I
n
t
ern
a
t
i
o
n
a
l
J
o
u
rn
a
l
o
f
E
l
ect
ri
ca
l
a
n
d
C
o
m
p
u
t
er E
n
g
i
n
eeri
n
g
(
I
J
E
C
E
)
V
o
l.
6
,
No
.
5
,
O
c
t
obe
r
20
1
6
, p
p
.
19
56
~
1
966
I
S
S
N
:
2088
-
8708
,
DOI
:
10.
11
591/
i
j
ece
.
v
6i
5
.
11
802
1956
Jou
r
n
al
h
om
e
p
age
:
ht
t
p:
/
/
i
ae
s
j
our
nal
.
c
om
/
onl
i
ne
/
i
nde
x
.
ph
p
/
I
J
E
C
E
Des
ig
n o
f
O
bs
erv
er
-
Ba
se
d
Ro
bus
t
P
o
w
er Sy
s
t
e
m
St
a
bilizers
H
i
s
ha
m
M
.
So
l
i
m
a
n
1,
2
,
M
ah
m
ou
d
S
ol
i
m
an
3
1
D
ep
ar
t
m
en
t
o
f
E
l
ect
r
i
cal
an
d
C
o
m
p
u
t
er
E
n
g
i
n
eer
i
n
g
,
S
u
l
t
an
Q
ab
o
o
s
U
n
iv
e
r
s
ity
,
O
m
a
n
2
Ele
c
tr
ic
a
l En
g
in
e
e
r
in
g
D
e
p
a
r
tm
e
n
t,
C
a
ir
o
U
n
iv
e
r
s
ity
,
B
.
O
.
1
2
6
1
3
,
G
iz
a
,
Eg
y
p
t
3
D
ep
ar
t
m
en
t
o
f
E
l
ect
r
i
cal
P
o
w
er
an
d
M
ach
i
n
es
,
B
en
h
a U
n
i
v
er
s
i
t
y
,
B
.
O
.
1
1
2
4
1
,
C
ai
r
o
,
E
g
y
p
t
A
rt
i
cl
e I
n
f
o
AB
S
T
RAC
T
A
r
tic
le
h
is
to
r
y
:
R
ecei
v
ed
M
a
y
20
,
201
6
Re
v
i
s
e
d
J
ul
3
,
201
6
A
ccep
t
ed
J
ul
21
,
201
6
P
o
w
e
r
s
y
s
t
e
m
s
a
r
e
s
u
b
je
c
t to
u
n
d
e
s
ir
a
b
le
s
m
a
ll o
s
c
illa
tio
n
s
th
a
t
m
i
g
h
t g
r
o
w
t
o c
a
us
e
s
y
s
t
e
m
s
hut
dow
n a
nd
c
o
ns
e
que
nt
l
y
g
r
e
a
t
l
os
s
of
na
t
i
ona
l
e
c
onom
y
.
T
he
pr
e
s
e
nt
m
a
nus
c
r
i
pt
pr
op
os
e
s
t
w
o de
s
i
g
ns
f
or
obs
e
r
v
e
r
-
ba
s
e
d r
o
bus
t
pow
e
r
s
y
s
t
e
m
s
ta
b
iliz
e
r
(
P
S
S
)
u
s
in
g
L
in
e
a
r
M
a
tr
ix
I
n
e
q
u
a
l
ity
(
L
M
I
)
a
ppr
oa
c
h t
o
da
m
p s
uc
h os
c
i
l
l
a
t
i
ons
.
A
m
ode
l
t
o de
s
c
r
i
be
pow
e
r
s
y
s
t
e
m
dy
na
m
i
c
s
f
or
di
f
f
e
r
e
nt
l
oa
ds
i
s
d
e
r
i
v
e
d i
n t
he
nor
m
-
bo
un
de
d f
or
m
.
T
he
f
i
r
s
t
c
ont
r
o
l
l
e
r
de
s
i
g
n i
s
ba
s
e
d on
t
h
e
de
r
i
v
e
d m
ode
l
t
o a
c
hi
e
v
e
r
o
b
u
s
t s
ta
b
ility
ag
ai
n
s
t
l
o
ad
v
ar
i
at
i
o
n
.
T
h
e
d
es
i
g
n
i
s
b
as
ed
o
n
a
n
ew
B
i
l
i
n
ear
m
at
r
i
x
in
e
q
u
a
li
ty
(
B
M
I
)
c
o
n
d
iti
o
n
.
T
h
e
B
M
I
o
p
tim
iz
a
tio
n
is
s
o
lv
e
d
in
te
r
a
tiv
e
l
y
in
t
e
r
m
s
of
L
i
ne
a
r
M
a
t
r
i
x
I
ne
qua
l
i
t
y
(
L
M
I
)
f
r
a
m
e
w
or
k
.
T
he
c
ondi
t
i
on c
o
nt
a
i
n
s
a s
y
m
m
et
r
i
c p
o
s
i
t
i
v
e
d
e
f
in
ite
f
u
ll m
a
tr
ix
to
b
e
o
b
ta
in
e
d
,
r
a
th
e
r
th
a
n
th
e
c
om
m
onl
y
us
e
d bl
oc
k
d
i
a
g
ona
l
f
or
m
.
T
he
di
f
f
i
c
ul
t
y
i
n f
i
ndi
ng
a
f
e
a
s
i
bl
e
s
o
lu
ti
o
n
is
th
u
s
a
lle
v
ia
te
d
.
T
h
e
r
e
s
u
ltin
g
L
M
I
is
o
f
s
m
a
ll s
iz
e
,
e
a
s
y
to
s
o
lv
e
.
T
he
s
e
c
ond
P
S
S
de
s
i
g
n s
hi
f
t
s
t
he
c
l
os
e
d l
o
op
p
ol
es
i
n
a
d
es
i
r
ed
r
eg
i
o
n
s
o
as
t
o
ach
i
ev
e a
f
a
v
o
r
i
t
e s
et
t
l
i
n
g
t
i
m
e an
d
d
am
p
i
n
g
r
at
i
o
v
i
a a n
o
n
-
ite
r
a
tiv
e
s
ol
ut
i
on
t
o
a
s
e
t
of
L
M
I
s
.
T
he
a
p
pr
oa
c
h
pr
ov
i
de
s
a
s
y
s
t
e
m
a
t
i
c
w
a
y t
o
de
s
i
g
n
a
r
obus
t
o
ut
p
ut
f
e
e
dba
c
k
P
S
S
w
hi
c
h g
ua
r
a
nt
e
e
s
g
oo
d dy
na
m
i
c
pe
r
f
or
m
a
nc
e
fo
r
d
i
f
f
er
en
t
l
o
ad
s
.
S
i
m
ul
a
t
i
on r
e
s
ul
t
s
ba
s
e
d on s
i
ng
l
e
-
m
ach
i
n
e an
d
m
u
l
t
i
-
m
a
c
hi
ne
pow
e
r
s
y
s
t
e
m
m
ode
l
s
v
e
r
i
f
y
t
he
a
bi
l
i
t
y
of
t
he
pr
opos
e
d P
S
S
t
o
s
a
t
i
s
f
y
c
ont
r
ol
obj
e
c
t
i
v
e
s
f
or
a
w
i
de
r
a
ng
e
of
l
oa
d c
o
ndi
t
i
o
ns
.
Ke
y
wo
rd
:
B
ilin
e
a
r
M
a
tr
ix
I
ne
q
ua
l
i
t
y
L
i
n
ear
M
a
tr
ix
I
ne
q
ua
l
i
t
y
D
yna
m
i
c
S
ta
b
ilit
y
Ro
b
u
st
P
o
le
P
l
acem
e
n
t
P
SS D
e
si
g
n
C
opy
r
i
g
ht
©
201
6
I
ns
t
i
t
ut
e
o
f
A
d
v
anc
e
d E
ngi
ne
e
r
i
ng
an
d
Sc
i
e
nc
e
.
A
l
l
ri
g
h
t
s re
se
rv
e
d
.
Co
rre
sp
o
n
d
i
n
g
Au
t
h
o
r
:
H
i
s
h
a
m M
.
S
o
l
i
ma
n
,
D
ep
ar
t
m
en
t
o
f
E
l
ect
r
i
cal
an
d
C
o
m
p
u
t
er
E
n
g
i
n
eer
i
n
g
,
S
ul
t
a
n Q
a
b
o
o
s
U
ni
ve
r
s
i
t
y,
O
ma
n
.
E
m
a
i
l
:
hs
o
l
i
m
a
n1
@
s
q
u.
e
d
u.
o
m
1.
I
NT
RO
D
UCT
I
O
N
P
o
w
e
r
s
y
s
te
m
s
e
x
h
ib
it u
n
d
e
s
ir
a
b
le
o
s
c
illa
tio
n
s
a
t lo
w
f
r
e
q
u
e
n
c
ie
s
t
h
a
t
m
a
y
d
e
c
a
y
g
r
a
d
u
a
ll
y
,
o
r
g
r
o
w
c
o
nt
i
n
uo
u
s
l
y
r
e
s
ul
t
i
n
g i
n s
ys
t
e
m
s
e
p
a
r
a
t
i
o
n.
T
he
s
o
ur
c
e
o
f
s
uc
h o
s
c
i
l
l
a
t
i
o
n i
s
c
o
nt
i
n
uo
us
l
o
a
d
c
ha
nge
s
,
s
e
r
i
e
s
o
f
l
i
g
ht
ni
ng s
t
r
o
ke
s
a
nd
t
he
a
s
s
o
c
i
a
t
e
d
a
ut
o
-
r
ecl
o
s
u
r
e o
f
ci
r
cu
i
t
b
r
eak
er
s
,
g
r
i
d
t
o
p
o
l
o
g
y
c
h
an
g
e
s
.
.
et
c.
P
o
w
er
s
y
s
te
m
g
e
n
e
r
a
to
r
s
a
r
e
e
q
u
ip
p
e
d
w
it
h
A
u
to
m
a
tic
V
o
lta
g
e
R
e
g
u
la
to
r
s
(
A
V
R
)
to
c
o
n
tr
o
l i
ts
te
r
m
i
n
a
l
v
o
lta
g
e
.
H
o
we
v
e
r
,
t
he
hi
g
h
-
ga
i
n
A
V
R
m
a
y a
d
d
ne
ga
t
i
ve
d
a
m
p
i
ng t
o
t
he
s
y
s
t
e
m
a
nd
w
o
r
s
e
n i
t
s
d
yna
m
i
c
s
t
a
b
i
l
i
t
y
.
A
s
u
p
p
le
m
e
n
ta
r
y
s
ta
b
iliz
in
g
s
i
g
n
a
l is
a
d
d
e
d
to
th
e
e
x
c
ita
tio
n
u
s
i
n
g
P
o
w
e
r
S
y
s
te
m
S
ta
b
i
liz
e
r
(
P
S
S
)
[
1
]
t
o
o
v
er
co
m
e t
h
i
s
p
r
o
b
l
em
.
T
h
e
m
a
i
n
pr
obl
e
m
e
n
c
oun
t
e
r
e
d i
n
t
h
e
C
la
s
s
ic
a
l P
S
S
(
C
P
S
S
)
d
e
s
ig
n
is
t
h
a
t
w
h
e
n
t
h
e
c
o
n
tr
o
lle
r
is
d
es
i
g
n
ed
at
o
n
e o
p
er
at
i
n
g
p
o
i
n
t
,
t
h
er
e
i
s
n
o
g
u
ar
an
t
ee
t
h
at
i
t
p
er
f
o
r
m
s
w
e
l
l
o
n
an
o
t
h
er
.
M
an
y
ap
p
r
o
ach
es
,
ba
s
e
d on
r
obu
s
t
c
on
t
r
ol
t
h
e
or
y
,
h
a
v
e
be
e
n
s
ugg
e
s
t
e
d t
o c
ope
w
i
t
h
m
ode
l
un
c
e
r
t
a
i
n
t
i
e
s
.
I
n [
1
]
,
a
n
in
te
r
v
a
l p
la
n
t
m
ode
l
i
s
c
ons
i
de
r
e
d t
o c
a
pt
u
r
e
po
w
e
r
s
y
s
t
e
m
u
n
c
e
r
t
a
i
n
t
i
e
s
a
n
d K
h
a
r
i
t
o
n
ov
t
h
e
or
e
m
i
s
a
dopt
e
d t
o de
s
i
g
n
a
f
i
r
s
t
o
r
d
e
r
P
S
S
.
R
o
b
us
t
P
S
S
d
e
s
i
g
n
us
i
ng r
o
b
u
s
t
c
o
nt
r
o
l
t
e
c
hni
q
ue
s
s
uc
h a
s
H
∞
o
p
t
i
m
i
z
a
t
i
o
n
a
nd
μ
s
ynt
he
s
i
s
i
s
gi
ve
n i
n [
2]
,
[
3
]
.
A
n o
ut
p
ut
f
e
e
d
b
a
c
k P
S
S
i
s
d
e
s
i
gne
d
us
i
n
g
L
M
I
s
t
o
gua
r
a
nt
e
e
r
o
b
us
t
s
t
a
b
i
l
i
t
y
i
s
gi
ve
n i
n [
4
]
.
A
r
eg
i
o
n
al
p
o
l
e co
n
s
t
r
ai
n
t
i
s
ad
d
ed
an
d
a
q
u
ad
r
at
i
c p
er
f
o
r
m
an
ce i
n
d
ex
i
s
m
i
n
i
m
i
zed
,
f
o
r
o
n
l
y
t
h
e n
o
m
i
n
al
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
S
S
N
:
2088
-
8708
D
es
i
g
n
o
f
O
b
s
er
ver
-
B
as
e
d R
obus
t
P
ow
e
r
Sy
s
t
e
m
St
abi
l
i
z
e
r
s
(
H
i
s
ham
M
.
Sol
i
m
an)
1957
pl
a
n
t
.
T
h
e
pr
obl
e
m
s
of
n
o
m
i
n
a
l
s
y
s
t
e
m
de
s
i
gn
a
r
e
:
(
1)
i
t
doe
s
n
ot
gu
a
r
a
n
t
e
e
a
de
qu
a
t
e
da
m
pi
ng
f
or
ot
h
e
r
ope
r
a
t
i
n
g
c
on
di
t
i
on
s
,
(
2)
t
h
e
pe
r
f
or
m
a
n
c
e
i
s
gu
a
r
a
nt
e
e
d a
r
ou
n
d t
h
e
n
o
m
i
n
a
l
ope
r
a
t
i
n
g
poi
n
t
on
l
y
.
F
or
t
h
i
s
,
a
mi
x
e
d
H
2
/H
∞
c
o
n
tr
o
lle
r
to
a
c
h
ie
v
e
r
o
b
u
s
t p
o
le
p
la
c
e
m
e
n
t
f
o
r
F
le
x
ib
le
A
C
T
r
a
n
s
m
i
s
s
io
n
S
y
s
te
m
s
(
F
A
C
T
S
)
is
gi
ve
n i
n [
5
]
.
R
obu
s
t
pol
e
pl
a
c
e
m
e
nt
f
or
pol
y
t
opi
c
un
c
e
r
t
a
i
n
t
y
u
s
i
ng
a
n
L
M
I
-
b
as
ed
s
t
a
t
e
f
eed
b
ack
P
S
S
i
s
gi
ve
n
i
n
[
6
]
.
F
A
C
T
S
c
on
t
r
ol
l
e
r
s
a
r
e
u
s
e
d t
o e
nh
a
n
c
e
pow
e
r
s
y
s
t
e
m
os
c
i
l
l
a
t
i
on da
m
pi
n
g i
s
g
i
v
e
n
i
n
[
7
]
.
S
ta
b
iliz
a
tio
n
o
f
p
o
w
e
r
s
y
s
te
m
s
s
u
b
j
e
c
t to
d
r
a
s
t
i
c
c
ha
nge
s
s
u
c
h a
s
c
o
nt
r
o
l
l
e
r
s
'
f
a
i
l
ur
e
,
i
s
gi
ve
n i
n [
8
]
,
[
9
]
. [
10
]
m
o
d
el
s
p
o
w
er
s
y
s
t
e
m
s
s
u
b
j
ect
t
o
a s
er
i
es
o
f
l
i
g
h
t
n
i
n
g
s
t
r
o
k
es
,
an
d
t
h
e
co
n
s
eq
u
e
n
t
ci
r
cu
i
t
b
r
eak
er
s
au
t
o
-
r
ecl
o
s
u
r
e,
as
a Mar
k
o
v
ch
ai
n
.
T
h
e P
S
S
i
s
t
h
e
n
d
es
i
g
n
ed
t
o
t
ack
l
e
t
h
i
s
s
i
t
u
at
i
o
n
.
R
ece
n
t
l
y
F
r
act
i
o
n
al
-
o
rd
e
r
P
ID
-
P
S
S
a
ppe
a
r
s
i
n
[
11]
.
I
n
t
h
i
s
m
a
n
u
s
cr
i
p
t
,
p
o
w
er
s
y
s
t
e
m
s
s
m
al
l
o
s
ci
l
l
at
i
o
n
s
ar
o
u
n
d
an
o
p
er
at
i
n
g
p
o
i
n
t
ar
e r
ep
r
es
en
t
ed
b
y
a
l
i
n
ear
m
o
d
el
.
T
h
e
u
n
cer
t
ai
n
t
y
d
u
e t
o
l
o
ad
v
ar
i
at
i
o
n
i
s
m
o
d
el
ed
i
n
t
h
e f
o
r
m
o
f
a
n
o
r
m
-
bounde
d s
t
r
u
c
t
u
r
e
.
T
wo
P
S
S
d
es
i
g
n
s
,
b
as
ed
o
n
t
h
i
s
m
o
d
el
,
ar
e p
r
es
en
t
ed
.
T
h
e f
i
r
s
t
d
es
i
g
n
g
u
ar
a
n
t
ees
r
o
b
u
s
t
s
t
ab
i
l
i
t
y
u
n
d
er
al
l
ex
p
ect
ed
l
o
ad
s
.
T
h
e d
es
i
g
n
o
f
t
h
e r
o
b
u
s
t
o
u
t
p
u
t
f
eed
b
ack
co
n
t
r
o
l
l
er
i
s
car
r
i
ed
o
u
t
as
a B
M
I
o
p
t
i
m
i
zat
i
o
n
pr
obl
e
m
.
A
n
a
l
g
or
i
t
hm
i
s
pr
opos
e
d t
o s
ol
v
e
t
h
is
B
M
I
o
p
tim
iz
a
tio
n
p
r
o
b
le
m
i
n
t
h
e
n
u
m
e
r
ic
a
ll
y
e
f
f
ic
ie
n
t
L
M
I
f
r
am
ew
o
r
k
[
12
]
.
I
n
a
d
d
itio
n
to
th
e
c
o
n
s
tr
a
in
t o
f
r
o
b
u
s
t s
ta
b
ilit
y
,
th
e
s
e
c
o
n
d
P
S
S
d
e
s
ig
n
c
o
n
tr
o
ls
b
o
th
th
e
d
e
s
ir
e
d
s
e
ttli
n
g
t
i
m
e
t
s
a
n
d da
m
p
i
ng
r
a
t
i
o
ζ
[
13
] u
n
d
e
r d
i
ffe
re
n
t
l
o
a
d
s
b
y
f
o
rc
i
n
g
t
h
e
c
l
os
e
d l
oop p
ol
e
s
t
o l
i
e
i
n
a d
es
i
r
ed
d
o
m
ai
n
.
T
h
e
m
a
nus
c
r
i
pt
i
s
or
g
a
ni
z
e
d
a
s
f
ol
l
o
w
s
.
T
h
e
pr
obl
e
m
i
s
f
or
m
u
l
a
t
e
d i
n S
e
c
.
2 a
n
d po
w
e
r
s
y
s
t
e
m
dy
n
a
m
i
c
s
,
a
r
oun
d a
n
ope
r
a
t
i
n
g
poi
n
t
,
a
r
e
m
ode
l
l
e
d i
n
t
h
e
n
or
m
-
boun
de
d f
or
m
.
T
w
o P
S
S
de
s
i
g
ns
a
r
e
d
es
cr
i
b
ed
i
n
S
ec
.
3
in
t
h
e
f
o
r
m
o
f
L
M
I
s
; t
h
e
f
ir
s
t d
e
s
i
g
n
a
c
h
ie
v
e
s
r
o
b
u
s
t
s
ta
b
ilit
y
,
w
h
ile
th
e
o
th
e
r
s
a
tis
f
ie
s
r
e
g
io
n
a
l p
o
le
p
la
c
e
m
e
n
t c
o
n
s
t
r
a
in
t.
S
i
m
u
la
tio
n
r
e
s
u
lt
s
f
o
r
s
i
n
g
le
-
m
a
c
hi
ne
i
n
f
i
ni
t
e
-
b
us
a
nd
m
ul
t
i
-
m
a
c
hi
ne
t
e
s
t
p
o
w
er
s
y
s
t
e
m
s
ar
e g
i
v
e
n
i
n
S
e
c.
4
.
S
ec.
5
co
n
cl
u
d
es
t
h
e p
ap
e
r
.
N
ot
at
i
on
an
d
f
ac
t
s
[
14
]
:
T
h
e
n
o
ta
tio
n
u
s
e
d
t
h
r
o
u
g
h
o
u
t t
h
is
p
a
p
e
r
is
s
ta
n
d
a
r
d
.
C
a
p
ita
l le
tt
e
r
s
d
e
n
o
te
m
at
r
i
ces
,
s
m
al
l
l
et
t
er
s
d
en
o
t
e
v
ect
o
r
s
an
d
s
m
al
l
G
r
eek
l
e
t
t
er
s
d
en
o
t
e s
cal
ar
s
.
W
'
,
W
-
1
d
en
o
t
es
t
h
e t
r
an
s
p
o
s
e,
a
nd
t
he
i
nve
r
s
e
o
f
a
n
y s
q
ua
r
e
m
a
t
r
i
x
W
,
r
es
p
ect
i
v
e
l
y
.
W
>0
(
W
<0
)
d
en
o
t
es
a s
y
m
m
et
r
i
c p
o
s
i
t
i
v
e
(
n
e
g
at
i
v
e)
-
d
e
f
in
i
te
m
a
tr
i
x
W
,
a
n
d
I
d
e
n
o
te
s
th
e
id
e
n
tit
y
m
a
tr
i
x
o
f
a
n
a
p
p
r
o
p
r
ia
te
d
im
e
n
s
io
n
.
T
he
s
ym
b
o
l
•
i
s
u
s
ed
as
an
el
l
i
p
s
i
s
f
o
r
t
er
m
s
i
n
m
at
r
i
x
ex
p
r
es
s
i
o
n
s
t
h
at
ar
e i
n
d
u
ced
b
y
s
y
m
m
et
r
y
.
F
a
c
t 1
:
T
he
c
o
ngr
ue
nc
e
t
r
a
n
s
f
o
r
m
a
t
i
o
n H
'
W
H
d
o
e
s
no
t
c
ha
n
ge
t
he
d
e
f
i
n
i
t
e
ne
s
s
o
f
W
.
F
a
c
t 2
:
F
o
r
an
y
r
eal
m
at
r
i
ces
W
1
, W
2
,
a
nd
)
(
t
∆
w
i
t
h
ap
p
r
o
p
r
i
at
e
d
i
m
e
n
s
i
o
n
s
,
w
h
er
e
∆
'
∆
≤
I
,
↔
1
≤
∆
,
it
f
o
llo
w
s
t
h
a
t
W
1
∆
W
2
+
W
2
'
∆
'
W
1
'≤
ε
-
1
W
1
W
1
'
+
ε
W
2
'
W
2
,
ε>0
,
w
h
er
e
)
(
t
∆
r
e
pr
e
s
e
n
t
s
s
y
s
t
e
m
boun
de
d
no
r
m
u
nc
e
r
t
a
i
nt
y
.
F
a
c
t 3
:
(
S
c
hur
c
o
m
p
l
e
m
e
nt
)
:
T
hi
s
f
a
c
t
i
s
us
e
d
t
o
t
r
a
n
s
f
o
r
m
a
no
n
-
lin
e
a
r
m
a
tr
i
x
in
e
q
u
a
lit
y
to
a
li
n
e
a
r
o
n
e
.
G
iv
e
n
c
o
n
s
ta
n
t
m
a
tr
ic
e
s
W
1
, W
2
,
a
nd
W
3
,
w
h
er
e W
'
1
=W
1
,
a
n
d 0<
W
2
=W
'
2
,
it f
o
llo
w
s
t
h
a
t
0
0
'
2
3
'
3
1
3
1
2
3
1
<
−
↔
<
+
−
W
W
W
W
W
W
W
W
2.
P
R
O
B
LEM
F
O
R
M
U
LA
TI
O
N
T
h
e
cas
e
s
t
u
d
y
s
y
s
t
e
m
i
s
a
s
i
n
g
l
e
m
ac
h
i
n
e co
n
n
ect
ed
t
o
an
i
n
f
i
n
i
t
e
-
b
us
t
hr
o
ug
h a
t
i
e
l
i
ne
.
T
he
g
en
er
at
o
r
i
s
eq
u
i
p
p
ed
w
i
t
h
an
A
u
t
o
m
at
i
c V
o
l
t
ag
e
R
eg
u
l
at
o
r
(
A
V
R
)
an
d
a f
as
t
s
t
at
i
c e
x
ci
t
er
.
T
h
e s
y
s
t
e
m
d
y
n
a
m
i
cs
i
s
r
ep
r
es
en
t
ed
b
y
t
h
e f
o
u
r
t
h
o
r
d
er
l
i
n
ear
i
zed
m
o
d
el
[
15
]
.
T
h
e f
o
l
l
o
w
i
n
g
s
t
at
e s
p
ace
m
o
d
el
r
ep
r
es
en
t
s
t
h
e
:
Cx
y
Bu
x
A
x
=
+
=
,
*
(1
)
w
h
er
e:
[
]
'
'
fd
q
E
E
x
∆
∆
∆
∆
=
ω
δ
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
56
–
19
66
1958
[
]
[
]
,
0
0
1
0
,
/
0
0
0
,
1
0
1
1
0
0
0
0
0
0
'
6
5
3
4
2
1
*
=
=
−
−
−
−
−
−
−
−
=
C
T
K
T
T
k
K
T
k
K
T
k
T
T
k
M
k
M
k
A
E
E
E
E
E
E
E
'
do
'
do
'
do
o
B
ω
.
,
,
*
n
l
m
n
n
n
R
R
R
A
C
B
×
×
×
∈
∈
∈
T
he
s
ym
b
o
l
s
a
b
o
ve
ha
ve
t
he
i
r
us
ua
l
m
e
a
ni
ng
[
15
]
,
[
16
]
.
D
i
f
f
e
r
e
nt
P
S
S
i
np
ut
s
c
a
n b
e
us
e
d
,
l
i
ke
m
ach
i
n
e
s
h
a
f
t
s
p
eed
,
b
u
s
f
r
e
q
u
en
c
y
o
r
accel
er
at
i
n
g
p
o
w
er
.
T
h
e
m
at
r
i
x
C
i
s
s
o
s
el
ect
ed
,
b
ecau
s
e
t
h
e
m
o
s
t
co
m
m
o
n
l
y
u
s
ed
i
s
t
h
e
s
p
eed
v
ar
i
at
i
o
n
Δ
ω
.
T
y
p
ic
a
l d
a
ta
f
o
r
th
e
c
a
s
e
s
t
u
d
y
s
y
s
te
m
i
s
g
i
v
e
n
in
p
e
r
u
n
it,
u
n
le
s
s
o
th
e
r
w
i
s
e
s
ta
te
d
,
a
s
f
o
llo
w
s
:
S
ync
hr
o
no
us
m
a
c
hi
ne
p
a
r
a
m
e
t
e
r
s
:
MV
A
g
s
,
Ra
tin
ra
d
,
ω
s,
V
,
,T
.
,x
.
,x
.
x
o
'
do
'
d
q
d
M
100
/
314
1
10
6
32
0
55
1
6
1
=
=
=
=
=
=
=
=
E
x
ci
t
er
p
ar
a
m
et
e
r
s
:
s
.
,T
K
E
E
05
0
50
=
=
an
d
t
r
an
s
m
i
s
s
i
o
n
l
i
n
e r
eact
a
n
ce:
4
.
0
=
e
x
.
T
he
k
-
p
ar
a
m
et
er
s
o
f
t
h
e
m
o
d
el
d
ep
en
d
o
n
t
h
e r
eal
p
o
w
er
l
o
ad
i
n
g
P
,
an
d
t
h
e r
eact
i
v
e p
o
w
er
l
o
ad
i
n
g
Q
.
D
i
r
ect
an
al
y
t
i
cal
ex
p
r
es
s
i
o
n
s
t
h
at
r
el
at
e p
ar
a
m
e
t
er
s
(
k
1
,k
2
,...,k
6
)
to
(
P
,
Q
)
ar
e d
er
i
v
ed
i
n
[
1
]
.
T
he
l
o
a
d
c
o
n
d
itio
n
s
(
P
,
Q
)
a
t
h
eav
y
,
n
o
m
in
a
l ,
a
n
d
lig
h
t
lo
a
d
a
r
e
:
(
1,
0.
5
)
,
(
0
.
7,
0.
3)
,
a
n
d (
0.
4,
0.
1)
r
e
s
pe
c
t
i
v
e
l
y
.
T
h
e
co
r
r
es
p
o
n
d
i
n
g
m
o
d
el
m
at
r
i
ces
ar
e g
i
v
e
n
b
y
:
]
0
0
1
0
[
,
1000
0
0
0
,
20
44
.
525
0
097
.
32
1667
.
0
4633
.
0
0
2082
.
0
0
0976
.
0
0
1445
.
0
0
0
314
0
,
20
94
.
511
0
214
.
54
1667
.
0
4633
.
0
0
1619
.
0
0
0759
.
0
0
0875
.
0
0
0
314
0
,
20
6
.
511
0
864
.
11
1667
.
0
4633
.
0
0
1934
.
0
0
0906
.
0
0
1186
.
0
0
0
314
0
=
=
=
=
=
=
−
−
−
−
−
−
=
−
−
−
−
−
−
−
=
−
−
−
−
−
−
−
=
heavy
lig
h
t
nom
heavy
lig
h
t
nom
heavy
lig
h
t
nom
C
C
C
B
B
B
A
A
A
A
t
d
i
f
f
er
en
t
l
o
ad
s
,
s
y
s
t
e
m
(
1
)
can
b
e ca
s
t
i
n t
he
f
o
l
l
o
w
i
n
g no
r
m
-
boun
de
d f
or
m
:
Cx
y
t
N
t
M
A
Bu
x
A
A
x
=
<
∆
∆
=
∆
+
∆
+
=
1
)
(
,
)
(
,
)
(
(2
)
T
h
e m
at
r
i
ce
s
M
a
nd
N
ar
e
k
n
o
w
n
co
n
s
t
a
n
t
r
eal
m
a
t
r
i
ces
,
an
d
∆(
t
)
i
s
t
h
e
u
n
cer
t
ai
n
p
ar
a
m
e
t
er
m
at
r
i
x
.
T
he
m
a
t
r
i
x
∆
A
ha
s
b
o
u
nd
e
d
no
r
m
gi
ve
n b
y
1
)
(
≤
∆
t
.
I
t is
w
o
r
th
m
e
n
tio
n
i
n
g
t
h
a
t
Δ
(
t
)
ca
n
r
ep
r
es
en
t
p
o
w
er
s
y
s
t
e
m
un
c
e
r
t
a
i
n
t
i
e
s
,
unm
o
de
l
l
e
d dy
n
a
m
i
c
s
,
a
n
d/
or
non
-
li
n
e
a
r
itie
s
.
F
o
r
th
e
c
a
s
e
s
tu
d
y
s
y
s
te
m
,
]
0
08
.
2
0
63
.
6
[
,
]
63
.
6
0
0
0
[
'
−
=
=
N
M
.
N
o
te
th
a
t
o
th
e
r
ty
p
e
s
o
f
u
n
c
e
r
ta
in
tie
s
,
e
.
g
.
li
n
e
o
u
ta
g
e
s
,
can
b
e t
ack
l
ed
i
n
a s
i
m
i
l
ar
w
a
y
.
O
u
r
co
n
t
r
o
l
t
ar
g
e
t
s
co
n
s
i
d
er
t
w
o
d
es
i
g
n
ca
s
es
as
l
i
s
t
ed
b
el
o
w
:
D
es
i
g
n
ca
s
e #
1
:
T
o de
s
i
g
n a
n obs
e
r
v
e
r
-
b
as
ed
P
S
S
t
h
at
r
et
ai
n
s
t
h
e
s
t
ab
i
l
i
t
y
f
o
r
d
i
f
f
er
en
t
l
o
ad
s
,
i
.
e.
i
t
p
r
e
s
e
r
v
e
s r
o
b
u
st
s
t
a
b
i
l
i
t
y
.
D
es
i
g
n
ca
s
e #
2
: I
n
s
o
m
e
c
a
s
e
s
,
r
o
b
u
s
t s
ta
b
il
it
y
m
ig
h
t
n
o
t b
e
e
n
o
u
g
h
to
p
r
o
v
id
e
s
a
tis
f
a
c
to
r
y
dy
n
a
m
i
c
pe
r
f
or
m
a
n
c
e
.
T
h
e
pr
opos
e
d c
on
t
r
ol
l
e
r
h
a
s
t
o da
m
p pow
e
r
s
y
s
t
e
m
os
c
i
l
l
a
t
i
on
s
,
f
ol
l
o
w
i
n
g
a
ny
s
m
a
l
l
di
s
t
u
r
ba
n
c
e
,
w
i
t
h
i
n 10 t
o 15
s
[
13
].
T
h
i
s
r
eq
u
i
r
es
t
h
e d
es
i
r
ed
s
et
t
l
i
n
g
t
i
m
e
]
15
10
[
−
∈
s
t
s
.
S
i
n
ce
σ
/
4
=
s
t
,
t
h
e cl
o
s
ed
-
l
o
o
p
p
o
l
es
h
as
t
o
b
e p
l
aced
t
o
t
h
e l
ef
t
o
f
t
h
e v
er
t
i
cal
l
i
n
e
-
σ
,
σ
=
0.
3.
I
n
ot
h
e
r
w
or
ds
,
t
h
e
c
l
os
e
d
l
o
o
p
s
y
s
t
e
m
h
as
t
o
ach
i
ev
e
a
p
r
es
cr
i
b
ed
d
eg
r
e
e
of
s
t
a
bi
l
i
t
y
a
r
ou
n
d 0.
3,
(
F
i
g
ur
e
1
a)
.
A
n
o
t
h
er
co
n
s
t
r
ai
n
t
ha
s
t
o
b
e s
at
i
s
f
i
ed
.
T
h
e d
es
i
r
ed
d
am
p
i
n
g
r
at
i
o
(
ζ
)
s
h
ou
l
d be
m
or
e
t
h
a
n
10%
[
13
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
S
S
N
:
2088
-
8708
D
es
i
g
n
o
f
O
b
s
er
ver
-
B
as
e
d R
obus
t
P
ow
e
r
Sy
s
t
e
m
St
abi
l
i
z
e
r
s
(
H
i
s
ham
M
.
Sol
i
m
an)
1959
I
f
t
h
e cl
o
s
ed
-
l
o
o
p
p
o
l
es
ar
e
f
o
r
ced
t
o
l
i
e i
n
s
i
d
e t
h
e ci
r
cl
e,
d
o
m
ai
n
D
,
w
h
i
ch
t
o
u
c
h
es
t
h
e t
w
o
l
i
n
es
o
f
min
ζ
a
nd
-
σ
,
bot
h
da
m
pi
n
g
r
a
tio
a
n
d
s
e
ttli
n
g
ti
m
e
c
a
n
b
e
a
c
h
ie
v
e
d
,
F
ig
ur
e
1
b
.
T
h
is
is
te
r
m
e
d
r
e
g
io
n
a
l p
o
le
pl
a
c
e
m
e
n
t
or
r
obu
s
t
-
D
(
r,
q
)
s
ta
b
ilit
y
.
W
h
e
r
e
–
q,
a
nd
r
ar
e
t
h
e
ci
r
cl
e
ce
n
t
er
an
d
r
ad
i
u
s
,
r
e
s
p
ect
i
v
el
y
.
F
o
r
ζ
min
=
0
.
1
a
n
d
σ
=
0
.
3
,
t
h
e
t
w
o
p
a
r
a
m
e
t
e
r
s
o
f
t
h
e
d
e
s
i
r
e
d
c
i
r
c
u
l
a
r
r
e
g
i
on
D
(
q
,r
)
ar
e co
m
p
u
t
ed
a
s
5496
.
59
,
8496
.
59
=
=
r
and
q
.
F
i
g
ur
e
1
.
S
ta
b
ilit
y
r
e
g
io
n
s
: (
a
)
S
h
i
f
te
d
r
e
g
io
n
,
(
b
)
C
ir
c
u
la
r
r
e
g
io
n
D
(
q
,r
)
N
o
t
e
t
h
at
t
h
e
p
r
o
p
o
s
ed
P
S
S
h
as
t
o
u
s
e
t
h
e
av
ai
l
ab
l
e
s
p
eed
m
eas
u
r
e
m
e
n
t
(
Δ
ω
)
as
co
m
m
o
n
l
y
u
s
ed
i
n
p
r
act
i
ce.
N
o
t
e
t
h
at
t
h
e
s
a
m
e
co
n
t
r
o
l
o
b
j
ect
i
v
es
,
i
s
t
ac
k
l
ed
u
s
i
n
g
A
d
ap
t
i
v
e
N
eu
r
o
f
u
zz
y
I
n
f
er
e
n
ce S
y
s
t
e
m
s
(
A
N
FI
S)
a
n
d
i
m
pr
ov
e
d
P
a
r
tic
le
S
w
a
r
m
O
p
ti
m
iz
a
tio
n
(
P
S
O
)
[
17
]
, a
n
d
[
18
]
r
es
p
ect
i
v
el
y
.
H
o
w
e
v
er
,
s
o
m
e
t
r
ai
n
i
n
g
an
d
t
r
i
a
l
s
ar
e
n
eed
ed
t
o
p
r
o
p
er
l
y
t
u
n
e t
h
e o
p
t
i
m
i
z
er
p
ar
am
et
er
s
.
O
t
h
er
w
i
s
e,
co
n
v
er
g
e
t
o
a s
o
l
u
t
i
o
n
can
n
o
t
b
e at
t
ai
n
ed
.
3.
P
R
O
B
LEM
S
O
LU
TIO
N
O
b
s
er
v
er
-
b
as
ed
co
n
t
r
o
l
u
s
ed
t
o
acco
m
p
l
i
s
h
t
h
e d
es
i
g
n
o
f
t
h
e
P
S
S
b
ecau
s
e
o
n
l
y
s
p
eed
m
eas
u
r
e
m
e
n
t
s
ar
e
av
ai
l
ab
l
e.
B
y
e
m
p
l
o
y
i
n
g
t
h
e
av
a
i
l
ab
l
e
i
n
p
u
t
a
n
d
o
u
t
p
u
t
m
eas
u
r
e
m
e
n
t
Δ
ω
,
a
f
u
l
l
-
o
rd
e
r o
b
s
e
rv
e
r f
o
r s
y
s
t
e
m
(
2
)
i
s
gi
ve
n b
y
x
K
u
x
C
y
y
y
K
B
u
x
A
x
c
ˆ
,
ˆ
ˆ
],
ˆ
[
ˆ
ˆ
0
=
=
−
+
+
=
(
3)
w
h
er
e
x
ˆ
is
th
e
e
s
ti
m
a
te
o
f
x
,
a
n
d
K
c
a
nd
K
o
ar
e t
h
e
d
es
i
g
n
p
ar
a
m
et
er
s
t
o
b
e cal
c
u
l
at
ed
s
o
as
t
o
ach
i
e
v
e t
h
e
co
n
t
r
o
l
t
ar
g
et
s
.
T
h
e
m
ai
n
r
es
u
l
t
s
ar
e g
i
v
e
n
b
y
t
h
e f
o
l
l
o
w
i
n
g
t
h
e
o
r
e
ms
.
3.
1.
D
es
i
g
n
ca
s
e #
1
: R
o
b
u
s
t s
ta
b
il
i
t
y
w
it
h
d
e
s
ir
e
d
d
e
c
a
y
r
a
te
T
he
o
r
e
m
1
:
G
i
ve
n
t
ha
t
(
A, B
)
a
nd
(
A
,
C)
ar
e co
n
t
r
o
l
l
ab
l
e an
d
o
b
s
er
v
ab
l
e p
ai
r
s
r
es
p
ect
i
v
el
y
,
t
h
e
n
t
h
e
o
b
s
er
v
er
-
b
a
s
e
d
c
o
n
tr
o
l
(
3
)
r
o
b
u
s
tl
y
s
ta
b
il
iz
e
s
(
2
)
if
α
is
m
in
i
m
iz
e
d
till
i
t
b
e
c
o
m
e
s
n
e
g
a
tiv
e
a
n
d
th
e
r
e
i
s
a
f
e
a
s
ib
le
s
o
l
u
tio
n
to
th
e
f
o
llo
w
i
n
g
B
M
I
,
i.
e
.
M
i
n
i
m
i
ze
α
S
u
b
j
e
c
t to
0
,
0
'
,
0
)
(
)
(
)
(
)
'
'
(
)
(
'
)
(
2
'
3
2
2
2
'
3
3
1
3
3
'
3
1
1
1
1
>
>
=
<
−
•
•
+
−
•
+
−
+
−
•
+
−
+
+
−
+
−
+
−
•
+
+
ε
ε
α
α
ε
α
P
P
I
M
P
P
P
C
K
P
A
P
B
K
P
M
P
P
P
P
B
K
A
C
K
A
P
B
K
P
N
N
P
B
K
P
A
P
o
c
c
o
c
c
(4
)
w
h
e
r
e
P
is
a
f
u
l
l
m
a
tr
i
x
g
iv
e
n
b
y
:
•
=
2
3
1
P
P
P
P
U
n
f
o
r
t
u
n
a
t
e
l
y
, t
h
e
p
r
o
d
u
c
t
α
P
i
s
n
o
t
a
n
L
MI
. I
t
i
s
a
B
MI
o
p
t
i
m
i
z
a
t
i
o
n
p
r
o
b
l
e
m
.
q
σ
ζ
min
r
-
σ
Re
Im
Re
Im
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
56
–
19
66
1960
P
r
o
o
f:
A
t
t
a
c
hi
n
g t
he
o
b
s
e
r
ve
r
-
b
a
s
e
d
c
o
n
tr
o
lle
r
(
3
)
to
s
y
s
te
m
(
1
)
,
th
e
c
lo
s
e
d
-
l
oop s
y
s
t
e
m
i
s
obt
a
i
n
e
d.
C
o
n
s
i
d
er
t
h
at
t
h
e s
t
at
e es
t
i
m
at
i
o
n
er
r
o
r
v
ect
o
r
i
s
d
ef
i
n
ed
as
,
ˆ
x
x
e
−
=
a
n
d
le
t th
e
a
u
g
m
e
n
te
d
v
e
c
to
r
to
b
e
[
]
'
e
x
g
=
,
t
h
e
c
l
os
e
d l
oop s
y
s
te
m
is
g
iv
e
n
b
y
g
A
A
g
c
c
]
[
∆
+
=
(5
)
w
h
er
e:
[
]
0
)
(
0
0
,
0
N
t
M
M
A
A
A
C
K
A
BK
BK
A
A
c
o
c
c
c
∆
=
∆
∆
=
∆
−
−
+
=
(6
)
T
h
e
c
l
os
e
d l
oo
p (
5)
i
s
r
o
bu
s
t
l
y
s
t
a
bl
e
i
f
a
n
d on
l
y
i
f
α
is
m
i
n
i
m
iz
e
d
till it b
e
c
o
m
e
s
n
e
g
a
ti
v
e
a
n
d
th
e
f
o
llo
w
in
g
L
M
I
h
a
s
a
f
e
a
s
ib
le
s
o
lu
tio
n
[
19
]
0
)
(
0
'
<
−
•
+
∆
+
>
=
P
A
A
P
P
P
c
c
α
(7
)
N
o
t
e t
h
at
,
t
h
e cl
o
s
ed
l
o
o
p
p
o
l
es
o
f
A
c ar
e
s
h
i
f
t
ed
p
r
o
g
r
es
s
i
v
el
y
t
o
w
ar
d
s
t
h
e
l
e
f
t
h
al
f
-
pl
a
n
e
t
h
r
oug
h
t
he
r
e
d
uc
t
i
o
n
o
f
α.
A
s
m
e
nt
i
o
ne
d
i
n
[
19
]
,
i
f
(
7)
h
ol
ds
,
t
h
e
c
l
os
e
d
-
lo
o
p
p
o
le
s
lie
to
th
e
l
e
ft
-
ha
nd
s
i
d
e
o
f
t
he
l
i
n
e
σ
=
α
/
2
i
n
t
h
e
c
o
m
p
l
e
x
p
l
a
n
e
.
I
f
a
n
e
g
a
t
i
v
e
α
,
w
h
i
c
h
s
a
t
i
s
f
i
e
s
(
7
)
,
c
a
n
b
e
f
o
u
n
d
,
K
c
a
nd
K
o
ar
e o
b
t
ai
n
ed
an
d
t
h
e o
b
s
er
v
er
-
b
a
s
e
d
s
ta
b
ili
z
a
tio
n
p
r
o
b
le
m
is
s
o
lv
e
d
.
T
h
e
m
a
tr
i
x
P
in
(
7
)
,
is
p
a
r
titio
n
e
d
a
s
[
]
2
'
3
3
1
;
P
P
P
P
,
w
h
er
e r
o
b
u
s
t s
ta
b
ilit
y
i
s
g
u
a
r
a
n
te
e
d
if
t
h
e
f
o
llo
w
i
n
g
in
e
q
u
a
li
t
y
is
s
a
tis
f
ie
d
.
0
)
0
0
(
)
0
(
2
3
1
2
3
1
2
3
1
<
•
+
∆
∆
•
+
•
−
•
+
−
−
+
•
A
A
P
P
P
P
P
P
C
K
A
B
K
B
K
A
P
P
P
o
c
c
α
α
α
O
r
e
q
ui
va
l
e
nt
l
y
0
)
0
0
(
)
(
)
'
'
(
)
(
)
(
2
3
1
2
2
2
'
3
3
3
'
3
1
1
1
1
<
•
+
∆
∆
•
+
−
•
+
−
+
−
•
−
+
+
−
+
−
−
•
+
+
A
A
P
P
P
P
C
K
P
A
P
BK
P
P
P
B
K
A
C
K
A
P
BK
P
P
BK
P
A
P
o
c
c
o
c
c
α
α
α
(8
)
Fo
r
∆
A
=
M
∆
(t
)N
,
(
8
)
is
s
a
ti
s
f
ie
d
if
th
e
f
o
llo
w
in
g
e
q
u
a
tio
n
is
f
u
l
f
ille
d
.
0
0
'
0
'
)
(
)
'
'
(
)
(
)
(
'
'
2
3
1
'
2
3
1
1
2
2
2
'
3
3
3
'
3
1
1
1
1
<
+
•
•
+
−
•
+
−
+
−
•
−
+
+
−
+
−
−
•
+
+
−
N
N
P
P
P
M
M
M
M
P
P
P
P
C
K
P
A
P
BK
P
P
P
B
K
A
C
K
A
P
BK
P
P
BK
P
A
P
o
c
c
o
c
c
ε
ε
α
α
α
(9
)
A
ppl
y
i
ng
S
c
hu
r
c
o
m
pl
e
m
e
n
t
t
o (
9)
,
T
h
e
or
e
m
1 i
s
obt
a
i
ne
d.
T
h
e
f
ol
l
o
w
i
ng
i
t
e
r
a
t
i
v
e
a
l
g
or
i
t
hm
i
s
pr
op
os
e
d t
o s
ol
v
e
t
h
e
B
M
I
g
i
ve
n
b
y
T
h
e
or
e
m
1.
N
o
te
th
a
t
th
e
B
M
I
(
4
)
is
a
n
o
n
lin
e
a
r
m
a
tr
i
x
i
n
e
q
u
a
l
it
y
,
w
h
ic
h
is
d
if
f
ic
u
lt to
s
o
lv
e
a
s
b
e
in
g
a
n
o
n
-
c
o
nve
x.
N
o
t
e
t
ha
t if
P
i
s
gi
ve
n,
i
ne
q
ua
l
i
t
y
(
4
)
b
e
c
o
m
e
s
l
i
ne
a
r
i
n K
c
, K
o
,
ε
,
a
n
d
α
.
T
h
i
s
c
a
n
b
e
e
a
s
i
l
y
s
o
l
v
e
d
by
L
M
I
c
on
t
r
ol
t
ool
box
[
12
]
.
T
he
i
d
e
a
,
pr
o
po
s
e
d
i
n
t
hi
s
m
a
nu
s
c
r
i
p
t
,
i
s
t
o
m
i
ni
m
i
z
e
α
b
y
m
a
t
r
i
x,
P
,
w
hi
c
h i
s
g
en
er
at
ed
b
y
a
n
o
n
-
l
i
n
ear
m
i
n
i
m
i
zer
,
e.
g
.
f
m
i
n
s
ear
ch
o
f
M
AT
L
AB
[
20
]
,
in
a
n
o
u
te
r
lo
o
p
o
f
th
e
ite
r
a
tio
n
a
s
ex
p
l
ai
n
ed
b
el
o
w
.
A
l
gor
i
t
h
m
3.
1:
S
te
p
0
: I
n
itia
liz
e
a
v
e
c
to
r
n
R
z
2
∈
.
S
te
p
1
: C
a
s
t z
in
to
it
s
m
a
tr
ix
e
q
u
iv
a
le
n
t
Z
.
F
o
r
m
P
=
Z
Z'
.
I
n t
hi
s
w
a
y
P
=
P
'
>0
i
s
g
e
n
er
at
ed
.
S
et
i
=1
an
d
P
i
=P
S
t
e
p 2:
S
ol
v
e
t
h
e
f
ol
l
o
w
i
ng
opt
i
m
i
z
a
t
i
on
pr
obl
e
m
f
or
K
c
, K
o
a
nd
α
i
.
M
i
n
i
m
i
ze
α
i
s
u
b
j
e
c
t to
th
e
f
o
llo
w
i
n
g
L
M
I
c
o
n
s
tr
a
in
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
S
S
N
:
2088
-
8708
D
es
i
g
n
o
f
O
b
s
er
ver
-
B
as
e
d R
obus
t
P
ow
e
r
Sy
s
t
e
m
St
abi
l
i
z
e
r
s
(
H
i
s
ham
M
.
Sol
i
m
an)
1961
0
,
0
'
,
0
)
(
)
(
)
(
)
'
'
(
)
(
'
)
(
2
'
3
2
2
2
'
3
3
1
3
3
'
3
1
1
1
1
>
>
=
<
−
•
•
+
−
•
+
−
+
−
•
+
−
+
+
−
+
−
+
−
•
+
+
ε
ε
α
α
ε
α
i
i
i
i
i
o
i
i
c
i
i
i
i
i
c
o
i
c
i
i
c
i
i
P
P
I
M
P
P
P
C
K
P
A
P
B
K
P
M
P
P
P
P
B
K
A
C
K
A
P
B
K
P
N
N
P
B
K
P
A
P
(
10
)
D
en
o
t
e
α
i
*
as
t
h
e
m
i
n
i
m
i
zed
v
al
u
e
o
f
α
i
.
S
t
e
p
3
:
I
f
α
i
*<
0
,
K
c
, K
o
a
r
e
th
e
s
ta
b
iliz
in
g
c
o
n
tr
o
lle
r
-
obs
e
r
v
e
r
g
a
i
ns
.
S
t
op.
I
f
n
o
α
i
*
<0
i
s
f
o
u
n
d
,
t
h
e s
y
s
t
e
m
can
n
o
t
b
e s
t
ab
i
l
i
zed
.
S
t
e
p 4:
U
s
e
f
m
i
n
s
e
a
r
c
h
t
o s
ol
ve
t
h
e
f
ol
l
o
w
i
ng
opt
i
m
i
z
a
t
i
o
n
pr
obl
e
m
)
(
*
2
z
J
i
R
z
Min
n
α
=
∈
(
11
)
S
e
t i
i+
1
,
th
e
n
g
o
to
S
te
p
1
.
3.
2.
D
e
s
i
gn
c
as
e
#2:
R
ob
u
s
t
D
-
s
t
a
b
ilit
y
O
u
r
co
n
t
r
o
l
o
b
j
ect
i
v
e i
s
t
o
d
ev
el
o
p
a co
n
d
i
t
i
o
n
w
h
i
ch
g
u
ar
an
t
ee
s
r
eg
i
o
n
al
p
o
l
e p
l
acem
en
t
,
t
h
u
s
a
c
hi
e
v
i
n
g t
he
c
ho
s
e
n
t
s
,
a
nd
ζ
m
in
.
T
h
e m
ai
n
t
ar
g
et
i
s
es
t
ab
l
i
s
h
ed
b
y
t
h
e
f
o
l
l
o
w
i
n
g
t
h
eo
r
e
m
.
T
h
eo
re
m
2
:
I
f (
A, B
)
a
nd
(A
,
C
)
ar
e co
n
t
r
o
l
l
ab
l
e a
n
d
o
b
s
er
v
ab
l
e p
ai
r
s
r
es
p
ect
i
v
el
y
,
t
h
e
n
t
h
e
o
b
s
er
v
er
-
b
a
s
e
d
c
o
n
tr
o
lle
r
(
3
)
,
r
o
b
u
s
tl
y
s
ta
b
iliz
e
s
th
e
s
y
s
te
m
(
2
)
,
w
i
th
c
lo
s
e
d
lo
o
p
p
o
le
s
lie
in
a
d
is
k
D
(q
,
r
)
i
f
th
e
r
e
is
a
f
e
a
s
ib
le
s
o
l
u
tio
n
to
t
h
e
f
o
llo
w
i
n
g
L
M
I
o
p
ti
m
iz
a
tio
n
0
0
0
0
0
0
0
0
'
0
0
'
0
0
,
0
,
,
,
,
0
,
0
1
1
2
2
2
2
1
3
1
1
1
2
2
1
2
3
2
1
'
2
2
'
1
1
<
−
•
−
•
•
+
−
+
−
•
•
•
+
−
−
+
+
•
•
•
•
−
•
•
•
•
•
−
>
>
>
=
>
=
I
NY
I
NY
MM
Y
qY
S
AY
MM
Y
BS
qY
BS
AY
Y
r
Y
r
S
S
S
Y
Y
Y
Y
ρ
ε
ρ
ε
ρ
ε
(
12)
a
nd
t
he
ga
i
n
s
a
r
e
gi
ve
n b
y
+
−
−
=
=
C
Y
S
K
Y
S
K
o
c
1
2
2
1
1
1
,
,
w
h
er
e
1
)
'
(
'
−
+
=
CC
C
C
i
s
t
he
p
s
e
ud
o
-
i
n
v
er
s
e o
f
C
.
P
r
o
o
f:
A
c
c
or
di
ng
t
o [
21
]
,
th
e
p
o
le
s
o
f
a
m
a
tr
ix
A
lie
i
n
t
h
e
d
is
k
D
(
q
,
r
)
if
a
n
d
o
n
l
y
if
t
h
e
r
e
e
x
is
t
s
a
m
a
tr
i
x
P
=
P
'
>
0
,
s
uc
h t
ha
t
0
1
2
<
−
+
•
−
−
P
qI
A
P
r
(
13)
R
ep
l
aci
n
g
A
w
ith
t
h
e
c
lo
s
e
d
lo
o
p
m
a
tr
ix
A
c
+
Δ
A
c
(6
),
P
w
it
h
b
lo
c
k
d
ia
g
]
,
[
2
1
P
P
,
a
nd
s
ub
s
t
i
t
ut
i
ng
ΔA
c
=
M
Δ
(t
)
N
;
t
h
e cl
o
s
ed
l
o
o
p
ei
g
en
v
al
u
es
o
f
t
h
e u
n
cer
t
ai
n
s
y
s
t
e
m
l
i
e i
n
s
i
d
e t
h
e d
i
s
c
D
(q
,
r
)
i
f
a
nd
o
nl
y
i
f
t
he
f
o
llo
w
in
g
m
a
tr
ix
i
n
e
q
u
a
litie
s
a
r
e
s
a
tis
f
ie
d
.
0
)
0
0
0
'
)
(
0
0
0
(
)
0
0
0
'
)
(
0
0
0
(
0
0
0
,
0
'
,
0
'
'
'
1
2
1
1
2
2
1
2
2
2
1
1
<
•
+
∆
+
•
+
∆
+
−
+
−
•
−
−
+
+
•
•
−
•
•
•
−
>
=
>
=
−
−
N
t
M
N
t
M
P
qI
C
K
A
P
B
K
qI
B
K
A
P
r
P
r
P
P
P
P
o
c
c
A
p
p
l
y
in
g
F
a
c
t 2
,
th
e
la
s
t in
e
q
u
a
lit
y
is
s
a
tis
f
ie
d
i
f
th
e
f
o
llo
w
i
n
g
i
n
e
q
u
a
l
it
y
i
s
s
a
ti
s
f
ie
d
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
56
–
19
66
1962
0
)
0
0
0
'
0
0
0
'
0
0
0
0
0
0
(
)
0
0
0
'
0
0
0
'
0
0
0
0
0
0
(
0
0
0
,
0
,
0
,
0
'
,
0
'
'
1
'
'
1
'
1
2
1
1
2
2
1
2
2
2
1
1
<
+
+
+
+
−
+
−
•
−
−
+
+
•
•
−
•
•
•
−
>
>
>
=
>
=
−
−
−
−
N
N
M
M
N
N
M
M
P
qI
C
K
A
P
B
K
qI
B
K
A
P
r
P
r
P
P
P
P
o
c
c
ρ
ρ
ε
ε
ρ
ε
T
h
e ab
o
v
e i
n
eq
u
al
i
t
y
can
b
e l
i
n
ear
i
zed
b
y
p
r
e an
d
pos
t
-
m
ul
t
i
p
l
y
i
ng b
y
B
l
o
c
kd
i
a
g
]
,
,
,
[
1
2
1
1
I
I
P
P
−
−
,
a
nd
le
ttin
g
2
1
2
3
1
2
1
1
1
2
1
2
1
1
1
,
,
,
,
S
CP
K
S
P
K
S
P
K
Y
P
Y
P
o
c
c
=
=
=
=
=
−
−
−
−
−
,
(
1
2)
i
s
obt
a
i
n
e
d.
4.
S
I
M
U
LA
TIO
N
R
ES
U
L
TS
I
n
t
h
i
s
s
e
c
t
i
o
n
,
t
h
e
pr
opos
e
d
de
s
i
gn
i
s
e
v
a
l
u
a
t
e
d b
y
a
ppl
y
i
n
g
i
t
t
o bot
h
s
i
ng
l
e
-
m
a
c
h
i
n
e
in
f
in
ite
-
b
us
a
nd
m
ul
t
i
-
m
ach
i
n
e
m
o
d
el
s
.
4.
1.
A
p
p
lic
a
t
io
n
t
o
s
in
g
le
-
m
a
c
h
in
e
in
f
in
it
e
-
b
u
s
t
e
st
p
o
w
e
r
s
y
st
e
m
I
n d
e
s
i
gn c
a
s
e
#
1
,
a
l
t
ho
ug
h
α
<
0
is
s
u
f
f
ic
ie
n
t
f
o
r
r
o
b
u
s
t
s
ta
b
ilit
y
,
t
h
e
m
i
n
i
m
iz
e
r
i
s
k
e
p
t
r
u
n
n
in
g
t
ill
α
is
m
i
n
i
m
iz
e
d
to
-
0
.
1
4
1
6
; th
u
s
a
c
h
ie
v
in
g
a
s
a
t
is
f
a
c
to
r
y
s
e
ttli
n
g
ti
m
e
.
T
h
e
lin
e
a
r
m
a
tr
ix
in
e
q
u
a
litie
s
a
r
e
s
o
lv
e
d
u
s
i
ng
t
h
e
M
A
T
L
A
B
L
M
I
c
ont
r
ol
t
ool
box
[
22
]
t
o
g
et
t
h
e
f
e
ed
b
ack
m
at
r
i
ce
s
f
o
r
t
h
e d
es
i
g
n
cas
e
s
m
en
t
i
o
n
ed
ab
o
v
e.
T
h
e r
es
u
l
t
i
n
g
co
n
t
r
o
l
l
e
r
an
d
o
b
s
er
v
er
g
ai
n
s
ar
e s
u
m
m
ar
i
zed
i
n
T
ab
l
e
1
.
T
ab
l
e 1
.
P
r
o
pos
e
d c
on
t
r
ol
l
e
r
s
C
o
n
t
r
o
lle
r
O
b
s
er
v
er
-
r
e
gu
l
a
t
o
r
g
a
i
n
s
C
o
mme
n
t
s
D
es
i
g
n
C
a
s
e #
1
[
]
[
]
T
o
c
K
K
18778
578
5
220
,
051
.
0
777
.
2
915
.
63
419
.
0
−
−
=
−
−
=
α
=
-
0
.
1
41
6
D
es
i
g
n
C
a
s
e #
2
[
]
[
]
T
o
c
K
K
7227
.
0
956
.
0
688
.
59
376
.
156
0494
.
0
5636
.
0
3551
.
12
9936
.
0
=
−
−
−
=
r
=
5
9
.
5
4
9
6
,
q
=
5
9.
8
49
6
S
y
s
t
e
m
'
s
do
m
i
n
a
n
t
pol
e
s
a
t
d
i
f
f
e
r
e
n
t
l
oa
ds
,
w
i
t
h
o
u
t
a
n
d
w
i
t
h
P
S
S
,
f
or
de
s
i
gn
c
a
s
e
s
#1 a
n
d #2,
a
r
e
s
ho
w
n i
n F
i
g
ur
e
2a
,
2b,
2c
r
e
s
p
ect
i
v
el
y
.
(a
)
(b
)
(
c)
F
i
g
ur
e
2
.
(
a)
D
om
i
n
a
n
t
pol
e
s
:
n
o c
on
t
r
ol
,
(
b)
D
om
i
n
a
n
t
pol
e
s
w
i
t
h
P
S
S
1,
(
c
)
D
o
m
in
a
n
t p
o
l
e
s
w
ith
P
S
S
2
I
t is
c
le
a
r
f
r
o
m
F
i
g
ur
e
2a
th
a
t
th
e
s
y
s
te
m
w
it
h
o
u
t c
o
n
tr
o
l d
o
e
s
n
o
t a
c
h
ie
v
e
th
e
d
e
s
ir
e
d
t
s
,
ζ
m
i
n,
a
nd
ev
en
b
eco
m
es
u
n
s
t
ab
l
e
f
o
r
s
o
m
e l
o
ad
s
.
F
i
g
ur
e
2b
s
h
o
w
s
t
h
at
t
h
e
co
n
t
r
o
l
o
b
j
ect
i
v
e
o
f
ac
h
i
ev
i
n
g
a
d
es
i
r
ed
ζ
i
s
v
io
la
te
d
.
A
s
s
ho
w
n i
n F
i
g
ur
e
2c
,
c
o
n
tr
o
lle
r
d
e
s
ig
n
#
2
s
a
tis
f
i
e
s
th
e
c
o
n
tr
o
l o
b
j
e
c
tiv
e
s
(
t
s
, ζ
min
).
4.
2.
A
s
s
e
s
s
m
e
nt
o
f
t
he
pr
o
po
s
e
d P
SSs
a
t
e
x
t
r
e
m
e
l
o
a
ds
C
o
n
s
i
d
er
t
w
o
ex
t
r
e
m
i
t
i
e
s
,
n
a
m
el
y
h
ea
v
y
a
n
d
l
i
g
h
t
m
ach
i
n
e l
o
ad
i
n
g
.
A
cl
ear
ed
t
h
r
ee p
h
as
e
f
au
l
t
at
t
h
e
e
n
d of
t
h
e
t
r
a
ns
m
i
s
s
i
o
n
l
i
n
e
a
t
t
=
0 i
s
u
s
e
d
i
n a
l
l
s
i
m
ul
a
t
i
on
c
a
s
e
s
.
F
or
t
h
e
t
w
o pr
opos
e
d de
s
i
gn
s
,
P
S
S
1
-2
-1
.
5
-1
-0
.
5
0
0.
5
0
2
4
6
8
10
12
14
16
18
20
r
eal
i
m
aj
N
o c
ont
r
ol
:
open l
oop pol
es
σ
=
0.
3
ζ
=
0.
1
-3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0
2
4
6
8
10
12
14
16
18
20
r
eal
i
m
aj
D
es
i
gn c
as
e1:
c
l
os
ed l
oop pol
es
σ
=
0.
3
ζ
=
0.
1
-3
-2
.
5
-2
-1
.
5
-1
-0
.
5
0
0
2
4
6
8
10
12
14
16
18
20
r
eal
i
m
aj
w
i
t
h P
S
S
,
des
i
gn 2:
c
l
os
ed l
oop pol
es
σ
=
0.
3
ζ
=
0.
1
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
S
S
N
:
2088
-
8708
D
es
i
g
n
o
f
O
b
s
er
ver
-
B
as
e
d R
obus
t
P
ow
e
r
Sy
s
t
e
m
St
abi
l
i
z
e
r
s
(
H
i
s
ham
M
.
Sol
i
m
an)
1963
a
n
d P
S
S
2,
t
h
e
t
i
m
e
r
e
s
pons
e
of
t
h
e
s
y
s
t
e
m
,
un
de
r
th
e
t
w
o
e
x
tr
e
m
e
o
p
e
r
a
tio
n
s
,
s
h
o
w
s
t
h
a
t th
e
s
e
ttli
n
g
ti
m
e
o
f
t
he
s
ys
t
e
m
i
s
i
nd
e
e
d
w
i
t
hi
n t
h
e
d
e
s
i
r
e
d
r
a
nge
,
a
s
s
ho
w
n
i
n F
i
g
ur
e
3
,
4
.
F
i
gu
r
e
3.
P
o
w
e
r
s
y
st
e
m
r
e
sp
o
n
s
e
s a
t
h
e
a
v
y
a
n
d
lig
h
t lo
a
d
s
w
it
h
P
S
S
1
F
i
g
ur
e
4
.
P
o
w
e
r
s
y
st
e
m
r
e
sp
o
n
s
e
s a
t
h
e
a
v
y
a
n
d
lig
h
t lo
a
d
s
w
it
h
P
S
S
2
H
o
w
e
v
er
,
P
S
S
2
p
r
o
v
i
d
es
b
et
t
er
r
es
p
o
n
s
e t
h
an
P
S
S
1
,
s
i
n
ce
i
t
ach
i
e
v
es
t
h
e
d
es
i
r
ed
d
a
m
p
i
n
g
r
at
i
o
as
w
e
ll.
I
n
a
d
d
itio
n
,
P
S
S
2
r
e
s
u
lts
in
o
s
c
illa
tio
n
s
w
ith
lo
w
e
r
f
r
e
q
u
e
n
c
ie
s
; a
n
d
c
o
n
s
e
q
u
e
n
tl
y
,
l
e
s
s
g
e
n
e
r
a
to
r
'
s
s
h
a
f
t
f
a
t
i
gue
.
F
o
r
lo
a
d
s
b
e
t
w
e
e
n
t
h
e
e
x
tr
e
m
itie
s
,
s
i
m
ila
r
r
e
s
u
lts
a
r
e
o
b
ta
in
e
d
.
N
o
te
th
a
t,
i
n
th
e
p
r
o
p
o
s
e
d
d
e
s
ig
n
,
th
e
e
s
ti
m
a
te
d
s
ta
te
s
a
r
e
f
a
s
t e
n
o
u
g
h
to
f
o
llo
w
th
e
tr
u
e
o
n
e
s
,
n
o
t s
h
o
w
n
d
u
e
to
s
p
a
c
e
li
m
ita
t
io
n
s
.
4.
3.
P
r
o
po
s
e
d v
e
r
s
us
c
o
nv
e
nt
i
o
n
a
l
P
SS (
C
P
SS)
S
o
m
e
s
i
m
u
la
tio
n
s
a
r
e
car
r
i
ed
o
u
t
t
o
d
em
o
n
s
t
r
at
e t
h
e e
f
f
ect
i
v
e
n
es
s
o
f
t
h
e p
r
o
p
o
s
ed
d
es
i
g
n
s
a
s
co
m
p
ar
ed
w
i
t
h
t
h
e co
n
v
e
n
t
i
o
n
al
o
n
e.
T
h
e p
er
f
o
r
m
a
n
ce
o
f
o
u
r
cl
o
s
ed
-
l
oop s
y
s
t
e
m
i
s
c
o
m
pa
r
e
d t
o a
co
n
v
e
n
t
i
o
n
al
P
S
S
.
S
i
m
u
l
at
i
o
n
s
ar
e d
o
n
e i
n
t
h
e p
r
es
e
n
c
e o
f
t
h
e s
a
m
e p
r
ev
i
o
u
s
d
i
s
t
u
r
b
an
ce
s
a
nd
l
o
a
d
v
a
r
i
a
t
i
ons
.
F
or
t
h
i
s
pu
r
pos
e
,
a
qu
i
t
e
popu
l
a
r
s
t
r
u
c
t
u
r
e
f
or
t
he
C
P
S
S
,
w
i
t
h
t
h
e
f
ol
l
o
w
i
ng
d
ou
bl
e
l
e
a
d t
r
a
n
s
f
e
r
f
u
n
c
tio
n
,
is
c
o
n
s
id
e
r
e
d
[
15
]
.
M
a
n
y
e
xi
s
t
i
n
g ge
ne
r
a
t
o
r
s
a
r
e
c
o
m
m
i
s
s
i
o
ne
d
w
i
t
h C
P
S
S
s
ha
vi
n
g t
he
f
o
l
l
o
w
i
n
g
f
o
r
m:
(
)
(
)
(
)
(
)
(
)
ω
∆
+
+
+
+
+
=
W
W
CP
S
S
sT
sT
sT
sT
sT
sT
K
u
1
1
1
1
1
4
3
2
1
w
h
er
e T
W
i
s
t
h
e t
i
m
e co
n
s
t
a
n
t
o
f
a
w
as
h
o
u
t
ci
r
c
u
i
t
w
h
i
ch
el
i
m
i
n
at
es
t
h
e co
n
t
r
o
l
l
er
act
i
o
n
i
n
s
t
ead
y
s
t
at
e.
T
h
e
C
P
S
S
p
ar
a
m
et
er
s
ar
e t
y
p
i
cal
l
y
[
0
.
0
0
1
–
50]
f
or
K
CP
SS
a
n
d [
0.
06
–
1.
0s
]
f
or
T
1
a
nd
T
3
.
T
h
e t
i
m
e co
n
s
t
an
t
s
T
W
, T
2
a
nd
T
4
ar
e s
et
as
5
s
,
0
.
0
5
s
,
an
d
0
.
0
5
s
,
r
es
p
ect
i
v
el
y
[
15
]
.
F
o
r
t
he
p
r
o
b
l
e
m
a
t
ha
nd
,
t
he
ga
i
n a
nd
t
he
t
i
m
e
co
n
s
t
a
n
t
s
o
f
co
n
v
e
n
t
i
o
n
al
P
S
S
ar
e p
r
o
p
er
l
y
s
el
ect
ed
as
K
C
PS
S
=
15,
T
1
=T
3
=
0
.
6
6
s
.
T
h
e p
ar
a
m
et
er
s
o
f
C
P
S
S
ar
e
s
e
le
c
te
d
to
p
r
o
v
id
e
th
e
s
a
m
e
d
e
s
ir
e
d
s
e
ttlin
g
ti
m
e
as
t
h
e
p
r
o
p
o
s
ed
o
n
e.
T
h
e p
er
f
o
r
m
a
n
ce o
f
t
h
e C
P
S
S
i
s
e
v
a
lu
a
te
d
a
t h
e
a
v
y
a
n
d
lig
h
t lo
a
d
s
a
s
th
e
f
ir
s
t te
s
t,
Fi
g
ur
e
5
.
0
2
4
6
8
10
12
14
0.
65
0.
7
0.
75
0.
8
0.
85
0.
9
0.
95
1
heav
y
l
oad,
des
i
gn1
δ
,
ra
d
ti
m
e
,s
0
2
4
6
8
10
12
14
0.
52
0.
54
0.
56
0.
58
0.
6
0.
62
0.
64
l
i
ght
l
oad,
des
i
gn1
δ
,
ra
d
ti
m
e
,s
0
0.
5
1
1.
5
2
2.
5
3
3.
5
4
4.
5
5
0.
65
0.
7
0.
75
0.
8
0.
85
0.
9
0.
95
1
heav
y
l
oad,
des
i
gn2
δ
,
ra
d
ti
m
e
,s
0
0.
5
1
1.
5
2
2.
5
3
3.
5
0.
55
0.
56
0.
57
0.
58
0.
59
0.
6
0.
61
0.
62
0.
63
0.
64
l
i
ght
l
oad,
des
i
gn2
δ
,
ra
d
ti
m
e
,s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SSN
:
20
88
-
8708
IJ
E
C
E
V
o
l
.
6
, N
o
.
5
,
O
c
t
obe
r
2016
:
19
56
–
19
66
1964
F
i
g
ur
e
5
.
P
o
w
e
r
s
y
st
e
m
r
e
sp
o
n
s
e
s a
t
h
e
a
v
y
a
n
d
lig
h
t lo
a
d
s
w
it
h
C
P
S
S
T
h
e
s
i
m
u
la
tio
n
r
e
s
u
lts
o
f
b
o
th
C
P
S
S
a
n
d
th
e
p
r
o
p
o
s
e
d
P
S
S
2
s
h
o
w
t
h
a
t th
e
la
tte
r
a
tta
i
n
s
r
o
b
u
s
tn
e
s
s
ag
ai
n
s
t
p
l
an
t
u
n
cer
t
ai
n
t
i
es
,
q
u
i
t
e b
et
t
er
p
er
f
o
r
m
a
n
ce,
h
i
g
h
er
d
am
p
i
n
g
,
an
d
l
o
w
er
s
et
t
l
i
n
g
t
i
m
e.
4.
4.
D
ecen
t
ra
l
i
zed
co
n
t
ro
l
o
f
m
u
l
t
i
-
m
a
ch
i
n
e t
es
t
p
o
w
er s
y
s
t
em
Al
t
h
o
u
gh
c
on
s
i
de
r
a
bl
e
r
e
s
e
a
r
c
h
i
s
be
i
ng
don
e
i
n
de
s
i
gn
i
ng P
S
S
s
f
or
a
m
u
l
t
i
-
m
a
c
hi
ne
s
y
s
t
e
m
[
15
]
,
no
d
e
f
i
ni
t
i
ve
r
e
s
ul
t
s
ha
ve
b
e
e
n
a
p
p
l
i
e
d
i
n
t
he
f
i
e
l
d
.
T
he
d
e
s
i
g
n
c
a
n
s
t
i
l
l
b
e
d
o
ne
o
n
t
h
e
b
a
s
i
s
o
f
a
s
i
n
gl
e
-
m
a
c
h
in
e
in
f
i
n
ite
-
b
u
s
s
y
s
t
e
m
.
T
h
e p
ar
am
et
er
s
ar
e t
h
e
n
t
un
e
d on
-
l
i
n
e
t
o
s
u
ppr
e
s
s
bot
h
t
h
e
l
oc
a
l
a
n
d i
n
t
e
r
-
ar
ea
m
ode
s
.
T
h
e
pr
opos
e
d
de
s
i
g
n
c
a
n
be
a
ppl
i
e
d t
o m
u
l
t
i
-
m
a
c
hi
ne
p
o
w
e
r
s
ys
t
e
m
s
b
y
d
e
s
i
gn
i
ng t
he
P
S
S
f
o
r
o
ne
m
a
c
h
i
ne
a
t
a
t
i
m
e
a
nd
c
o
ns
i
d
e
r
i
ng
t
he
r
e
s
t
o
f
t
he
s
ys
t
e
m
a
s
a
n
i
n
f
i
ni
t
e
b
us
.
T
he
r
e
s
ul
t
i
ng
c
o
nt
r
o
l
le
r
is
d
ecen
t
r
al
i
zed
o
r
l
o
cal
as
i
t
u
s
es
s
p
eed
d
ev
i
at
i
o
n
Δ
w
o
n
l
y
f
r
o
m
t
h
e
g
e
n
er
at
o
r
o
n
w
h
i
ch
i
t
i
s
i
n
s
t
al
l
ed
.
L
o
cal
P
S
S
s
h
a
v
e t
h
r
ee b
as
i
c
ad
v
an
t
ag
e
s
.
F
i
r
s
t
,
t
h
e
y
ar
e ef
f
ect
i
v
e i
n
d
a
m
p
i
n
g
l
o
cal
m
o
d
es
.
S
eco
n
d
,
n
o
co
m
m
u
n
i
cat
i
o
n
n
et
w
o
r
k
i
s
n
e
ed
ed
t
o
t
r
an
s
f
er
d
at
a
t
o
a
cen
t
r
al
i
zed
co
n
t
r
o
l
l
er
;
t
h
u
s
t
h
e
y
ar
e
co
s
t
-
ef
f
ect
i
v
e.
T
h
i
r
d,
c
om
m
uni
c
a
t
i
on
t
i
m
e
de
l
a
y
s
a
r
e
a
v
oi
de
d.
T
he
f
o
ur
-
m
ach
i
n
e t
w
o
-
ar
ea t
e
s
t
p
o
w
er
s
y
s
t
e
m
of
[
15
]
.
T
h
e
C
P
S
S
p
ar
a
m
et
er
s
ar
e:
15
.
0
,
15
.
0
,
4
.
5
,
0
.
3
,
02
.
0
,
05
.
0
,
10
,
30
m
ax
min
4
3
2
1
=
−
=
=
=
=
=
=
=
U
U
s
T
s
T
s
T
s
T
s
T
K
w
CP
S
S
.
O
u
r
pr
opos
e
d
de
s
i
g
n
i
s
c
o
m
p
a
r
e
d
t
o C
P
S
S
s
t
o
cl
ar
i
f
y
t
h
e
ef
f
ec
t
i
v
e
n
e
s
s
o
f
t
h
e
f
o
r
m
er
i
n
d
am
p
i
n
g
b
o
th
lo
c
a
l a
n
d
in
te
r
-
ar
ea
m
o
d
es
o
f
o
s
c
i
l
l
at
i
o
n
s
.
B
u
s
3
i
s
co
n
s
i
d
er
ed
as
a
s
l
ac
k
-
bu
s
t
o
pr
ov
i
de
a
n
a
n
gu
l
a
r
r
e
f
e
r
e
nc
e
f
o
r
t
he
s
ys
t
e
m
.
T
he
e
q
ui
va
l
e
nt
s
i
ngl
e
-
m
a
c
hi
ne
s
ub
s
ys
t
e
m
s
a
r
e
r
o
ug
hl
y i
d
e
nt
i
c
a
l
,
d
ue
t
o
s
y
s
t
e
m
s
y
m
m
et
r
y
.
S
i
n
ce t
h
e i
n
t
er
-
ar
e
a
m
o
d
e i
s
s
t
r
o
n
g
l
y
af
f
ect
ed
b
y
t
h
e a
m
o
u
n
t
o
f
t
h
e t
i
e
l
i
n
e p
o
w
er
,
t
h
r
ee o
p
er
at
i
n
g
co
n
d
i
t
i
o
n
s
ar
e co
n
s
i
d
er
ed
f
o
r
t
h
e t
es
t
s
y
s
t
e
m
.
T
h
es
e co
n
d
i
t
i
o
n
s
r
ep
r
es
en
t
t
h
e b
as
e cas
e
(
41
5 M
W
)
,
20%
i
nc
r
e
m
e
nt
a
nd
2
0
%
d
e
c
r
e
m
e
nt
i
n t
he
tie
l
in
e
p
o
w
e
r
.
T
h
e
s
ta
te
-
s
p
ace
m
at
r
i
ces
f
o
r
t
h
e b
as
e cas
e p
o
i
n
t
ar
e g
i
v
e
n
b
y
:
[
]
0
0
1
0
,
200000
0
0
0
,
1000
78013
0
2631
125
.
0
418
.
0
0
2472
.
0
0
104
.
0
0
0993
.
0
0
0
377
0
=
=
−
−
−
−
−
−
−
=
C
B
A
T
he
c
o
r
r
e
s
po
nd
i
ng
M
a
nd
N
m
at
r
i
ce
s
f
o
r
t
h
es
e t
e
s
t
p
o
i
n
t
s
ar
e co
m
p
u
t
ed
an
d
ar
e g
i
v
e
n
b
y
'
]
1
.
116
0
0
0
[
−
=
M
a
nd
]
0
9
.
58
0
62
.
109
[
−
−
=
N
.
T
he
ga
i
n
m
a
t
r
i
ces
o
f
t
h
e
o
b
s
er
v
er
-
b
as
ed
r
eg
u
l
at
o
r
,
i
.
e
.
,
P
S
S
2,
a
r
e
c
om
pu
t
e
d ba
s
e
d on
T
h
e
or
e
m
2,
a
n
d a
r
e
g
i
v
e
n by
:
[
]
[
]
0044
.
0
333
.
0
693
.
12
02067
.
0
,
5
.
1143
558
.
1
15
.
54
4
.
167
'
−
=
−
−
=
c
o
K
K
G
e
n
e
r
a
t
or
s
# 1,
2,
a
n
d 4 a
r
e
e
qu
i
ppe
d
w
i
t
h
t
h
e
s
a
m
e
obs
e
r
v
e
r
-
ba
s
e
d r
e
gu
l
a
t
or
(
P
S
S
2)
.
T
h
e
e
f
f
e
c
tiv
e
n
e
s
s
o
f
s
u
c
h
s
ta
b
iliz
e
r
is
t
es
t
ed
b
y
s
i
m
u
l
at
i
n
g
t
h
e n
o
n
l
i
n
ear
m
o
d
el
o
f
t
h
e t
es
t
p
o
w
er
s
y
s
t
e
m
a
n
d
b
y
c
o
m
p
a
r
i
n
g
it
w
it
h
t
h
e
C
P
S
S
a
s
w
e
ll.
T
h
e
p
r
o
p
o
s
e
d
d
e
s
ig
n
i
s
f
ir
s
tl
y
te
s
te
d
f
o
r
a
d
is
tu
r
b
a
n
c
e
in
itia
te
d
b
y
a
5
%
s
t
ep
ch
an
g
e i
n
t
h
e r
e
f
er
en
ce
v
o
l
t
ag
e o
f
G
e
n
er
at
o
r
#
1
.
T
h
e s
y
s
t
e
m
h
as
r
eco
v
e
r
e
d
w
i
t
hi
n 1
0
0
m
s
,
a
t
t
he
no
m
i
na
l
tie
lin
e
p
o
w
e
r
,
a
s
s
h
o
w
n
in
F
i
g
ur
e
6
.
0
5
10
15
0.
5
0.
55
0.
6
0.
65
0.
7
0.
75
0.
8
0.
85
0.
9
0.
95
heav
y
l
oad,
C
P
S
S
l
i
ght
l
oad,
C
P
S
S
δ
,
ra
d
ti
m
e
,s
Evaluation Warning : The document was created with Spire.PDF for Python.
IJ
E
C
E
I
S
S
N
:
2088
-
8708
D
es
i
g
n
o
f
O
b
s
er
ver
-
B
as
e
d R
obus
t
P
ow
e
r
Sy
s
t
e
m
St
abi
l
i
z
e
r
s
(
H
i
s
ham
M
.
Sol
i
m
an)
1965
F
i
g
ur
e
6
.
R
ot
or
a
n
g
l
e
s
o
f
G
e
n
#1,
2 &
4
du
e
t
o 5%
s
t
e
p c
h
a
ng
e
i
n
V
ref
1
w
i
t
h
f
u
l
l
r
eco
v
er
y
a
f
t
er
0
.
1
s
ec
(P
Tie
=4
1
5
M
W
)
I
t
i
s
w
or
t
h
m
e
nt
i
on
i
ng
t
h
a
t
a
l
t
h
ough
t
h
e
pr
opos
e
d P
S
S
i
s
ba
s
e
d
o
n
a l
i
n
ear
i
zed
m
o
d
el
w
h
e
n
t
h
e
s
y
s
te
m
i
s
s
u
b
j
e
c
t to
s
m
a
ll
-
d
is
t
u
r
b
a
n
c
e
s
(
d
y
n
a
m
ic
s
ta
b
ilit
y
)
,
it is
te
s
te
d
u
n
d
e
r
s
e
v
e
r
e
la
r
g
e
d
is
tu
r
b
a
n
c
e
s
a
n
d
it
s
h
o
w
s
t
h
e
v
e
r
y
e
f
f
e
c
t
iv
e
o
s
c
il
l
a
tio
n
d
a
m
p
in
g
(
tr
a
n
s
ie
n
t s
ta
b
il
it
y
)
.
N
ot
e
t
h
a
t
i
n
t
h
e
pr
opos
e
d P
S
S
de
s
i
gn
t
h
e
e
f
f
ect
o
f
d
a
m
p
e
r
b
ar
s
i
s
n
e
g
l
ect
ed
,
t
h
u
s
l
o
w
-
o
r
d
er
s
t
at
e
e
qu
a
t
i
on
i
s
obt
a
i
n
e
d,
e
a
s
y
t
o ha
n
dl
e
.
H
a
d t
h
e
da
m
pe
r
s
be
e
n
i
n
c
l
u
de
d,
m
or
e
da
m
pi
n
g
i
s
pr
ov
i
de
d.
5.
CO
NCL
U
S
I
O
N
P
o
w
er
s
y
s
t
e
m
d
y
n
a
m
i
cs
u
n
d
er
d
i
f
f
er
en
t
l
o
ad
s
i
s
r
ep
r
es
en
t
ed
b
y
a
m
o
d
el
w
i
t
h
u
n
cer
t
ai
n
t
y
i
n
t
h
e
f
o
r
m
of
n
or
m
-
bou
n
de
d s
t
r
u
c
t
u
r
e
.
T
w
o n
e
w
de
s
i
gn
s
of
d
y
n
a
m
i
c
ou
t
pu
t
f
e
e
dba
c
k
po
w
e
r
s
y
s
t
e
m
s
t
a
bi
l
i
z
e
r
s
(
P
S
S
s
)
ar
e d
es
cr
i
b
ed
i
n
t
h
i
s
p
ap
er
.
T
h
e
f
i
r
s
t
P
S
S
d
es
i
g
n
g
u
ar
a
n
te
e
s
r
o
b
u
s
t
s
ta
b
ilit
y
to
c
o
n
tr
o
l o
n
l
y
t
h
e
s
e
ttli
n
g
ti
m
e
.
T
h
e
s
y
n
t
h
es
i
s
o
f
P
S
S
l
ead
s
t
o
a
b
i
l
i
n
ear
m
at
r
i
x
i
n
eq
u
al
i
t
y
(
B
M
I
)
o
p
t
i
m
i
zat
i
o
n
p
r
o
b
l
e
m
.
T
h
e
d
er
i
v
ed
B
M
I
s
u
f
f
ic
ie
n
t c
o
n
d
itio
n
i
s
tr
a
n
s
f
o
r
m
e
d
in
to
a
L
i
n
e
a
r
M
a
tr
ix
I
n
e
q
u
a
lit
y
L
M
I
,
e
a
s
y
to
s
o
lv
e
,
u
s
i
n
g
a
p
ar
am
et
er
m
a
tr
i
x
w
h
ic
h
is
ite
r
a
ti
v
e
l
y
u
p
d
a
te
d
to
m
in
i
m
iz
e
a
c
e
r
ta
in
o
b
j
e
c
tiv
e
f
u
n
c
tio
n
.
I
n
a
d
d
itio
n
to
r
o
b
u
s
t s
ta
b
ilit
y
,
t
h
e
s
e
c
on
d
P
S
S
de
s
i
gn a
t
t
a
i
ns
r
obu
s
t
pol
e
pl
a
c
e
m
e
n
t
t
o
c
on
t
r
ol
bot
h
s
e
t
t
l
i
n
g
t
i
m
e
a
n
d
da
m
pi
ng
r
a
t
i
o.
T
h
e
de
s
i
gn
i
s
ba
s
e
d on
a
n
on
-
i
te
r
a
tiv
e
s
o
l
u
tio
n
to
a
s
u
f
f
ic
ie
n
t
L
M
I
c
o
n
d
itio
n
.
S
i
m
u
la
tio
n
r
e
s
u
lts
in
a
s
i
n
g
le
m
a
c
h
in
e
in
f
i
n
ite
-
bus
a
n
d
m
ul
t
i
-
m
a
c
h
in
e
te
s
t p
o
w
e
r
s
y
s
te
m
s
illu
s
tr
a
te
t
h
e
v
a
l
i
di
t
y
o
f
t
h
e
pr
opos
e
d de
s
i
gn
pr
oc
e
du
r
e
.
R
EF
ER
EN
C
ES
[
1]
S
o
lim
a
n
H
.
M
.
,
e
t a
l.
,
“
R
o
bus
t
pow
e
r
s
y
s
t
e
m
s
ta
b
iliz
e
r
,”
I
E
E
P
r
o
c
. E
l
e
c
t
r
. P
o
w
e
r
A
p
p
l
,
vo
l
.
147
,
pp
.
28
5
–
29
1
,
200
0
.
[
2]
C
he
n S
.
a
nd
M
a
l
i
k
0.
P
.
,
“
P
o
w
er
s
y
s
t
e
m
s
t
ab
iliz
e
r
d
e
s
ig
n
u
s
in
g
μ
s
y
n
th
e
s
is
,
”
I
E
E
E
T
r
a
n
s
. E
n
e
r
g
y
C
o
n
v
.
,
vo
l
.
10
,
pp.
1
75
-
181
,
19
95
.
[
3]
C
h
en
S
.
an
d
M
a
lik
0
.
P
.
,
“
H
∞
o
p
t
im
iz
a
tio
n
-
b
as
ed
p
o
w
er
s
y
s
t
e
m
s
ta
b
iliz
e
r
d
e
s
ig
n
,
”
I
E
E
P
ro
c
.
Ge
n
.
T
ra
n
sm.
Di
st
ri
b
,
vo
l
.
1
42,
pp
.
1
79
-
18
4
,
19
95
.
[
4]
W
er
n
er
H
.
,
e
t a
l.
,
“
R
obus
t
t
un
i
n
g
of
pow
e
r
s
y
s
t
e
m
s
t
a
bi
l
i
z
e
r
s
us
i
ng
L
M
I
-
t
e
c
hni
que
s
,
”
I
E
E
E
T
r
a
n
s
. C
o
n
t
r
o
l
S
y
s
t
.
T
e
c
hnol
,
v
o
l
.
1
1,
pp
.
1
47
-
15
2
,
200
3
.
[
5]
F
a
r
s
a
n
g
i
M
. M
.,
et
a
l
.
,
“
M
u
lti
-
o
b
j
e
c
t
i
v
e
de
s
i
g
n of
da
m
pi
ng
c
ont
r
o
l
l
e
r
s
of
F
A
C
T
S
de
v
i
c
e
s
v
i
a
m
i
x
e
d H
2/
H
∞
w
ith
r
eg
i
o
n
al
p
o
l
e p
l
acem
en
t
,
”
I
n
t
.
J.
E
l
ect
r
.
P
o
w
er
E
n
er
g
y
S
ys
t
.
, v
o
l
.
25
,
pp
.
3
39
–
3
46
,
20
03
.
[
6]
S
h
r
ik
a
n
t R
.
P.
a
nd
S
en
I
.
,
“
R
o
b
u
s
t
p
o
l
e
p
l
acem
en
t
s
t
ab
i
l
i
z
e
r
d
e
s
ig
n
u
s
i
n
g
lin
e
a
r
m
a
tr
ix
in
e
q
u
a
litie
s
,”
I
E
E
E
T
r
a
n
s
.
P
o
w
er
S
ys
t
.
,
v
o
l.
15
,
p
p.
31
3
-
31
9
,
20
00
.
[
7]
F
u
r
i
n
i
M
. A
.,
et
a
l
.,
“
P
ol
e
pl
a
c
e
m
e
nt
b
y
c
oor
di
na
t
e
d
t
u
ni
ng
of
pow
e
r
s
y
s
t
e
m
s
t
a
bi
l
i
z
e
r
s
a
n
d F
A
C
T
S
-
P
OD
s
ta
b
iliz
e
r
s
,”
I
n
t
.
J.
E
l
ect
r
.
P
o
w
er
E
n
er
g
y S
ys
t
.
,
vo
l
.
33,
pp
.
6
15
–
6
22
,
20
11
.
[
8]
A
lr
i
f
a
i M
.
,
et
a
l
., “
F
au
l
t
-
to
l
e
r
a
n
t s
ta
b
iliz
a
tio
n
f
o
r
tim
e
-
de
l
a
y
e
d
pow
e
r
s
y
s
t
e
m
s
,
”
I
nt
.
J
.
I
nnov
at
i
v
e
C
om
put
i
n
g
,
I
nf
or
m
at
i
o
n a
nd
C
o
nt
r
ol
,
vo
l
.
6
,
pp.
32
47
–
32
63
,
20
10
.
[
9]
S
o
lim
a
n
H
.
M
.,
e
t a
l.
,
“
W
i
d
e
-
r
a
n
g
e
r
e
lia
b
le
s
ta
b
iliz
a
tio
n
o
f
ti
m
e
-
d
el
a
y
ed
p
o
w
er
s
y
s
t
e
m
s
,
”
T
ur
k
J
E
l
e
c
E
ng
&
C
om
p
S
ci
.
,
v
o
l.
24
,
pp.
28
53
–
28
64
,
20
16.
[
1
0]
S
o
lim
a
n
H
.
M
.
an
d
S
h
a
f
i
q
M
.,
“
R
obus
t
s
t
a
bi
l
i
s
a
t
i
o
n of
pow
e
r
s
y
s
t
e
m
s
w
i
t
h r
a
ndom
a
br
upt
c
ha
ng
e
s
,
”
I
E
T
G
en
er
.
T
ra
n
sm.
Di
st
ri
b
.,
vol
.
9,
pp.
21
59
–
21
66
,
20
15
.
Evaluation Warning : The document was created with Spire.PDF for Python.