I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
8
,
No
.
3
,
J
u
n
e
201
8
,
p
p
.
1
6
3
6
~
1
6
4
6
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v8
i
3
.
p
p
1
6
3
6
-
1646
1636
J
o
ur
na
l ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
co
r
e
.
co
m/
jo
u
r
n
a
ls
/in
d
ex
.
p
h
p
/
I
JE
C
E
New
Approa
ches in Cog
nitive Ra
di
o
s usin
g
Ev
o
lutiona
ry
Alg
o
rith
m
s
M
i
g
uel Tu
berq
uia
,
Cesa
r
H
er
na
nd
ez
T
e
c
h
n
o
lo
g
ica
l
a
n
d
E
n
g
in
e
e
rin
g
D
e
p
a
rtme
n
t,
F
ra
n
c
isc
o
J
o
sé
d
e
Ca
l
d
a
s
District
Un
iv
e
rsity
,
Co
lo
m
b
ia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Dec
2
3
,
2
0
1
7
R
ev
i
s
ed
A
p
r
2
,
2
0
1
8
A
cc
ep
ted
A
p
r
1
0
,
2
0
1
8
Co
g
n
it
iv
e
ra
d
io
h
a
s
c
laim
e
d
a
p
ro
m
isin
g
tec
h
n
o
lo
g
y
to
e
x
p
lo
it
th
e
sp
e
c
tru
m
in
a
n
a
d
h
o
c
n
e
tw
o
rk
.
Du
e
m
a
n
y
te
c
h
n
iq
u
e
s
h
a
v
e
b
e
c
o
m
e
a
to
p
ic
o
f
d
isc
u
ss
io
n
o
n
c
o
g
n
it
iv
e
ra
d
io
s,
th
e
a
im
o
f
th
is
p
a
p
e
r
wa
s
d
e
v
e
lo
p
e
d
a
c
o
n
tem
p
o
ra
r
y
su
rv
e
y
o
f
e
v
o
lu
ti
o
n
a
ry
a
lg
o
rit
h
m
s
in
Co
g
n
it
i
v
e
Ra
d
io
.
A
c
c
o
rd
in
g
to
th
e
a
rt
sta
te,
th
i
s
w
o
rk
h
a
d
b
e
e
n
c
o
ll
e
c
ted
th
e
e
ss
e
n
ti
a
l
c
o
n
tri
b
u
ti
o
n
s
o
f
c
o
g
n
it
iv
e
ra
d
io
s
w
it
h
th
e
p
a
rti
c
u
larity
o
f
b
a
se
th
e
y
re
s
e
a
rc
h
in
e
v
o
lu
ti
o
n
a
ry
a
lg
o
rit
h
m
s.
T
h
e
m
a
in
id
e
a
w
a
s
c
las
si
f
ied
th
e
e
v
o
lu
ti
o
n
a
ry
a
lg
o
rit
h
m
s
a
n
d
sh
o
w
e
d
t
h
e
ir
f
u
n
d
a
m
e
n
tal
a
p
p
ro
a
c
h
e
s.
M
o
re
o
v
e
r,
th
is
re
se
a
rc
h
w
il
l
b
e
e
x
p
o
se
d
so
m
e
o
f
th
e
c
u
rre
n
t
issu
e
s
in
c
o
g
n
it
iv
e
ra
d
io
s
a
n
d
h
o
w
th
e
e
v
o
lu
ti
o
n
a
ry
a
l
g
o
rit
h
m
s
w
il
l
h
a
v
e
b
e
e
n
c
o
n
tri
b
u
ted
.
T
h
e
re
f
o
re
,
c
u
rre
n
t
tec
h
n
o
l
o
g
ies
h
a
v
e
m
a
tt
e
r
s
p
re
se
n
ted
i
n
o
p
ti
m
iza
ti
o
n
,
lea
rn
in
g
,
a
n
d
c
las
si
f
ica
ti
o
n
o
v
e
r
c
o
g
n
it
iv
e
ra
d
io
s
w
h
e
re
e
v
o
lu
ti
o
n
a
ry
a
lg
o
rit
h
m
s
c
a
n
b
e
p
re
se
n
ted
b
ig
a
p
p
r
o
a
c
h
e
s.
W
it
h
a
m
o
re
c
o
m
p
re
h
e
n
siv
e
a
n
d
s
y
ste
m
a
ti
c
u
n
d
e
rsta
n
d
i
n
g
o
f
e
v
o
lu
ti
o
n
a
ry
a
l
g
o
rit
h
m
s
in
c
o
g
n
it
iv
e
ra
d
io
s,
m
o
re
re
se
a
r
c
h
in
t
h
is
d
irec
ti
o
n
m
a
y
b
e
m
o
ti
v
a
te
d
a
n
d
re
f
in
e
d
.
K
ey
w
o
r
d
:
Ad
-
Ho
c
n
et
w
o
r
k
A
r
ti
f
icial
i
n
tel
lig
e
n
c
e
C
o
g
n
iti
v
e
r
ad
io
E
v
o
lu
tio
n
ar
y
al
g
o
r
ith
m
s
Su
r
v
e
y
Co
p
y
rig
h
t
©
2
0
1
8
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
C
esar
Her
n
á
n
d
ez
,
Dep
ar
t
m
en
t o
f
T
ec
h
n
o
lo
g
y
,
Fra
n
cisco
J
o
s
é
d
e
C
ald
as Dist
r
ict
Un
i
v
er
s
it
y
,
C
l.
6
8
D
B
is
A
S
u
r
Nº
4
9
F
-
70
,
B
o
g
o
ta,
C
o
lo
m
b
ia
.
E
m
ail:
ca
h
er
n
a
n
d
ez
s
@
u
d
i
s
tr
it
al.
ed
u
.
co
1.
I
NT
RO
D
UCT
I
O
N
C
u
r
r
en
tl
y
,
co
g
n
iti
v
e
r
ad
io
n
et
w
o
r
k
s
h
a
v
e
ac
q
u
ir
ed
a
n
ess
e
n
tial
r
o
le
in
th
e
d
ev
elo
p
m
e
n
t
o
f
co
m
m
u
n
icatio
n
s
,
it
h
as
b
ee
n
d
e
m
o
n
s
tr
ated
th
e
u
s
e
o
f
co
g
n
iti
v
e
r
ad
io
in
d
if
f
er
en
t
ar
ea
s
o
f
s
tu
d
y
s
u
ch
as
s
m
ar
t
g
r
id
[
1
]
,
telev
is
io
n
[
2
]
,
w
ir
el
ess
co
m
m
u
n
ica
tio
n
s
[
3
]
,
an
d
th
e
in
ter
n
et
o
f
t
h
i
n
g
s
[
4
]
.
T
h
e
li
m
ited
av
ai
lab
le
s
p
ec
tr
u
m
a
n
d
t
h
e
i
n
e
f
f
ic
ien
c
y
u
s
in
g
o
f
t
h
e
s
p
ec
tr
u
m
h
a
v
e
b
ec
o
m
e
o
n
e
o
f
t
h
e
c
u
r
r
en
t
p
r
o
b
lem
s
i
n
w
ir
eles
s
n
et
w
o
r
k
s
.
C
o
g
n
iti
v
e
r
ad
io
(
C
R
)
tech
n
o
lo
g
y
h
a
s
b
ee
n
p
r
o
p
o
s
ed
as
a
s
o
lu
tio
n
to
th
e
s
e
m
a
tt
er
s
[
5
]
.
T
h
e
u
s
e
an
d
d
em
a
n
d
o
f
w
ir
el
e
s
s
d
ata
h
a
v
e
r
ec
en
tl
y
in
cr
ea
s
ed
,
an
d
it
is
e
x
p
ec
ted
to
m
ain
tain
t
h
i
s
tr
en
d
d
u
e
to
t
h
e
co
n
tin
u
o
u
s
d
e
m
an
d
i
n
w
ir
e
less
ap
p
licatio
n
s
.
I
t
i
s
li
k
el
y
t
h
at
th
e
m
o
n
t
h
l
y
u
s
e
o
f
m
o
b
ile
d
ata
w
ill
i
n
cr
ea
s
e
eig
h
t
ti
m
e
s
b
ef
o
r
e
2
0
2
0
co
m
p
ar
ed
to
2
0
1
5
[
6
]
.
A
s
ig
n
i
f
ica
n
t
r
esear
ch
ef
f
o
r
t
h
as
b
ee
n
d
ev
o
ted
to
i
m
p
r
o
v
i
n
g
th
e
u
s
e
o
f
d
ata
an
d
n
et
w
o
r
k
p
er
f
o
r
m
an
ce
[
7
]
,
[
8
]
.
T
h
e
g
r
o
win
g
p
r
o
lif
er
atio
n
o
f
w
ir
eles
s
d
ev
ices
h
a
s
m
ad
e
t
h
e
9
0
0
MH
z
an
d
2
.
4
GHz
b
an
d
s
co
n
g
ested
.
A
t
th
e
s
a
m
e
ti
m
e,
th
er
e
ar
e
s
ev
er
al
f
r
eq
u
en
c
y
b
an
d
s
,
licen
s
ed
f
o
r
o
p
er
ato
r
s
in
th
e
r
an
g
e
o
f
4
0
0
to
7
0
0
MH
z,
w
h
ic
h
ar
e
u
s
ed
s
p
o
r
ad
ically
[
5
]
.
Ma
n
y
ca
m
p
a
ig
n
s
h
a
v
e
b
ee
n
d
ev
elo
p
ed
d
em
o
n
s
tr
atin
g
t
h
at
th
e
s
p
ec
tr
u
m
i
s
b
ein
g
u
n
d
er
u
ti
lized
b
y
a
u
t
h
o
r
ized
u
s
er
s
[
9
]
.
I
n
co
g
n
i
tiv
e
r
ad
io
,
u
n
l
icen
s
ed
u
s
er
s
u
s
e
t
h
e
s
p
ec
t
r
u
m
o
p
p
o
r
tu
n
is
tica
ll
y
w
it
h
t
h
e
r
estrictio
n
th
at
w
h
en
d
etec
ti
n
g
a
lice
n
s
ed
u
s
er
,
th
e
y
m
u
s
t le
a
v
e
t
h
e
b
an
d
i
m
m
ed
iatel
y
an
d
m
o
v
e
to
a
n
e
w
o
n
e
[
1
0
]
,
[
1
1
]
.
As
d
ef
i
n
ed
in
[
1
2
]
,
a
co
g
n
itiv
e
r
ad
io
is
an
in
telli
g
en
t
w
ir
ele
s
s
co
m
m
u
n
ica
tio
n
s
y
s
te
m
t
h
at
is
a
w
ar
e
o
f
its
s
u
r
r
o
u
n
d
i
n
g
s
.
C
R
h
a
s
u
s
ed
m
et
h
o
d
s
to
u
n
d
er
s
ta
n
d
t
h
e
en
v
ir
o
n
m
e
n
t a
n
d
s
o
u
g
h
t
f
o
r
a
d
ap
tin
g
to
s
tati
s
tical
v
ar
iatio
n
s
.
T
h
er
e
h
av
e
b
ee
n
i
m
p
o
r
ta
n
t
c
h
alle
n
g
e
s
th
a
t
h
a
v
e
b
ee
n
attr
ac
ted
atten
t
io
n
to
i
m
p
r
o
v
in
g
t
h
e
q
u
a
lit
y
o
f
s
er
v
ice
(
Qo
S).
T
h
e
d
etec
tio
n
o
f
s
p
ec
tr
al
o
p
p
o
r
tu
n
ities
,
th
e
s
elec
tio
n
o
f
t
h
e
b
est
av
ai
lab
le
ch
an
n
el,
th
e
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
ew A
p
p
r
o
a
ch
es in
C
o
g
n
itive
R
a
d
io
s
u
s
in
g
E
v
o
lu
tio
n
a
r
y
A
lg
o
r
ith
ms
(
C
esa
r
He
r
n
á
n
d
ez
)
1637
co
o
r
d
in
atio
n
o
f
s
e
v
er
al
u
s
er
s
in
ac
ce
s
s
i
n
g
th
e
c
h
a
n
n
e
l,
an
d
th
e
o
p
p
o
r
tu
n
e
c
h
a
n
n
el
ch
a
n
g
e
w
h
e
n
a
lice
n
s
ed
u
s
er
is
d
etec
ted
ar
e
s
o
m
e
o
f
th
e
r
ele
v
an
t
is
s
u
e
p
r
esen
te
d
n
o
w
ad
a
y
s
[
1
3
]
.
Sp
ec
tr
u
m
Sen
s
i
n
g
h
a
s
b
ee
n
ch
ar
ac
ter
ized
as
o
n
e
o
f
th
e
m
o
s
t
d
eb
ated
f
u
n
ctio
n
s
o
f
C
R
,
s
i
n
ce
i
t
is
n
ec
e
s
s
ar
y
to
d
ev
elo
p
in
tell
ig
e
n
t
tech
n
iq
u
es t
h
at
s
e
lect
th
e
b
est
s
p
ec
tr
al
o
p
p
o
r
tu
n
it
y
r
eliab
l
y
a
n
d
q
u
ick
l
y
[
1
4
]
.
A
r
ti
f
icial
i
n
telli
g
e
n
ce
(
A
I
)
p
la
y
s
a
cr
u
c
ial
r
o
le
s
o
lv
i
n
g
s
o
m
e
o
f
th
e
g
ap
s
p
r
esen
t
i
n
C
R
[
1
5
]
.
T
h
e
A
I
h
as
al
lo
w
ed
to
o
ls
f
o
r
an
al
y
s
i
s
,
d
ev
elo
p
m
e
n
t,
a
n
d
i
m
p
le
m
e
n
tatio
n
to
s
ee
k
t
h
e
Qo
S
i
m
p
r
o
v
in
g
.
W
o
r
k
s
lik
e
[
16]
,
w
h
er
e
a
co
m
p
r
eh
e
n
s
iv
e
s
u
r
v
e
y
is
ca
r
r
ied
o
u
t
in
tech
n
i
ca
l
ap
p
licatio
n
s
,
s
h
o
w
it
s
o
m
e
o
f
th
e
ap
p
r
o
ac
h
es
in
A
I
s
u
c
h
a
s
m
ac
h
in
e
lear
n
i
n
g
in
C
R
.
A
l
th
o
u
g
h
n
o
t
o
n
l
y
m
ac
h
i
n
e
lear
n
in
g
i
s
t
h
e
ar
ea
o
f
A
I
t
h
at
s
ee
k
s
to
s
o
lv
e
th
e
p
r
o
b
le
m
s
m
en
tio
n
ed
ab
o
v
e,
ev
o
lu
tio
n
ar
y
m
et
h
o
d
s
h
av
e
tak
e
n
an
e
s
s
e
n
tial
r
o
le
in
ad
d
r
ess
in
g
th
e
s
e
is
s
u
es.
T
h
is
r
esear
ch
in
te
n
d
s
to
p
r
o
v
id
e
an
ar
t
s
tate,
w
h
ic
h
allo
w
s
r
ea
d
er
s
to
h
a
v
e
a
g
en
er
al
v
ie
w
o
f
th
e
ev
o
lu
tio
n
ar
y
a
lg
o
r
it
h
m
s
(
E
A
s
)
in
v
o
lv
ed
i
n
i
m
p
r
o
v
i
n
g
th
e
p
er
f
o
r
m
a
n
ce
o
f
C
R
N
s
.
R
e
le
v
an
t
al
g
o
r
ith
m
s
i
n
ev
o
lu
tio
n
ar
y
m
et
h
o
d
s
s
u
c
h
as
an
t
co
lo
n
y
,
ar
tif
ic
ial
b
ee
co
lo
n
y
,
g
en
etic
al
g
o
r
ith
m
s
a
n
d
am
o
n
g
o
th
er
s
w
ill
b
e
m
en
tio
n
ed
in
t
h
is
s
h
o
r
t
s
u
r
v
e
y
.
T
h
e
m
o
s
t
i
m
p
o
r
tan
t
co
n
tr
i
b
u
tio
n
w
ill
b
e
s
h
o
w
n
th
e
r
ese
ar
ch
p
r
esen
ted
af
ter
th
e
y
ea
r
2
0
1
5
u
n
til t
h
e
y
ea
r
2
0
1
7
.
I
n
2
0
0
9
,
th
e
w
o
r
k
p
r
o
p
o
s
ed
in
[
1
7
]
f
o
cu
s
ed
th
e
ir
r
esear
ch
o
n
th
e
p
ar
tial
p
r
o
b
le
m
s
as
s
o
c
iated
w
it
h
o
b
s
er
v
atio
n
a
n
d
r
ec
o
n
f
i
g
u
r
ati
o
n
i
n
t
h
e
d
o
m
a
in
o
f
co
g
n
iti
v
e
r
ad
io
,
e
m
p
h
a
s
izin
g
h
o
w
A
I
ca
n
b
e
u
s
ed
as
a
n
ap
p
licatio
n
.
T
h
e
r
esear
ch
s
h
o
w
s
t
h
e
s
tate
o
f
th
e
ar
t
i
n
th
e
A
I
tech
n
iq
u
e
s
i
n
v
o
lv
ed
in
C
R
a
n
d
d
escr
ib
es
th
e
p
r
o
p
o
s
ed
w
o
r
k
s
in
t
h
e
ar
ea
s
o
f
;
A
r
ti
f
icial
Ne
u
r
al
Net
w
o
r
k
s
,
Hid
d
en
Ma
r
k
o
v
Mo
d
el,
R
u
le
-
B
ase
s
y
s
te
m
,
o
g
y
-
b
ased
s
y
s
te
m
s
,
ca
s
e
-
b
ased
s
y
s
te
m
,
a
n
d
m
etah
e
u
r
is
tic
al
g
o
r
it
h
m
s
.
T
h
e
a
u
th
o
r
s
co
n
cl
u
d
ed
th
at
C
R
en
g
i
n
e
m
u
s
t
b
e
d
esig
n
ed
ta
k
in
g
ca
r
e
th
e
e
x
ch
a
n
g
e
b
et
w
ee
n
p
er
f
o
r
m
an
c
e
an
d
co
m
p
lex
it
y
g
av
e
b
y
th
e
ap
p
licatio
n
,
an
d
th
e
tr
ain
i
n
g
a
n
d
lear
n
i
n
g
ar
e
n
ec
e
s
s
ar
y
to
ac
h
ie
v
e
ac
ce
p
tab
le
p
er
f
o
r
m
a
n
ce
.
I
n
2
0
1
3
,
th
e
au
th
o
r
s
[
1
8
]
m
a
d
e
a
s
u
m
m
ar
y
o
f
ev
o
l
u
tio
n
ar
y
alg
o
r
it
h
m
s
,
f
o
c
u
s
i
n
g
th
e
r
e
s
ea
r
ch
o
n
th
r
ee
asp
ec
ts
t
h
at
t
h
e
y
co
n
s
id
er
r
elev
an
t;
h
o
w
E
A
s
co
n
tr
ib
u
te
to
ex
p
lo
r
atio
n
an
d
ex
p
lo
itat
io
n
,
w
h
e
n
an
d
h
o
w
ex
p
lo
r
atio
n
an
d
e
x
p
lo
itatio
n
ar
e
co
n
tr
o
lled
,
an
d
h
o
w
it
i
s
ac
h
ie
v
ed
t
h
e
b
alan
ce
b
et
w
e
en
e
x
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
.
T
h
e
p
r
im
ar
y
i
n
te
n
tio
n
o
f
t
h
e
w
o
r
k
is
to
g
r
ad
u
a
ll
y
d
i
m
i
n
i
s
h
t
h
e
co
m
m
o
n
m
is
u
n
d
er
s
ta
n
d
in
g
s
an
d
th
e
er
r
o
n
eo
u
s
b
elie
f
s
ab
o
u
t
th
e
ex
p
lo
r
atio
n
an
d
ex
p
lo
i
tatio
n
o
f
A
E
s
.
F
u
r
t
h
er
m
o
r
e,
th
e
au
th
o
r
s
s
h
o
w
ch
ar
ac
ter
is
tic
s
in
al
g
o
r
ith
m
s
a
n
d
ap
p
licatio
n
s
o
n
e
x
p
lo
r
atio
n
an
d
ex
p
lo
itat
io
n
,
m
o
r
eo
v
er
,
ess
e
n
tial
o
b
j
ec
tiv
es
in
th
e
co
g
n
iti
v
e
n
et
w
o
r
k
s
.
T
h
e
w
o
r
k
d
o
es
n
o
t
s
h
o
w
a
d
ir
ec
t
lin
k
r
eg
ar
d
in
g
co
m
m
u
n
ic
atio
n
n
et
w
o
r
k
s
an
d
co
g
n
iti
v
e
r
ad
io
s
.
I
n
2
0
1
5
,
th
e
au
th
o
r
s
o
f
[
1
9
]
,
p
r
esen
ted
a
co
m
p
ilatio
n
o
f
lear
n
in
g
tec
h
n
iq
u
es
in
A
I
co
n
d
u
ct
ed
to
d
ate
in
r
esear
c
h
t
h
at
i
n
v
o
l
v
ed
C
R
Ns.
T
h
e
a
u
th
o
r
s
m
ak
e
a
d
es
cr
ip
tio
n
o
f
th
e
tas
k
s
r
eq
u
ir
ed
in
co
m
m
u
n
icatio
n
p
r
o
ce
s
s
in
C
R
an
d
t
h
e
m
et
h
o
d
s
o
f
A
I
an
d
m
ac
h
i
n
e
lear
n
i
n
g
th
at
h
av
e
b
ee
n
ap
p
lied
to
i
m
p
r
o
v
e
th
e
cu
r
r
en
t
p
r
o
ce
s
s
.
T
h
e
w
o
r
k
s
h
o
w
s
th
e
co
n
tr
ib
u
tio
n
s
o
f
n
eu
r
al
n
et
w
o
r
k
s
,
S
u
p
p
o
r
t
v
ec
to
r
m
ac
h
in
e,
g
en
et
ic
al
g
o
r
ith
m
s
,
g
a
m
e
th
eo
r
y
,
r
ei
n
f
o
r
ce
d
lear
n
in
g
,
f
u
zz
y
lo
g
ic,
d
ec
is
io
n
tr
ee
,
ar
tif
icial
b
ee
co
lo
n
y
,
M
ar
k
o
v
m
o
d
el
s
,
C
a
s
e
-
b
ased
r
ea
s
o
n
in
g
,
E
n
tr
o
p
ia
an
d
B
ay
esia
n
ap
p
r
o
ac
h
in
co
g
n
iti
v
e
n
et
w
o
r
k
s
.
Fi
n
all
y
,
t
h
e
r
esear
ch
p
r
o
p
o
s
es
d
if
f
er
e
n
t p
o
in
ts
o
f
v
ie
w
a
n
d
d
if
f
er
en
t
w
a
y
s
o
f
ap
p
r
o
ac
h
in
g
c
o
g
n
iti
v
e
r
ad
io
n
et
w
o
r
k
s
f
r
o
m
A
I
p
o
in
t o
f
v
ie
w
.
I
n
2
0
1
6
,
th
e
w
o
r
k
p
r
o
p
o
s
ed
i
n
[
2
0
]
p
r
o
v
id
ed
a
co
m
p
r
ess
iv
e
d
escr
ip
tio
n
o
f
g
e
n
etic
alg
o
r
it
h
m
s
(
G
A
s
)
an
d
a
lar
g
e
n
u
m
b
er
o
f
tec
h
n
i
q
u
es
i
m
p
le
m
en
ted
m
a
in
l
y
f
o
c
u
s
ed
o
n
w
ir
eles
s
co
m
m
u
n
icat
io
n
s
n
et
w
o
r
k
s
.
T
h
e
p
ap
er
p
r
esen
ts
an
e
x
p
lan
at
io
n
o
f
GAs,
th
eir
ter
m
in
o
lo
g
y
,
d
ef
i
n
itio
n
s
,
t
y
p
es,
co
m
p
o
n
e
n
t
s
,
o
p
er
ato
r
s
,
co
d
in
g
an
d
f
it
n
es
s
f
u
n
ctio
n
s
to
in
tr
o
d
u
ce
th
e
r
ea
d
er
s
in
to
th
e
s
co
p
e
an
d
li
m
itatio
n
s
o
f
G
As.
T
h
e
au
t
h
o
r
s
d
etail
th
e
ar
ea
s
w
h
er
e
G
A
s
ca
n
b
e
u
s
ed
w
i
th
i
n
w
ir
eles
s
n
et
w
o
r
k
s
s
u
c
h
as
r
o
u
tin
g
,
c
h
a
n
n
el
all
o
ca
tio
n
,
b
an
d
w
id
t
h
allo
ca
tio
n
,
lo
ad
b
alan
cin
g
,
lo
c
atio
n
an
d
q
u
al
it
y
o
f
s
er
v
ice
(
Qo
S).
T
h
e
w
o
r
k
s
h
o
w
s
s
o
m
e
p
o
s
s
ib
le
co
m
b
i
n
atio
n
s
o
f
G
As
w
it
h
ar
t
if
icial
in
te
lli
g
en
ce
tech
n
iq
u
e
s
s
u
c
h
as
g
a
m
e
t
h
eo
r
y
,
r
ein
f
o
r
c
ed
lear
n
in
g
,
g
r
ap
h
th
eo
r
y
,
f
u
zz
y
lo
g
ic
an
d
s
y
s
te
m
s
b
ased
o
n
q
u
a
n
tu
m
th
eo
r
y
w
it
h
ap
p
licatio
n
s
i
n
w
ir
ele
s
s
n
et
w
o
r
k
s
.
Fi
n
all
y
,
i
t
s
h
o
w
s
a
n
u
m
b
er
o
f
p
r
o
b
le
m
s
th
at
s
till
p
r
ese
n
t
g
ap
s
in
t
h
e
ir
d
ev
elo
p
m
en
t
a
n
d
t
h
e
p
o
s
s
i
b
le
g
u
id
eli
n
es
th
at
g
u
id
e
G
As to
s
o
lv
e
t
h
e
p
r
o
b
lem
.
T
h
e
co
n
tr
ib
u
tio
n
o
f
th
is
p
ap
er
in
co
m
p
ar
is
o
n
w
ith
t
h
e
w
o
r
k
s
ab
o
v
e
w
ill
b
e
e
m
p
h
as
ized
th
e
E
A
s
a
n
d
th
eir
ap
p
licatio
n
s
i
n
C
R
Ns.
A
d
escr
ip
tio
n
o
f
t
h
e
m
o
s
t
u
s
ed
E
As
in
th
e
f
r
a
m
e
w
o
r
k
o
f
C
R
NS
w
ill
b
e
m
ad
e,
as
w
ell
as
s
o
m
e
c
u
r
r
en
t
ap
p
licatio
n
in
E
As.
Fi
n
all
y
,
s
o
m
e
r
esear
ch
to
p
ics
ar
e
m
e
n
tio
n
ed
u
n
d
er
p
r
esen
t
d
is
cu
s
s
io
n
s
a
n
d
s
h
o
r
tl
y
h
o
w
e
v
o
lu
tio
n
ar
y
a
lg
o
r
it
h
m
s
co
u
ld
m
ak
e
ap
p
r
o
ac
h
es
in
th
e
r
eso
lu
tio
n
o
f
p
r
o
b
le
m
s
i
n
C
R
N
s
.
T
h
e
r
e
m
ain
d
er
o
f
t
h
i
s
ar
ticl
e
w
ill
b
eg
i
n
w
i
th
p
r
esen
t
in
g
th
e
m
o
s
t
r
ele
v
an
t
co
n
ce
p
t
s
ab
o
u
t
C
R
s
tr
u
ct
u
r
e
in
S
ec
tio
n
2
.
Sectio
n
3
d
escr
ib
ed
th
e
b
io
l
o
g
ical
f
o
u
n
d
atio
n
s
o
n
w
h
ic
h
t
h
e
ev
o
l
u
tio
n
ar
y
a
l
g
o
r
it
h
m
s
ar
e
b
ased
.
Sectio
n
4
w
il
l
s
h
o
w
s
o
m
e
o
f
t
h
e
c
u
r
r
en
t
co
n
tr
ib
u
tio
n
s
t
h
at
e
v
o
lu
tio
n
ar
y
al
g
o
r
ith
m
s
d
id
to
C
R
.
A
co
m
p
ar
ati
v
e
ev
al
u
atio
n
o
f
ev
o
lu
tio
n
ar
y
a
lg
o
r
it
h
m
s
is
d
escr
ib
ed
in
S
ec
tio
n
5
.
Sectio
n
6
w
il
l
s
h
o
w
f
u
tu
r
e
a
n
d
o
n
g
o
i
n
g
r
esear
c
h
ch
alle
n
g
es.
Fin
all
y
,
w
e
co
n
cl
u
d
e
th
e
ar
ticl
e
in
Sectio
n
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
3
,
J
u
n
e
2
0
1
8
:
1
6
3
6
–
1646
1638
2.
CO
G
NI
T
I
VE
RA
DIO
T
h
is
s
ec
tio
n
w
ill
b
r
ie
f
l
y
d
es
cr
ib
e
th
e
m
ai
n
ch
ar
ac
ter
is
t
ics
o
f
C
R
,
t
h
e
p
r
in
cip
al
co
m
p
o
n
en
t
s
,
th
e
ar
ch
itect
u
r
e
o
f
w
h
ic
h
a
C
R
i
s
co
m
p
o
s
ed
,
a
n
d
t
h
e
p
r
o
ce
s
s
es
i
n
v
o
l
v
i
n
g
in
C
R
.
T
h
u
s
,
a
co
g
n
i
tiv
e
r
ad
io
n
e
t
w
o
r
k
is
d
ef
in
ed
a
s
a
s
y
s
te
m
th
a
t
al
lo
w
s
t
h
e
e
n
v
ir
o
n
m
en
t
to
b
e
c
en
s
o
r
ed
an
d
a
n
al
y
ze
tr
a
n
s
m
i
s
s
io
n
p
ar
a
m
eter
s
to
m
ak
e
d
ec
is
io
n
s
in
a
d
y
n
a
m
ic
ti
m
e
-
f
r
eq
u
e
n
c
y
s
p
ac
e.
C
R
,
a
cc
o
r
d
in
g
to
t
h
e
d
esi
g
n
at
io
n
a
n
d
m
an
a
g
e
m
en
t
o
f
r
eso
u
r
ce
s
s
ee
k
s
to
i
m
p
r
o
v
e
t
h
e
u
s
e
o
f
t
h
e
elec
tr
o
m
a
g
n
etic
r
ad
io
s
p
ec
tr
u
m
[
1
9
]
.
T
h
er
ef
o
r
e,
a
C
R
i
s
e
x
p
ec
ted
to
b
e
s
m
ar
t
a
n
d
ab
le
to
lear
n
f
r
o
m
it
s
e
x
p
er
ien
ce
b
y
i
n
ter
ac
t
in
g
w
it
h
t
h
e
R
F
en
v
ir
o
n
m
e
n
t
.
A
cc
o
r
d
in
g
l
y
,
t
h
e
lear
n
in
g
p
r
o
ce
s
s
is
a
n
i
n
d
is
p
e
n
s
ab
le
co
m
p
o
n
en
t
th
a
t
ca
n
b
e
p
r
o
v
id
ed
u
s
in
g
ar
ti
f
icia
l
i
n
telli
g
en
ce
an
d
m
ac
h
in
e
lear
n
in
g
tec
h
n
iq
u
es
[
1
9
]
.
T
h
e
ar
ch
itectu
r
e
o
f
C
R
is
d
is
tr
ib
u
ted
in
t
w
o
p
r
in
cip
al
g
r
o
u
p
s
:
a.
L
ice
n
s
ed
u
s
er
s
o
r
p
r
im
ar
y
u
s
er
(
P
U)
w
ill
o
cc
u
p
y
t
h
e
f
ir
s
t
g
r
o
u
p
ca
lled
th
e
p
r
im
ar
y
n
et
w
o
r
k
o
r
licen
s
ed
n
et
w
o
r
k
.
T
h
o
s
e
w
h
o
p
a
y
f
o
r
a
s
p
ec
if
ic
s
p
ec
tr
al
ch
a
n
n
el
a
n
d
h
as
th
e
p
r
io
r
it
y
in
ac
ce
s
s
in
g
th
e
s
p
ec
tr
u
m
.
T
h
e
o
p
e
r
atio
n
s
o
f
p
r
i
m
ar
y
u
s
e
r
s
m
u
s
t
n
o
t b
e
af
f
ec
t
ed
b
y
o
t
h
er
s
u
s
er
s
.
b.
T
h
e
s
ec
o
n
d
g
r
o
u
p
is
ca
lled
a
s
ec
o
n
d
ar
y
n
e
t
w
o
r
k
o
r
u
n
l
icen
s
ed
n
et
w
o
r
k
o
cc
u
p
ied
b
y
a
n
u
n
au
th
o
r
ized
u
s
er
o
r
s
ec
o
n
d
u
s
er
s
(
SU)
,
w
h
ich
s
ee
k
s
to
o
cc
u
p
y
t
h
e
f
r
ee
s
p
ec
tr
al
ch
an
n
els
a
n
d
s
h
ar
e
th
e
b
an
d
w
it
h
th
e
au
th
o
r
ized
u
s
er
s
.
T
h
er
ef
o
r
e,
it c
o
n
s
tit
u
tes a
m
ai
n
l
y
d
y
n
a
m
ic
n
et
w
o
r
k
o
f
ac
ce
s
s
i
n
th
e
s
p
ec
tr
u
m
[
2
1
]
.
T
h
e
m
a
n
ag
e
m
e
n
t
o
f
th
e
s
p
ec
tr
u
m
i
s
i
m
p
le
m
en
tin
g
b
y
f
o
u
r
s
s
tep
s
th
at
co
v
er
th
e
p
r
o
ce
s
s
o
f
h
o
w
u
s
er
s
o
cc
u
p
y
an
d
s
h
ar
e
th
e
s
p
ec
tr
u
m
.
a.
Sp
ec
tr
u
m
s
e
n
s
in
g
:
I
t
is
th
e
p
r
o
ce
s
s
in
w
h
ich
t
h
e
SUs
m
o
n
i
to
r
in
g
t
h
e
av
ailab
le
s
p
ec
tr
u
m
b
an
d
s
,
ca
p
tu
r
e
th
eir
in
f
o
r
m
a
tio
n
a
n
d
d
etec
t g
ap
s
in
th
e
s
p
ec
tr
u
m
.
b.
Sp
ec
tr
u
m
d
ec
i
s
io
n
:
B
ased
o
n
s
p
ec
tr
u
m
a
v
ailab
ili
t
y
a
n
d
th
e
in
ter
n
a
l
an
d
ex
ter
n
al
allo
ca
tio
n
p
o
licies,
SU
u
s
er
s
ca
n
b
e
ass
i
g
n
in
g
a
ch
a
n
n
el.
c.
Sp
ec
tr
u
m
s
h
ar
in
g
:
B
ec
au
s
e
m
u
ltip
le
S
Us
ar
e
atte
m
p
ti
n
g
to
ac
ce
s
s
s
p
ec
tr
u
m
,
th
e
C
R
n
et
w
o
r
k
m
u
s
t
p
la
y
th
e
r
o
le
o
f
co
o
r
d
in
ati
n
g
t
h
e
allo
ca
tio
n
o
f
s
p
ec
tr
al
s
p
ac
e
s
,
as
w
ell
as
p
r
e
v
en
ti
n
g
v
ar
io
u
s
u
s
er
s
f
r
o
m
cr
ash
i
n
g
i
n
p
ar
ts
o
f
t
h
e
s
p
ec
tr
u
m
a
n
d
o
v
er
lap
p
in
g
.
d.
Sp
ec
tr
u
m
m
o
b
ilit
y
:
W
h
en
a
P
U
r
eq
u
ests
ac
ce
s
s
th
e
s
p
ec
tr
u
m
a
n
d
th
e
SU
is
u
s
i
n
g
th
e
s
a
m
e
s
p
ec
tr
u
m
p
r
o
m
p
tl
y
.
T
h
e
SU
m
u
s
t
b
e
m
o
b
ilized
in
th
e
d
ir
ec
tio
n
o
f
a
h
o
le
to
p
r
o
tect
th
e
tr
an
s
m
is
s
io
n
o
f
t
h
e
P
U
an
d
co
n
tin
u
e
w
it
h
t
h
e
tr
a
n
s
m
i
s
s
io
n
[
2
2
]
.
Ho
w
e
v
er
,
o
n
ce
th
is
s
itu
atio
n
o
cc
u
r
s
,
t
h
er
e
is
also
a
p
er
f
o
r
m
an
c
e
d
eg
r
ad
atio
n
[
2
3
]
.
T
h
er
e
ar
e
co
u
p
le
co
n
ce
p
ts
i
n
a
co
g
n
iti
v
e
r
ad
io
n
et
w
o
r
k
i
m
p
le
m
en
ted
to
e
x
p
r
ess
t
h
e
p
r
o
ce
s
s
o
f
o
p
p
o
r
tu
n
i
s
ticall
y
c
h
a
n
n
el
s
h
ar
in
g
,
w
h
i
c
h
ar
e:
C
o
g
n
iti
v
e
ca
p
ac
it
y
,
th
i
s
r
ef
er
s
to
s
ec
tio
n
s
o
f
th
e
s
p
ec
tr
u
m
th
a
t
ar
e
n
o
t
b
ein
g
u
s
ed
an
d
ca
n
b
e
s
h
ar
ed
w
it
h
o
u
t
i
n
ter
f
er
in
g
th
e
tr
a
n
s
m
is
s
io
n
o
f
lice
n
s
e
d
u
s
er
s
.
T
h
e
v
o
id
f
r
ac
tio
n
s
ar
e
d
en
o
m
in
ated
i
n
t
h
e
liter
at
u
r
e
as
s
p
ec
tr
al
h
o
les
o
r
w
h
ite
s
p
ac
es
[
1
2
]
.
T
h
e
n
ex
t
co
n
ce
p
t
is
t
h
e
r
e
-
co
n
f
i
g
u
r
atio
n
,
w
h
ic
h
is
t
h
e
ab
ilit
y
to
tr
an
s
m
it
an
d
r
ec
eiv
e
in
a
C
R
.
I
t
is
p
r
o
g
r
a
m
m
ed
to
b
e
im
p
le
m
e
n
ted
at
m
u
ltip
le
f
r
eq
u
e
n
cie
s
w
it
h
th
e
u
s
e
o
f
s
o
f
t
w
ar
e
tec
h
n
o
lo
g
ies
[
2
4
]
.
I
t
is
i
m
p
o
r
t
an
t
n
o
w
s
h
o
w
,
w
h
at
m
eth
o
d
s
ar
e
b
ein
g
u
s
ed
w
i
th
i
n
th
e
C
R
ar
ch
itec
tu
r
e
to
im
p
r
o
v
e
th
e
p
r
o
ce
s
s
es
o
f
ac
ce
s
s
an
d
s
h
ar
e
th
e
s
p
ec
tr
u
m
i
m
p
le
m
e
n
ted
b
y
SU.
T
h
is
is
w
h
er
e
ev
o
lu
tio
n
ar
y
al
g
o
r
ith
m
s
p
la
y
an
i
m
p
o
r
tan
t
r
o
le
s
i
n
ce
th
e
y
h
av
e
b
ee
n
u
s
ed
in
ea
ch
o
f
t
h
e
p
r
o
ce
s
s
e
s
o
f
co
g
n
i
tiv
e
r
ad
io
;
s
p
ec
tr
u
m
d
etec
tio
n
[
2
5
]
-
[
2
7
]
,
Sp
ec
tr
u
m
Dec
is
io
n
[
2
8
]
,
[
2
9
]
,
s
p
ec
tr
u
m
d
iv
is
io
n
[
3
0
]
an
d
s
p
ec
tr
u
m
m
o
b
ilit
y
[
3
1
]
,
[
3
2
]
.
On
ce
t
h
e
co
g
n
iti
v
e
r
ad
io
tech
n
o
lo
g
ies
ar
e
u
s
ed
i
n
co
m
m
u
n
i
ca
tio
n
n
et
w
o
r
k
s
,
ca
lc
u
latio
n
s
m
u
s
t
h
av
e
b
ee
n
m
ad
e
i
n
r
ea
l
ti
m
e
an
d
t
h
e
p
r
o
ce
s
s
es
o
f
d
etec
tio
n
,
d
ec
i
s
io
n
,
s
h
ar
in
g
,
a
n
d
m
o
b
ilit
y
,
m
u
s
t
b
e
e
x
ec
u
ted
i
n
f
r
ac
tio
n
s
o
f
a
s
ec
o
n
d
.
T
h
er
ef
o
r
e,
s
tr
u
ctu
r
es
t
h
at
d
o
n
o
t
r
eq
u
ir
e
h
i
g
h
co
m
p
u
tatio
n
al
co
m
p
lex
i
t
y
s
h
o
u
ld
b
e
i
m
p
le
m
en
ted
.
E
A
p
r
o
m
is
es
to
b
e
a
to
o
l
to
ac
h
iev
e
in
C
R
Ns,
s
in
ce
p
r
ese
n
t
co
m
p
u
tatio
n
a
l
s
i
m
p
licit
y
,
r
eliab
ilit
y
,
an
d
r
o
b
u
s
t
p
er
f
o
r
m
an
ce
w
h
e
n
p
er
f
o
r
m
i
n
g
th
eir
in
s
tr
u
ctio
n
s
.
E
As
h
a
v
e
also
b
ee
n
p
r
esen
ted
as
a
s
o
lu
tio
n
t
o
p
r
o
b
lem
s
o
f
o
p
ti
m
i
za
tio
n
,
lear
n
i
n
g
,
a
n
d
s
ea
r
ch
.
T
h
is
w
o
r
k
i
s
g
o
i
n
g
to
p
r
esen
t
s
o
m
e
E
As
th
at
h
a
v
e
b
ee
n
p
r
esen
ted
in
ar
ti
f
icial
i
n
t
ellig
e
n
ce
as
p
o
w
er
f
u
l
to
o
ls
f
o
r
p
ar
am
eter
s
es
ti
m
ati
n
g
i
n
b
o
th
clas
s
if
icatio
n
a
n
d
p
r
ed
ictio
n
.
Fu
r
th
er
m
o
r
e,
it
is
i
m
p
o
r
ta
n
t
to
m
en
tio
n
h
o
w
t
h
e
y
w
o
r
k
a
n
d
w
h
at
al
g
o
r
ith
m
s
p
r
esen
t
i
n
s
tate
o
f
th
e
ar
t h
av
e
b
ee
n
u
s
ed
to
i
m
p
r
o
v
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
C
R
.
3.
E
VO
L
U
T
I
O
N
ARY
A
L
G
O
R
I
T
H
M
S
E
As
ar
e
a
s
et
o
f
m
ac
h
i
n
e
lear
n
in
g
tec
h
n
iq
u
es
t
h
at
s
ee
k
to
i
m
itate
t
h
e
r
o
b
u
s
t
n
es
s
o
f
t
h
e
p
r
o
ce
d
u
r
es
an
d
s
tr
u
ct
u
r
es
t
h
at
b
io
lo
g
ical
o
r
g
an
is
m
s
h
a
v
e
u
s
ed
f
o
r
ad
ap
tatio
n
an
d
ev
o
l
u
tio
n
lear
n
i
n
g
[
3
3
]
.
W
e
ar
e
g
o
in
g
to
d
escr
ib
e
in
b
r
ief
,
th
e
tec
h
n
ical
a
n
d
f
u
n
d
a
m
e
n
tal
o
p
er
atio
n
s
b
y
w
h
ic
h
t
h
e
e
v
o
lu
tio
n
a
r
y
al
g
o
r
ith
m
s
h
a
v
e
b
ee
n
m
o
ti
v
ated
.
T
h
e
in
te
n
tio
n
is
to
s
h
o
w
t
h
e
r
e
ad
er
a
n
o
tio
n
o
f
t
h
e
al
g
o
r
ith
m
s
a
n
d
h
o
w
th
e
y
ca
n
b
e
i
m
p
le
m
en
ted
i
n
th
e
C
R
Ns p
r
o
b
le
m
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
ew A
p
p
r
o
a
ch
es in
C
o
g
n
itive
R
a
d
io
s
u
s
in
g
E
v
o
lu
tio
n
a
r
y
A
lg
o
r
ith
ms
(
C
esa
r
He
r
n
á
n
d
ez
)
1639
3
.
1
.
G
enet
ics a
lg
o
rit
h
m
s
(
G
A)
T
h
e
GA
Alg
o
r
it
h
m
is
a
n
E
As
tec
h
n
iq
u
e
w
h
ic
h
is
b
ased
o
n
m
e
th
o
d
s
o
f
i
n
h
er
ita
n
ce
an
d
n
at
u
r
al
s
elec
tio
n
i
n
s
p
ir
ed
b
y
t
h
e
b
io
lo
g
y
o
f
ev
o
l
u
tio
n
[
1
5
]
.
T
h
e
GAs
f
in
d
t
h
eir
u
t
ilit
ie
s
o
n
g
en
etic
o
p
er
ato
r
s
o
f
r
an
d
o
m
m
u
tatio
n
an
d
r
ec
o
m
b
i
n
atio
n
t
h
r
o
u
g
h
cr
o
s
s
-
b
r
ee
d
in
g
to
i
m
p
r
o
v
e
th
eir
s
o
l
u
tio
n
s
.
T
h
e
GAs e
n
co
d
e
th
eir
p
o
ten
tial
s
o
l
u
tio
n
s
in
a
s
i
m
p
le
ch
ai
n
o
f
c
h
r
o
m
o
s
o
m
es
a
s
a
d
ata
s
tr
u
ctu
r
e.
T
h
e
n
,
t
h
e
y
s
elec
t
th
e
b
est
o
p
tio
n
s
t
o
ap
p
ly
r
ec
o
m
b
in
a
tio
n
o
p
er
ato
r
s
an
d
p
r
eser
v
in
g
th
e
d
esire
d
in
f
o
r
m
atio
n
[
3
3
]
.
T
h
e
im
p
le
m
en
tatio
n
o
f
g
en
e
tic
alg
o
r
ith
m
s
s
tar
ts
w
it
h
a
r
a
n
d
o
m
p
o
p
u
latio
n
o
f
c
h
r
o
m
o
s
o
m
es,
w
h
ic
h
e
v
alu
a
te
t
h
e
p
r
o
b
lem
an
d
s
ee
k
o
p
p
o
r
tu
n
itie
s
f
o
r
r
ep
r
o
d
u
ctio
n
.
T
h
e
p
u
r
p
o
s
e
is
to
p
r
eser
v
e
ch
r
o
m
o
s
o
m
es
a
n
d
g
i
v
e
t
h
e
ch
a
n
ce
o
f
r
ep
r
o
d
u
cin
g
ch
r
o
m
o
s
o
m
e
s
w
it
h
b
etter
s
o
lu
tio
n
s
.
B
esid
es,
th
e
o
p
er
ato
r
s
m
en
tio
n
ed
ab
o
v
e,
th
e
g
e
n
etic
alg
o
r
ith
m
s
i
n
clu
d
e
o
th
er
es
s
en
t
ial
co
m
p
o
n
en
t
s
s
u
ch
a
s
i
n
itial
p
o
p
u
latio
n
,
g
e
n
eti
c
r
ep
r
esen
tatio
n
,
f
it
n
ess
f
u
n
cti
o
n
,
an
d
m
ec
h
a
n
is
m
f
o
r
s
elec
tio
n
[
2
0
]
.
3
.
2
.
Art
if
icia
l
b
ee
co
lo
ny
(
AB
C)
T
h
e
A
B
C
alg
o
r
ith
m
ar
e
u
s
ed
t
o
s
o
lv
e
m
u
ltid
i
m
en
s
io
n
al
a
n
d
m
u
lti
m
o
d
al
o
p
ti
m
izatio
n
p
r
o
b
le
m
s
.
T
h
e
b
asic
m
o
d
el
o
f
a
h
o
n
e
y
b
ee
co
lo
n
y
i
s
c
h
ar
ac
ter
ized
in
t
wo
i
m
p
o
r
tan
t
s
ta
g
es:
th
e
n
ec
tar
co
llectio
n
a
n
d
t
h
e
ab
an
d
o
n
m
e
n
t
o
f
t
h
e
f
o
o
d
s
o
u
r
ce
.
W
e
ca
n
ch
ar
ac
ter
ize
th
r
ee
ess
e
n
tial
co
m
p
o
n
en
ts
i
n
a
h
o
n
e
y
b
ee
co
lo
n
y
;
t
h
e
f
o
o
d
s
o
u
r
ce
,
th
e
e
m
p
lo
y
ed
b
ee
s
an
d
u
n
e
m
p
lo
y
ed
b
ee
s
[
3
4
]
.
Dif
f
er
e
n
t
f
ac
to
r
s
d
is
tin
g
u
is
h
as
a
g
o
o
d
o
r
b
a
d
f
o
o
d
s
o
u
r
ce
;
th
e
m
o
s
t
i
m
p
o
r
ta
n
t
i
s
th
e
p
r
o
f
itab
ilit
y
o
f
t
h
e
f
o
o
d
s
tan
d
s
o
u
t
s
i
n
ce
it
i
n
d
icate
s
h
o
w
m
u
ch
is
le
f
t
af
ter
th
e
ex
tr
ac
tio
n
b
eg
i
n
s
.
T
h
e
p
r
o
f
itab
ilit
y
o
f
t
h
e
f
o
o
d
ca
n
b
e
r
ep
r
esen
ted
as
a
s
in
g
le
q
u
an
tit
y
[
3
5
]
.
T
h
e
E
m
p
lo
y
ed
b
ee
s
a
s
s
o
ciate
d
w
i
t
h
a
p
ar
tic
u
lar
f
o
o
d
s
o
u
r
ce
ca
r
r
y
t
h
e
i
n
f
o
r
m
atio
n
ab
o
u
t
s
u
c
h
as
t
h
e
p
r
o
f
itab
il
it
y
o
f
t
h
e
s
o
u
r
ce
,
th
e
d
is
tan
ce
,
an
d
d
ir
ec
tio
n
co
n
ce
r
n
in
g
to
th
e
h
iv
e.
T
h
e
e
m
p
lo
y
ed
b
ee
s
s
h
ar
e
th
is
i
n
f
o
r
m
atio
n
w
it
h
t
h
e
u
n
e
m
p
lo
y
ed
b
ee
s
w
it
h
a
p
r
o
b
ab
ilit
y
[
3
4
]
.
Un
e
m
p
lo
y
ed
b
ee
s
ar
e
in
co
n
s
tan
t
s
ea
r
c
h
o
f
f
o
o
d
s
o
u
r
ce
s
t
o
b
e
e
x
p
lo
ited
.
T
h
ese
b
ee
s
a
r
e
d
iv
id
ed
in
to
t
w
o
t
y
p
e
s
;
Sco
u
ts
a
n
d
Ob
s
er
v
er
s
.
T
h
e
s
co
u
t
o
n
es
lo
o
k
i
n
t
h
e
s
u
r
r
en
d
er
s
ar
o
u
n
d
t
h
e
h
i
v
e
f
o
r
f
o
o
d
an
d
th
e
lo
o
k
er
’
s
o
n
e
s
w
a
it
in
t
h
e
h
i
v
e
an
d
estab
lis
h
a
s
o
u
r
ce
o
f
f
o
o
d
th
r
o
u
g
h
th
e
i
n
f
o
r
m
atio
n
s
h
ar
e
d
b
y
th
e
e
m
p
lo
y
ed
b
ee
s
.
T
h
e
ex
ch
a
n
g
e
o
f
in
f
o
r
m
atio
n
th
r
o
u
g
h
b
ee
s
is
t
h
e
m
o
s
t
cr
u
cial
e
v
e
n
t
i
n
t
h
e
f
o
r
m
atio
n
o
f
co
llect
iv
e
k
n
o
w
led
g
e.
A
d
an
ce
ca
lled
wag
g
le
p
r
o
v
id
es
in
f
o
r
m
a
tio
n
ab
o
u
t
th
e
q
u
alit
y
o
f
f
o
o
d
s
o
u
r
ce
s
.
On
ce
th
e
lo
o
k
er
b
ee
s
o
b
s
er
v
e
t
h
e
w
a
g
g
le,
t
h
e
y
w
ill
a
n
al
y
ze
a
n
d
ch
o
o
s
e
t
h
e
m
o
s
t
p
r
o
f
i
tab
le
s
o
u
r
ce
to
u
s
e
it
as
t
h
e
b
e
s
t
s
o
u
r
ce
o
f
f
o
o
d
[
3
4
]
.
T
h
e
A
B
C
s
i
m
u
late
s
th
e
b
eh
a
v
io
r
o
f
th
e
b
ee
s
an
d
d
iv
id
es
th
e
b
ee
s
in
to
t
w
o
g
r
o
u
p
s
:
o
n
e
h
alf
w
ill
b
e
e
m
p
lo
y
ed
b
ee
s
a
n
d
t
h
e
s
ec
o
n
d
h
al
f
w
ill
b
e
lo
o
k
er
s
u
n
e
m
p
l
o
y
ed
b
ee
s
.
Fo
r
in
s
ta
n
ce
,
ea
ch
f
o
o
d
s
o
u
r
ce
t
h
er
e
w
il
l
b
e
o
n
l
y
o
n
e
e
m
p
lo
y
ed
b
ee
.
T
h
er
ef
o
r
e,
th
e
n
u
m
b
er
o
f
e
m
p
lo
y
ed
b
ee
s
w
ill
b
e
eq
u
al
to
th
e
n
u
m
b
er
o
f
f
o
o
d
s
o
u
r
ce
s
ar
o
u
n
d
t
h
e
h
iv
e.
T
h
e
e
m
p
lo
y
ed
b
ee
s
w
h
o
s
e
s
o
u
r
ce
o
f
f
o
o
d
is
f
i
n
i
s
h
ed
w
i
ll
b
ec
o
m
e
a
n
u
n
e
m
p
lo
y
e
d
s
co
u
t b
ee
.
I
n
b
r
ief
,
t
h
e
A
B
C
al
g
o
r
ith
m
is
th
e
n
d
i
v
id
ed
in
to
th
r
ee
s
tep
s
.
First,
m
o
v
i
n
g
t
h
e
w
o
r
k
in
g
b
ee
s
i
n
to
t
h
e
f
o
o
d
s
o
u
r
ce
s
an
d
d
eter
m
i
n
i
n
g
th
e
a
m
o
u
n
t
o
f
f
o
o
d
.
Seco
n
d
,
s
en
d
lo
o
k
er
b
ee
s
to
th
e
f
o
o
d
s
o
u
r
ce
an
d
d
eter
m
i
n
e
th
e
a
m
o
u
n
t
o
f
f
o
o
d
.
T
h
ir
d
,
s
t
o
p
th
e
ex
p
lo
itatio
n
o
f
f
o
o
d
b
y
e
m
p
lo
y
ed
b
ee
s
w
h
e
n
th
e
f
o
o
d
is
ex
h
au
s
ted
an
d
co
n
v
er
t t
h
e
b
ee
in
to
a
s
co
u
t to
d
is
co
v
er
n
e
w
s
o
u
r
ce
s
o
f
f
o
o
d
r
an
d
o
m
l
y
[
3
4
]
.
3
.
3
.
Ant
co
lo
ny
s
y
s
t
e
m
(
ACS)
Mo
d
er
n
A
I
s
tech
n
o
lo
g
ie
s
h
a
v
e
b
ee
n
s
t
u
d
ied
th
e
b
eh
a
v
io
r
o
f
an
t
co
lo
n
y
s
y
s
te
m
s
.
An
t
co
l
o
n
ies
h
av
e
th
e
c
h
ar
ac
ter
is
tic
o
f
s
ee
k
i
n
g
s
h
o
r
t
r
o
u
tes
o
f
f
o
o
d
s
o
u
r
ce
s
a
n
d
th
e
r
et
u
r
n
w
a
y
to
th
e
n
e
s
t.
An
ts
lead
t
h
eir
w
a
y
o
f
co
m
m
u
n
icati
n
g
w
it
h
ea
c
h
o
th
er
u
s
i
n
g
th
e
p
h
er
o
m
o
n
e
tr
a
ils
f
i
n
d
in
g
t
h
e
r
o
ad
to
f
o
llo
w
t
h
e
clo
s
e
s
t
a
n
t
[
3
6
]
.
T
h
er
ef
o
r
e,
th
e
m
o
r
e
an
t
s
f
o
llo
w
a
p
ath
,
t
h
e
h
i
g
h
er
t
h
e
a
m
o
u
n
t
o
f
p
h
er
o
m
o
n
e
d
ep
o
s
ited
o
n
th
e
tr
ail.
Ma
th
e
m
atica
ll
y
s
p
ea
k
i
n
g
,
th
e
p
r
o
b
a
b
ilit
y
t
h
at
a
n
an
t
w
ill
s
el
ec
t
a
p
ath
i
n
cr
ea
s
es
w
it
h
t
h
e
n
u
m
b
er
o
f
an
t
s
t
h
at
h
av
e
tr
a
v
eled
th
e
p
ath
.
I
n
th
is
w
a
y
t
h
e
co
llectiv
e
b
e
h
av
io
r
o
f
th
e
an
t
s
is
ch
ar
ac
te
r
ized
as
a
p
o
s
itiv
e
f
ee
d
b
ac
k
p
r
o
ce
s
s
,
in
o
th
er
w
o
r
d
s
,
it
is
a
p
r
o
ce
s
s
th
at
r
ein
f
o
r
ce
s
its
el
f
allo
w
i
n
g
a
v
er
y
f
a
s
t
co
n
v
er
g
e
n
ce
as
l
o
n
g
as
t
h
er
e
is
n
o
li
m
ita
tio
n
i
n
th
e
en
v
ir
o
n
m
e
n
t
th
at
lead
s
to
th
e
ex
p
lo
itatio
n
o
f
th
e
s
o
l
u
tio
n
[
3
7
]
.
E
ac
h
an
t
is
id
en
tifie
d
as
an
ag
en
t
th
at
leav
e
s
a
s
i
g
n
al
t
h
at
allo
w
s
m
a
k
i
n
g
ch
a
n
g
es
i
n
f
u
t
u
r
e
d
ec
is
io
n
s
.
T
h
er
ef
o
r
e,
th
e
s
et
o
f
an
t
s
d
o
es
n
o
t
co
n
v
er
g
e
to
a
s
i
n
g
le
s
o
l
u
tio
n
i
n
s
tead
t
h
e
y
ar
e
m
ad
e
a
s
u
b
s
p
a
ce
o
f
s
o
lu
tio
n
s
to
th
e
n
s
elec
t t
h
e
b
est.
A
l
g
o
r
ith
m
s
s
u
ch
as
a
n
t
co
lo
n
y
o
p
tim
iza
tio
n
(
A
C
O)
ar
e
b
ase
d
o
n
s
to
ch
asti
c
p
r
o
ce
s
s
es,
a
n
d
s
o
cial
th
e
b
eh
av
io
r
o
f
t
h
e
an
ts
d
escr
i
b
ed
ab
o
v
e,
in
tr
o
d
u
ce
s
o
lu
ti
o
n
s
to
a
co
m
p
lex
o
p
ti
m
izat
io
n
p
r
o
b
lem
[
3
3
]
.
C
h
ar
ac
ter
is
tics
s
u
c
h
as
p
ar
allel
co
m
p
u
ti
n
g
,
s
el
f
-
o
r
g
a
n
izatio
n
,
an
d
p
o
s
itiv
e
f
ee
d
b
ac
k
ar
e
i
n
h
er
e
n
t
in
AC
O.
I
t
allo
w
s
m
u
lt
i
-
a
g
e
n
t
o
p
ti
m
izat
io
n
to
r
ea
ch
g
lo
b
al
s
o
lu
t
io
n
s
,
r
ed
u
ce
co
m
p
u
ti
n
g
ti
m
e
an
d
co
m
p
u
ta
tio
n
al
co
m
p
le
x
it
y
[
3
8
]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
3
,
J
u
n
e
2
0
1
8
:
1
6
3
6
–
1646
1640
3
.
4
.
Cuc
k
o
o
s
ea
rc
h (
CS)
T
h
i
s
m
et
h
o
d
o
f
E
A
i
s
b
ase
o
n
th
e
r
ep
r
o
d
u
ctiv
e
b
eh
a
v
io
r
o
f
th
e
c
u
ck
o
o
b
ir
d
s
p
ec
ies
an
d
t
h
e
w
a
y
i
n
w
h
ic
h
t
h
e
y
h
atc
h
t
h
eir
e
g
g
s
.
T
h
e
tactic
a
s
s
u
m
ed
b
y
t
h
e
b
ir
d
s
is
to
d
ep
o
s
it
th
e
e
g
g
s
i
n
a
c
o
m
m
u
n
al
n
est
a
n
d
r
e
m
o
v
e
s
o
m
e
e
g
g
s
th
at
b
elo
n
g
to
th
e
n
est
[
3
9
]
.
T
h
e
eg
g
s
d
ep
o
s
ited
b
y
th
e
cu
c
k
o
o
ar
e
ca
lled
alien
eg
g
s
,
an
d
th
e
eg
g
s
th
at
a
r
e
p
r
ev
io
u
s
l
y
i
n
th
e
n
e
s
ts
ar
e
ca
lled
h
o
s
t
e
g
g
s
.
I
f
th
e
h
o
s
t
b
ir
d
f
i
n
d
s
p
ar
asit
ic
eg
g
s
i
n
its
n
est,
i
t
w
il
l p
r
o
ce
ed
to
g
et
r
id
o
f
th
e
e
g
g
o
r
leav
e
t
h
e
n
e
s
t.
Dif
f
er
en
t
s
p
ec
ies
o
f
cu
c
k
o
o
h
av
e
ev
o
l
v
ed
to
ca
m
o
u
f
lag
e
t
h
eir
eg
g
s
i
n
to
th
e
h
o
s
t
's,
o
r
o
n
ce
th
e
ali
en
eg
g
i
s
d
ep
o
s
ited
,
it
w
ill
tr
y
to
b
len
d
an
d
u
n
n
o
ticed
b
y
th
e
h
o
s
t
b
ir
d
.
T
h
e
in
cu
b
atio
n
ti
m
e
f
o
r
th
e
p
ar
asit
ic
eg
g
s
is
le
s
s
th
a
n
th
e
h
o
s
t
e
g
g
s
,
a
s
a
co
n
s
eq
u
en
ce
o
n
ce
th
e
cu
c
k
o
o
ch
ick
h
a
s
h
atc
h
ed
it
s
f
ir
s
t
in
s
ti
n
ct
w
ill
b
e
to
d
is
lo
d
g
e
th
e
h
o
s
t
e
g
g
s
to
i
n
c
r
ea
s
e
th
e
c
h
a
n
ce
o
f
b
ein
g
f
e
d
b
y
th
e
h
o
s
t
b
ir
d
.
A
l
l
t
h
ese
tactics
h
a
v
e
b
ee
n
d
ev
elo
p
ed
an
d
ev
o
lv
ed
to
in
cr
ea
s
e
th
e
p
r
o
b
ab
ilit
y
th
at
t
h
e
p
a
r
asit
e
eg
g
w
ill b
e
b
r
ee
d
an
d
f
ed
[
3
9
]
.
I
n
a
co
m
p
u
ta
tio
n
al
p
la
n
e,
th
e
C
S
s
y
n
t
h
esize
s
th
e
b
e
h
av
io
r
o
f
th
e
c
u
c
k
o
o
b
ir
d
in
th
r
ee
r
u
les:
Firs
t,
ea
ch
c
u
ck
o
o
w
il
l
lea
v
e
o
n
l
y
o
n
e
e
g
g
w
h
en
it
ar
r
iv
e
s
at
a
r
a
n
d
o
m
n
est.
Seco
n
d
,
t
h
e
b
es
t
n
est
w
it
h
th
e
h
i
g
h
est
q
u
alit
y
o
f
p
ar
asit
e
e
g
g
s
w
ill
b
e
tak
e
n
in
th
e
f
o
llo
w
in
g
g
e
n
er
atio
n
s
.
T
h
ir
d
,
T
h
e
n
u
m
b
er
o
f
av
ailab
le
h
o
s
t
n
e
s
ts
ca
n
b
e
m
o
d
i
f
ied
an
d
th
e
p
r
o
b
ab
ilit
y
th
at
a
p
ar
asit
e
eg
g
w
il
l
b
e
d
is
co
v
er
ed
w
ill
b
e
g
i
v
en
b
y
a
r
atio
n
al
n
u
m
b
er
[
4
0
]
.
E
ac
h
eg
g
i
n
a
n
est
r
ep
r
esen
t
s
a
s
o
l
u
tio
n
n
e
w
s
o
lu
t
io
n
.
T
h
e
o
b
j
ec
tiv
e
th
e
n
i
s
to
u
s
e
t
h
e
n
e
w
a
n
d
p
o
ten
tiall
y
s
o
l
u
tio
n
s
(
alien
e
g
g
)
to
r
ep
lace
th
e
p
r
ev
io
u
s
s
o
lu
tio
n
s
,
w
h
ic
h
d
o
n
o
t
r
ep
r
e
s
en
t
g
o
o
d
s
o
lu
tio
n
s
ac
co
r
d
in
g
to
th
e
p
r
o
b
lem
.
T
h
e
g
en
er
atio
n
o
f
n
e
w
s
o
l
u
tio
n
s
,
n
e
w
c
u
ck
o
o
eg
g
s
,
w
il
l
b
e
im
p
le
m
e
n
ted
th
r
o
u
g
h
th
e
r
an
d
o
m
r
o
u
te
o
f
L
é
v
y
f
li
g
h
t
s
.
T
h
e
u
s
es
o
f
L
é
v
y
f
li
g
h
t
s
ar
e
ess
en
t
ial
in
t
h
e
i
m
p
le
m
en
tatio
n
s
in
ce
t
h
e
y
r
ep
r
esen
t
a
m
o
r
e
e
f
f
icie
n
t
t
h
e
ex
p
lo
r
atio
n
o
f
t
h
e
b
ir
d
to
f
i
n
d
a
n
est.
T
h
e
len
g
t
h
o
f
th
e
s
t
ep
s
is
lo
n
g
er
a
n
d
i
s
r
ep
r
esen
ted
b
y
a
L
év
y
d
is
tr
ib
u
tio
n
[
4
0
]
.
3
.
5
.
P
a
rt
icle
s
w
a
rm
o
pti
m
iza
t
io
n
(
P
SO
)
T
h
is
E
A
in
te
n
d
s
to
estab
lis
h
an
d
im
p
r
o
v
e
co
m
m
u
n
icatio
n
ch
a
n
n
el
s
b
ased
o
n
th
e
s
i
m
u
latio
n
o
f
s
w
ar
m
s
[
3
3
]
.
I
ts
m
ai
n
ap
p
lica
tio
n
is
i
n
t
h
e
o
p
ti
m
izat
io
n
o
f
n
o
n
li
n
ea
r
f
u
n
ctio
n
s
[
4
1
]
.
T
h
e
alg
o
r
ith
m
s
ee
k
s
to
m
o
d
el
a
n
d
u
n
d
er
s
ta
n
d
th
e
b
as
ic
r
u
les
o
f
co
llecti
v
e
m
o
v
e
m
e
n
t
an
d
co
m
m
u
n
al
r
eg
r
o
u
p
in
g
o
f
s
w
ar
m
m
e
m
b
er
s
.
E
x
a
m
p
le
s
o
f
t
h
is
b
eh
a
v
io
r
ar
e
ex
h
ib
ited
b
y
d
if
f
er
en
t
s
p
ec
i
es
o
f
an
i
m
al
s
s
u
c
h
as
b
ir
d
s
,
f
is
h
e
s
,
b
ac
ter
ia,
a
n
d
in
s
ec
t
s
[
4
2
]
.
T
h
ese
r
u
les
ar
e
b
ased
o
n
an
in
f
o
r
m
at
io
n
e
x
ch
an
g
e
a
n
d
th
e
p
h
y
s
ical
co
n
s
er
v
atio
n
o
f
s
p
ac
e
o
cc
u
p
ied
b
y
ea
ch
m
e
m
b
er
in
t
h
e
s
w
ar
m
at
th
e
m
o
m
e
n
t t
h
eir
tr
av
el.
I
n
a
f
lo
ck
i
n
g
,
f
o
r
ex
a
m
p
le,
s
o
m
e
m
e
m
b
er
s
o
f
t
h
e
s
w
ar
m
ar
e
attr
ac
ted
w
h
er
e
t
h
e
p
lace
th
e
f
o
o
d
is
f
o
u
n
d
.
T
h
er
ef
o
r
e,
th
e
r
est
o
f
f
lo
ck
ev
e
n
t
u
all
y
ar
e
attr
ac
te
d
b
y
a
d
y
n
a
m
ic
f
o
r
ce
.
T
h
is
s
elec
ti
v
e
g
r
o
u
p
o
f
m
e
m
b
er
s
th
a
t
h
a
v
e
b
ee
n
a
ttra
cted
f
ir
s
tl
y
i
s
k
n
o
w
n
as
t
h
e
o
p
ti
m
u
m
in
a
s
ea
r
ch
s
p
ac
e
[
4
1
]
.
Fu
r
th
er
m
o
r
e,
th
e
P
SO
g
e
n
er
ates
a
p
o
p
u
latio
n
o
f
r
an
d
o
m
a
g
e
n
ts
in
p
o
s
itio
n
an
d
s
p
ee
d
w
h
ic
h
r
ep
r
esen
t
t
h
e
e
n
titi
e
s
t
h
at
m
a
k
e
u
p
th
e
s
w
ar
m
.
I
n
f
ac
t,
t
h
e
r
an
d
o
m
co
m
p
o
n
e
n
t
is
ad
d
ed
to
av
o
id
a
co
n
s
is
ten
t
p
atter
n
an
d
av
o
i
d
a
r
ig
id
b
eh
av
io
r
in
th
e
s
w
ar
m
.
I
n
ea
c
h
iter
ati
v
e
c
y
cle,
ea
ch
a
g
e
n
t
d
eter
m
i
n
e
s
its
n
e
w
v
e
lo
cit
y
co
n
ce
r
n
i
n
g
th
e
p
o
s
itio
n
o
f
t
h
e
n
ea
r
est n
e
ig
h
b
o
r
ag
en
t.
On
ce
,
s
o
m
e
a
g
e
n
ts
h
a
v
e
f
o
u
n
d
a
s
o
l
u
tio
n
th
e
y
w
ill
ad
d
r
ess
to
it,
a
n
d
ac
co
r
d
in
g
to
t
h
e
in
f
o
r
m
atio
n
s
h
ar
i
n
g
in
t
h
e
s
w
ar
m
,
t
h
e
y
w
i
ll
f
l
y
o
v
er
a
s
o
l
u
tio
n
s
p
ac
e.
E
ac
h
ag
e
n
t
t
h
at
h
as
f
o
u
n
d
a
s
o
l
u
tio
n
w
ill
d
ir
ec
t
it
s
n
eig
h
b
o
r
in
g
ag
e
n
ts
i
n
t
h
at
r
eg
io
n
.
I
n
d
ee
d
,
th
e
s
w
ar
m
ca
n
r
ea
ch
a
r
ea
s
o
n
ab
le
s
o
lu
t
io
n
t
h
a
n
k
s
to
th
e
d
ir
ec
tio
n
o
f
t
h
e
f
ir
s
t
ag
e
n
t.
Mo
r
eo
v
er
,
ea
ch
a
g
en
t
i
s
co
n
s
id
er
ed
as
a
d
ata
s
tr
u
ctu
r
e
th
a
t
co
n
ta
in
s
r
elev
an
t
i
n
f
o
r
m
atio
n
ab
o
u
t th
e
s
o
l
u
tio
n
o
f
t
h
e
o
p
ti
m
izatio
n
p
r
o
b
lem
a
n
d
is
tr
ea
te
d
in
th
e
co
n
te
x
t a
s
a
p
ar
ticle.
T
h
e
in
f
o
r
m
atio
n
ab
o
u
t
t
h
e
b
e
s
t
s
o
l
u
tio
n
f
o
u
n
d
s
o
f
ar
i
s
co
n
tai
n
ed
in
a
p
ar
ticle
th
at
i
n
d
icate
s
t
h
e
cu
r
r
en
t
lo
ca
tio
n
i
n
t
h
e
o
p
ti
m
izatio
n
p
la
n
e.
T
h
e
s
u
b
s
et
o
f
ag
en
t
s
i
s
s
ee
n
a
s
n
ei
g
h
b
o
r
s
.
I
n
s
h
o
r
t,
th
er
e
ar
e
s
ev
er
al
tas
k
s
e
x
ec
u
ted
i
n
a
P
SO
at
th
e
ti
m
e
b
y
s
p
ec
ial
ized
ag
e
n
ts
.
T
h
at
f
e
a
tu
r
ed
s
u
p
p
o
r
ted
th
e
d
i
v
i
s
io
n
o
f
lab
o
r
,
im
p
r
o
v
ed
t
h
e
s
p
ee
d
s
u
p
,
an
d
p
er
f
o
r
m
a
n
ce
i
n
co
m
p
ar
is
o
n
to
th
e
p
er
f
o
r
m
a
n
ce
o
f
s
eq
u
en
tial ta
s
k
s
m
ad
e
it
b
y
u
n
s
k
illed
w
o
r
k
er
s
[
3
4
]
.
4.
E
VO
L
U
T
I
O
N
ARY
A
L
G
O
R
I
T
H
M
S CO
NT
RIB
UT
I
O
NS
I
N
CO
G
N
I
T
I
V
E
RADIO
I
n
th
i
s
s
ec
t
io
n
,
w
e
w
il
l
p
r
esen
t
t
h
e
m
o
s
t
r
ec
en
t
co
n
tr
ib
u
ti
o
n
s
i
n
th
e
liter
atu
r
e
w
h
er
e
e
v
o
lu
tio
n
ar
y
alg
o
r
ith
m
s
p
la
y
a
v
ita
l a
ch
ie
v
e
m
en
t i
m
p
r
o
v
i
n
g
th
e
C
R
Ns p
er
f
o
r
m
a
n
ce
.
4
.
1
.
GA
I
n
[
5
5
]
p
r
o
p
o
s
ed
a
s
p
ec
tr
u
m
allo
ca
tio
n
m
o
d
el
t
h
at
ca
n
b
e
u
s
ed
i
n
n
a
m
ed
u
n
d
er
lay
n
et
w
o
r
k
s
(
UC
SG
C
)
.
T
h
e
ap
p
r
o
ac
h
is
im
p
le
m
e
n
ted
b
ased
o
n
th
e
m
at
h
e
m
a
tical
m
o
d
el
o
f
co
lo
r
-
s
e
n
s
itiv
e
g
r
ap
h
co
lo
r
in
g
(
C
SGC
)
.
C
SGC
is
d
ep
lo
y
i
n
g
f
o
r
s
p
ec
tr
u
m
allo
ca
tio
n
d
ev
elo
p
m
e
n
t
s
an
d
it
h
as
b
ee
n
u
s
ed
in
o
v
er
la
y
n
et
w
o
r
k
s
.
I
n
o
r
d
er
to
o
p
tim
ize
t
h
e
b
en
e
f
its
o
f
th
e
n
et
w
o
r
k
,
t
h
e
Op
ti
m
i
ze
Gen
etic
A
l
g
o
r
ith
m
(
OG
A
)
is
i
m
p
le
m
e
n
ted
to
allo
w
co
n
v
er
g
e
n
ce
an
d
av
o
i
d
r
em
e
m
b
er
i
n
g
th
e
lo
ca
l
o
p
t
i
m
u
m
,
i
n
co
m
p
ar
is
o
n
to
th
e
tr
ad
itio
n
al
GA
b
y
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
ew A
p
p
r
o
a
ch
es in
C
o
g
n
itive
R
a
d
io
s
u
s
in
g
E
v
o
lu
tio
n
a
r
y
A
lg
o
r
ith
ms
(
C
esa
r
He
r
n
á
n
d
ez
)
1641
r
an
d
o
m
l
y
r
ec
r
u
iti
n
g
i
n
d
i
v
id
u
a
ls
i
n
ea
c
h
iter
atio
n
.
T
h
e
OG
A
in
ea
c
h
iter
atio
n
s
elec
ts
g
o
o
d
f
it
n
ess
f
r
o
m
t
h
e
f
at
h
er
an
d
th
e
o
f
f
s
p
r
i
n
g
.
T
h
en
ad
d
s
n
e
w
i
n
d
iv
id
u
als
to
p
r
o
d
u
ce
n
e
w
p
ar
en
ts
.
T
h
i
s
w
il
l
all
o
w
t
h
e
alg
o
r
it
h
m
to
co
n
v
er
g
e
to
an
o
p
ti
m
al
g
lo
b
al
w
it
h
a
p
r
o
b
ab
ilit
y
o
f
1
.
T
h
e
au
th
o
r
s
m
a
k
e
a
co
m
p
ar
is
o
n
b
et
w
ee
n
th
e
alg
o
r
ith
m
s
U
C
SG
C
a
n
d
C
S
G
C
,
s
h
o
w
i
n
g
t
h
e
u
s
e
o
f
UC
S
G
C
h
as
g
r
ea
ter
n
et
w
o
r
k
b
en
e
f
its
.
T
h
en
co
m
p
ar
ed
th
e
alg
o
r
ith
m
s
O
G
A
an
d
G
A
,
r
ev
ea
lin
g
th
e
OG
A
alg
o
r
it
h
m
h
as
h
ig
h
er
p
er
f
o
r
m
a
n
ce
.
4
.
2
.
AB
C
I
n
[
4
3
]
,
an
A
B
C
al
g
o
r
ith
m
i
s
p
r
esen
ted
to
d
esi
g
n
ate
r
ec
ep
to
r
s
r
etr
an
s
m
is
s
io
n
s
u
s
i
n
g
a
s
u
b
o
p
ti
m
al
in
d
icato
r
d
etec
tio
n
o
f
in
d
icat
o
r
s
in
a
b
in
ar
y
f
o
r
m
.
T
h
e
lo
o
k
er
’
s
b
ee
s
m
a
k
e
a
g
r
ee
d
y
s
el
ec
tio
n
o
n
e
m
p
lo
y
ed
b
ee
s
u
s
i
n
g
a
p
r
o
b
ab
ilit
y
f
u
n
ct
io
n
allo
w
i
n
g
m
o
r
e
ef
f
icie
n
t
r
esu
lt
s
co
n
ce
r
n
i
n
g
to
t
y
p
ical
g
r
ee
d
y
s
e
lectio
n
.
T
h
e
i
m
p
r
o
v
e
m
en
t
p
r
esen
ted
i
n
t
h
i
s
alg
o
r
it
h
m
lie
s
i
n
s
e
n
d
s
co
u
t
b
ee
s
to
w
ar
d
s
all
ab
an
d
o
n
ed
s
o
u
r
ce
s
i
n
s
tead
o
f
s
elec
ti
n
g
o
n
e
f
o
o
d
s
o
u
r
ce
to
leav
e
an
d
s
en
d
i
n
g
e
x
p
lo
r
er
b
ee
s
to
f
in
d
n
e
w
f
o
o
d
s
o
u
r
ce
s
.
T
h
e
r
esu
lts
ar
e
co
m
p
ar
ed
w
ith
s
o
m
e
o
th
er
o
p
tim
izatio
n
s
alg
o
r
it
h
m
s
s
u
c
h
as
E
x
h
a
u
s
ti
v
e
Sear
ch
Alg
o
r
ith
m
,
E
x
h
a
u
s
ti
v
e
Sear
ch
Alg
o
r
it
h
m
1
-
to
-
1
,
AC
O,
E
s
ti
m
atio
n
o
f
Dis
tr
ib
u
tio
n
A
l
g
o
r
ith
m
a
n
d
B
io
g
eo
g
r
ap
h
t
-
b
ase
Op
ti
m
izatio
n
.
T
h
e
ch
an
n
el
ca
p
ac
it
y
o
v
er
r
e
ce
iv
er
s
i
n
a
s
h
ar
ed
b
an
d
w
id
th
s
h
o
w
i
n
g
i
n
cr
ea
s
es
w
it
h
t
h
e
n
u
m
b
er
o
f
u
s
er
s
,
a
s
w
ell
as
an
in
cr
ea
s
e
i
n
t
h
e
ca
p
ac
it
y
w
i
th
t
h
e
n
u
m
b
er
o
f
r
etr
an
s
m
i
s
s
io
n
s
.
T
h
ese
ap
p
r
o
x
i
m
at
io
n
s
ar
e
tak
i
n
g
ca
r
e
o
f
P
U
in
ter
f
er
en
ce
r
estrictio
n
s
.
I
n
s
u
m
m
ar
y
,
t
h
e
al
g
o
r
ith
m
p
r
esen
ted
h
as
a
p
er
f
o
r
m
a
n
ce
cl
o
s
e
to
E
S
A
,
w
h
ic
h
o
f
f
er
s
a
n
o
p
ti
m
al
s
o
lu
tio
n
,
b
u
t
w
it
h
a
lo
w
er
co
m
p
u
tat
io
n
al
c
o
m
p
le
x
it
y
.
I
n
[
4
4
]
,
th
e
a
u
t
h
o
r
s
p
r
o
p
o
s
ed
a
s
o
l
u
tio
n
f
o
r
th
e
as
s
ig
n
m
e
n
t
in
C
R
c
h
a
n
n
el
s
u
s
in
g
a
b
ee
alg
o
r
ith
m
.
T
h
e
m
o
d
el
w
as
f
o
r
m
u
lated
b
ase
o
n
[
4
5
]
ap
p
r
o
x
i
m
atio
n
s
.
T
h
e
p
r
ev
io
u
s
w
o
r
k
p
r
o
p
o
s
ed
th
r
ee
f
u
n
ctio
n
s
f
o
r
an
o
p
tim
a
l
ass
i
g
n
m
en
t
o
f
an
o
p
e
n
-
s
p
ec
tr
u
m
ch
a
n
n
el
i
n
a
C
R
N
.
T
h
e
co
n
tr
ib
u
to
r
s
ad
d
a
n
e
w
f
u
n
ct
io
n
f
o
r
a
b
etter
d
ec
is
io
n
m
a
k
i
n
g
.
T
h
e
f
u
n
cti
o
n
s
ar
e
ex
p
o
s
ed
r
eg
ar
d
in
g
s
in
g
le
-
h
o
p
f
lo
w
an
d
d
escr
ib
e
d
h
o
w
t
h
e
ch
a
n
n
e
l
allo
ca
tio
n
in
C
R
s
y
s
te
m
s
w
o
r
k
s
.
a.
Max
-
s
u
m
o
f
r
e
w
ar
d
,
(
MSR
)
:
d
escr
ib
es
th
e
to
tal
u
s
e
o
f
t
h
e
s
p
ec
tr
u
m
i
n
th
e
s
y
s
te
m
i
n
d
ep
en
d
en
t
o
f
th
e
j
u
d
g
m
e
n
t
m
ad
e
i
n
ea
ch
r
e
w
ar
d
o
f
SUs
.
b.
Max
-
m
i
n
r
e
w
ar
d
(
MM
R
)
: I
t is
th
e
s
u
m
o
f
th
e
u
s
er
s
w
i
th
le
s
s
allo
ca
tio
n
in
t
h
e
s
p
ec
tr
u
m
c.
Max
-
P
r
o
p
o
r
tio
n
al
-
Fair
(
MP
F):
A
d
d
a
p
r
o
p
o
r
tio
n
al
ch
an
g
e
i
n
th
e
r
e
w
ar
d
f
o
r
ea
ch
p
o
s
s
ib
le
ass
ig
n
m
en
t
an
d
its
o
w
n
r
e
w
ar
d
.
T
o
d
ec
r
ea
s
in
g
t
h
e
s
ea
r
c
h
s
p
ac
e,
a
m
ap
p
in
g
p
r
o
ce
s
s
is
p
r
o
p
o
s
ed
b
et
w
ee
n
t
h
e
ch
a
n
n
el
as
s
i
g
n
m
e
n
t
a
n
d
t
h
e
b
ee
p
o
s
itio
n
s
.
D
u
e
to
t
h
e
au
to
m
at
ic
f
i
n
g
er
p
r
in
ts
le
f
t
b
y
t
h
e
P
Us
in
th
e
s
p
ec
tr
u
m
,
eit
h
er
b
y
b
r
o
ad
ca
s
t
o
p
er
atio
n
in
d
icato
r
s
o
r
b
y
ac
ce
s
s
to
th
e
d
atab
ase
ce
n
ter
s
,
th
e
SU
s
ar
e
ab
le
to
d
etec
t
th
ese
s
ig
n
als
g
i
v
en
n
o
t
to
in
ter
f
er
e
w
it
h
th
e
o
p
er
atio
n
o
f
t
h
e
P
Us.T
h
e
f
u
n
ctio
n
ad
d
ed
to
in
cr
ea
s
es
t
h
e
j
u
d
g
m
e
n
t
f
o
r
ea
c
h
c
h
an
n
el
as
s
ig
n
ed
th
r
o
u
g
h
th
e
SU
w
a
s
;
Ma
x
i
m
u
m
C
o
n
tr
ac
to
r
T
o
tal
R
e
w
ar
d
(
MCT
R
)
:
T
o
tak
e
ca
r
e
th
e
li
m
i
ts
f
o
r
th
e
r
e
w
ar
d
s
o
f
No
n
-
L
ice
n
s
ed
User
s
.
T
h
e
alg
o
r
ith
m
s
A
B
C
an
d
b
ee
s
w
ar
m
o
p
ti
m
izatio
n
(
B
SO)
al
g
o
r
ith
m
s
w
er
e
f
o
r
m
u
lated
u
s
i
n
g
t
h
e
f
u
n
ctio
n
s
ab
o
v
e
a
n
d
s
h
o
w
t
h
e
n
e
t
w
o
r
k
p
er
f
o
r
m
an
ce
i
m
p
r
o
v
es
b
y
r
ed
u
cin
g
i
n
ter
f
er
e
n
ce
b
et
w
ee
n
SUs
.
T
h
e
r
esu
lts
o
f
th
i
s
r
esear
ch
ar
e
co
m
p
ar
ed
w
i
th
t
h
e
alg
o
r
ith
m
s
G
A
,
QG
A
,
C
SGC
a
n
d
P
SO.
W
h
er
e
A
B
C
an
d
B
SO
p
er
f
o
r
m
m
u
c
h
b
ett
er
th
an
G
A
,
QG
A
an
d
C
SG
C
.
T
h
e
A
B
C
an
d
P
SO
alg
o
r
ith
m
s
h
a
v
e
a
s
i
m
ilar
p
er
f
o
r
m
a
n
ce
a
n
d
th
e
B
SO a
lg
o
r
ith
m
s
h
o
w
s
s
u
p
er
io
r
p
er
f
o
r
m
an
ce
.
4
.
3
.
ACS
T
h
e
w
o
r
k
e
x
h
ib
ited
i
n
[
4
6
]
,
a
ch
a
n
n
el
h
o
p
p
in
g
al
g
o
r
ith
m
is
p
r
esen
ted
f
o
r
th
e
s
elec
tio
n
o
f
a
co
n
tr
o
l
ch
an
n
el
in
a
h
eter
o
g
en
eo
u
s
,
s
p
atial
an
d
ti
m
e
-
v
ar
y
i
n
g
s
p
ec
tr
u
m
f
o
r
an
A
d
-
h
o
c
C
R
Ns.
T
h
e
S
w
ar
m
A
id
ed
Sta
y
J
u
m
p
(
S
A
SJ
)
alg
o
r
ith
m
i
s
b
ased
o
n
an
ts
co
lo
n
y
s
y
s
te
m
f
o
r
th
e
s
elec
tio
n
o
f
a
co
n
tr
o
l
c
h
an
n
el
w
i
th
o
u
t
th
e
ex
is
te
n
ce
o
f
p
r
e
-
es
tab
lis
h
ed
r
o
u
tes
s
u
c
h
as
ac
ce
s
s
p
o
in
t
s
o
r
b
ase
s
tatio
n
s
.
So
m
e
c
h
ar
ac
ter
is
tics
ar
e
d
esig
n
a
ted
r
eg
ar
d
in
g
r
o
ad
q
u
a
lit
y
.
T
h
e
r
ea
l
p
h
er
o
m
o
n
e
i
s
s
ea
r
ch
i
n
g
f
o
r
th
e
b
est
c
h
a
n
n
el
h
o
p
p
in
g
s
eq
u
en
ce
(
C
HS
)
o
f
f
er
ed
b
y
t
h
e
n
et
w
o
r
k
.
An
an
t
s
y
s
te
m
w
i
ll
s
ee
k
a
n
d
r
ein
f
o
r
ce
th
e
c
h
a
n
n
el
w
it
h
b
etter
ch
a
r
ac
ter
is
tics
b
et
w
ee
n
m
u
ltip
le
o
p
tio
n
s
o
f
f
er
ed
b
y
th
e
n
et
w
o
r
k
.
T
h
e
alg
o
r
it
h
m
i
m
p
r
o
v
es
t
h
e
co
n
v
er
g
en
ce
ti
m
es o
cc
u
r
r
in
g
w
h
e
n
ea
c
h
n
o
d
e
o
f
an
SU
s
ee
k
s
to
co
m
m
u
n
ica
te
w
it
h
an
o
t
h
er
n
o
d
e.
I
t
is
r
elev
a
n
t
to
m
e
n
tio
n
th
at
t
h
e
w
a
y
to
estab
lis
h
a
co
n
n
ec
tio
n
is
u
s
i
n
g
a
s
h
ar
ed
c
h
an
n
el.
T
h
e
r
es
u
lt
s
o
f
th
is
d
e
v
elo
p
m
e
n
t
ar
e
s
i
m
u
lated
in
an
u
r
b
an
ce
ll
u
lar
r
ad
io
en
v
ir
o
n
m
e
n
t
w
it
h
co
n
s
tr
u
ct
i
o
n
s
h
i
n
d
er
in
g
d
ir
ec
t
co
m
m
u
n
icatio
n
.
A
s
a
r
esu
lt,
t
h
e
S
ASJ
s
h
o
w
s
b
etter
p
er
f
o
r
m
a
n
ce
t
h
a
n
R
e
n
d
ez
v
o
u
s
t
i
m
e
s
(
T
T
R
)
,
an
d
ex
p
ec
ted
R
en
d
ez
v
o
u
s
ti
m
es
(
E
T
T
R
)
.
T
h
e
p
r
o
p
o
s
ed
tech
n
iq
u
e
g
i
v
es
b
etter
r
esu
lts
in
c
h
an
n
el
s
r
e
-
s
elec
tio
n
w
h
er
e
th
er
e
ar
e
tr
a
f
f
ic
s
ce
n
ar
io
s
o
r
s
ec
u
r
it
y
a
ttack
s
i
n
co
n
tr
ast to
th
e
tec
h
n
iq
u
e
o
f
s
e
l
ec
tin
g
s
i
n
g
le
ch
a
n
n
e
ls
.
T
h
e
w
o
r
k
p
r
o
p
o
s
ed
in
[
5
2
]
,
an
i
m
p
r
o
v
ed
AC
O
i
s
i
n
tr
o
d
u
ce
d
to
in
cr
ea
s
e
th
e
s
p
ec
tr
u
m
p
er
f
o
r
m
an
ce
i
n
a
C
R
Ns.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
q
u
ic
k
l
y
co
n
v
er
g
es
to
a
n
o
p
tim
a
l
s
o
l
u
tio
n
d
u
e
to
th
e
r
ein
f
o
r
ce
d
lear
n
in
g
w
h
ic
h
is
p
r
o
v
id
ed
to
an
ac
cu
m
u
lated
p
h
er
o
m
o
n
e.
T
h
e
au
t
h
o
r
s
r
ep
r
esen
t
th
e
n
u
m
b
er
o
f
a
v
ailab
le
ch
an
n
els
a
n
d
u
n
l
icen
s
ed
u
s
er
s
i
n
a
m
atr
i
x
.
T
h
e
m
atr
i
x
w
ill
j
u
d
g
e
w
h
eth
e
r
a
n
o
d
e
is
av
ailab
le
o
r
s
atis
f
i
es
th
e
i
n
ter
f
er
e
n
ce
r
estrictio
n
s
.
I
f
th
e
n
o
d
e
m
ee
t
s
th
e
i
n
ter
f
er
e
n
ce
r
estrictio
n
s
,
th
e
ch
a
n
n
el
w
il
l
b
e
ass
i
g
n
ed
to
th
e
SU
to
g
eth
er
w
it
h
a
b
en
ef
i
t.
Fo
r
in
s
tan
ce
,
th
e
SU
w
ill
b
e
d
escr
ib
ed
an
t
s
ea
r
ch
in
g
f
o
r
f
o
o
d
,
in
th
is
ca
s
e,
a
n
o
d
e.
T
h
e
SU
w
ill
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
3
,
J
u
n
e
2
0
1
8
:
1
6
3
6
–
1646
1642
leav
e
a
p
h
er
o
m
o
n
e
o
n
t
h
e
p
at
h
,
an
d
t
h
e
n
e
x
t
S
U
w
ill
s
elec
t
th
e
p
at
h
w
it
h
t
h
e
h
i
g
h
est
p
r
o
b
ab
ilit
y
o
f
f
i
n
d
i
n
g
a
f
o
o
d
/n
o
d
e.
T
h
e
alg
o
r
ith
m
att
ac
h
es
to
t
h
e
tr
ad
itio
n
a
l
a
n
t
c
o
lo
n
y
m
et
h
o
d
,
th
e
w
a
y
i
n
wh
ich
t
h
e
p
h
er
o
m
o
n
e
s
p
r
ea
d
s
its
f
i
n
g
er
p
r
in
t,
to
in
cr
ea
s
e
th
e
g
lo
b
al
s
ea
r
ch
ca
p
ac
it
y
.
T
h
e
p
h
er
o
m
o
n
es
p
ar
a
m
eter
s
ar
e
co
n
f
i
g
u
r
ed
b
y
ad
j
u
s
tin
g
t
h
e
atte
n
u
at
io
n
co
e
f
f
icie
n
t,
a
n
d
th
e
p
at
h
to
b
e
f
o
llo
w
ed
i
s
li
m
ited
to
s
p
ec
i
f
ic
in
ter
v
a
ls
g
i
v
en
b
y
ex
p
er
i
m
e
n
tatio
n
.
T
h
e
alter
s
ab
o
v
e
s
ee
k
i
n
g
to
p
r
ev
e
n
t
p
r
e
m
atu
r
e
co
n
v
er
g
en
ce
.
T
h
e
an
t
c
o
n
f
i
g
u
r
atio
n
p
la
y
s
a
v
ital
r
o
le
i
n
t
h
e
ab
ilit
y
to
f
i
n
d
o
p
ti
m
al
s
o
lu
t
io
n
s
.
I
f
it
is
s
elec
ted
a
s
m
al
l
v
a
lu
e,
t
h
e
ab
ilit
y
to
f
i
n
d
g
o
o
d
s
o
lu
tio
n
s
w
ill
b
e
lo
w
,
a
n
d
th
e
b
en
ef
it
s
w
ill
b
e
f
e
w
.
A
s
t
h
e
n
u
m
b
er
o
f
an
ts
is
i
n
cr
ea
s
ed
th
e
s
ea
r
ch
ca
p
ac
it
y
f
o
r
o
p
tim
a
l
s
o
lu
tio
n
s
i
m
p
r
o
v
e
s
a
n
d
t
h
e
b
en
e
f
it
s
i
n
cr
ea
s
e
i
n
t
h
e
s
a
m
e
w
a
y
.
I
t
is
co
n
cl
u
d
ed
f
r
o
m
t
h
e
s
ce
n
ar
io
s
p
r
o
p
o
s
ed
b
y
t
h
e
a
u
th
o
r
s
t
h
at
c
o
n
v
er
g
e
n
ce
f
o
r
a
n
o
p
ti
m
al
s
o
lu
tio
n
w
as
ac
h
iev
ed
b
y
m
a
k
in
g
d
y
n
a
m
ic
c
h
a
n
g
e
s
in
th
e
u
p
d
ates o
f
t
h
e
p
h
er
o
m
o
n
e
as
w
ell
as t
h
e
atte
n
u
atio
n
c
o
ef
f
icie
n
t
s
.
4.
4.
CS
T
h
e
d
ev
elo
p
m
e
n
t
i
n
[
4
7
]
,
u
s
e
th
e
al
g
o
r
ith
m
I
m
p
r
o
v
ed
C
u
c
k
o
o
Sear
ch
(
I
C
S)
to
s
e
n
s
i
n
g
t
h
e
s
p
ec
tr
u
m
in
a
C
R
o
f
s
ca
r
ce
s
atellite
s
.
T
h
e
co
m
p
le
x
it
y
o
f
t
h
is
n
et
wo
r
k
is
lo
w
er
in
co
m
p
ar
is
o
n
t
o
ce
llu
lar
telep
h
o
n
y
n
et
w
o
r
k
s
.
T
h
er
ef
o
r
e,
th
e
s
ea
r
ch
i
n
th
e
s
h
ar
ed
s
p
ec
tr
u
m
is
s
lo
w
er
f
o
r
s
atellite
co
g
n
itiv
e
n
et
w
o
r
k
s
.
O
n
e
o
f
t
h
e
p
r
im
ar
y
o
b
j
ec
tiv
es
o
f
t
h
e
I
C
S
co
n
ce
r
n
i
n
g
t
h
e
C
S
is
th
e
ad
j
u
s
t
m
e
n
t
o
f
t
h
e
s
ea
r
c
h
p
ar
a
m
eter
s
(
A
lp
h
a)
an
d
(
P
a)
.
T
h
e
v
alu
e
s
o
f
A
lp
h
a
a
n
d
P
a
d
ec
r
ea
s
e
w
it
h
t
h
e
n
u
m
b
er
o
f
ite
r
atio
n
s
a
m
o
u
n
t
s
,
s
ea
r
c
h
in
g
in
t
h
is
w
a
y
f
o
r
a
f
a
s
ter
an
d
m
o
r
e
ef
f
icie
n
t
g
lo
b
al
s
ea
r
ch
.
T
h
e
r
esu
lts
o
b
tain
ed
wer
e:
T
h
e
p
r
o
b
ab
ilit
y
o
f
d
is
co
v
er
in
g
a
f
r
ee
s
u
b
-
ch
an
n
el
i
n
d
icate
s
a
co
m
p
en
s
a
t
io
n
b
et
w
ee
n
th
e
s
u
b
-
c
h
a
n
n
el
b
an
d
w
id
th
an
d
t
h
e
s
en
s
i
n
g
ti
m
e
.
T
h
e
co
n
v
er
g
e
n
ce
r
ate
o
f
an
id
le
b
an
d
ca
n
b
e
r
e
d
u
ce
d
w
it
h
th
e
in
cr
ea
s
e
s
o
f
s
u
b
ch
a
n
n
el
s
to
o
b
tain
a
b
etter
s
to
p
p
in
g
s
p
ee
d
.
T
h
e
s
ea
r
c
h
co
n
v
er
g
e
n
ce
r
ate
o
f
o
p
ti
m
al
g
lo
b
al
o
u
tco
m
e
i
n
a
C
R
m
o
d
u
le
i
s
ca
r
r
ied
o
n
e
s
ea
r
ch
allo
w
i
n
g
a
ti
m
e
-
s
av
i
n
g
in
t
h
e
r
ea
ch
o
f
id
le
ch
an
n
el
s
.
I
n
S
h
o
r
t,
th
e
I
C
S
d
y
n
a
m
icall
y
ad
j
u
s
ts
t
h
e
s
p
ac
e
d
is
tr
ib
u
tio
n
alo
n
g
w
it
h
th
e
c
h
an
g
e/d
is
co
v
er
y
p
r
o
b
ab
ilit
y
a
n
d
lo
o
k
i
n
g
f
o
r
t
h
e
o
p
ti
m
izatio
n
i
n
u
n
o
cc
u
p
ied
ch
a
n
n
el
s
ca
p
tu
r
e
to
a
v
o
id
r
ed
u
n
d
an
c
y
.
4
.
5
.
P
SO
T
h
e
w
o
r
k
p
r
o
p
o
s
ed
in
[
4
8
]
,
a
P
SO
w
as
i
m
p
le
m
e
n
ted
to
m
i
n
i
m
ize
t
h
e
to
tal
s
er
v
ice
ti
m
e
in
a
h
an
d
o
f
f
s
p
ec
tr
u
m
.
I
t
i
s
k
n
o
w
i
n
g
t
h
at
t
h
e
p
r
ed
ictio
n
o
f
P
U
ar
r
iv
als
m
u
s
t
b
e
b
ef
o
r
e
th
e
s
p
ec
tr
u
m
h
an
d
o
f
f
to
co
n
t
in
u
e
w
it
h
t
h
e
tr
an
s
m
is
s
io
n
i
n
a
f
r
e
e
ch
an
n
el.
T
h
en
,
a
h
y
b
r
id
s
p
e
ctr
u
m
m
o
d
el
is
ch
o
s
en
to
ta
k
e
ad
v
an
ta
g
e
o
f
t
h
e
s
p
ec
tr
u
m
p
r
o
ac
tiv
e
(
r
ap
id
r
esp
o
n
s
e)
an
d
s
p
ec
tr
u
m
r
ea
cti
v
e
(
p
r
ec
is
io
n
in
th
e
s
elec
tio
n
o
f
t
h
e
tar
g
et)
.
I
n
f
ac
t,
a
f
ast
s
p
ec
tr
u
m
h
an
d
o
f
f
w
ith
a
v
er
y
lo
w
laten
c
y
d
u
r
in
g
t
h
e
s
p
ec
tr
u
m
m
o
b
ilit
y
is
g
o
t
it.T
h
e
au
t
h
o
r
s
ch
ar
ac
ter
ized
th
e
co
m
m
u
n
icat
io
n
ch
a
n
n
el
b
eh
a
v
io
r
i
n
a
b
u
s
y
C
R
N
a
n
d
i
m
p
le
m
e
n
ted
a
m
o
d
el
n
et
w
o
r
k
w
it
h
q
u
eu
es
M/G/1
.
W
h
er
e
t
h
e
ar
r
i
v
al
t
i
m
e
o
f
t
h
e
u
s
er
s
is
Ma
r
k
o
v
ian
,
th
e
ti
m
e
s
er
v
ice
h
a
s
a
g
en
er
al
d
is
tr
ib
u
t
io
n
an
d
a
s
in
g
le
d
is
p
atch
s
er
v
er
.
T
h
at
is
,
th
e
m
i
n
i
m
ized
o
b
j
ec
ti
v
e
f
u
n
c
tio
n
is
d
e
f
in
ed
as
t
h
e
t
o
tal
ti
m
e
s
er
v
ice
f
o
r
u
n
a
u
t
h
o
r
ized
u
s
er
s
b
ase
o
n
q
u
eu
i
n
g
th
eo
r
y
a
n
d
s
o
m
e
r
estri
ctio
n
s
.
T
h
e
r
esu
lt
s
s
h
o
w
a
2
5
%
r
ed
u
ctio
n
in
to
tal
s
er
v
ice
ti
m
e
in
co
m
p
ar
i
s
o
n
to
a
r
an
d
o
m
i
ze
d
s
c
h
e
m
e
an
d
a
3
5
%
r
ed
u
ctio
n
in
to
tal
s
er
v
ice
ti
m
e
in
co
n
tr
ast
to
h
an
d
o
f
f
s
p
ec
tr
u
m
s
ch
e
m
e
s
.
A
s
co
n
s
eq
u
e
n
tl
y
,
t
h
e
p
r
esen
ted
alg
o
r
ith
m
r
ed
u
ce
s
t
h
e
d
ela
y
s
ca
u
s
ed
b
y
h
a
n
d
o
f
f
.
5.
CO
M
P
ARATI
VE
E
VALU
A
T
I
O
N
O
F
I
M
P
O
RT
ANT E
A
s
I
n
S
ec
tio
n
3
,
th
e
b
io
lo
g
ical
m
o
d
els
o
f
E
A
s
w
er
e
p
r
esen
ted
.
Fu
r
th
er
m
o
r
e,
th
e
r
ea
d
er
ca
n
h
av
e
g
o
t
a
b
asic
id
ea
o
f
h
o
w
t
h
e
y
w
o
r
k
a
n
d
w
h
at
c
h
ar
ac
ter
is
tic
s
t
h
e
p
r
o
b
lem
s
h
o
u
ld
s
ati
s
f
y
.
Mo
r
eo
v
er
,
T
ab
le
1
is
g
o
i
n
g
to
s
h
o
w
t
h
e
co
m
p
u
tatio
n
al
c
o
n
s
id
er
atio
n
o
f
t
h
e
E
As
m
e
n
tio
n
ed
ab
o
v
e
as
w
ell
as
t
h
e
p
ap
er
s
in
w
h
ich
t
h
e
alg
o
r
ith
m
s
h
ad
b
ee
n
i
m
p
le
m
en
ted
in
C
R
Ns.
I
n
d
ee
d
,
th
e
r
ea
d
er
w
i
ll
b
e
ab
le
to
v
is
u
al
iz
e
m
o
r
e
clea
r
l
y
t
h
e
ad
v
an
ta
g
es a
n
d
d
is
ad
v
an
tag
e
s
o
f
th
e
E
A
s
i
n
t
h
e
cu
r
r
en
t C
R
li
ter
atu
r
e.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
ew A
p
p
r
o
a
ch
es in
C
o
g
n
itive
R
a
d
io
s
u
s
in
g
E
v
o
lu
tio
n
a
r
y
A
lg
o
r
ith
ms
(
C
esa
r
He
r
n
á
n
d
ez
)
1643
T
ab
le
1
.
C
o
m
p
ar
is
o
n
o
f
R
ele
v
an
t E
v
o
l
u
tio
n
ar
y
A
l
g
o
r
ith
m
s
EA
B
EN
EFI
T
S
W
E
A
K
N
ESS
CR
A
B
C
A
b
i
l
i
t
y
t
o
e
x
p
l
o
r
e
l
o
c
a
l
so
l
u
t
i
o
n
s
S
k
i
l
l
i
n
ma
n
a
g
i
n
g
o
b
j
e
c
t
i
v
e
c
o
st
s
R
e
q
u
i
r
e
s n
e
w
f
i
t
n
e
ss t
e
st
s
i
n
e
a
c
h
n
e
w
p
a
r
a
me
t
e
r
P
o
ssi
b
i
l
i
t
y
o
f
r
e
l
e
v
a
n
t
l
o
ss o
f
i
n
f
o
r
mat
i
o
n
R
e
q
u
i
r
e
s a
f
i
t
n
e
ss f
u
n
c
t
i
o
n
H
i
g
h
n
u
m
b
e
r
o
f
e
v
a
l
u
a
t
i
o
n
f
u
n
c
t
i
o
n
s
P
o
p
u
l
a
t
i
o
n
so
l
u
t
i
o
n
s i
n
c
r
e
a
se
t
h
e
c
o
mp
u
t
a
t
i
o
n
a
l
c
o
s
t
[
2
6
]
,
[
2
8
]
,
[
3
1
]
,
[
4
3
]
,
[
4
4
]
A
C
S
I
n
h
e
r
e
n
t
p
a
r
a
l
l
e
l
i
sm
P
o
si
t
i
v
e
f
e
e
d
b
a
c
k
h
e
l
p
s t
h
e
q
u
i
c
k
d
i
s
c
o
v
e
r
y
o
f
g
o
o
d
so
l
u
t
i
o
n
s
Ef
f
i
c
i
e
n
t
i
n
f
i
n
d
i
n
g
s
h
o
r
t
p
a
t
h
s
D
i
st
a
n
c
e
s
c
h
a
n
g
e
s a
d
a
p
t
a
b
i
l
i
t
y
C
o
n
v
e
r
g
e
n
c
e
g
u
a
r
a
n
t
e
e
d
C
o
mp
l
e
x
t
h
e
o
r
e
t
i
c
a
l
a
n
a
l
y
si
s
R
a
n
d
o
m se
q
u
e
n
c
e
d
e
c
i
s
i
o
n
s
(
N
o
n
-
i
n
d
e
p
e
n
d
e
n
c
e
)
P
r
o
b
a
b
i
l
i
t
y
d
i
s
t
r
i
b
u
t
i
o
n
c
h
a
n
g
e
s b
y
e
a
c
h
i
t
e
r
a
t
i
o
n
T
h
e
se
a
r
c
h
i
s
e
x
p
e
r
i
me
n
t
a
l
i
n
s
t
e
a
d
o
f
t
h
e
o
r
e
t
i
c
a
l
T
h
e
t
i
me
c
o
n
v
e
r
g
e
n
c
e
i
s
u
n
c
e
r
t
a
i
n
[
2
9
]
,
[
3
2
]
,
[
4
6
]
,
[
4
9
]
,
[
5
0
]
CS
Ju
st
o
n
e
a
d
j
u
st
me
n
t
p
a
r
a
me
t
e
r
d
i
f
f
e
r
e
n
t
f
r
o
m t
h
e
p
o
p
u
l
a
t
i
o
n
n
u
m
b
e
r
Ea
sy
i
mp
l
e
me
n
t
a
t
i
o
n
A
b
i
l
i
t
y
t
o
h
a
n
d
l
e
mu
l
t
i
-
c
r
i
t
e
r
i
a
o
p
t
i
m
i
z
a
t
i
o
n
p
r
o
b
l
e
ms
S
e
e
k
s t
o
a
c
c
e
l
e
r
a
t
e
c
o
n
v
e
r
g
e
n
c
e
I
f
t
h
e
v
a
l
u
e
s
o
f
p
r
o
b
a
b
i
l
i
t
y
t
o
d
i
sco
v
e
r
y
a
n
i
n
v
a
s
i
v
e
e
g
g
a
n
d
t
h
e
s
c
a
l
e
o
f
t
h
e
p
r
o
b
l
e
m
o
f
i
n
t
e
r
e
st
:
T
h
e
A
l
g
o
r
i
t
h
m
p
e
r
f
o
r
man
c
e
c
o
u
l
d
b
e
p
o
o
r
a
n
d
t
h
e
i
t
e
r
a
t
i
o
n
n
u
mb
e
r
i
n
c
r
e
a
se
s
T
h
e
c
o
n
v
e
r
g
e
n
c
e
sp
e
e
d
c
o
u
l
d
b
e
h
i
g
h
b
u
t
c
a
n
n
o
t
f
i
n
d
b
e
st
so
l
u
t
i
o
n
s
[
4
7
]
,
[
5
1
]
PSO
T
h
e
d
i
sr
u
p
t
i
o
n
i
s l
o
w
t
o
t
h
e
sca
l
a
b
i
l
i
t
y
o
f
d
e
si
g
n
v
a
r
i
a
b
l
e
s
Ea
sy
p
a
r
a
l
l
e
l
i
sm f
o
r
c
o
n
c
u
r
r
e
n
t
p
r
o
c
e
ssi
n
g
N
o
t
d
e
r
i
v
a
b
l
e
Q
u
i
t
e
e
f
f
i
c
i
e
n
t
f
o
r
t
h
e
g
l
o
b
a
l
se
a
r
c
h
T
r
e
n
d
t
o
f
a
st
a
n
d
p
r
e
ma
t
u
r
e
c
o
n
v
e
r
g
e
n
c
e
a
t
o
p
t
i
m
i
z
a
t
i
o
n
m
i
d
p
o
i
n
t
S
l
o
w
c
o
n
v
e
r
g
e
n
c
e
i
n
t
h
e
r
e
f
i
n
e
d
se
a
r
c
h
st
a
g
e
W
e
a
k
l
o
c
a
l
se
a
r
c
h
[
2
7
]
,
[
3
8
]
,
[
4
8
]
,
[
5
2
]
GA
M
u
l
t
i
-
o
b
j
e
c
t
i
v
e
o
p
t
i
mi
z
a
t
i
o
n
D
y
n
a
mi
c
c
o
n
f
i
g
u
r
a
t
i
o
n
b
a
se
d
o
n
e
n
v
i
r
o
n
me
n
t
c
h
a
n
g
e
s
R
e
q
u
i
r
e
s p
r
i
o
r
k
n
o
w
l
e
d
g
e
o
f
t
h
e
sy
st
e
m
H
i
g
h
c
o
m
p
l
e
x
i
t
y
w
i
t
h
r
o
b
u
st
p
r
o
b
l
e
ms
[
3
0
]
,
[
5
3
]
,
[
5
4
]
6.
CH
AL
L
E
N
G
E
S O
F
RE
S
E
A
RCH
T
h
e
C
R
N
h
a
s
c
h
allen
g
e
s
to
ap
p
r
o
ac
h
,
an
d
s
o
lu
tio
n
s
to
i
m
p
r
o
v
e
th
e
Qo
S.
I
t
w
ill
e
n
s
u
r
e
t
h
e
s
p
ec
tr
u
m
m
an
a
g
ed
in
t
h
e
b
est
w
a
y
.
T
h
en
,
w
e
w
i
ll
ex
p
o
s
e
s
o
m
e
o
f
t
h
ese
d
if
f
ic
u
ltie
s
an
d
h
o
w
E
As
ca
n
h
a
v
e
a
m
o
r
e
s
ig
n
i
f
ica
n
t i
m
p
ac
t.
Sin
ce
P
U
ca
n
ac
ce
s
s
th
e
s
p
ec
tr
u
m
at
a
n
y
t
i
m
e,
S
U
m
u
s
t
b
e
s
en
s
i
n
g
th
e
s
p
ec
tr
u
m
a
t
all
ti
m
e
s
an
d
lo
o
k
in
g
f
o
r
n
e
w
o
p
p
o
r
tu
n
ities
o
f
a
v
ailab
le
c
h
an
n
el
s
.
T
ec
h
n
o
lo
g
ies
h
av
e
ad
v
a
n
ce
d
an
d
h
a
v
e
allo
w
ed
m
o
b
ile
ter
m
i
n
als
ca
n
s
e
n
s
e
t
h
e
w
ir
el
ess
s
p
ec
tr
u
m
.
B
ec
au
s
e
t
h
e
s
e
n
s
i
n
g
ass
ig
n
m
en
t
is
d
eter
m
in
ed
b
y
s
o
m
e
asp
ec
t
s
s
u
c
h
as
en
er
g
y
,
lo
ca
tio
n
,
an
d
co
s
ts
o
f
m
o
b
ile
ter
m
i
n
als.
I
t
s
h
o
u
ld
b
e
ad
v
is
ed
m
eth
o
d
s
t
o
im
p
r
o
v
e
th
e
s
e
n
s
i
n
g
s
p
ec
tr
u
m
.
I
n
w
ir
eles
s
s
e
n
s
o
r
n
et
w
o
r
k
s
,
u
n
lice
n
s
ed
s
e
n
s
o
r
n
o
d
es
ar
e
u
s
ed
te
m
p
o
r
ar
il
y
a
n
d
id
le
licen
s
ed
ch
an
n
el
s
ar
e
o
cc
u
p
ied
.
Ne
w
ch
alle
n
g
e
s
h
av
e
b
ee
n
id
e
n
ti
f
i
ed
in
w
ir
ele
s
s
s
e
n
s
o
r
n
et
w
o
r
k
s
f
o
r
d
etec
tio
n
an
d
ex
ch
a
n
g
e
i
n
t
h
e
co
o
p
er
ativ
e
s
p
ec
tr
u
m
.
P
r
o
b
lem
s
s
u
c
h
as
ad
ap
tatio
n
in
s
el
f
-
o
r
g
an
izatio
n
,
f
au
lt
to
ler
an
ce
a
n
d
s
ca
lab
ilit
y
in
t
h
e
n
et
w
o
r
k
d
ec
r
ea
s
e
th
e
p
er
f
o
r
m
a
n
ce
i
n
th
e
s
y
s
te
m
.
W
h
en
th
e
n
u
m
b
er
o
f
u
n
lice
n
s
ed
u
s
er
s
i
n
cr
ea
s
es
in
s
ec
o
n
d
ar
y
n
et
w
o
r
k
s
,
co
m
m
u
n
icatio
n
p
er
f
o
r
m
an
c
e
d
ec
r
ea
s
es
an
d
ca
u
s
es
p
r
o
b
le
m
s
in
s
elec
tio
n
a
n
d
ex
c
h
a
n
g
e
o
f
in
f
o
r
m
atio
n
.
I
n
o
r
d
er
to
s
o
lv
e
th
e
d
is
ad
v
a
n
ta
g
es
o
f
s
i
g
n
al
-
to
-
n
o
is
e
i
n
ter
f
er
en
c
e,
s
o
lu
tio
n
s
m
u
s
t
b
e
p
r
o
p
o
s
e
d
th
at
d
y
n
a
m
icall
y
m
a
n
ag
e
t
h
e
s
elec
tio
n
i
n
t
h
e
r
etr
an
s
m
is
s
io
n
a
n
d
s
p
ec
tr
u
m
allo
ca
tio
n
.
E
As
ca
n
b
e
p
r
es
en
ted
as
a
s
o
l
u
tio
n
i
n
t
h
e
o
p
ti
m
izatio
n
o
f
t
h
is
p
r
o
b
lem
.
T
h
e
y
ca
n
f
i
n
d
n
e
w
r
o
u
tes
g
i
v
en
t
h
e
r
estrict
io
n
s
p
r
es
en
ted
b
y
ea
ch
n
et
w
o
r
k
.
C
u
r
r
en
tl
y
,
tec
h
n
o
lo
g
y
h
as
b
e
en
w
o
r
k
i
n
g
o
n
p
r
o
ce
s
s
e
s
th
at
r
ed
u
ce
th
e
d
ela
y
s
i
n
s
p
ec
tr
u
m
m
o
b
ilit
y
an
d
i
n
cr
ea
s
e
t
h
e
to
tal
s
er
v
ice
ti
m
e.
Fo
r
e
x
a
m
p
le,
i
f
o
p
ti
m
i
za
tio
n
m
et
h
o
d
s
ar
e
u
s
ed
in
t
h
e
s
elec
tio
n
o
f
th
e
co
n
tr
o
l
ch
an
n
el,
ti
m
e
w
il
l
b
e
r
ed
u
ce
d
in
th
e
h
a
n
d
o
f
f
s
a
n
d
th
e
s
er
v
ice
ti
m
e
w
ill
b
e
i
n
cr
ea
s
e
d
.
E
A
s
ca
n
p
r
o
p
o
s
e
s
o
lu
tio
n
s
i
n
t
h
is
a
s
p
ec
t
b
y
i
m
p
le
m
e
n
ti
n
g
o
p
ti
m
iza
tio
n
m
ec
h
an
ic
s
i
n
t
h
e
s
elec
t
io
n
o
f
th
e
p
er
f
ec
t
co
n
tr
o
l
ch
an
n
el.
An
o
th
er
cu
r
r
e
n
t
ch
alle
n
g
e
is
f
o
cu
s
ed
o
n
m
a
x
i
m
izi
n
g
t
h
r
o
u
g
h
p
u
t
ca
p
ac
it
y
w
h
ic
h
p
r
esen
ts
a
n
o
n
-
co
n
v
e
x
[
5
5
]
.
T
h
er
ef
o
r
e,
r
ef
o
r
m
u
latio
n
s
o
l
u
tio
n
s
h
av
e
b
ee
n
p
r
o
p
o
s
ed
w
h
ic
h
w
i
ll
i
n
cr
ea
s
e
th
e
m
at
h
e
m
atica
l
co
s
t
an
d
t
h
u
s
a
d
ela
y
i
n
th
e
s
er
v
ice.
T
h
is
ca
n
r
ep
r
esen
t
a
cl
ea
r
o
p
p
o
r
tu
n
it
y
f
o
r
E
A
s
to
p
r
esen
t
a
co
n
tr
ib
u
tio
n
an
d
p
r
o
p
o
s
e
a
s
o
lu
tio
n
t
h
at
d
o
es
n
o
t
in
v
o
lv
e
r
e
f
o
r
m
u
latio
n
s
in
th
e
p
r
o
b
le
m
[
5
6
]
-
[
5
8
]
.
Fo
r
ex
a
m
p
le,
a
g
e
n
etic
alg
o
r
ith
m
g
en
er
ate
s
m
u
ltip
le
s
o
lu
tio
n
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2088
-
8708
I
n
t J
E
lec
&
C
o
m
p
E
n
g
,
Vo
l.
8
,
No
.
3
,
J
u
n
e
2
0
1
8
:
1
6
3
6
–
1646
1644
7.
CO
NCLU
SI
O
N
C
o
g
n
iti
v
e
r
ad
io
n
et
w
o
r
k
s
p
r
esen
t
a
th
eo
r
etica
l
s
o
lu
t
io
n
to
th
e
p
r
o
b
le
m
o
f
in
e
f
f
icie
n
t
u
s
e
o
f
t
h
e
s
p
ec
tr
u
m
.
T
h
i
s
ar
ticle
p
r
esen
t
s
an
o
v
er
v
ie
w
o
f
n
e
w
d
ev
elo
p
m
en
ts
ca
r
r
ied
o
u
t
b
y
e
v
o
lu
tio
n
ar
y
al
g
o
r
ith
m
s
th
a
t
h
eld
co
g
n
it
iv
e
r
ad
io
n
et
w
o
r
k
t
ec
h
n
o
lo
g
ies.
T
h
e
ar
t
s
tate
h
as
s
h
o
w
n
a
s
p
ec
ts
s
u
ch
as
s
er
v
ice
q
u
alit
y
an
d
en
er
g
y
co
s
ts
ca
n
b
e
i
m
p
r
o
v
ed
b
y
i
m
p
l
e
m
en
tin
g
co
g
n
iti
v
e
r
ad
i
o
tech
n
o
lo
g
ies.
I
n
C
o
n
c
l
u
s
io
n
,
th
is
p
ap
er
d
escr
ib
es
th
e
ca
p
ab
ilit
ies
an
d
o
p
p
o
r
tu
n
itie
s
o
f
ev
o
l
u
tio
n
ar
y
al
g
o
r
ith
m
s
,
as
w
ell
as
t
h
e
c
u
r
r
en
t
r
e
s
ea
r
ch
c
h
alle
n
g
e
s
,
i
n
w
h
ic
h
t
h
er
e
m
a
y
b
e
d
i
f
f
er
en
t
p
o
i
n
ts
o
f
v
ie
w
in
ap
p
licatio
n
s
f
o
r
co
g
n
iti
v
e
r
ad
io
s
.
I
t
is
im
p
o
r
ta
n
t
to
h
ig
h
li
g
h
t
th
at
a
lt
h
o
u
g
h
th
e
liter
atu
r
e
p
r
esen
t
s
s
o
lu
tio
n
s
f
o
r
th
e
p
r
o
b
lem
s
th
at
h
a
v
e
ar
is
e
n
in
t
h
e
s
e
n
s
i
n
g
,
d
ec
is
io
n
,
s
h
ar
in
g
,
an
d
m
o
b
ilit
y
o
f
t
h
e
s
p
ec
tr
u
m
,
t
h
er
e
ar
e
s
till
p
r
o
b
lem
s
o
f
o
p
tim
izatio
n
,
lear
n
in
g
,
an
d
cla
s
s
i
f
icatio
n
in
w
h
ic
h
ev
o
l
u
tio
n
ar
y
al
g
o
r
ith
m
s
ca
n
o
f
f
er
s
o
l
u
ti
o
n
s
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
e
au
th
o
r
s
o
f
t
h
is
ar
ticle
w
i
s
h
to
ac
k
n
o
w
led
g
e
C
o
lcie
n
cias
an
d
th
e
U
n
iv
er
s
id
ad
Dis
tr
ital
Fra
n
cisco
J
o
s
é
d
e
C
ald
as f
o
r
f
u
n
d
in
g
r
es
o
u
r
ce
s
to
d
ev
elo
p
th
is
r
esear
c
h
.
RE
F
E
R
E
NC
E
S
[1
]
E.
U.
Og
b
o
d
o
,
D.
D
o
rre
ll
,
a
n
d
A
.
M
.
A
b
u
-
M
a
h
f
o
u
z
,
“
Co
g
n
it
iv
e
Ra
d
io
b
a
se
d
S
e
n
so
r
Ne
tw
o
rk
in
S
m
a
rt
G
rid
:
A
rc
h
it
e
c
tu
re
s,
A
p
p
li
c
a
ti
o
n
s a
n
d
C
o
m
m
u
n
ica
ti
o
n
T
e
c
h
n
o
l
o
g
ies
”
,
IEE
E
Acc
e
ss
,
v
o
l.
5
,
p
p
.
1
-
1
,
2
0
1
7
.
[2
]
S.
J.
S
h
e
ll
h
a
m
m
e
r,
A
.
K.
S
a
d
e
k
,
a
n
d
W
.
Z.
W
.
Zh
a
n
g
,
“
T
e
c
h
n
ica
l
Ch
a
ll
e
n
g
e
s
f
o
r
Co
g
n
it
iv
e
Ra
d
io
in
th
e
T
V
W
h
it
e
S
p
a
c
e
S
p
e
c
tru
m
”
,
2
0
0
9
I
n
f.
T
h
e
o
ry
Ap
p
l.
W
o
rk
.
,
p
p
.
3
2
3
-
3
3
3
,
2
0
0
9
.
[3
]
J.
W
a
n
g
a
n
d
X
.
Zh
a
n
g
,
“
S
tatisti
c
a
l
Qo
S
-
d
riv
e
n
c
o
o
p
e
ra
ti
v
e
p
o
we
r
a
ll
o
c
a
ti
o
n
g
a
m
e
o
v
e
r
w
i
re
le
ss
c
o
g
n
it
iv
e
ra
d
i
o
n
e
tw
o
rk
s
”
,
IEE
E
W
ire
l.
Co
mm
u
n
.
Ne
tw.
Co
n
f.
W
CNC
,
2
0
1
7
.
[4
]
A
.
A
.
Kh
a
n
,
M
.
H.
Re
h
m
a
n
i,
a
n
d
A
.
R
a
c
h
e
d
i,
“
W
h
e
n
Co
g
n
it
iv
e
Ra
d
i
o
m
e
e
ts
th
e
In
tern
e
t
o
f
T
h
in
g
s?
”
,
2
0
1
6
In
t.
W
ire
l.
Co
mm
u
n
.
M
o
b
.
C
o
mp
u
t.
C
o
n
f.
IW
CM
C
2
0
1
6
,
p
p
.
4
6
9
-
4
7
4
,
2
0
1
6
.
[5
]
S
.
P
.
T
.
F
o
rc
e
.
,
“
ET
Do
c
k
e
t
No
.
0
2
-
1
3
5
No
v
e
m
b
e
r
2
0
0
2
”
,
2
0
0
2
.
[6
]
A
.
A
l
-
T
a
h
m
e
e
ss
c
h
i,
M
.
L
ó
p
e
z
-
Be
n
ít
e
z
,
J.
Leh
to
m
ä
k
i,
a
n
d
K.
U
m
e
b
a
y
a
sh
i,
“
In
v
e
stig
a
ti
n
g
th
e
Esti
m
a
ti
o
n
o
f
P
rim
a
r
y
O
c
c
u
p
a
n
c
y
P
a
tt
e
rn
s
u
n
d
e
r
I
m
p
e
r
f
e
c
t
S
p
e
c
tru
m
S
e
n
sin
g
”
,
2
0
1
7
IEE
E
W
ire
l.
Co
mm
u
n
.
Ne
tw.
Co
n
f.
W
o
rk
.
W
CNCW
2
0
1
7
,
2
0
1
7
.
[7
]
E.
T
e
lata
r,
“
Ca
p
a
c
it
y
o
f
M
u
lt
i
-
a
n
ten
n
a
G
a
u
ss
ian
Ch
a
n
n
e
ls”
,
T
ra
n
s.
Eme
rg
.
T
e
lec
o
mm
u
n
.
T
e
c
h
n
o
l.
1
0
,
v
o
l.
6
,
n
o
.
No
v
,
p
p
.
5
8
5
-
5
9
5
,
1
9
9
5
.
[8
]
I.
L
e
e
,
A
.
M
.
Ch
a
n
,
a
n
d
C.
E.
W
.
S
u
n
d
b
e
rg
,
“
S
p
a
c
e
-
T
ime
Bit
-
In
terle
a
v
e
d
Co
d
e
d
M
o
d
u
latio
n
f
o
r
O
F
DM
S
y
ste
m
s
”
,
IEE
E
T
ra
n
s.
S
ig
n
a
l
Pro
c
e
ss
.
,
v
o
l.
5
2
,
n
o
.
3
,
p
p
.
8
2
0
-
8
2
5
,
2
0
0
4
.
[9
]
M
.
L
ó
p
e
z
-
b
e
n
ít
e
z
a
n
d
F
.
Ca
sa
d
e
v
a
ll
,
“
S
p
e
c
tru
m
o
c
c
u
p
a
n
c
y
in
re
a
li
stic sc
e
n
a
rio
s an
d
d
u
ty
c
y
c
le
m
o
d
e
l
f
o
r
c
o
g
n
it
iv
e
ra
d
io
”
,
A
d
v
.
El
e
c
tro
n
.
T
e
lec
o
mm
u
n
.
,
v
o
l
.
1
,
n
o
.
1
,
p
p
.
2
6
-
3
4
,
2
0
1
0
.
[1
0
]
R.
Ch
a
k
ra
v
a
rth
y
,
Ka
i
y
u
Hu
a
n
g
,
L
in
Zh
a
n
g
,
a
n
d
Z
.
W
u
,
“
P
rim
a
r
y
Us
e
r
a
u
th
e
n
ti
c
a
ti
o
n
o
f
c
o
g
n
it
iv
e
ra
d
io
n
e
tw
o
rk
u
sin
g
u
n
d
e
rlay
w
a
v
e
f
o
r
m
”
,
2
0
1
7
Co
g
n
.
Co
mm
u
n
.
Aer
o
sp
.
Ap
p
l.
W
o
rk
.
,
p
p
.
1
-
5
,
2
0
1
7
.
[1
1
]
M
.
a
M
c
He
n
ry
,
D.
M
c
CL
OSKEY
,
D.
R
o
b
e
rso
n
,
a
n
d
J.
M
a
c
Do
n
a
ld
,
“
S
p
e
c
tru
m
o
c
c
u
p
a
n
c
y
m
e
a
su
re
m
e
n
ts:
Ch
ica
g
o
,
il
li
n
o
is,
n
o
v
e
m
b
e
r
1
6
-
1
8
,
2
0
0
5
”
,
S
h
a
r
.
S
p
e
c
tr.
Co
mp
a
n
y
,
T
e
c
h
.
Rep
,
p
p
.
2
0
05
-
2
0
1
1
,
2
0
0
5
.
[1
2
]
S
.
Ha
y
k
in
,
“
Co
g
n
it
iv
e
Ra
d
i
o
:
B
ra
in
-
Em
p
o
w
e
re
d
”
,
IEE
E
J
.
S
e
l.
AR
EA
S
Co
mm
u
n
.
,
v
o
l.
2
3
,
n
o
.
2
,
p
p
.
2
0
1
-
2
2
0
,
2
0
0
5
.
[1
3
]
I.
F
.
A
k
y
il
d
iz,
W
.
Y.
L
e
e
,
M
.
C.
Vu
ra
n
,
a
n
d
S
.
M
o
h
a
n
ty
,
“
Ne
X
t
g
e
n
e
ra
ti
o
n
/d
y
n
a
m
ic
sp
e
c
tru
m
a
c
c
e
ss
/
c
o
g
n
it
iv
e
ra
d
io
w
irele
ss
n
e
tw
o
rk
s: A
su
rv
e
y
”
,
Co
mp
u
t.
Ne
tw
o
rk
s
,
v
o
l.
5
0
,
n
o
.
1
3
,
p
p
.
2
1
2
7
-
2
1
5
9
,
2
0
0
6
.
[1
4
]
L
.
Qiu
,
S
.
L
iu
,
Y.
Zh
a
n
g
,
Y.
Zh
u
,
K.
Tan
g
,
a
n
d
Y.
Zh
e
n
g
,
“
A
0
.
9
-
2
.
6
G
Hz
Co
g
n
it
iv
e
R
a
d
io
Re
c
e
iv
e
r
w
it
h
S
p
re
a
d
S
p
e
c
tru
m
F
re
q
u
e
n
c
y
S
y
n
th
e
siz
e
r
f
o
r
S
p
e
c
tru
m
S
e
n
sin
g
”
,
IEE
E
S
e
n
s.
J
.
,
v
o
l.
1
7
4
8
,
n
o
.
c
,
p
p
.
1
-
1
,
2
0
1
7
.
[1
5
]
D.E
.
G
o
ld
b
e
rg
a
n
d
J.H.
Ho
ll
a
n
d
,
“
G
e
n
e
ti
c
A
l
g
o
rit
h
m
s
a
n
d
M
a
c
h
in
e
L
e
a
rn
in
g
”
,
M
a
c
h
.
L
e
a
rn
.
,
v
o
l.
3
,
n
o
.
2
,
p
p
.
9
5
-
9
9
,
1
9
8
8
.
[1
6
]
M
.
Bk
a
ss
in
y
,
Y.
L
i,
a
n
d
S
.
K.
Ja
y
a
w
e
e
ra
,
“
A
su
rv
e
y
o
n
m
a
c
h
in
e
-
lea
rn
in
g
tec
h
n
i
q
u
e
s
i
n
c
o
g
n
i
ti
v
e
ra
d
io
s”
,
IE
EE
Co
mm
u
n
.
S
u
rv
.
T
u
to
ri
a
ls
,
v
o
l.
1
5
,
n
o
.
3
,
p
p
.
1
1
3
6
-
1
1
5
9
,
2
0
1
3
.
[1
7
]
A
.
He
,
S
.
M
e
m
b
e
r,
K.
K.
Ba
e
,
T
.
R.
Ne
wm
a
n
,
J.
G
a
e
d
d
e
rt,
K.
Ki
m
,
R.
M
e
n
o
n
,
L
.
M
o
ra
les
-
ti
ra
d
o
,
J.J.
Ne
e
l,
Y.
Zh
a
o
,
J.H.
Re
e
d
,
W
.
H.
T
ra
n
ter,
a
n
d
L
.
F
e
ll
o
w
,
“
A
S
u
rv
e
y
o
f
A
rti
f
icia
l
In
telli
g
e
n
c
e
”
,
IEE
E
T
ra
n
s
.
Veh
.
T
e
c
h
n
o
l.
,
v
o
l.
5
9
,
n
o
.
4
,
p
p
.
1
5
7
8
-
1
5
9
2
,
2
0
1
0
.
[1
8
]
M
.
Čre
p
in
še
k
,
S
.
H.
L
iu
,
a
n
d
M
.
M
e
rn
ik
,
“
Ex
p
lo
ra
ti
o
n
a
n
d
e
x
p
lo
i
t
a
ti
o
n
i
n
e
v
o
lu
ti
o
n
a
ry
a
lg
o
rit
h
m
s”
,
ACM
Co
mp
u
t
.
S
u
rv
.
,
v
o
l
.
4
5
,
n
o
.
3
,
p
p
.
1
-
3
3
,
2
0
1
3
.
[1
9
]
N.
A
b
b
a
s,
Y.
Na
ss
e
r,
a
n
d
K.
El
A
h
m
a
d
,
“
Re
c
e
n
t
a
d
v
a
n
c
e
s
o
n
a
rti
f
icia
l
in
telli
g
e
n
c
e
a
n
d
lea
rn
in
g
tec
h
n
i
q
u
e
s
i
n
c
o
g
n
it
iv
e
ra
d
io
n
e
tw
o
rk
s”
,
EURA
S
IP
J
.
W
ire
l.
Co
mm
u
n
.
Ne
tw.
,
v
o
l
.
2
0
1
5
,
n
o
.
1
,
p
.
1
7
4
,
2
0
1
5
.
[2
0
]
U.
M
e
h
b
o
o
b
,
J.
Qa
d
ir,
S
.
A
li
,
a
n
d
A
.
V
a
silak
o
s,
“
G
e
n
e
ti
c
a
lg
o
rit
h
m
s
in
w
irele
ss
n
e
t
w
o
rk
i
n
g
:
tec
h
n
iq
u
e
s,
a
p
p
li
c
a
ti
o
n
s,
a
n
d
issu
e
s”
,
S
o
ft
Co
mp
u
t.
,
v
o
l.
2
0
,
n
o
.
6
,
p
p
.
2
4
6
7
-
2
5
0
1
,
2
0
1
6
.
[2
1
]
I.
F
.
A
k
y
il
d
iz,
W
.
L
e
e
,
M
.
C.
V
u
ra
n
,
a
n
d
S
.
M
o
h
a
n
ty
,
“
A
S
u
rv
e
y
o
n
S
p
e
c
tru
m
M
a
n
a
g
e
m
e
n
t
in
C
o
g
n
it
iv
e
Ra
d
i
o
Ne
tw
o
rk
s”
,
IEE
E
Co
mm
u
n
.
M
a
g
.
,
v
o
l.
4
6
,
n
o
.
4
,
p
p
.
4
0
-
4
8
,
2
0
0
8
.
[2
2
]
A
.
F
a
ll
is,
“
No
ti
c
e
o
f
P
r
o
p
o
se
d
ru
l
e
m
a
k
in
g
a
n
d
o
rd
e
r”
,
J
.
C
h
e
m.
In
f
.
M
o
d
e
l.
,
v
o
l.
5
3
,
n
o
.
9
,
p
p
.
1
6
8
9
-
1
6
9
9
,
2
0
1
3
.
[2
3
]
J.
El
h
a
c
h
im
i
a
n
d
Z.
G
u
e
n
n
o
u
n
,
“
A
n
A
rti
f
icia
l
In
telli
g
e
n
c
e
A
p
p
ro
a
c
h
f
o
r
P
a
rk
in
g
F
a
c
il
it
ies
M
a
n
a
g
e
m
e
n
t”
,
In
t.
J
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
n
t J
E
lec
&
C
o
m
p
E
n
g
I
SS
N:
2
0
8
8
-
8708
N
ew A
p
p
r
o
a
ch
es in
C
o
g
n
itive
R
a
d
io
s
u
s
in
g
E
v
o
lu
tio
n
a
r
y
A
lg
o
r
ith
ms
(
C
esa
r
He
r
n
á
n
d
ez
)
1645
Co
mp
u
t
.
T
e
c
h
n
o
l
.
Ap
p
l.
,
v
o
l.
5
,
n
o
.
Ju
n
e
,
p
p
.
1
2
1
9
-
1
2
2
5
,
2
0
0
3
.
[2
4
]
F
.
K.
Jo
n
d
ra
l,
“
S
o
f
tw
a
r
e
-
De
f
in
e
d
Ra
d
i
o
Ba
sic
s
a
n
d
Ev
o
lu
ti
o
n
to
Co
g
n
it
iv
e
Ra
d
io
”
,
EUR
AS
IP
J
.
W
ire
l.
Co
mm
u
n
.
Ne
tw.
,
v
o
l.
2
0
0
5
,
n
o
.
3
,
p
.
6
5
2
7
8
4
,
2
0
0
5
.
[2
5
]
H.
L
i,
X
.
Ch
e
n
g
,
K.
L
i,
X
.
X
i
n
g
,
a
n
d
T
.
Ji
n
g
,
“
Util
it
y
-
b
a
se
d
c
o
o
p
e
ra
ti
v
e
sp
e
c
tru
m
se
n
si
n
g
sc
h
e
d
u
l
i
n
g
in
c
o
g
n
it
iv
e
ra
d
io
n
e
tw
o
rk
s
”
,
Pro
c
.
-
IEE
E
IN
FOCOM
,
v
o
l.
6
6
,
n
o
.
1
,
p
p
.
1
6
5
-
1
6
9
,
2
0
1
3
.
[2
6
]
M
.
L
i,
Y.
He
i,
a
n
d
Z
.
Qi
u
,
“
Op
t
i
m
iz
a
ti
o
n
o
f
No
n
-
c
o
n
v
e
x
Co
o
p
e
ra
ti
v
e
S
p
e
c
tru
m
S
e
n
sin
g
w
it
h
M
o
d
if
ied
A
rti
f
icia
l
Be
e
Co
lo
n
y
A
l
g
o
rit
h
m
”
,
Pro
c
.
-
2
0
1
4
IEE
E
In
t.
Co
n
f.
C
o
mp
u
t.
I
n
f.
T
e
c
h
n
o
l
.
CIT
2
0
1
4
,
p
p
.
7
0
-
7
5
,
2
0
1
4
.
[2
7
]
X
.
L
i
a
n
d
L
.
L
iu
,
“
Co
o
p
e
ra
ti
v
e
s
p
e
c
tru
m
se
n
sin
g
f
o
r
c
o
g
n
it
iv
e
r
a
d
io
s
b
a
se
d
o
n
a
P
A
-
GA
BC
a
lg
o
r
it
h
m
”
,
2
0
1
1
In
t
.
Co
n
f.
El
e
c
tro
n
.
Co
mm
u
n
.
C
o
n
tro
l
,
n
o
.
2
,
p
p
.
2
6
0
4
-
2
6
0
7
,
2
0
1
1
.
[2
8
]
L
.
I.
X
in
b
i
n
,
S
.
H.I.
A
iw
u
,
a
n
d
L
.
I.
U.
L
e
i,
“
Co
g
n
it
iv
e
Ra
d
io
P
o
w
e
r
A
ll
o
c
a
ti
o
n
Ba
se
d
o
n
A
rti
f
ic
ial
Be
e
Co
lo
n
y
A
l
g
o
rit
h
m
”
,
Pro
c
.
3
1
st
Ch
i
n
e
se
Co
n
tro
l
Co
n
f.
,
p
p
.
5
8
0
9
-
5
8
1
3
,
2
0
1
2
.
[2
9
]
M
.
Ba
n
d
y
o
p
a
d
h
y
a
y
a
n
d
P
.
B
h
a
u
m
i
k
,
“
Zo
n
e
b
a
se
d
a
n
t
c
o
lo
n
y
ro
u
ti
n
g
in
m
o
b
il
e
a
d
-
h
o
c
n
e
tw
o
rk
”
,
2
0
1
0
S
e
c
o
n
d
In
t
.
Co
n
f.
Co
mm
u
n
.
S
y
st.
NET
w
o
rk
s (COM
S
NET
S
2
0
1
0
)
,
n
o
.
Cc
c
,
p
p
.
1
-
1
0
,
2
0
1
0
.
[3
0
]
F
.
L
i,
D.
Zh
u
,
F
.
T
ian
,
a
n
d
H
.
L
i,
“
Co
g
n
it
iv
e
Ra
d
io
S
p
e
c
tru
m
S
h
a
rin
g
u
sin
g
I
m
p
ro
v
e
d
Qu
a
n
tu
m
G
e
n
e
ti
c
A
l
g
o
rit
h
m
”
,
2
0
1
1
In
t.
C
o
n
f.
W
ire
l.
Co
mm
u
n
.
S
ig
n
a
l
,
p
p
.
1
-
6
,
2
0
1
1
.
[3
1
]
M
.
E.
Ba
y
ra
k
d
a
r
a
n
d
A
.
C
a
lh
a
n
,
“
Op
ti
m
iza
ti
o
n
o
f
sp
e
c
tru
m
h
a
n
d
o
f
f
w
it
h
a
rti
f
icia
l
b
e
e
c
o
lo
n
y
a
lg
o
rit
h
m
”
,
2
0
1
7
2
5
t
h
S
ig
n
a
l
Pro
c
e
ss
.
Co
mm
u
n
.
A
p
p
l.
C
o
n
f.
,
p
p
.
1
-
4
,
2
0
1
7
.
[3
2
]
B.
P
re
v
e
z
e
a
n
d
A
.
S
a
f
a
k
,
“
Eff
e
c
ts
o
f
a
n
t
c
o
lo
n
y
a
n
d
f
a
ste
st p
a
th
ro
u
ti
n
g
a
lg
o
rit
h
m
s o
n
p
e
rf
o
rm
a
n
c
e
i
m
p
ro
v
e
m
e
n
t
o
f
n
o
v
e
l
c
o
g
n
it
iv
e
m
e
th
o
d
s”
,
Pro
c
.
-
6
th
In
t
.
Co
n
f.
W
ire
l.
M
o
b
.
C
o
mm
u
n
.
ICW
M
C
2
0
1
0
,
p
p
.
4
7
8
–
4
8
3
,
2
0
1
0
.
[3
3
]
J.
Qa
d
ir,
“
A
rti
f
icia
l
In
telli
g
e
n
c
e
Ba
se
d
Co
g
n
it
iv
e
Ro
u
ti
n
g
f
o
r
C
o
g
n
it
iv
e
Ra
d
io
Ne
tw
o
rk
s”
,
Arti
f.
In
t
e
ll
.
Rev
.
,
n
o
.
1
,
p
p
.
2
5
-
9
6
,
2
0
1
3
.
[3
4
]
D.
Ka
ra
b
o
g
a
,
“
A
n
id
e
a
b
a
se
d
o
n
h
o
n
e
y
b
e
e
s
wa
r
m
f
o
r
n
u
m
e
rica
l
o
p
ti
m
iza
ti
o
n
”
,
Ka
y
se
ri
-
T
ü
rk
i
y
e
,
2
0
0
5
.
[3
5
]
T
.
S
e
e
le
y
,
T
h
e
W
isd
o
m o
f
th
e
Hiv
e
.
1
9
9
5
.
[3
6
]
A
.
Co
lo
rn
i,
M
.
Do
rig
o
,
a
n
d
V.
M
a
n
iez
z
o
,
“
Distrib
u
te
d
Op
ti
m
iza
ti
o
n
b
y
A
n
t
Co
lo
n
ies
”
,
Pro
c
.
ECA
L
9
1
-
E
u
r.
Co
n
f
.
Arti
f.
L
i
fe,
Pa
ris
-
Fr.
,
n
o
.
o
r
D,
p
p
.
1
3
4
-
1
4
2
,
1
9
9
1
.
[3
7
]
M
Do
rig
o
,
V.
M
a
n
iez
z
o
,
a
n
d
A
.
Co
lo
r
n
i,
“
T
h
e
A
n
t
S
y
ste
m
:
A
n
Au
to
c
a
taly
ti
c
Op
ti
m
izin
g
P
ro
c
e
ss
”
,
M
il
a
n
o
,
Italy
,
1
9
9
1
.
[3
8
]
Z.
Zh
a
o
,
Z.
P
e
n
g
,
S
.
Zh
e
n
g
,
a
n
d
J.
S
h
a
n
g
,
“
Co
g
n
it
iv
e
ra
d
io
sp
e
c
tru
m
a
ll
o
c
a
ti
o
n
u
sin
g
e
v
o
lu
ti
o
n
a
ry
a
l
g
o
rit
h
m
s
”
,
IEE
E
T
ra
n
s.
W
ire
l.
C
o
mm
u
n
.
,
v
o
l
.
8
,
n
o
.
9
,
p
p
.
4
4
2
1
-
4
4
2
5
,
2
0
0
9
.
[3
9
]
R.
B.
P
a
y
n
e
a
n
d
M
.
D.
S
o
re
n
s
o
n
,
T
h
e
Cu
c
k
o
o
s
,
1
st e
d
.
Ne
w
Yo
rk
:
Ox
f
o
rd
Un
iv
e
rsit
y
P
re
ss
,
2
0
0
5
.
[4
0
]
X.
S
.
Ya
n
g
a
n
d
S
.
De
b
,
“
Cu
c
k
o
o
S
e
a
rc
h
v
ia
Lév
y
F
li
g
h
ts”
,
W
o
rld
Co
n
g
r
.
Na
t.
Bi
o
l.
In
sp
ire
d
Co
m
p
u
t.
2
0
0
9
.
Na
BIC
2
0
0
9
.
,
p
p
.
2
1
0
-
2
1
4
,
2
0
1
0
.
[4
1
]
J.
Ke
n
n
e
d
y
a
n
d
R.
C.
Eb
e
rh
a
rt,
“
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
”
,
Pro
c
.
IEE
E
In
t.
Co
n
f.
Ne
u
ra
l
Ne
two
rk
s
IV,
p
a
g
e
s
,
v
o
l.
4
,
p
p
.
1
9
4
2
-
1
9
4
8
,
1
9
9
5
.
[4
2
]
C.
W
.
Re
y
n
o
ld
s,
“
F
lo
c
k
s,
h
e
rd
s
a
n
d
sc
h
o
o
ls:
A
d
istri
b
u
ted
b
e
h
a
v
i
o
ra
l
m
o
d
e
l”
,
AC
M
S
IGG
RA
PH
Co
mp
u
t
.
Gr
a
p
h
.
,
v
o
l.
2
1
,
n
o
.
4
,
p
p
.
2
5
-
3
4
,
1
9
8
7
.
[4
3
]
S
.
A
sh
ra
f
in
ia,
U.
P
a
re
e
k
,
M
.
Na
e
e
m
,
a
n
d
D.
C.
L
e
e
,
“
Bin
a
r
y
A
rti
f
icia
l
Be
e
Co
lo
n
y
f
o
r
Co
o
p
e
ra
ti
v
e
Re
la
y
Co
m
m
u
n
ica
ti
o
n
i
n
Co
g
n
i
ti
v
e
Ra
d
io
S
y
ste
m
s
”
,
2
0
1
2
IE
EE
I
n
t.
C
o
n
f
.
Co
mm
u
n
.
,
p
p
.
1
5
5
0
-
1
5
5
4
,
2
0
1
2
.
[4
4
]
A
.
G
h
a
se
m
i,
F
.
Qa
ss
e
m
i,
M
.
Big
u
e
sh
,
a
n
d
M
.
A
.
M
a
sn
a
d
i
-
S
h
iraz
i,
“
Ch
a
n
n
e
l
a
ss
ig
n
m
e
n
t
b
a
se
d
o
n
b
e
e
a
lg
o
rit
h
m
s
in
m
u
l
ti
-
h
o
p
c
o
g
n
it
iv
e
ra
d
io
n
e
tw
o
rk
s
”
,
IET
Co
mm
u
n
.
,
v
o
l
.
8
,
n
o
.
1
3
,
p
p
.
2
3
5
6
-
2
3
6
5
,
2
0
1
4
.
[4
5
]
C.
P
e
n
g
,
H.
Zh
e
n
g
,
a
n
d
B.
Y.
Zh
a
o
,
“
Util
iza
ti
o
n
a
n
d
F
a
ir
n
e
ss
in
S
p
e
c
tru
m
A
ss
i
g
n
e
m
n
t
f
o
r
Op
p
o
rt
u
n
isti
c
S
p
e
c
tru
m
A
c
c
e
ss
”
,
M
o
b
.
Ne
two
rk
s A
p
p
l.
,
v
o
l.
1
1
,
n
o
.
4
,
p
p
.
5
5
5
-
5
7
6
,
2
0
0
6
.
[4
6
]
H.
Oh
ize
a
n
d
M
.
Dl
o
d
lo
,
“
A
n
t
Co
l
o
n
y
S
y
ste
m
Ba
s
e
d
Co
n
tr
o
l
Ch
a
n
n
e
l
S
e
lec
ti
o
n
S
c
h
e
m
e
f
o
r
G
u
a
ra
n
tee
d
Re
n
d
e
z
v
o
u
s
in
Co
g
n
it
iv
e
Ra
d
io
A
d
-
h
o
c
Ne
t
w
o
rk
”
,
2
7
th
An
n
u
.
IE
EE
In
t.
S
y
mp
.
Per
s.
In
d
o
o
r
M
o
b
.
Ra
d
i
o
Co
mm
u
n
.
PIM
RC
,
2
0
1
6
.
[4
7
]
W
.
Yu
a
n
,
M
.
Ya
n
g
,
Q.
G
u
o
,
X
.
W
a
n
g
,
a
n
d
X
.
F
e
n
g
,
“
Im
p
ro
v
e
d
Cu
c
k
o
o
S
e
a
rc
h
A
lg
o
rit
h
m
f
o
r
S
p
e
c
tru
m
S
e
n
sin
g
in
S
p
a
rse
S
a
telli
te Co
g
n
i
ti
v
e
S
y
ste
m
s”
,
IEE
E
8
4
th
Veh
.
T
e
c
h
n
o
l.
C
o
n
f
.
,
p
p
.
1
-
5
,
2
0
1
6
.
[4
8
]
A
.
A
lh
a
m
m
a
d
i,
M
.
R
o
sle
e
,
a
n
d
M
.
Y.
A
li
a
s,
“
A
n
a
l
y
sis
o
f
S
p
e
c
tru
m
H
a
n
d
o
f
f
S
c
h
e
m
e
s
in
Co
g
n
it
iv
e
Ra
d
io
Ne
tw
o
rk
Us
in
g
P
a
rti
c
le
S
w
a
rm
Op
ti
m
iz
a
ti
o
n
”
,
IE
EE
3
rd
I
n
t.
S
y
mp
.
T
e
lec
o
mm
u
n
.
T
e
c
h
n
o
l
.
(
IS
T
T
),
K
u
a
l
a
L
u
mp
u
r
,
p
p
.
1
0
3
-
1
0
7
,
2
0
1
6
.
[4
9
]
Q.
He
a
n
d
P
.
Zh
a
n
g
,
“
Dy
n
a
m
i
c
Ch
a
n
n
e
l
A
ss
ig
n
m
e
n
t
Us
in
g
A
n
t
Co
lo
n
y
Op
ti
m
iza
ti
o
n
f
o
r
Co
g
n
it
iv
e
Ra
d
i
o
Ne
tw
o
rk
s”
,
Veh
.
T
e
c
h
n
o
l.
C
o
n
f
.
(
VT
C
Fa
ll
),
2
0
1
2
I
EE
E
,
p
p
.
1
-
5
,
2
0
1
2
.
[5
0
]
Z.
Z
h
u
,
J.
C
h
e
n
,
a
n
d
S
.
Zh
a
n
g
,
“
S
p
e
c
tru
m
A
ll
o
c
a
ti
o
n
A
lg
o
rit
h
m
Ba
se
d
o
n
Im
p
ro
v
e
d
A
n
t
Co
l
o
n
y
in
Co
g
n
it
iv
e
Ra
d
io
Ne
tw
o
rk
s”
,
2
0
1
6
I
EE
E
I
n
t
.
Co
n
f
.
In
ter
n
e
t
T
h
i
n
g
s
IE
EE
Gr
e
e
n
Co
mp
u
t
.
Co
mm
u
n
.
IE
EE
Cy
b
e
r,
Ph
y
s.
S
o
c
.
Co
mp
u
t
.
IEE
E
S
m
a
rt Da
t
a
,
p
p
.
3
7
6
-
3
7
9
,
2
0
1
6
.
[5
1
]
M
.
G
rissa
,
A
.
A
.
Ya
v
u
z
,
a
n
d
B.
Ha
m
d
a
o
u
i,
“
C
u
c
k
o
o
F
i
lt
e
r
-
Ba
se
d
L
o
c
a
ti
o
n
-
P
riv
a
c
y
P
re
se
rv
a
ti
o
n
in
Da
tab
a
se
-
Driv
e
n
Co
g
n
it
iv
e
Ra
d
io
Ne
tw
o
rk
s
”
,
2
0
1
5
W
o
rl
d
S
y
m
p
.
Co
m
p
u
t
.
N
e
two
rk
s In
f.
S
e
c
u
r.
,
2
0
1
5
.
[5
2
]
L
.
Zh
a
i
a
n
d
H.
W
a
n
g
,
“
Cro
w
d
se
n
sin
g
T
a
sk
A
ss
i
g
n
m
e
n
t
Ba
se
d
o
n
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
i
n
Co
g
n
it
iv
e
Ra
d
i
o
Ne
tw
o
rk
s”
,
Hin
d
a
wi,
W
ire
l.
Co
m
mu
n
.
M
o
b
.
C
o
mp
u
t.
,
2
0
1
7
.
[5
3
]
R.
Hu
a
n
g
,
J.
Ch
a
n
g
,
Y.
Re
n
,
F
.
He
,
a
n
d
C.
G
u
a
n
,
“
S
p
e
c
tru
m
A
ll
o
c
a
ti
o
n
o
f
Co
g
n
it
iv
e
Ra
d
io
Ne
t
w
o
rk
Ba
se
d
o
n
Op
ti
m
ize
d
G
e
n
e
ti
c
A
lg
o
rit
h
m
in
Un
d
e
rlay
Ne
t
w
o
rk
Ri
x
in
g
”
,
2
0
1
6
8
th
IEE
E
In
t.
Co
n
f.
Co
mm
u
n
.
S
o
ft
w.
Ne
two
rk
s
,
p
p
.
4
1
8
-
4
2
2
,
2
0
1
6
.
[5
4
]
J.
El
h
a
c
h
m
i
a
n
d
Z.
G
u
e
n
n
o
u
n
,
“
Ev
o
lu
ti
o
n
a
ry
A
l
g
o
rit
h
m
f
o
r
D
y
n
a
m
ic
S
p
e
c
tru
m
A
ll
o
c
a
ti
o
n
in
Co
g
n
it
iv
e
Ra
d
io
S
y
st
e
m
”
,
2
0
1
6
4
t
h
IEE
E
In
t
.
Co
ll
o
q
.
In
f.
S
c
i.
T
e
c
h
n
o
l.
,
p
p
.
7
0
2
-
7
0
6
,
2
0
1
6
.
[5
5
]
M
.
S
a
e
e
d
z
a
ra
n
d
i,
“
Op
ti
m
iza
ti
o
n
o
f
M
u
lt
i
b
a
n
d
S
e
n
sin
g
-
T
im
e
-
Ad
a
p
ti
v
e
De
tec
ti
o
n
i
n
Co
g
n
i
ti
v
e
Ra
d
io
Ne
tw
o
rk
s
Usi
n
g
A
rti
f
icia
l
In
m
m
u
n
e
A
lg
o
rit
h
m
”
,
2
n
d
C
o
n
f.
S
w
a
rm
In
tell
.
Evo
l.
Co
mp
u
t.
,
v
o
l.
0
,
n
o
.
l,
p
p
.
2
9
-
3
4
,
2
0
1
7
.
Evaluation Warning : The document was created with Spire.PDF for Python.