Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol.
5, No. 6, Decem
ber
2015, pp. 1441~
1
445
I
S
SN
: 208
8-8
7
0
8
1
441
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Effect of Height of the Substrat
e and Width of the Patch on the
Performance Characteristic
s of
M
i
crost
r
ip
Antenn
a
R
.
M
i
sh
ra
,
P.
K
u
ch
ha
l,
A
.
K
u
ma
r
College of
Engineering
Studies
,
University
of
Petroleum & En
erg
y
Stud
ies, Dehradun (India)
Article Info
A
B
STRAC
T
Article histo
r
y:
Received J
u
l
7, 2015
Rev
i
sed
Au
g
20
, 20
15
Accepte
d
Se
p 4, 2015
The d
e
mand for
broad-band
antennas has be
en in
creas
ed
in
the r
e
cent
ye
ars
.
They
find
to be extensiv
ely
used in high frequ
ency
and h
i
gh
speed data
communication. The factors affecting
the b
a
ndwidth of the
m
i
crostrip
antenn
a is discussed in this paper
.
Th
ere
are two
main parameters
responsible
for the broaden
i
ng of the antenn
a. One is
the height of the dielectric substrate
and anoth
e
r on
e is th
e width
of the p
a
tch
.
I
n
this pap
e
r, w
e
stud
y
th
e
performance ch
aracteristic
s of
rectangular p
a
tch antenna with variable
thickn
ess of the substrate
and
width of
th
e pa
t
c
h. One o
f
th
e
param
e
ter
is
varied
keep
ing
the oth
e
r f
i
xed
and th
e chara
c
t
eris
ti
c effe
cts
on
res
onant
frequency
,
b
a
nd
width and
gain are studied.
Keyword:
B
a
nd
wi
dt
h
Pat
c
h wi
dt
h
Retu
rn lo
ss
Substrate
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
R. Mish
ra,
C
o
l
l
e
ge of En
g
i
neeri
n
g St
u
d
i
e
s,
Un
i
v
ersity of
Petro
l
eu
m
& Energ
y
Stud
ies,
PO B
i
d
h
o
l
i
vi
a
Prem
nagar
,
D
e
hra
d
un
2
4
8
0
0
7
,
I
ndi
a
Em
a
il: r
m
ish
r
a@ddn
.u
p
e
s.ac.in
1.
INTRODUCTION
An
ten
n
a
p
l
ays a v
ital in
th
e
co
mm
u
n
i
catio
n
pro
cess. A l
o
t of inno
v
a
tion
arises in
th
e
d
e
sign
ing
o
f
th
e an
ten
n
a
s.
Th
e m
i
cro
s
trip p
a
tch an
ten
n
a
is o
n
e of t
h
e
co
st effectiv
e, easy to
in
t
e
grat
e an
d
need
ba
s
e
d
one
.
It
al
so pr
ovi
de
s t
h
e effi
ci
ent
r
e
sul
t
ori
e
nt
e
d
t
echni
que
s [1]
.
A vari
et
y
of
w
i
rel
e
ss com
m
u
n
i
cat
i
on en
gi
n
eeri
n
g
syste
m
h
a
v
e
sh
own
a leap
an
d
bo
und
grow
th
in
r
ecen
t
years and the
extensi
v
e nee
d
in the com
i
ng fut
u
re.
Th
is scen
ari
o
n
ecessitate th
e i
m
p
r
ov
ing
of th
e ex
isting
syste
m
an
d
a dev
e
lop
m
en
t o
f
n
e
w i
n
nov
atio
n
s
to
match
with
th
e d
e
m
a
n
d
an
d n
eed
[2
]. Utility
an
d
d
e
m
a
n
d
o
f
th
e ev
er g
r
o
w
i
n
g
ap
plicatio
n
u
n
l
eash
th
e
antennas as
ne
w area
of
resea
r
ch a
n
d innova
tions.
Bei
n
g ec
onom
ical the printed
ante
nnas
are acc
omm
o
date
d
easily in
th
e d
e
v
i
ce p
a
ck
ag
e.
Micro
s
trip an
t
e
n
n
a
s are
b
e
st
form
o
f
prin
ted
an
tenn
as. Their u
tility an
d
d
e
m
a
n
d
lie in
th
eir so
me featu
r
es that in
clu
d
e
lig
ht in
weig
h
t
, smaller in
size,
b
r
o
a
d
in
b
a
ndwid
th, lo
w i
n
co
st and
in
teg
r
al with
i
n
tegrated
circuits, [3
], [4
] alt
h
oug
h
t
h
ese ant
e
n
n
a ha
ve d
r
awbac
k
s l
i
k
e l
o
w
gai
n
a
nd
n
a
rr
ow
ban
d
w
i
d
t
h
[
5
]
Federal
C
o
m
m
uni
cat
i
on C
o
m
m
i
ssi
on (FC
C
)
rece
nt
l
y
app
r
o
v
e
d
Ul
t
r
a
W
i
de
B
a
n
d
C
o
m
m
uni
cat
i
o
n sy
st
em
s ope
r
a
t
i
ng i
n
t
h
e
f
r
e
que
ncy
ran
g
e
f
r
om
3.
1 t
o
1
0
.
6
GHz
[
6
]
.
T
h
i
s
ba
nd
re
q
u
i
r
e
s
t
h
e
ant
e
n
n
as m
eet
wi
t
h
t
h
e
re
q
u
i
r
em
ent
of
re
du
c
i
ng t
h
e si
ze a
n
d
wei
g
ht
o
f
t
h
e
com
m
uni
cat
i
on e
qui
pm
ent
.
An
ten
n
a
b
a
ndwid
th is an
imp
o
rtan
t
p
a
ram
e
ter of
an
tenn
a o
v
e
r
t
h
e rang
e
of frequ
en
cies
fu
lfilled
b
y
t
h
e desi
re
d an
t
e
nna c
h
aract
e
r
i
s
t
i
c
s. Ant
e
nn
a ban
d
w
i
d
t
h
i
s
descri
bed
o
n
t
h
e basi
s o
f
gai
n
,
Im
pedan
ce or
VS
W
R
. T
h
e i
m
pedance ba
n
d
wi
dt
h i
s
t
h
e
r
a
nge
o
f
f
r
eq
ue
nci
e
s o
v
er
w
h
i
c
h t
h
e i
n
p
u
t
i
m
pedance o
f
a
n
t
e
n
n
a i
s
perfectly
m
a
tc
hed to t
h
e cha
r
acteristic im
p
e
dance
of
t
h
e
feedi
ng t
r
a
n
sm
i
ssi
on l
i
n
e. M
o
st
com
m
on form
of
an
tenn
a b
a
ndwid
th
to
b
e
used
in
m
i
cro
s
trip
an
ten
n
a
i
s
t
h
e fract
i
o
nal
ban
d
wi
dt
h
o
n
a 1
0dB
p
o
i
n
t
.
To
m
a
xim
i
ze
t
h
e im
pedance ba
n
d
wi
dt
h [
7
]
pr
o
p
er i
m
pedance
m
a
t
c
hi
ng i
s
re
qui
red
.
Thi
s
re
qui
res t
h
at
t
h
e feed at
t
h
e dri
v
i
n
g p
o
i
n
t
of t
h
e ant
e
n
n
a t
o
be o
f
5
0
ohm
gene
rally. Som
e
researcher [8]
in
trodu
ces h
a
lf cu
t prin
ted
m
onop
ol
e t
ech
ni
q
u
e f
o
r m
a
tchi
n
g
i
m
prove
m
e
nt
.
W
i
rel
e
s
s
com
m
uni
cat
ions i
n
i
t
s
m
o
d
e
rn
fo
rm
requi
re an
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1441 –
1445
1
442
extensi
v
e use
of
va
rious m
odification of microstri
p
an
te
nna [9],
[10]. R
ecently
m
a
ny researche
r
i
n
troduce
s
desi
g
n
a
s
pect
[
11]
-
[
13]
,
H
o
w
e
ver
,
i
n
t
h
ese
t
h
e
foc
u
s
was
t
o
desi
g
n
a s
p
e
c
i
f
i
c
ant
e
nna
b
u
t
not
t
o
a
n
al
y
ze t
h
e
im
pact
of
pat
c
h a
n
d
s
ubst
r
at
e di
m
e
nsi
on
det
a
i
l
.
A system
at
ic d
i
ag
ram
o
f
th
e
micro
s
trip
an
ten
n
a
is
g
i
ve
n i
n
t
h
e Fi
g
u
re
1
bel
o
w.
It
i
s
re
ct
ang
u
l
a
r i
n
sha
p
e
an
d has a
di
m
e
nsi
on of
L ×
W
. Here
L
and
W
a
r
e t
h
e re
so
nat
i
n
g l
e
ngt
h a
nd
wi
dt
h
of t
h
e p
a
t
c
h.
The
patch is
etche
d
over a s
u
bstrate of
dielectric constant
ε
r
a
n
d
hei
g
ht
h
.
It is
feed
with
a m
i
cro
s
t
r
ip
lin
e.
Fi
gu
re
1.
Ge
o
m
et
ry
of R
ect
a
n
g
u
l
a
r
M
i
crost
r
i
p
Pat
c
h
A
n
t
e
nna
There
f
ore, i
t
i
s
ob
vi
o
u
s t
h
at
t
h
e m
i
crost
r
i
p
a
n
t
e
n
n
a i
s
a non
-h
om
ogene
o
u
s
l
i
n
e of t
w
o di
e
l
ect
ri
cs, t
h
e
substrate and t
h
e air. He
re, m
o
st of th
e electric field lines
reside in t
h
e s
u
bs
trate.
On
ly so
m
e
p
a
rts of it lie in
the air. T
h
e
r
efore i
n
this struct
u
r
e t
h
e
d
o
m
i
n
ant
m
ode of
pr
o
p
ag
at
i
o
n
i
s
qua
si
-TEM
m
ode.
So
, t
h
e pha
se
v
e
lo
cities are
differen
t
in
t
h
e
air and
th
e substr
ate. Hen
ce,
an
effectiv
e
d
i
electric co
n
s
tan
t
(
ε
eff
) co
m
e
s in
to
the
rol
e
acc
ou
nt
i
n
g f
o
r t
h
e fri
n
g
i
ng a
n
d fi
nal
t
h
e wave
pr
o
p
ag
at
i
on i
n
t
h
e l
i
n
e. The
val
u
e
o
f
ε
eff
is slig
h
tly less
th
an
ε
r
. T
h
is is due to t
h
e fact that the fringi
ng
fiel
ds a
r
ound the
boundary s
u
rface
of the
patch a
r
e not
confine
d
i
n
the
dielectric s
ubs
trate
bu
t th
ey also
sp
read
i
n
the air.
2.
A
N
T
EN
NA
DIM
E
NSION
Th
is an
tenn
a is fed
b
y
a
m
i
cro
s
t
r
ip
feed
lin
e with a characteristic
im
peda
nce o
f
5
0
ohm
. The
m
a
t
e
ri
al
used f
o
r t
h
e s
u
b
s
t
r
at
e i
s
FR
4 e
p
ox
y
wi
t
h
di
el
ect
r
i
c const
a
nt
o
f
4.
4 a
nd l
o
ss t
a
nge
nt
of
0.
0
0
2
7
. T
h
e
material u
s
ed
fo
r th
e
p
a
tch is
co
pp
er an
d
its h
e
igh
t
is tak
e
n
to
b
e
18
m
i
crometer.
The pat
c
h l
e
ng
t
h
det
e
rm
i
n
es the res
ona
nt
fr
e
que
ncy
,
an
d i
t
i
s
cri
t
i
cal
param
e
t
e
r i
n
t
h
e desi
gn
. The
pat
c
h l
e
ngt
h L
of
t
h
e a
n
t
e
n
n
a
[1
4]
i
s
gi
ve
n a
s
:
.
.
Electrically th
e patch length is bigger tha
n
its
physical lengt
h. T
h
ere
f
ore
taking int
o
account the
no
rm
al
i
zed ext
e
nsi
o
n
of
t
h
e l
e
ngt
h, t
h
e l
e
ngt
h L
i
s
gi
ven
as:
.
2
∆
;
Δ
L arises
due
to t
h
e e
ffe
ctive dielect
ric con
s
tan
t
, wh
i
c
h
is lower than
the actual
dielectric constant.
This e
ffective
dielectric const
a
nt is
used
to
acco
un
t
for th
e fring
i
ng
effect.
The e
q
uation used t
o
calculat
e
the
width is
given a
s
:
.
It
i
s
obse
r
ved
t
h
at
t
h
e di
m
e
nsi
o
ns a
r
e d
e
pen
d
en
t on
th
e p
e
rm
it
tiv
it
y o
f
th
e substrate. The
charact
e
r
i
s
t
i
c
i
m
pedance o
f
t
h
e
pat
c
h al
s
o
d
e
pen
d
s
o
n
t
h
e
di
m
e
nsi
on a
n
d
perm
i
t
t
i
v
i
t
y
of
t
h
e pat
c
h a
n
t
e
n
n
a.
3.
R
E
SU
LTS AN
D ANA
LY
SIS
The
di
scus
si
o
n
i
s
base
d o
n
t
h
e t
w
o set
of
o
b
ser
v
at
i
o
n.
In
the first case
of obse
rvation t
h
e effect on
t
h
e ban
d
w
i
d
t
h
by
va
ry
i
ng t
h
e hei
ght
o
f
t
h
e subst
r
at
e
is seen
, wh
ile in
th
e seco
nd case the height
of the
sub
s
t
r
at
e i
s
kee
p
fi
xe
d, a
n
d t
h
e wi
dt
h
of
t
h
e
pat
c
h i
s
va
ri
ed
t
o
o
b
se
rve
t
h
e
vari
at
i
o
n i
n
t
h
e
ba
nd
wi
dt
h.
3.
1. E
ffec
t
of
B
a
ndw
i
d
t
h
an
d Re
turn
L
o
s
s
on
the
Hei
g
ht
o
f
t
h
e S
ubs
tr
ate
In
th
is set of ob
serv
ation
,
th
e d
i
m
e
n
s
io
n
o
f
t
h
e ant
e
nna i
s
t
a
ken as
12 m
m
and
16 m
m
fo
r a reso
na
nt
fre
que
ncy
6
G
H
z a
nd
1
0
m
m
an
d 1
4
m
m
wi
t
h
a res
o
nant
f
r
eq
ue
ncy
o
f
7
GHz
. T
h
e
hei
g
ht
o
f
t
h
e
su
bst
r
at
e i
s
vari
e
d
f
r
om
1.
0 m
m
t
o
2.0 m
m
.
The reso
na
nt
f
r
eq
ue
ncy
d
e
pen
d
s
o
n
t
h
e
no
.
of m
odes e
x
ci
t
e
d.
At
ar
o
u
n
d
1
.
4
m
m
,
t
h
e bro
a
d
e
ni
n
g
of t
h
e
ba
nd
wi
dt
h occ
u
r
s
. As we m
ove t
o
war
d
s a hi
g
h
er hei
g
ht
of t
h
e su
bst
r
at
e t
h
e
m
o
re
vol
um
e t
o
t
h
e
f
r
i
n
gi
n
g
e
ffect
s
occu
rre
d,
a
n
d
t
h
i
s
l
eads
t
o
a
b
e
t
t
e
r ret
u
rn
l
o
s
s
an
d
ba
nd
wi
dt
h.
W
i
t
h
a
hei
g
ht
o
f
1.
8 m
m
and m
o
re t
h
e
pe
rf
or
m
a
nce deg
r
a
d
e
d
. B
o
t
h
t
h
e ret
u
r
n
l
o
ss a
n
d b
a
nd
wi
dt
h re
du
ces.
W
i
t
h
m
o
r
e
hei
g
ht
of t
h
e s
u
bst
r
at
e, hi
g
h
er m
ode
s are exci
t
e
d a
nd t
h
ese hi
ghe
r m
odes resul
t
i
n
t
h
e de
gra
d
at
i
on
of t
h
e
ret
u
r
n
l
o
ss
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Ef
f
ect
of
Hei
g
h
t
of
t
h
e
S
u
b
s
t
r
a
t
e an
d
Wi
dt
h
of
t
h
e P
a
t
c
h
o
n
t
h
e Perf
or
ma
nc
e C
h
aract
e
ri
st
i
c
s of
…
(
R
.
Mi
shra)
1
443
and
ba
n
d
wi
dt
h
.
T
h
e t
w
o
best
resul
t
i
s
s
h
ow
n
i
n
Fi
gu
re
2 a
n
d Fi
gu
re
3.
Fi
g
u
re
2
i
s
wi
t
h
1
.
6 m
m
of hei
g
h
t
an
d
reso
na
nt
fre
qu
ency
of 6
GHz
,
wherea
s Fi
g
u
r
e
3 i
s
1.5 m
m
of hei
ght
an
d a
reso
nant
f
r
eq
u
e
ncy
of 7
GHz
.
si
nce
with
freq
u
e
n
c
y
rise, t
h
e
d
i
m
e
n
s
ion
o
f
th
e
p
a
tch
is less, so th
e
b
e
tter resu
lt
is ob
tain
ed
at
1
.
5
mm
.
Fi
gu
re
2.
S
1
1
param
e
t
e
r wi
t
h
1.
6 m
m
subst
r
at
e
Fi
gu
re
3.
S
1
1
param
e
t
e
r wi
t
h
1.
5 m
m
subst
r
at
e
In
o
r
d
e
r t
o
h
a
ve a clo
s
e lo
ok
in
to
th
e resu
lts o
b
s
er
v
e
d, th
e
resu
lt is p
l
o
tted
in
a grap
h
i
cal
m
a
n
n
e
r in
Fi
gu
re
4 a
n
d
5
.
The
va
ri
at
i
o
n
of
ba
n
d
wi
dt
h
i
s
sh
ow
n i
n
Fi
gu
re
4,
w
h
erea
s t
h
e Fi
gu
re
5
i
s
t
h
e
vari
at
i
o
n
o
f
ret
u
r
n
l
o
ss wi
t
h
cha
n
gi
n
g
h
e
i
ght
of s
u
bst
r
at
e. It
i
s
o
bvi
o
u
s
fr
om
t
h
e fi
g
u
re t
h
at
b
o
t
h
t
h
ese
param
e
t
e
r un
de
r
obs
er
vat
i
on i
n
creases st
eadi
l
y
wi
t
h
t
h
e hei
g
ht
of t
h
e s
u
bst
r
at
e up t
o
1
.
6 m
m
for 6
GHz a
nd
1.
5 m
m
for 7 G
H
z
of
fre
quency, a
nd t
h
en
started decreasi
n
g. So,
with FR
4 epoxy
dielectric subs
trate m
a
ter
i
al the best hei
ght i
s
1.
5 m
m
t
o
1.6
m
m
for t
h
e
de
si
gni
ng
o
f
t
h
e
br
oa
d p
a
t
c
h a
n
t
e
nna.
H
o
weve
r, as
t
h
e s
u
bst
r
at
e hei
g
ht
i
n
c
r
eases,
surface wave
s are
ge
ne
rated. These wa
ves
e
x
tract
power
from
the total available pow
er in the
direction of
rad
i
ation
.
Hence a redu
ctio
n in
an
tenn
a
p
a
rameter is o
b
served
.
Fi
gu
re 4.
Va
ri
at
i
on of
B
a
n
d
wi
dt
h wi
t
h
Hei
g
h
t
of
Substrate
Fi
gu
re 5.
Va
ri
at
i
on of
R
e
t
u
r
n
Loss wi
t
h
Hei
g
ht
o
f
Substrate
3.
2. E
ffec
t
on
B
a
ndw
i
d
t
h
an
d Re
turn
L
o
s
s
on
the
Hei
g
ht
o
f
t
h
e S
ubs
tr
ate
In t
h
i
s
o
b
se
rv
at
i
on, t
h
e hei
g
ht
of t
h
e su
bst
r
at
e i
s
kept
fi
xed
.
Thi
s
i
s
t
h
e hei
ght
at
wh
i
c
h t
h
e best
resul
t
was o
b
t
a
i
n
ed i
n
t
h
e fi
rs
t
set
of obse
r
v
a
t
i
on. T
h
e l
e
ng
t
h
of t
h
e pat
c
h i
s
kept
fi
xe
d at
10 m
m
and 12
m
m
for th
e two
set
o
f
frequ
e
n
c
ies, an
d th
e
wid
t
h of th
e
p
a
tc
h
is v
a
ried
fro
m
14
cm
to
18
cm
.
Differen
t sim
u
latio
n
resul
t
we
re
obs
erve
d
by
vary
i
ng t
h
e wi
dt
h.
At
l
o
we
r
wi
dt
h
t
h
ere i
s
nei
t
he
r any
vari
at
i
o
n
i
n
t
h
e b
r
oade
ni
ng
n
o
r
is a g
ood
return
l
o
ss ob
tained
.
As th
e
wid
t
h
in
creas
es t
h
e b
a
nd
wi
d
t
h
in
creased
sligh
tly b
u
t
th
ere is no
si
gni
fi
ca
nt
c
h
a
nge
i
n
t
h
e
res
o
nant
fre
q
u
en
cy
. At
a
wi
dt
h
o
f
ar
ou
n
d
16
m
m
t
h
ere i
s
a
si
gni
fi
cant
c
h
an
ge i
n
t
h
e
b
a
ndw
id
th. The an
tenn
a is sho
w
i
n
g a
h
i
gh
b
a
ndw
id
th of
m
o
r
e
th
an
1
GH
z an
d a
h
i
gh
r
e
tu
rn
l
o
ss
n
e
ar
to
45
dB
.
W
i
t
h
a
wi
dt
h
of
m
o
re t
h
an
16
m
m
, t
h
e ban
d
w
i
d
t
h
dec
r
eased
d
r
ast
i
cal
l
y
and t
h
e
res
ona
nt
f
r
e
que
nc
i
e
s al
so
get cha
nge
d.
The
higher mode e
x
c
itation accounts for
it. Figure 6 s
h
ows t
h
e S11
result with 6
GHz
of
f
r
e
q
u
e
n
c
y an
d
Fig
u
r
e
7
is
w
ith
7
G
H
z
of
f
r
e
q
u
e
n
c
y at the
best ob
serv
ation of
r
e
t
u
rn
l
o
ss
an
d b
a
nd
w
i
d
t
h.
4
5
678
9
1
0
31
1
-4
0
-3
0
-2
0
-1
0
0
-5
0
10
F
r
e
que
nc
y
Ma
g.
[
d
B
]
S11
45
6789
1
0
31
1
-3
0
-2
0
-1
0
-4
0
0
F
r
e
q
ue
nc
y
Ma
g
.
[d
B
]
S1
1
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJECE
Vol. 5, No. 6, D
ecem
ber
2015 :
1441 –
1445
1
444
Fi
gu
re
6.
S
1
1
param
e
t
e
r wi
t
h
1
4
m
m
of wi
d
t
h
Fi
gu
re
7.
S
1
1
param
e
t
e
r wi
t
h
1
5
m
m
of wi
d
t
h
The
vari
at
i
o
n of t
h
ese t
w
o c
h
an
gi
n
g
param
e
t
e
r wi
t
h
re
spe
c
t
t
o
t
h
e cha
n
g
i
ng
wi
dt
h
o
f
t
h
e pat
c
h a
r
e
pl
ot
t
e
d i
n
Fi
g
u
re
8 a
n
d 9
.
T
h
e ret
u
r
n
i
s
va
ry
i
ng i
n
a
ver
y
st
eady
rat
e
.
It
i
s
m
a
xim
u
m aro
u
nd
1
6
m
m
, but
b
e
low an
d abov
e th
is h
e
i
g
h
t
t
h
ere it is d
e
g
r
ad
ing
.
Fi
gu
re 8.
Va
ri
at
i
on of
B
a
n
d
wi
dt
h wi
t
h
Wi
dt
h
o
f
Patch
Fi
gu
re 9.
Va
ri
at
i
on of
B
a
n
d
wi
dt
h wi
t
h
Wi
dt
h
o
f
Patch
The i
m
pedanc
e of t
h
e
pat
c
h
i
s
a fun
c
t
i
on
o
f
i
t
s
di
m
e
nsi
on, t
h
ere
f
o
r
e i
t
i
s
a gene
ral
o
b
se
rvat
i
o
n t
h
at
wi
t
h
t
h
e cha
n
g
i
ng wi
dt
h, t
h
e
per
f
o
r
m
a
nce characteristics of the patch c
h
a
nge
s. A larger
patch wi
dth increases
th
e po
wer rad
i
ated
resu
ltin
g
in
a redu
ction
in
th
e reson
a
nt
resi
st
ance.
It
t
hus i
n
cr
ease t
h
e
ope
rat
i
on
ba
n
d
wi
dt
h
and it finally a
ccount
for inc
r
eased
radiation efficiency.
As the
hei
ght
of the s
u
bstrate i
n
crease
s
it adds m
o
re
vol
um
e t
o
f
r
i
n
gi
n
g
ef
f
ect
, there
b
y an
increase i
n
t
h
e ba
nd
wi
dt
h
and ra
di
at
i
o
n
i
s
obser
ve
d.
B
u
t
bey
o
nd a
part
i
c
ul
a
r
val
u
e hi
gh
er m
ode
s are exi
t
e
d a
nd t
h
e
rad
i
ation
h
a
m
p
ers.
Th
is
resu
lts in
t
h
e redu
ctio
n in
t
h
e
b
a
ndwid
th.
4.
CO
NCL
USI
O
N
Th
e sh
ap
e of th
e p
a
tch
is its
main
p
a
ra
m
e
ter an
d
it n
a
tu
rally affects
m
o
st o
f
th
e an
tenn
a
charact
e
r
i
s
t
i
c
s. The
pat
c
h
wi
d
t
h has a m
i
nor
effect
on t
h
e re
son
a
nt
f
r
e
que
n
c
y
,
but
i
t
ha
s a
m
a
jor e
ffe
ct
o
n
t
h
e
ban
d
w
i
d
t
h
.
Si
m
i
l
a
rl
y
,
t
h
e b
a
nd
wi
dt
h i
s
al
so e
ffect
by
t
h
e
hei
g
ht
of
t
h
e s
u
bst
r
at
e.
There
f
or
hei
g
ht
of t
h
e
sub
s
t
r
at
e an
d t
h
e wi
dt
h o
f
t
h
e
pat
c
h pl
ay
an im
port
a
nt
ro
le for th
e m
a
x
i
mi
zin
g
of th
e ra
diation efficienc
y
and
th
e b
a
nd
wi
d
t
h
o
f
th
e m
i
cro
s
trip
an
te
n
n
a.
Hen
ce, t
o
g
e
t th
e
b
a
ndwid
th enhan
cem
en
t th
e
wid
t
h of t
h
e
patch
is
aro
u
n
d
1
.
5
t
i
m
e
t
h
at
o
f
t
h
e l
e
ngt
h. B
y
usi
n
g
a p
r
o
p
er
val
u
e
a b
r
oa
d
b
an
d a
n
t
e
nna ca
n
be
d
e
si
gne
d.
45678
9
1
0
31
1
-3
0
-2
0
-1
0
-4
0
0
Fr
e
q
u
e
n
c
y
M
ag
.
[
dB]
S1
1
45678
9
1
0
31
1
-4
0
-3
0
-2
0
-1
0
-5
0
0
F
r
e
q
ue
nc
y
M
ag
.
[d
B
]
S1
1
Evaluation Warning : The document was created with Spire.PDF for Python.
IJECE
ISS
N
:
2088-8708
Ef
f
ect
of
Hei
g
h
t
of
t
h
e
S
u
b
s
t
r
a
t
e an
d
Wi
dt
h
of
t
h
e P
a
t
c
h
o
n
t
h
e Perf
or
ma
nc
e C
h
aract
e
ri
st
i
c
s of
…
(
R
.
Mi
shra)
1
445
REFERE
NC
ES
[1]
Pozar D. M., “A review of ban
d
widt
h enhan
c
e
m
ent techn
i
ques
for M
i
cros
trip
antenn
as
”, I
E
EE
P
r
es
s
,
New York,
1995.
[2]
Niang Z.
, and X. M
.
Qing, “
R
es
earch
a
nd development of planar UWB antennas”,
IE
EE AP
MC-
2005 Proceedin
gs,
2005.
[3]
R.E. Munson, “
C
onformal Micr
ostrip phased
arr
a
y
s
”,
IEEE Trans Antennas pro
pagation,
Vol. 2
2
, pp
. 74-78
, 19
74.
[4]
R. Garg
, “
P
rogre
ss in Microstrip
antenn
as”,
IET
E
T
echnica
l
R
e
v
i
e
w
,
Vol. 18, No.2
-3, pp
85-98, 20
01.
[5]
Federal Commu
nications Comm
ission (FCC), R
e
vision of Part
15 of
th
e Commission'
s Rules
Regard
ing Ultr
a
Wideband Trans
m
ission Sy
stems, First
R
e
port an
d Order, FCC 02
-48, 2002
.
[6]
Kumar G and Ray
K
.
P., “ Broadb
and Micr
ostr
ip
Antennas”, Artech House, 2003.
[7]
C. A. Balanis., “
A
ntenna
Theor
y
- Analy
s
is
and D
e
sign”, John Wiley
and Sons,
N
Y
, 1997.
[8]
Teguh Prakoso, “Impedance Mathing Improvement of
Half Cut Broadband
Printed Monopole Antenna
with
M
i
cros
trip F
eed
ing”,
Internatio
nal Journal o
f
Electrica
l
and
Computer Engin
eering (
I
JECE)
,
Vol. 3, No. 5
,
pp.
612-617, 2013
.
[9]
A. Singh, K. Kamakshi, M. An
eesh, J. A. Ansari, “Slots and Notches Lo
ad
ed Microstrip Patch Antenna for Wir
e
less
Communication”,
TELKOMNIK
A
Indonesian
Jo
urnal of
Electrical Eng
i
neering
,
Vol. 13
, No. 3, p
p
. 584-594
, 201
5.
[10]
K. K. Parash
ar,
“Design and Analy
s
is of I-Slotted Recta
ngular M
i
crostrip Patch
Antenna
for
Wireless Applicatio
n”,
International Jo
urnal of
Electrical
and Computer Engin
eering
(
I
JECE)
,
Vol. 4, No. 1
,
pp
. 31-36
,
2014.
[11]
Dong-Zo Kim,
Wang-Ik Son,
Won-Gy
u Lim, Han-Lim Lee, and Jong-Wo
n
Yu, "Integtated planar monopole
antenn
a with
m
i
crostrip r
e
sonato
rs
having b
a
nd-
notched
ch
aracteristics",
IEEE
Trans. Antennas
Propag.,
Vol. 58,
pp. 2837-2842
,
2010.
[12]
A. M. Abbosh,
M. E. B
i
alkowski,
"Design of
UWB planar bandnotched
anten
n
a using par
a
sitic element"
,
IEEE
Trans. Antennas
Propag.,
Vol. 57
, pp
. 796-799
, 2
009.
[13]
Ja
me
s R.
Ke
lly
, Pe
te
r S.
Hall,
and Pe
te
r Ga
rdner,
"Ba
nd-no
tched UWB antenn
a incorpor
ating
a microstrip op
en
-
loop resonator",
IEEE Trans. Antennas Propag.,
Vol. 59
, pp
. 304
5-3048, 2011
.
[14]
R. Garg
, P. Bhatia, I. Bah
l
, a
nd
A. Ittipiboon
, “Microstrip Antenna
Design H
a
n
dbook”, Artech-
H
ouse, 2001.
BIOGRAP
HI
ES
OF AUTH
ORS
Mr. R
a
n
j
an
Mi
s
h
ra
has done his M. Tech from the University
o
f
Burdwan, India. He is presen
tly
working as
an
as
s
i
s
t
ant profes
s
o
r in the
dep
a
rt
ment of Electro
nics, University of Petroleum &
Energ
y
stud
ies,
Dehradun India. He is also doi
n
g
Ph. D. fro
m t
h
e same university
.
His areas o
f
inter
e
st ar
e Mi
cr
ostrip an
tenna
, s
a
te
llit
e
com
m
unicat
ion.
Dr
.
P
i
y
u
sh K
u
c
hhal
is
graduate
from
CCS
Univers
i
t
y
M
eerut
, In
dia, M
a
s
t
e
r
in S
c
ien
ce and P
h
.D
from
India Institute of Techno
lo
g
y
, Roorkee (II
TR).
He is working as the Associat
e Professor and
Associate Dean
in College of
Engineering Stu
d
ie
s
,
Univers
i
t
y
of P
e
troleum
& Energ
y
s
t
udi
es
,
Dehradun India. He also headed the Department of
Phy
s
ics. He
is having a rich experience of 20
y
e
ars in the f
i
eld of semiconductors devices & ph
y
s
ics and pub
lished man
y
papers in internation
a
l
j
ournals. His areas of interest
in
cludes Semicon
ductor material
&
process, Electr
onics devices
&
Circuits
, E
l
e
c
tro
m
agnetic
fi
eld
th
eor
y
, Opt
i
cal Co
mmunication an
d Microwave En
gineer
ing.
Dr.
Adesh Kumar
is
B
.
T
ech
in
Ele
c
troni
cs
&
C
o
m
m
unication E
ngineer
ing from
Veera Co
ll
ege o
f
Engineering, Bijnor (UPTU,
Lucknow) India in
2006. M.Tech
in Embedded S
y
stems Technolo
g
y
from SR
M
University
, Chenn
a
i in 2008, and Ph.D (E
ngg) from u
n
iversity
of Petr
oleum and Ener
g
y
Studies, Dehrad
un India, 2014.
Currently
he is work
ing as an Assistant Professor (Senior Grade)
with the
dep
a
rt
m
e
nt of
E
l
e
c
tron
ics and
Instrum
e
ntation
Engin
eer
ing in
the Un
ive
r
sit
y
of Petr
oleu
m
& Energ
y
Studies, Dehradun In
dia. His ar
e of in
ter
e
st are VLSI Design, Microprocessors and
Embedded S
y
s
t
em. He has p
ublis
hed 20 r
e
sear
ch
pa
pers in
in
ternational journ
a
l an
d confer
ences.
Evaluation Warning : The document was created with Spire.PDF for Python.