a
rd
o
u
s S
u
b
st
En
v
iro
n
En
g
.
2
0
1
1
;
4
6
(1
0
):
1
0
5
0
–
6
7
.
[2
]
A
la
m
G
M
R,
S
o
e
b
ro
to
A
A
,
De
w
i
C.
“
I
m
p
le
m
e
n
tas
i
F
u
z
z
y
In
fe
re
n
c
e
S
y
ste
m
(F
IS
)
M
e
to
d
e
T
su
k
a
m
o
to
p
a
d
a
S
istem
P
e
n
d
u
k
u
n
g
Ke
p
u
t
u
sa
n
P
e
n
e
n
tu
a
n
Ku
a
li
tas
A
ir
S
u
n
g
a
i
[
Im
p
le
m
e
n
ta
ti
o
n
o
f
F
u
z
z
y
In
fe
re
n
c
e
S
y
ste
m
(
F
IS
)
T
su
k
a
m
o
to
M
e
th
o
d
o
n
De
c
isio
n
S
u
p
p
o
rt
S
y
s
tem
f
o
r
De
ter
m
in
a
ti
o
n
o
f
Riv
e
r
W
a
ter
Qu
a
li
ty
]
.
”
DO
RO
R
e
p
o
s
J
M
h
s
P
T
IIK
Un
iv
Bra
w
ij
a
y
a
.
2
0
1
5
;
5
(
6
).
[3
]
M
a
h
m
u
d
y
W
F
.
“
S
o
lv
in
g
F
lex
ib
le
Jo
b
-
S
h
o
p
S
c
h
e
d
u
li
n
g
P
ro
b
lem
U
sin
g
Im
p
ro
v
e
d
Re
a
l
Co
d
e
d
G
e
n
e
t
ic
A
l
g
o
rit
h
m
s.
”
In
t
Co
n
f
S
c
i
T
e
c
h
n
o
l
S
u
sta
in
.
2
0
1
4
;
1
8
1
–
8
.
[4
]
W
ij
a
y
a
n
in
g
ru
m
V
N,
M
a
h
m
u
d
y
W
F
.
“
Op
ti
m
iza
ti
o
n
o
f
S
h
i
p
’s
Ro
u
te
S
c
h
e
d
u
li
n
g
Us
in
g
G
e
n
e
ti
c
A
l
g
o
rit
h
m
.
”
In
d
o
n
e
s
J E
lec
tr
En
g
Co
m
p
u
t
S
c
i
.
2
0
1
6
;
2
(1
):1
8
0
–
6
.
[5
]
L
e
s
m
a
w
a
ti
W
,
Ra
h
m
i
A
,
M
a
h
m
u
d
y
W
F
.
“
Op
ti
m
iz
a
ti
o
n
o
f
F
ro
z
e
n
F
o
o
d
Distri
b
u
ti
o
n
u
si
n
g
G
e
n
e
ti
c
A
lg
o
rit
h
m
s.
”
J
En
v
iro
n
En
g
S
u
sta
in
T
e
c
h
n
o
l.
2
0
1
6
;
3
(1
)
:5
1
–
8
.
[6
]
S
h
o
l
ich
in
M
,
Ot
h
m
a
n
F
,
L
ima
n
tara
L
M
.
“
Us
e
o
f
P
I
a
n
d
S
T
ORE
T
M
e
th
o
d
s
t
o
Ev
a
lu
a
te
W
a
ter
Qu
a
li
ty
S
tatu
s
o
f
Bra
n
tas
Riv
e
r.
”
J M
a
th
T
e
c
h
n
o
l.
2
0
1
0
;
3:
1
1
6
–
1
2
4
.
[7
]
Zad
e
h
L
A
.
F
u
z
z
y
S
e
ts.
In
f
Co
n
tro
l.
1
9
6
5
;
8:
3
3
8
–
5
3
.
[8
]
Zu
o
ji
e
W
.
“
Co
n
c
e
p
t
S
o
l
u
ti
o
n
G
e
n
e
ra
ti
o
n
f
o
r
P
ro
d
u
c
t
In
n
o
v
a
ti
o
n
u
n
d
e
r
Us
e
r
F
u
z
z
y
S
e
m
a
n
ti
c
Re
q
u
irem
e
n
ts.
”
In
t
J
In
tell
E
n
g
S
y
st.
2
0
1
5
;
8
(3
):
1
–
1
0
.
[9
]
M
lak
ić
D,
Nik
o
lo
v
sk
i
S
N,
Kn
e
ž
e
v
ić
G
.
“
A
n
A
d
a
p
ti
v
e
Ne
u
ro
-
F
u
z
z
y
In
fe
re
n
c
e
S
y
ste
m
in
A
ss
e
ss
m
e
n
t
o
f
Tec
h
n
ica
l
L
o
ss
e
s in
Distrib
u
ti
o
n
Ne
tw
o
rk
s.
”
In
t
J E
lec
tr
C
o
m
p
u
t
En
g
.
2
0
1
6
;
6
(3
):
1
2
9
4
–
3
0
4
.
[1
0
]
P
e
n
g
Z,
S
o
n
g
B.
“
Re
se
a
rc
h
o
n
F
a
u
lt
Dia
g
n
o
sis
M
e
th
o
d
f
o
r
T
ra
n
sf
o
rm
e
r
b
a
se
d
o
n
F
u
z
z
y
G
e
n
e
ti
c
A
lg
o
rit
h
m
a
n
d
A
rti
f
icia
l
Ne
u
ra
l
Ne
t
w
o
rk
.
”
K
y
b
e
rn
e
tes
.
2
0
1
0
;
3
9
(8
)
:1
2
3
5
–
4
4
.
[1
1
]
S
iv
a
sa
n
k
a
r
S
,
Na
ir
S
,
Ju
d
y
M
V.
“
F
e
a
tu
re
Re
d
u
c
ti
o
n
in
Cli
n
ica
l
Da
ta
Clas
sif
ic
a
ti
o
n
u
si
n
g
A
u
g
m
e
n
ted
G
e
n
e
ti
c
A
l
g
o
rit
h
m
.
”
In
t
J E
lec
tr
Co
m
p
u
t
En
g
.
2
0
1
5
;
5
(6
):
1
5
1
6
–
2
4
.
[1
2
]
M
a
h
d
i
H
o
m
a
y
o
u
n
i
S
,
Ho
n
g
T
a
n
g
S
.
“
A
F
u
z
z
y
Ge
n
e
ti
c
A
lg
o
rit
h
m
fo
r
S
c
h
e
d
u
li
n
g
o
f
Ha
n
d
li
n
g
/S
t
o
ra
g
e
Eq
u
i
p
m
e
n
t
in
A
u
to
m
a
ted
Co
n
tain
e
r
T
e
rm
in
a
ls.
”
In
t
J E
n
g
T
e
c
h
n
o
l.
2
0
1
5
;
7
(
6
):
4
9
7
–
5
0
1
.
[1
3
]
B
W
ira
w
a
n
Yo
h
a
n
e
s,
H
Ha
n
d
o
k
o
,
H
Ku
su
m
a
W
a
rd
a
n
a
,
"
F
o
c
u
se
d
Cra
w
l
e
r
Op
ti
m
iza
ti
o
n
Us
in
g
G
e
n
e
ti
c
A
lg
o
rit
h
m
,
”
T
EL
KOM
NIKA
T
e
lec
o
mm
u
n
ic
a
ti
o
n
,
C
o
mp
u
ti
n
g
,
El
e
c
tro
n
ics
a
n
d
Co
n
tro
l.
,
v
o
l
.
9
,
n
o
.
3
,
p
p
.
4
0
3
-
4
1
0
,
2
0
1
1
.
[1
4
]
L
a
u
HCW
,
N
a
k
a
n
d
a
la
D,
Zh
a
o
L
.
“
De
v
e
lo
p
m
e
n
t
o
f
a
H
y
b
rid
F
u
z
z
y
G
e
n
e
ti
c
A
l
g
o
rit
h
m
M
o
d
e
l
f
o
r
S
o
lv
in
g
T
ra
n
sp
o
rtatio
n
S
c
h
e
d
u
li
n
g
P
ro
b
le
m
.
”
J In
f
S
y
st T
e
c
h
n
o
l
M
a
n
a
g
.
2
0
1
5
;
1
2
(
3
):
5
0
5
–
24.
[1
5
]
Co
ley
D
A
.
“
A
n
In
tro
d
u
c
ti
o
n
to
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s
f
o
r
S
c
ien
ti
sts
a
n
d
En
g
in
e
e
rs.
”
W
o
rld
S
c
ien
t
if
ic;
1
9
9
9
.
1
2
5
-
1
2
6
p
.
[1
6
]
M
ü
h
le
n
b
e
i
n
H,
S
c
h
li
e
rk
a
m
p
-
V
o
o
se
n
D.
“
P
re
d
ictiv
e
M
o
d
e
ls
f
o
r
th
e
Bre
e
d
e
r
G
e
n
e
ti
c
A
lg
o
rit
h
m
:
Co
n
ti
n
u
o
u
s
P
a
ra
m
e
ter Op
ti
m
i
z
a
ti
o
n
.
”
Ev
o
l
C
o
m
p
u
t.
1
9
9
3
;
1
:2
5
–
4
9
.
[1
7
]
S
iv
a
n
a
n
d
a
m
S
N,
De
e
p
a
S
N.
“
In
tr
o
d
u
c
t
io
n
to
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s.
”
Ne
w
Yo
rk
,
USA
:
S
p
rin
g
e
r;
2
0
0
8
.
[1
8
]
S
in
g
h
S
,
A
g
ra
w
a
l
S
.
“
P
a
ra
m
e
t
e
r
Id
e
n
ti
f
ica
ti
o
n
o
f
th
e
G
la
z
e
d
P
h
o
t
o
v
o
lt
a
ic
T
h
e
rm
a
l
S
y
ste
m
u
sin
g
G
e
n
e
ti
c
A
l
g
o
rit
h
m
-
F
u
z
z
y
S
y
ste
m
(
GA
-
F
S
)
A
p
p
ro
a
c
h
a
n
d
it
s
Co
m
p
a
ra
ti
v
e
S
tu
d
y
.
”
En
e
rg
y
Co
n
v
e
rs
M
a
n
a
g
.
2
0
1
5
;
1
0
5
:
7
6
3
–
71.
[1
9
]
M
a
h
m
u
d
y
W
F
,
M
a
rian
RM
,
L
u
o
n
g
L
HS.
“
M
o
d
e
li
n
g
a
n
d
Op
ti
m
iza
ti
o
n
o
f
P
a
rt
Ty
p
e
S
e
lec
ti
o
n
a
n
d
L
o
a
d
in
g
P
ro
b
lem
in
F
lex
ib
le
M
a
n
u
f
a
c
tu
rin
g
S
y
ste
m
U
sin
g
Re
a
l
Co
d
e
d
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s.
”
In
t
J
El
e
c
tr
Co
m
p
u
t
El
e
c
tro
n
Co
m
m
u
n
En
g
.
2
0
1
3
;
7
(4
):
2
5
1
–
6
0
.
[2
0
]
He
rre
ra
F
,
L
o
z
a
n
o
M
.
“
F
u
z
z
y
A
d
a
p
ti
v
e
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s:
De
sig
n
,
T
a
x
o
n
o
m
y
,
a
n
d
F
u
tu
re
Dire
c
ti
o
n
s.
”
S
o
f
t
Co
m
p
u
t.
2
0
0
3
;
7
(8
):
5
4
5
–
6
2
.
[2
1
]
M
a
h
m
u
d
y
W
F
,
M
a
rian
RM
,
L
u
o
n
g
L
HS.
“
H
y
b
rid
G
e
n
e
ti
c
A
lg
o
rit
h
m
s
f
o
r
M
u
lt
i
-
P
e
ri
o
d
P
a
r
t
Ty
p
e
S
e
lec
ti
o
n
a
n
d
M
a
c
h
in
e
L
o
a
d
i
n
g
P
ro
b
lem
s
in
F
lex
ib
le
M
a
n
u
f
a
c
tu
rin
g
S
y
s
tem
.
”
In
:
IE
EE
I
n
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Co
m
p
u
tatio
n
a
l
I
n
telli
g
e
n
c
e
a
n
d
C
y
b
e
rn
e
ti
c
s.
2
0
1
3
.
p
p
.
1
2
6
–
3
0
.
Evaluation Warning : The document was created with Spire.PDF for Python.