Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
7, N
o
. 3
,
Ju
n
e
201
7, p
p
. 1
125
~113
2
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v7
i
3.p
p11
25-
113
2
1
125
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Optimise Energy Cost for Air Conditioning based on the
Market
Price un
der Dem
a
nd
Side Response Model
Marw
an M
a
r
w
an
1
, S
y
af
aru
ddi
n
2
1
Electrical Eng
i
n
eering
Depar
t
ment, Poly
techn
i
c State of
Ujung Pandang, Indo
nesia
1
Power En
erg
y
S
y
stem Research Group, Poly
technic State of Uju
ng Pandang, Ind
onesia
2
Ele
c
tri
cal
Eng
i
n
eering
Depar
t
m
e
nt
, Hasanud
din
University
, Indo
nesia
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Apr 19, 2017
Rev
i
sed
May 14
, 20
17
Accepted
May 30, 2017
The in
creasing contribution
of air condi
tioning (
A
C) to energ
y
consumption
has rec
e
ived
con
s
iderabl
e
a
tten
t
i
on in th
e p
a
st a
nd will
continu
e
to do so
in
the coming
y
e
ar
s, from Indonesian gove
rnment, state
electricity compan
y
and consumers.
Managing d
e
mand on th
e
el
ec
tric
ity
s
y
ste
m
in pe
a
k
se
ssions
is
the m
o
s
t
direc
t
wa
y
to addr
es
s
the AC peak d
e
m
a
nd is
s
u
e. The
aim
of this
research
is to developed
a consu
m
er
demand side response (DSR) model to
a
ssist both e
l
ec
tric
ity
c
onsumers/aggreg
ator
and electricity
p
r
ovider to
minimise energ
y
cost
if p
eak
price oc
cured
in
the
peak season.
Th
e proposed
model allows consumers to independe
n
t
ly
an
d proactiv
ely
manage air
condition
i
ng lo
ad through an
ag
gregator
. Th
is research
exam
ines how the
control s
y
st
em
applies DSR m
o
del if
a price spike may
occur at 18.00 during
one hour. Th
e results indicate, cons
umer and aggregator
could gain
collective b
e
nefits
when the
consumer controls th
e air
conditionin
g
under th
e
DSR program.
The model was tested
in Makassar City
South Sulawesi
considering to the cahar
acteristic of
the room and air conditio
ning in a
residential house.
Keyword:
Air con
d
ition
i
ng
C
ons
um
er
Dem
a
nd si
de
r
e
sp
onse
Ener
gy
sa
vi
n
g
Spike
Copyright ©
201
7 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Mar
w
an
Marwan
,
Electrical Engi
neeri
n
g De
part
ment,
Pol
y
t
echni
c
St
at
e of
U
j
un
g
P
a
nda
n
g
,
Peri
nt
i
s
Kem
e
rdekaa
n St
reet
, M
a
kassar
,
S
o
u
t
h
S
u
l
a
wesi
,
I
n
do
nesi
a.
Em
a
il: marwan_
e
n
e
rg
y@yahoo
.co
m
; marwan
@po
liu
pg
.ac.id
1.
INTRODUCTION
DSR
as
desc
ri
bed
by
[1]
ca
n
be
defi
ned
as
t
h
e
changes i
n
electricity us
age
by end-us
e custom
ers
fr
om
t
h
ei
r n
o
r
m
al
cons
um
pt
ion
pat
t
e
r
n
s
i
n
resp
o
n
se t
o
c
h
ange
s i
n
t
h
e
p
r
i
ce of
el
ect
ri
ci
t
y
or
ot
her
i
n
ce
nt
i
v
es
ove
r tim
e. [2]
descri
bes
DSR
as a tarif
f
o
r
p
r
o
g
ram
esta
b
lish
e
d
to
m
o
tiv
ate ch
ang
e
i
n
el
ect
ri
c co
nsum
pt
i
on
by
cust
om
ers i
n
r
e
sp
onse
t
o
cha
nge
i
n
t
h
e
pri
ce o
f
el
ect
ri
ci
t
y
ove
r t
i
m
e. Furt
her
o
n
,
DS
R
pr
o
g
ram
s
pr
ovi
d
e
mean
s fo
r
u
tilities to
redu
ce t
h
e
p
o
wer
con
s
u
m
p
tio
n
and
sav
e
en
erg
y
, m
a
x
i
mize u
tilizin
g
th
e curren
t
cap
acity
of t
h
e
di
st
ri
b
u
t
i
o
n
sy
st
em
i
n
fra
st
ruct
ure
,
re
duci
n
g
o
r
el
im
i
n
at
i
ng t
h
e nee
d
fo
r
bu
i
l
d
i
ng
ne
w l
i
n
es an
d
expa
n
d
i
n
g t
h
e
sy
st
em
as desc
ri
be
d
by
[
3
]
.
The
bene
fi
t
s
o
f
DSR
p
r
o
g
ra
m
s
appl
y
t
o
cons
um
er
s and
to
electricity p
r
ov
id
ers co
llectiv
ely. So
m
e
ad
v
a
n
t
ag
es are: in
creased
econ
o
m
ic efficien
cy o
f
electricit
y
in
frastru
cture, en
h
a
n
c
ed
rel
i
ab
ility
o
f
th
e syste
m
,
rel
i
e
f of
p
o
we
r co
nge
st
i
ons
and t
r
a
n
sm
i
ssion c
o
nst
r
ai
nt
s,
red
u
ced e
n
e
r
gy
pri
ce, a
n
d
m
i
ti
gat
e
d p
o
t
e
nt
i
a
l
market powe
r [4]. DSR, as a
n
integral part
of the sm
ar
t
gr
i
d
, i
s
a cost
-ef
f
ect
i
v
e, rapi
dl
y
depl
oy
abl
e
res
o
u
r
ce
th
at prov
id
es
b
e
n
e
fits to u
t
i
lity co
m
p
an
ies and
cu
sto
m
ers
[5
]. DSR
can
h
e
lp
red
u
c
e
p
e
ak
d
e
m
a
n
d
and
th
erefore redu
ce spo
t
p
r
ice
volatili
ty [6
]. DSR p
a
rticip
ation wo
u
l
d
h
e
lp
electricity p
o
w
er m
a
rk
ets o
p
erate in
a
m
o
re efficient
way [7]. T
h
e s
e
ven over
all categ
ories of th
e
b
e
n
e
fits of a
DSR program
are: eco
no
m
i
c, p
r
icin
g,
ri
sk m
a
nagem
e
nt
an
d rel
i
a
bi
l
i
t
y
,
m
a
rket
effi
ciency im
pacts, lowe
r c
o
st el
ectric syste
m
a
nd
service, c
u
s
t
om
er
servi
ce,
an
d e
n
vi
r
onm
ent
a
l
be
nefi
t
s
[8]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
7,
No
. 3,
J
u
ne 2
0
1
7
:
11
2
5
– 11
32
1
126
Fro
m
th
e consu
m
er p
e
rsp
e
ctiv
e, app
l
yin
g
DSR
pro
g
ram will assist
co
nsu
m
er to
ob
tain
b
e
n
e
fit
t
h
r
o
u
g
h
m
i
nim
i
sed e
n
er
gy
c
o
st
wi
t
h
out
re
d
u
ci
n
g
t
h
ei
r t
o
t
a
l
usa
g
e
of
po
wer
.
C
u
rt
ai
l
i
ng
or
s
h
i
f
t
i
n
g e
n
er
gy
co
nsu
m
p
tio
n
is also
an
effectiv
e way for consu
m
ers to
av
o
i
d
exp
e
n
s
iv
e costs an
d
redu
ce
th
eir electricity
b
ill.
Th
is ad
v
a
n
t
age is no
t
j
u
st t
o
t
h
e co
nsu
m
er bu
t also to
t
h
e
utili
ty co
m
p
an
y, as im
p
l
e
m
en
ti
n
g
a
DSR
p
r
ogr
a
m
can abate the
wholesale electricity
market price
because
of the re
duction of the
dem
a
nd. As a
res
u
lt, t
h
e
expe
nsi
v
e ge
n
e
rat
i
on
u
n
i
t
wi
l
l
be re
duce
d
[
9
]
,
[
10]
.
I
n
ad
di
t
i
on,
o
n
e
of
t
h
e ot
her a
d
va
nt
ages
o
f
D
S
R
i
n
t
h
e
p
r
icing
area is
th
at it mitig
ate
s
price vo
latilit
y an
d h
e
dg
es co
st redu
ctio
ns.
To i
m
pl
em
ent DSR
m
odel
,
cons
um
er i
s
req
u
i
r
e
d
t
o
en
rol
as a
m
e
m
b
er of a gr
o
up c
ont
r
o
l
l
e
d by
an
aggre
g
ator. To be expose
d to electri
city
m
a
rket price, sm
a
ll-cons
um
ers
need an a
g
gregat
or t
o
com
m
uni
cat
e
and ne
gotiate the electricity market pr
i
ce a
n
d
net
w
o
r
k
o
v
e
rl
oa
d. T
h
e sm
al
l
cons
um
er i
s
o
n
l
y
abl
e
t
o
regi
st
er
in
th
e electricity
m
a
rk
et th
rou
g
h
th
e a
g
gre
g
ator [11].
Any change in
the electricity
usa
g
e for the
sm
a
ll-
con
s
um
er i
s
based o
n
t
h
e i
n
f
o
rm
at
i
on fr
o
m
t
h
e aggre
g
a
t
or.
As a res
u
l
t
,
aggre
g
at
o
r
s
keep a
nd m
a
i
n
t
a
i
n
com
m
uni
cat
i
on
bet
w
ee
n m
a
rket
o
p
e
r
at
or
a
n
d c
o
n
s
um
ers.
The m
e
m
b
ershi
p
com
posi
t
i
on
of a
g
g
r
eg
at
or can
be a l
oosel
y
def
i
ned g
r
ou
p b
a
sed o
n
t
h
e
g
e
ograph
i
cal
area, i
n
stitu
tio
n
a
l con
s
u
m
e
r
e.g
.
sch
o
o
l
or
u
n
i
v
e
rsit
y, sm
al
l-in
du
strial co
nsu
m
er,
far
m
con
s
um
er, et
c.
Each
gr
o
up
h
a
s u
n
i
q
ue ad
v
a
nt
ages
or
di
s
a
dva
nt
age
s
.
H
o
we
ve
r, t
h
e
be
nefi
t
f
o
r a
g
gre
g
at
i
o
n
m
o
d
e
l is
th
e o
p
portun
ity fo
r
sm
a
ll co
n
s
u
m
e
r
(called
re
si
de
nt
s) an
d sm
al
l
busi
n
esses t
o
s
a
ve m
oney
on
t
h
ei
r
electric bills by exposure to the el
ectricity
m
a
rket. If the e
l
ectrical powe
r
is supplied
from
a renewable
energy
so
urce, th
ere
are also opp
ortun
ities for
help
in
g th
e env
i
ro
n
m
en
t as
th
e gro
u
p
could
purch
ased
1
0
0
%
rene
wa
bl
e ener
gy
fo
r i
t
s
el
ectri
c agg
r
egat
i
o
n
pro
g
r
am
. Ano
t
her be
nefi
t
i
s
t
h
at
by
neg
o
t
i
a
t
i
ng o
n
be
hal
f
of al
l
resi
de
nt
s a
n
d
s
m
al
l
busi
n
esse
s, t
h
e
ag
gre
g
at
or
can ob
tain
fav
ourab
le con
t
ract prov
ision
s
.
In t
h
is re
searc
h
, t
o
participat
e in
DSR
program
ever
y consum
er can
be a
t
least partly expose
d to the
electricity
mar
k
et through an
aggre
g
ator. The cons
um
er
can minim
i
se the
energy
cost for the air condit
i
oning
by
co
nt
r
o
l
l
i
ng
t
e
m
p
erat
ure
.
I
n
t
h
i
s
case, a
g
gre
g
at
o
r
s
need
t
o
w
o
r
k
very
cl
osel
y
wi
t
h
c
ons
um
ers t
o
l
o
ok at
t
h
ei
r o
v
eral
l
ener
gy
co
nsum
pt
i
on a
nd l
o
ad
shape
,
hel
p
t
h
em
unde
rst
a
n
d
ho
w m
u
ch l
o
ad can b
e
dr
o
p
p
e
d a
n
d
at wh
at tim
es.
Cu
rtailm
en
t p
l
an
s are t
h
u
s
tailo
red
t
o
ag
greg
ator who
is
fin
a
n
c
ially reward
ed
fo
r
both
th
e
com
m
i
tm
ent
to d
r
op
pi
n
g
l
o
a
d
, a
nd a
c
t
u
al load c
u
rtailm
ent as well as wh
en c
o
ns
um
er appl
y
i
n
g
p
r
e
-
c
ool
i
n
g
m
e
t
hod.
T
h
e l
e
vel
o
f
pay
m
ent m
a
y
al
so de
pe
nd
o
n
t
h
e
fre
qu
ency
an
d l
e
ngt
h
of
t
h
e
DSR
p
e
ri
o
d
.
2.
DEEM
AN
D S
I
DE RESPO
N
SE
M
O
DEL
M
a
ny
di
f
f
ere
n
t
eco
nom
i
c
m
odel
s
are
u
s
ed t
o
re
p
r
ese
n
t
D
S
R
.
D
S
R
pr
og
ram
s
are di
vi
d
e
d i
n
t
o
t
w
o
basic categories, nam
e
ly:
time-base
d
progra
m
s,
and incent
i
ve-based
pr
ogram
s [12]. The specific types of
tim
e
-based
program
s
are: time of
us
e (T
OU
), real-tim
e
pricing (RTP
)
a
n
d
critical p
eak pricin
g (CPP) [1
3
]
;
whi
l
e
t
h
e s
p
eci
fi
c t
y
pes
of i
n
ce
nt
i
v
e-base
d p
r
og
r
a
m
s
consi
s
t
of di
rect
l
o
ad c
ont
r
o
l
(DLC
)
,
i
n
t
e
rr
upt
i
b
l
e
/
c
urt
a
i
l
a
bl
e (I/
C
)
, dem
a
nd bi
d
d
i
ng
(DB
)
, em
er
gency
dem
a
nd
resp
o
n
se p
r
o
g
r
am
(EDR
P), ca
paci
t
y
mark
et (CAP) an
d
an
cillary
serv
ice m
a
rk
ets (A/S) pr
og
ram
s
[1
4
]
. A b
r
ief d
e
scrip
t
io
n
of fo
ur po
pu
lar
p
r
og
ram
s
–
th
e TOU, R
T
P, I/
C and
EDRP
m
o
d
e
l –
is
p
r
ov
id
ed
in th
e fo
llo
wing
sectio
ns.
2.
1.
Time o
f
U
s
e (TOU
)
TOU
i
s
o
n
e
of t
h
e i
m
port
a
nt
dem
a
nd-
si
de re
sp
o
n
se
p
r
o
g
ram
s
whi
c
h res
p
o
nds t
o
pri
ce a
n
d i
s
expect
e
d
t
o
c
h
ange t
h
e s
h
ape
of t
h
e dem
a
nd
cur
v
e [
1
5]
. Th
e TOU
rat
e
i
s
t
h
e m
o
st
ob
vi
o
u
s st
rat
e
gy
de
v
e
l
ope
d
fo
r t
h
e
m
a
nage
m
e
nt
of peak
d
e
m
a
nd, an
d i
s
desi
g
n
e
d
t
o
en
cou
r
a
g
e t
h
e co
nsum
er t
o
m
o
d
i
fy
t
h
ei
r pat
t
e
rns o
f
electricity
u
s
ag
e [16
]
. To
ap
p
l
y th
is typ
e
o
f
p
r
og
ram
,
t
h
e u
tility co
mp
an
y do
es no
t
p
r
ov
id
e reward
s
o
r
p
e
n
a
lties to
con
s
u
m
ers. To
particip
ate, all c
o
n
s
u
m
ers are req
u
i
red
to
rem
o
v
e
th
ei
r en
ergy co
n
s
u
m
p
tio
n d
u
r
i
n
g
peak sessions to
off-pea
k
sessions
a
s
soon
as they receive inform
ati
on from
the utilit
y com
p
any [17]. The
t
y
pe of
co
nt
rac
t
and t
h
e rat
e
i
s
fi
xe
d
fo
r t
h
e
du
rat
i
o
n o
f
t
h
e
co
nt
ract
b
u
t
d
e
pen
d
s
o
n
t
h
e t
i
m
e
of t
h
e
day
[1
8
]
.
Com
p
ared to t
h
e flat rate c
o
ntract, s
o
m
e
of the ris
k
is sh
i
f
ted
fro
m
th
e retailer to
th
e co
n
s
u
m
er b
ecause th
e
consum
er has
an ince
ntive
to
consum
e duri
ng
p
e
ri
o
d
s
wh
en th
e
rates are lower.
2.
2.
Real
-T
i
me Pri
c
i
n
g
The R
T
P
program
gives c
onsum
ers the a
b
i
lity to acce
ss hourly
electricity
prices
t
h
at are base
d on
wholesale m
a
rket prices.
T
h
e
s
e prices
va
ry from
hour to
hour a
nd
day to
day accordi
ng to the actual
market
price
of power
. Higher prices
are m
o
st
l
i
k
el
y t
o
occu
r i
n
pe
ak sessi
on
t
i
m
e
s (e.
g
.
,
1
1
.0
0
-
17.
00
).
The
co
n
s
um
er
can m
a
nage
t
h
e c
o
st
s
wi
t
h
real
-
t
im
e pri
c
i
n
g
by
t
a
ki
ng
adva
nt
age
of
l
o
we
r
p
r
i
ced
h
o
u
r
s
an
d
co
ns
ervi
ng
el
ect
ri
ci
t
y
duri
n
g
h
o
u
rs
w
h
e
n
pri
ces a
r
e
hi
ghe
r
[1
4]
.
Ad
di
t
i
onal
l
y
, t
h
e
R
T
P
p
r
og
ram
al
l
o
ws c
o
n
s
um
ers t
o
achi
e
ve
ene
r
gy
savi
ngs
by
cu
rt
ai
l
i
ng t
h
ei
r
m
a
r
g
i
n
al
use a
t
t
i
m
e
s whe
n
p
r
i
ces are
hi
g
h
e
r
a
n
d
by
usi
n
g
m
o
re
during t
h
e
of
f-peak tarif
f
times.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
timise En
erg
y
C
o
st fo
r Air Con
d
ition
i
ng
b
a
s
ed on
t
h
e Ma
rket Price
und
er
Demand
…
.
(Ma
r
w
a
n Marwa
n
)
1
127
2.
3.
Emergenc
y
Demand-Side
Response Pr
ogr
a
m
The EDR
P
is an ene
r
gy-e
ffi
cient program
that
pr
ovi
des i
n
cent
i
v
e
s
t
o
cons
um
ers wh
o
can red
u
ce
electricity u
s
ag
e for a certain
ti
m
e
; th
is is u
s
u
a
lly co
nd
u
c
ted
at th
e ti
m
e
o
f
li
m
ited
av
ail
a
b
ility o
f
electricity.
Th
e
EDRP pro
v
i
d
e
s p
a
rticip
an
ts with
sign
ifican
t
i
n
cen
t
i
v
e
s to
red
u
c
e lo
ad [1
9
]
. To
p
a
rticip
ate i
n
th
is
program
,
all
consum
ers are
expecte
d
to
reduce en
er
gy
cons
um
pt
i
o
n
du
ri
n
g
t
h
e e
v
ent
s
. The
pr
og
ram
det
e
rm
i
n
es wh
i
c
h ho
uses m
u
st
be i
n
cl
ude
d i
n
t
h
e event
t
o
m
i
nim
i
se cost
and
di
sr
upt
i
o
n,
whi
l
e
al
l
e
vi
at
ing t
h
e
ove
rl
oa
d c
o
ndi
t
i
ons
[2
0]
.
Wh
en as
ke
d t
o
cu
r
t
ai
l
,
and
w
h
e
n
t
h
ei
r
part
i
c
i
p
at
i
on
has
bee
n
v
e
ri
fi
ed,
t
h
e
co
n
s
um
er
is p
a
id
as h
i
gh
as $
500
/MW
h
[
2
1
]
. I
n
New
Yo
rk
, an
emer
g
e
n
c
y d
e
m
a
n
d
-
s
id
e
r
e
spon
se pr
og
ram
a
llo
w
e
d
part
i
c
i
p
a
n
t
s
t
o
be
pai
d
f
o
r
re
d
u
ci
n
g
e
n
er
gy
c
ons
um
pt
i
on
u
p
o
n
n
o
t
i
ce f
r
om
t
h
e
New
Y
o
rk
I
nde
pe
nde
nt
S
y
st
e
m
Ope
r
ato
r
(N
YI
SO [2
2]
).
2.
4.
Interruptible/
C
urtailable P
r
ogr
am
The
I/
C
p
r
o
g
r
a
m
has t
r
a
d
i
t
i
onal
l
y
bee
n
o
n
e
of t
h
e m
o
st
com
m
on DS
R
m
odel
s
use
d
by
el
ect
ri
c
p
o
wer u
tility co
m
p
an
ies. In th
is typ
e
of
p
r
og
ram
,
c
o
n
s
u
m
ers sig
n
an in
terrup
tib
le-l
o
a
d con
t
ract
with
th
e
u
tility co
m
p
an
y to
redu
ce th
eir d
e
m
a
n
d
at a fix
e
d
tim
e d
u
r
in
g
th
e system’s p
e
ak
lo
ad
period
or at an
y ti
m
e
requ
ested
b
y
the u
tility co
m
p
a
n
y [23
]
. Th
is serv
ice
p
r
o
v
i
d
e
s in
cen
tiv
es/reward
s
t
o
con
s
u
m
ers to
p
a
rticip
ate to
curtail electricity de
m
a
nd. T
h
e elect
ricity p
r
ov
id
er send
s d
i
rectiv
es to
th
e con
s
u
m
ers for
fo
llowing th
is
program
at certain times. The cons
um
er
s
must com
p
ly with those
directives
to curtail their electricity whe
n
notifie
d from
t
h
e utility co
mpany or f
ace penalties. For e
x
am
ple, the consum
ers m
u
st curtail
their
electricity
consum
ption starting from
18:00-19:00; those consum
er
s who
follow their directi
on
will receive a fi
nancial
b
onu
s/reward
in
th
eir electricity b
ill fro
m
th
e u
tility
co
m
p
any. In
Californ
i
a, th
e in
cen
tiv
e o
f
th
e I/C prog
ram
was $7
0
0
/
M
Wh/
m
ont
h
i
n
2
0
0
1
[2
4]
.
In
th
is research
, th
e real ti
me p
r
icin
g
is app
lied
to
m
i
n
i
mised
th
e en
ergy co
st fo
r air co
nd
itio
n
i
ng
whe
n
a
peak
s
e
son. Ac
cordi
n
g to the
State Electricity
Co
m
p
any (called: PLN) the
pea
k
seas
on
was
occur at
1
8
.00
-21
.
00
.
Th
e case
study repo
rted
in
t
h
is p
a
p
e
r illu
strates th
e
o
p
t
i
m
isatio
n
o
f
t
h
e air cond
itio
nin
g
if a
sp
ik
e m
a
y o
n
l
y o
ccur
at
18
.00
d
u
r
i
ng
on
e
ho
ur
as
w
e
ll as
b
e
n
e
f
it fo
r th
e
co
nsu
m
er
. To
ap
p
lied th
is syste
m
, a
sin
g
l
e
roo
m
in
resid
e
n
tial hou
se is cho
s
en
fo
r th
e case
stud
ies co
n
s
i
d
eri
n
g
to th
e ch
aracteristic o
f
t
h
e
ro
o
m
an
d
t
h
e air con
d
ition
i
ng
.
In
ad
d
ition
,
th
e t
e
m
p
eratu
r
e
d
a
t
a
o
n
12
March
201
7
was selected
for th
e
o
u
t
si
d
e
t
e
m
p
erat
ure
(T
o) a
n
d t
h
e
no
r
m
al
pri
ce spi
k
e du
ri
n
g
t
h
i
s
p
e
ri
o
d
was
4
1
.
2
2 $
pe
r M
W
h
and el
ect
ri
ci
t
y
pri
ce
whe
n
s
p
i
k
e
oc
cur
was
9
0
$
p
e
r M
W
h.
3.
RESEARCH METHO
D
OL
OGY
C
ons
um
ers sh
oul
d st
art
t
o
a
ppl
y
t
h
e
D
S
R
pr
o
g
ram
t
o
o
p
t
i
m
i
se t
h
e ai
r con
d
i
t
i
oni
ng
as
soo
n
a
s
t
h
ey
receive information from
the aggregat
or. Due to the
pattern
of
dem
a
nd in
the
peak sea
s
on, the c
o
nsumer is
req
u
i
r
e
d
t
o
pa
r
t
i
c
i
p
at
e i
n
t
h
e
DSR
pr
og
ram
st
art
i
ng
fr
om
16:
00 t
o
23:
00
, t
w
o
h
o
u
rs
be
fo
re a
nd a
f
t
e
r
pea
k
season
.
Th
ese ti
m
e
were cho
s
en
to g
i
v
e
m
o
re flex
ib
ility
ti
m
e
to
do
o
p
tim
isat
io
n
.
In
t
h
is research, sp
ik
e
o
ccur
e
d
at 18
.0
0 du
r
i
n
g
on
e
h
our
sp
ik
e. Th
i
s
ti
m
e
w
a
s
ch
o
s
en base
d on
t
h
e hi
st
ori
cal
da
ta from
the electricity
state ca
m
p
any
that a aprice spike was
occu
r
e
d at
18.
00
. T
o
ap
pl
i
e
d t
h
i
s
m
odel
,
m
a
t
h
em
at
i
cal
m
odel
s
for t
h
e
con
s
um
er part
i
c
i
p
ant
were
d
e
vel
o
ped
t
o
q
u
ant
i
f
y
t
h
e
ec
on
om
i
c
effect
of
dem
a
nd si
d
e
resp
o
n
se.
A
l
i
n
ear
pr
o
g
ram
m
i
ng
base
d al
g
o
ri
t
h
m
was devel
o
p
e
d t
o
det
e
rm
i
n
e t
h
e o
p
t
i
m
a
l
sol
u
t
i
o
n t
o
ac
hi
eve ene
r
gy
sav
i
ng a
n
d
red
u
ce i
m
pact
of
pea
k
dem
a
nd.
Th
is
m
o
d
e
l d
o
es
no
t p
r
ov
id
e in
cen
tiv
e
or p
e
n
a
lty
to consumers since there
is no agreement betwee
n
b
o
t
h
electricity sup
p
lier and
ag
greg
ato
r
or co
n
s
u
m
er to
app
l
y th
is m
o
d
e
l. Ho
wev
e
r, consu
m
ers will ach
iev
e
savi
n
g
s
by
dec
r
easi
n
g l
o
a
d
s
a
t
hi
g
h
pri
c
e
d
s
e
ssi
ons
e.
g. a
p
pl
y
i
ng
p
r
e-c
o
o
l
i
ng sy
st
em
t
o
avoi
d s
p
i
k
e
p
r
i
ce i
n
th
e critical p
eak
session
. Therefo
r
e, con
s
umers are
ab
le to
o
p
tim
ize a
i
r co
nd
ition
i
ng b
y
co
n
t
ro
lling
th
e
te
m
p
erature
room
, turn-on the air
co
ndi
t
i
o
n
i
ng
whe
n
t
h
e t
e
m
p
erat
ur
e ri
s
e
s a
m
a
xim
u
m
t
h
res
hol
d e.
g.
24
o
C
t
h
en t
u
rn
of
f f
o
r t
h
e
next
sw
i
t
c
hi
ng o
n
ce t
h
e t
e
m
p
erat
u
r
e
dr
ops t
o
be m
i
nim
u
m
t
h
reshol
d e.
g. 2
0
o
C. Th
e
cyclin
g
tim
e o
f
air co
nd
itio
n
i
ng
is
b
a
sed
o
n
th
e
resu
lt
o
f
tem
p
eratu
r
e op
ti
mizatio
n
.
To ac
hieve
thi
s
goal, a
n
opti
m
ization pac
k
age s
u
ch as M
A
TL
AB allows the
user to
optim
i
ze this
ob
ject
i
v
e
f
unc
t
i
on
wi
t
h
i
n
o
p
e
rat
i
onal
c
o
nst
r
ai
nt
s s
u
c
h
as
a pe
rm
i
t
t
e
d t
e
m
p
erat
ur
e ra
nge
. T
h
ere
f
ore
,
t
h
e
opt
i
m
i
zati
on
pr
obl
em
can t
h
e
n
be
re
prese
n
t
e
d
as m
i
nim
i
zi
ng ene
r
gy
c
o
st
(Z
),
or
m
a
t
h
em
atical
l
y
[25]
:
Zt
C
t
dt
(
1
)
Zt
St
.
P
t.
Dt.
U
tdt
(
2
)
Su
bject
t
o
c
o
ns
t
r
ai
nt
s [
2
6,
2
7
]
:
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
7,
No
. 3,
J
u
ne 2
0
1
7
:
11
2
5
– 11
32
1
128
.
.
.
(
3
)
whe
r
e:
Z
= M
i
ni
m
i
sed ener
gy
c
o
st
(
A
$
)
S
= Electricity price (A$/kWh)
P
=
Rating p
o
we
r of AC (k
W)
D
= Du
ration
time fo
r
op
erating
AC during
a
d
a
y (hou
rs)
U
= C
o
nt
i
n
u
o
u
s t
i
m
e
bi
nary
vari
abl
e
(
1
or
0
)
Q
= Heat tra
n
s
f
er coe
fficient
from
floor
walls a
n
d ceiling
(W
/
m
2
o
C)
B
= Heat tra
n
sm
ission from
the
AC (W)
A
= Total area (m
2
)
H
= Heat ca
pacity of the
room
(J/
o
C)
To
= Tem
p
erature
outside
(
o
C)
Tt
= Tem
p
eratu
r
e in
sid
e
th
e
room
a
t
ti
m
e
t (
o
C)
n
= in
terv
al time t (h
ou
r)
4.
N
U
M
E
RICAL R
E
SU
LTS
In
th
is sim
u
lat
i
o
n
,
t
h
e m
a
x
i
m
u
m an
d
m
i
n
i
m
u
m
p
e
rmitte
d
tem
p
eratu
r
es o
f
2
4
o
C
a
nd
20
o
C were
chosen. The
r
e
are 18 s
w
itch edge
s cha
r
acterizing t
h
e
switch
i
n
g
d
ecision
s,
fro
m
th
is
we can
co
m
p
ute th
e
energy cost for the air conditioning.
Th
e numerical
min
i
mizatio
n
was app
lied
to
find
to
set o
f
edg
e
s
wh
ich
satisfy th
e co
nstrain
t
s and
p
r
o
v
i
d
e
min
i
m
u
m co
st. Th
e p
r
o
cess is requ
ired
to
do
op
timisatio
n
o
f
the co
st. The
energy cost
wa
s calculated when t
h
e air c
o
nditioning
was
on, and the c
o
s
t
was zer
o w
h
e
n
t
h
e ai
r c
o
ndi
t
i
oni
n
g
was
off. This
m
e
thod
continued until the t
i
m
e
of
ope
rating the
air c
onditioning ha
d
expi
red. T
o
m
a
ke the
te
m
p
erature
com
f
ortable for t
h
e c
ons
um
er, the room
te
m
p
erat
ure
was
o
n
l
y
al
l
o
wed
t
o
b
e
bet
w
ee
n m
a
xim
u
m
and m
i
nim
u
m te
m
p
erature.
This m
eans the te
m
p
er
at
u
r
e was not
al
l
o
we
d t
o
reac
h t
h
e m
a
xim
u
m
and
m
i
nim
u
m
perm
i
t
t
e
d t
e
m
p
erat
ures.
Fo
r t
h
e
pu
r
pose
of t
h
e
sim
u
l
a
t
i
on, t
h
e st
art
i
ng
poi
n
t
t
e
m
p
erat
ure
of
23
o
C
was c
h
ose
n
w
i
t
h
t
h
e ai
r c
o
n
d
i
t
i
oni
n
g
st
at
u
s
o
f
f
.
Fi
gu
re
1 a
n
d Ta
bl
e
1
sum
m
ari
s
es t
h
e
param
e
t
e
rs o
f
t
h
e
typ
i
cal roo
m
a
n
d th
e ai
r co
nditio
n
i
n
g
used in
th
is op
timisatio
n
.
Tab
l
e
1
.
Param
e
ter of th
e Room
A u
s
ed in
t
h
is Analysis
Fi
gu
re
1.
C
o
m
put
e
r
Gra
phi
cs
Vi
ew
o
f
t
h
e
H
ous
e (
U
p-
Vi
ew
)
No Para
m
e
ters
Unit
Value
1
Heat tr
ansf
er coef
ficient f
r
o
m
f
l
oor w
a
ll and ceiling (Q
)
0.8
W/
m
2 o
C
2
T
o
tal ar
ea (A)
(
4
.
8
m
x 3
m
)
14.
4
m
2
3
Heat capacit
y
of
th
e roo
m
(H)
20
J/
o
C
4
Heat transfer
fr
o
m
the air
conditioning (
B
)
900
W
5
Ref
e
rence of
te
m
p
erature
23
o
C
6 Hyster
esis
2
o
C
7 M
a
xim
u
m
te
m
p
er
atur
e
25
o
C
8 M
i
nim
u
m
te
m
p
er
atur
e
20
o
C
9
Rating power
of air
conditioning (
P
)
0.
5
kW
10
Nu
m
b
er
of switch
change events
18
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
timise En
erg
y
C
o
st fo
r Air Con
d
ition
i
ng
b
a
s
ed on
t
h
e Ma
rket Price
und
er
Demand
…
.
(Ma
r
w
a
n Marwa
n
)
1
129
Fi
gu
re 1 i
n
di
c
a
t
e
d t
h
e bui
l
d
i
ng
of exam
pl
e room
used i
n
t
h
i
s
researc
h
.
The b
u
i
l
d
i
n
g u
nde
r st
u
d
y
i
n
t
h
i
s
researc
h
are l
o
w co
ns
u
m
pti
on si
n
g
l
e
fam
i
l
y
house.
In t
h
i
s
case a si
ngl
e r
oom
(cal
l
e
d R
oom
A
)
was
ch
osen with built u
s
in
g m
a
teri
al stan
d
a
rd fo
r
resid
e
n
tial ho
use in
Mak
a
ssar city-Ind
o
n
e
sia.
4.
1.
Mar
k
et
C
o
s
t
as
a F
unc
ti
on
of
a
Pri
ce Spi
ke Wi
t
h
o
u
t
D
S
R P
r
o
g
r
a
m
Th
e typ
i
cal op
eration
o
f
ai
r con
d
ition
i
ng is co
n
tinu
o
u
s
with
ou
t DSR
m
o
d
e
l. In
this case th
e
con
s
um
er di
d
not
c
o
n
s
i
d
er a
pri
ce s
p
ike.
T
h
e starting poi
n
t of 22
o
C wa
s chosen
with
the air conditioni
ng
s
t
a
t
u
s
O
F
F
.
T
h
e
mi
n
i
mu
m a
n
d
ma
x
i
mu
m t
e
mp
e
r
a
t
u
r
e
w
e
r
e
2
0
o
C to 24
o
C
.
As
di
sc
usse
d
pre
v
i
o
usl
y
t
h
at
t
h
e
air conditioni
ng
was t
u
rne
d
off
once the
t
e
m
p
erature
dr
op
pe
d t
o
t
h
e sel
ect
ed
m
i
nim
u
m
t
e
m
p
erature
.
In
co
n
t
rast, th
e air co
nd
ition
i
ng
was tu
rn
ed
on o
n
ce th
e temp
erat
u
r
e ro
se to
th
e selected
max
i
m
u
m
.
Fig
u
r
e 2
b
e
low illu
strat
e
s th
e cycling
t
e
m
p
eratu
r
e and
m
a
rk
et co
st
if a sp
ik
e m
y
a o
ccu
r at 18
.00
.
In th
is
op
timis
atio
n
,
th
ere are
18
switch edges to com
pute
the e
n
er
gy
c
o
st
f
o
r
ai
r c
o
n
d
i
t
i
oni
ng
.
If
S
is the electricit
y
price
whe
n
a
spi
k
e
occ
u
rs
,
C
is
the
m
a
rket cost for spi
k
e cas
es, t
h
en th
e to
tal m
a
rk
et co
st
fo
r the
s
p
ike ca
se (
MC
is d
e
term
in
ed
b
y
th
e
fo
llowing
Equ
a
tio
n
:
MC
t
C
t
dt
(
4
)
MC
t
S
t
.
P
t.
Dt.
U
tdt
(
5
)
Equ
a
tio
n
s
(1) to
(5
) were used
to
co
m
p
u
t
e th
e resu
lts o
f
si
m
u
la
tio
n
withou
t DSR program wh
en
on
e
ho
u
r
s
p
i
k
e m
a
y
occu
r at
1
8
.
0
0, a
s
s
h
o
w
n i
n
Fi
gu
re
2 a
n
d T
a
bl
e 2
.
Tab
l
e 2
.
To
tal Mark
et
C
o
st W
i
t
h
ou
t DSR Program
One Hour Spike (
M
C
1
)
Total Ma
rket Cost
($)
7.54
Fi
gu
re
2.
C
y
cl
ing
t
e
m
p
erat
ure
an
d m
a
rket
co
st
wi
t
h
out
DS
R
Pr
og
ram
As sh
own
in
Fig
u
re 2, th
e calcu
latio
n
of th
e electricity co
st d
u
ring
th
is
period
was b
a
sed
o
n
t
h
e air
conditioni
ng status. T
h
e electricity co
st increased
whe
n
the te
m
p
erature
wa
s bei
n
g
re
du
ced
by
ha
vi
n
g
t
h
e
ai
r
co
nd
itio
n
i
ng
on
.
Howev
e
r, there was
no
electricity co
st
when t
h
e air c
o
nditioning
wa
s
off or electricity costs
were
not
cal
cu
l
a
t
e
d whe
n
t
h
e
ai
r con
d
i
t
i
oni
ng
was o
f
f
.
The electricity c
o
st calculation started from
s
w
itch
num
ber
1 t
o
n
u
m
ber 2.
The
n
,
t
h
e ai
r
-
co
n
d
i
t
i
oni
ng
wa
s t
u
r
n
ed
of
f a
g
ai
n
be
t
w
een
swi
t
c
h
n
u
m
b
ers 2
t
o
3
,
whe
n
the electricity cost is zero. The type of
ope
ration
was co
n
tinuo
u
s
fo
r all switch
i
n
g
and
all ti
mes. Th
e
16
17
18
19
20
21
22
23
19
20
21
22
23
24
25
26
O
ne hour
S
p
i
k
e C
a
s
e
W
i
t
hout
D
S
R
P
r
og
r
a
m
T
i
m
e
(
hour
)
Tem
p
er
at
ur
e
(
o
C)
16
17
18
19
20
21
22
23
0
2
4
6
8
T
i
m
e
(
hour
)
Ma
r
k
e
t
Co
s
t
(
$
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
7,
No
. 3,
J
u
ne 2
0
1
7
:
11
2
5
– 11
32
1
130
con
s
um
er/
a
gg
r
e
gat
o
r pay
s
t
h
e
cost
acc
or
di
n
g
t
o
t
h
e
no
rm
al
price
before
and afte
r a s
p
ike
happe
n
s.
The
price
spi
k
e
was
o
n
l
y
cal
cul
a
t
e
d w
h
en
t
h
e
s
p
i
k
e ha
ppe
ne
d
at
18
.0
0 du
ri
n
g
o
n
e h
o
u
r
.
4.
2.
Mar
k
et
C
o
s
t
as a
F
unc
ti
on
of
a Price Spi
ke Under
DSR Pr
ogram
I
n
th
i
s
o
p
t
i
m
i
s
a
t
i
o
n
,
th
e
ma
x
i
mu
m a
n
d
mi
n
i
mu
m t
e
mp
e
r
a
t
u
r
e
s
w
e
r
e
2
5
o
C an
d 19
o
C. T
e
m
p
erature
st
art
i
ng of 2
2
o
C was chose
n
. Under
DSR
program
the cycling
tem
p
erature
room
was longer t
h
an
wi
thout
DSR prog
ram
.
Th
is is to
g
i
v
e
m
o
re o
p
tio
n
and
m
o
re flex
ib
ility fo
r th
e op
timisatio
n
.
Und
e
r th
e DSR pro
g
ram
,
t
h
e co
nt
r
o
l
sy
s
t
em
appl
i
e
d t
h
e p
r
e-c
ool
i
n
g
m
e
t
hod
t
o
a
v
oi
d
hi
g
h
c
o
st
s
w
h
en
a s
p
i
k
e
h
a
ppe
ns
. Si
m
i
l
a
r
t
o
t
h
e
pre
v
iously des
c
ribe
d m
e
thod, the ai
r conditioni
ng
was t
u
rned on
once t
h
e
tem
p
erature
rose to t
h
e m
a
xim
u
m
p
e
rm
itted
te
mp
erat
u
r
e. Th
en, it was turn
ed
off wh
en
the te
m
p
eratu
r
e
d
r
op
p
e
d
to
t
h
e
m
i
n
i
m
u
m
p
e
rmit
ted
t
e
m
p
erat
ure
.
T
h
e co
nt
r
o
l
sy
st
em
kept
t
h
e r
o
om
t
e
m
p
erat
ure bet
w
ee
n t
h
e
m
a
xim
u
m
and m
i
nim
u
m
perm
i
t
t
e
d
te
m
p
eratures
.
If
S
is the electri
city p
r
ice wh
en
a sp
ik
e
o
c
cu
rs,
C
is th
e m
a
rk
et co
st
fo
r sp
ik
e cases, t
h
en th
e to
tal
market cost
for the s
p
ike
case
(
MC
is d
e
term
in
ed
b
y
th
e fo
llowin
g
Eq
u
a
tion
:
MC
t
C
t
dt
(
6
)
MC
t
S
t
.
P
t.
Dt.
U
t
dt
(
7
)
Eq
uat
i
ons
(
1
) t
o
(
3
) a
n
d (
6
) a
nd
(7
) w
e
re
us
ed t
o
c
o
m
put
e t
h
e n
u
m
e
ri
cal
resul
t
s
o
f
opt
i
m
i
s
at
i
on of
th
e air con
d
ition
i
ng
wh
en
on
e
h
our sp
ik
e m
a
y o
ccur at
18
.00
,
as sh
own
in
Fig
u
re
3
and
Tab
l
es
3
Tabl
e
3. T
o
t
a
l
M
a
rket
C
o
st
w
i
t
hout
DSR
Pr
og
ram
Half Hour Spike (MC
s
)
Total Ma
rket Cost
($)
4.96
Figure
3. Cycling tem
p
erature
an
d m
a
rket cost unde
r
DSR
Program
The re
sults re
ported i
n
Figure 3 i
ndicate t
h
at a
pr
ice sp
i
k
e of
o
n
e
ho
ur
m
a
y o
ccu
r
at 1
8
.
00
. Th
e
t
y
pi
cal
operat
i
on
of t
h
e ai
r
con
d
i
t
i
oni
n
g
was si
m
i
l
a
r t
o
t
h
e t
h
e opt
i
m
i
s
at
i
on pr
ocess
as di
scusse
d abo
v
e
.
Un
de
r DSR
p
r
og
ram
a pre-c
o
ol
i
ng m
e
t
hod
was ap
pl
i
e
d at
swi
t
c
h n
u
m
b
er 4. The t
e
m
p
erat
ure d
u
ri
ng t
h
e pre-
co
o
ling
dr
opped
to 19
o
C, c
o
oler t
h
an t
h
e t
e
m
p
erature during the
spi
k
e
peri
od
. T
h
e ai
r co
n
d
i
t
i
oni
ng
st
at
us
wh
en
t
h
e sp
ik
e started
was off.
Due to th
e
hig
h
co
st, th
e co
n
t
ro
l system
t
u
rn
ed
th
e air co
nd
itio
n
i
n
g
on on
ly
for a short ti
me wh
ile th
e sp
ik
e h
a
pp
en
ed
.
Th
e in
si
d
e
ro
om te
m
p
eratu
r
es were
un
d
e
r 25
o
C
an
d ab
o
v
e
19
o
C.
16
17
18
19
20
21
22
23
19
20
21
22
23
24
25
26
O
ne H
our
S
p
i
k
e U
n
der
D
S
R
P
r
ogram
T
i
m
e
(
h
our)
Te
m
per
at
ur
e (
o
C
)
16
17
18
19
20
21
22
23
0
2
4
6
T
i
m
e
(
h
our)
M
ar
k
e
t
C
os
t
(
$
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Op
timise En
erg
y
C
o
st fo
r Air Con
d
ition
i
ng
b
a
s
ed on
t
h
e Ma
rket Price
und
er
Demand
…
.
(Ma
r
w
a
n Marwa
n
)
1
131
Si
m
ilar to the process e
xplai
ned a
b
ove
, the
cost can
be c
a
lculated according to
the air conditioni
ng
status.
There
wa
s a c
o
st when the air
cond
itio
n
i
ng
is on
an
d no
co
st
wh
en th
e ai
r
co
nd
itio
n
i
n
g
w
a
s of
f
.
4.
3.
Benefit of
D
S
R Mo
del
Based
o
n
th
e
resu
lts of the op
ti
m
i
satio
n
rep
o
rted
above,
the cons
um
er and aggregat
or could
gai
n
co
llectiv
e b
e
n
e
fits wh
en
th
e co
n
s
u
m
er co
n
t
ro
ls th
e
ai
r c
o
n
d
i
t
i
oni
n
g
un
de
r t
h
e
DS
R program
.
The coll
ective
bene
fi
t
(C
B
)
i
s
ex
pres
sed
by
t
h
e
fol
l
o
wi
n
g
E
quat
i
o
n:
CB = MC
1
- M
C
s
(8
)
Th
e
p
e
rcen
tag
e
of co
llectiv
e ben
e
fit is illu
strated
b
y
t
h
e
fo
ll
o
w
i
n
g Eq
u
a
tion
s
:
%CB
$
$
(
9
)
Equ
a
tio
n
(8
) an
d (9
)
were used
to
co
m
p
u
t
e
th
e co
llectiv
e
b
e
n
e
fit. Tab
l
e
4
su
mmarises th
e co
llectiv
e
bene
fi
t
fo
r t
h
e
cons
um
er and
agg
r
eg
at
or
when t
h
e cons
umer applied th
e D
S
R pr
og
ram if
a sp
ik
e
may o
n
l
y
o
ccur
at 18
.0
0 d
u
r
i
ng
on
e h
our
.
Tab
l
e
4
.
C
o
llectiv
e Ben
e
fit if
Sp
ik
e May On
l
y
Occur at
18
.0
0
Spike Duration
W
ithout DSR
MC
1
($
)
Under DSR
TMC
s
($
)
Collective Benefit
($
)
(%)
Half
Ho
u
r
Sp
ik
e
7
.
5
4
4
.
9
6
2
.
5
8
3
4
.
2
2
%
It is clear
fro
m
th
e
resu
lts
p
r
esen
ted in
Tab
l
e 4
t
h
at the c
o
l
l
ective be
nefits
reac
hed by t
h
e cons
um
er
and a
g
gre
g
at
o
r
whe
n
t
h
e
DS
R
pr
og
ram
was appl
i
e
d was
2.
58
$ (
3
4.
22
%) f
o
r
o
n
e h
o
u
r s
p
i
k
e cas
e.
Thi
s
in
d
i
cates th
at
co
n
t
ro
lling
th
e air co
nd
itio
n
i
n
g
tem
p
eratu
r
e un
d
e
r t
h
e
DSR p
r
og
ram
can min
i
m
i
se th
e en
erg
y
cost
. T
h
e p
r
e-c
ool
i
n
g m
e
t
hod
was re
q
u
i
r
ed t
o
ant
i
c
i
p
at
e a
pri
ce s
p
i
k
e i
n
t
h
e el
ect
ri
ci
t
y
m
a
rket
i
f
a pri
ce spi
k
e
m
a
y
onl
y
occ
u
r i
n
t
h
e m
i
ddl
e
of
t
h
e
day
.
5.
CO
NCL
USI
O
N
Thi
s
pa
per
has
dem
onst
r
at
ed t
h
at
t
h
e pr
op
os
ed DS
R
m
odel
al
l
o
ws cons
u
m
ers t
o
m
a
nage and co
nt
r
o
l
air co
nd
itio
n
i
ng
if sp
ik
e price
m
a
y
o
ccur at 18.00 duirng
one hour in the
peak seas
on. T
h
e m
odel was applied
in
resd
ien
tial
h
o
u
s
e in
Makassar City in
In
don
esia con
s
id
ering
to
th
e ch
aracteristic o
f
roo
m
a
n
d
ai
r
co
nd
itio
n
i
ng
.
Th
is
resu
lt indicates th
at, th
e co
llectiv
e
ben
e
fi
t
b
o
t
h
a
g
gre
g
at
o
r
a
n
d
co
ns
um
er achi
e
ve
d
w
h
e
n
t
h
e con
s
um
er appl
i
e
d
DSR
m
odel
t
o
an
ticipate a price spike in the pea
k
s
eason. In addition, the pre-c
ooling
m
e
t
hod i
s
re
qu
i
r
ed t
o
a
ppl
i
e
d
i
n
D
S
R
m
odel
.
REFERE
NC
ES
[1]
Albadi M. H and El-Saadan
y
E. F, "De
m
and Re
sponse in Electricity
Markets: A
n
Overview,"
Power Engineerin
g
Society G
e
neral
Meeting IEEE
. 2
007.
[2]
P
a
rvania
, M
.
an
d M
.
F
o
tuhi-F
iruzabad
,
"
D
e
mand Response Sch
e
duling b
y
Sto
c
hastic SCUC
, "I
EEE T
r
ansactio
ns
on Smart Grid
.
1: pp. 89-98. Jun
e
2010
[3]
Dam, Q.B., S.
Moha
gheghi,
an
d J. Stoupis,
"I
ntelligent D
e
mand Response Sc
heme for Customer Side Load
Management,"
in Energ
y
2030 C
onference,
2008. ENERG
Y
2008
.
IEEE
. 2008
.
[4] Greening,
L.A.,
"Demand response resources
: Who is responsible fo
r implementation in
a der
e
g
u
lated market?
"
,
Energy
, 35: pp.
1518-1525. Janu
ar
y
2010
[5] Vos,
A,
"
E
ffective
Business Mo
dels for Deman
d
Re
sponse und
er the Smart Grid Paradigm,"
in Powe
r S
y
ste
m
s
Conference
and
Exposition
,
200
9. PSCE
'
09. IE
EE/PES. 2009.
[6] Ngu
y
en
,
D.T,
"Demand Response for Domestic and Small Bu
siness Consumers:
A New Challeng
e,"
Tra
n
smission
and Distribu
tion
Conference
and
Exposition
IEE
E
PES. 2010
.
[7]
H
y
ung Seon O
,
R.J.
Thomas,
"
D
emand-Side B
i
dding Agents:
Modeling and
Simulation
,
"
Powe
r Sy
ste
m
s IEEE
Transactions on
. 23: pp. 1050-1
056. August 200
8
[8]
Aghaei, J
.
and
M
.
-I. Aliz
adeh,
"Dem
and response in sm
art e
l
ec
tric
it
y
grids equipped with r
e
newable ener
g
y
sources: A r
e
view
,
"
Ren
e
wable a
nd Sustainable Energy Reviews
, 1
8
: pp. 64-72. 20
13
Evaluation Warning : The document was created with Spire.PDF for Python.
IJEC
E
1
132
[9]
A
S
[10]
A
I
[11]
M
P
[12]
I
D
[13]
A
i
[14]
F
o
[15]
N
2
[16]
W
P
[17]
M
A
[18]
K
p
[19]
C
2
[20]
T
D
[21]
R
S
[22]
L
M
[23]
Y
P
[24]
A
l
[25]
M
E
[26]
A
T
[27]
P
S
BIO
G
E
Vo
l.
7
,
N
o
.
A
lbadi M. H
a
S
ys
tems
Res
e
a
r
A
bdollahi, A.,
I
ncorporating
U
M
arwan,
G.
L
e
P
roc
e
ss Contr
o
I
nternational
E
D
em
an
d
-Side
M
A
alam
i H.A,
M
i
n Th
e
Transm
i
F
ederal En
erg
y
o
f Energ
y
,
Edi
t
N
a Y,
Y.
Ji-L
a
2
006 Power C
o
W
en-Chen, C
.
,
P
eriod for
Tai
p
M
arwan, F
.
K
A
ustralia,
"
in
I
E
K
irschen, D.S
p
p. 520-527
. 2
0
C
ovino, S,"De
m
2
003.
T
yag
i
R
,
J
.
W
.
B
D
istribution
C
o
R
ahim
i F, A. I
p
S
mart Grid Te
c
L
awrenc
e D.J
.,
M
eeting, 2003,
Y
u, C.W
., et
a
P
roceedings
G
e
A
alam
i H.A,
M
l
oads and
capa
c
M
arwan M
,
P
i
E
le
ctr
i
ca
l and
C
A
i,
X
., et al
,
"
B
T
rading in Sm
a
P
erfurmo, C.,
J
S
ystems With
M
G
RA
PH
IES
O
D
r
t
h
i
n
t
h
E
n
D
r
I
n
K
u
H
e
D
e
3
,
Jun
e
201
7
a
n
d
El-S
aad
an
y
r
ch
, 78: pp. 19
8
et al
.,
"Inve
U
C,"
IE
EE T
r
a
n
e
dwich,
A.
Gh
o
o
l
. 24: pp. 782
-
E
ne
r
g
y
Ag
e
n
cy
M
anagem
ent
P
r
M
oghaddam M.
P
i
ssion and Dist
r
y
Regulato
r
y
C
o
t
o
r
: W
a
shingto
n
a
i,
"Optimal T
O
o
n
Intern
ation
a
l
C. Yi-Ping, L
.
p
o
w
er
Sys
t
em,
"
K
ame
l
,
"D
em
a
n
E
EE In
tern
atio
n
.,
"Dem
and-S
i
0
03
m
and Side R
e
s
B
lack
,
"Em
e
r
g
e
o
nferenc
e
and
E
p
akchi, "Overv
i
c
h
nologies (
I
S
G
B.F
.
Neen
an,
"
I
EEE
. 2003
.
a
l.
,
"Modellin
g
e
n
e
ration Tr
an
s
M
oghaddam M.
c
ity
ma
rke
t
pro
g
rma
n
,
"Mitiga
t
C
omputer Eng
i
B
id-Scheduling
a
rt Grid,"
in
Cr
i
J
.
K
. W
a
rd, J
u
l
i
M
ulty
Objec
t
i
ve
O
F AUTH
O
R
r
. Ma
r
w
an
M
h
e M.Eng degr
e
e
n
2000, 2006
a
n
h
e S
t
at
e P
o
l
y
t
e
c
n
gineering D
e
p
r
. Eng. Sy
afar
n
donesia, the
M
u
ma
mot
o
Uni
v
e
has
been
a
l
e
e
partment u
n
ti
l
:
11
2
5
– 11
3
y
E. F,
"A su
m
8
9-
1996. 2008
s
tig
ation of
E
n
saction
on Sm
a
o
sh,
"Dem
and-
S
-
78
9. 2014
Demand Sid
e
r
ogr
am 2004-2
0
P
, Yousefi G.
R
r
ib
ution Conf
er
e
o
mmi
ssi
on,
"A
n
DC.2006
O
U Decision
C
Co
nferenc
e
o
n
.
Tzu-Hao,
"T
h
in
I
ndustrial &
n
d Side
Respo
n
n
al
Conferen
ce
i
de View of
s
ponse 21st Ce
n
e
ncy Demand
R
E
xp
osition, 201
0
i
ew of Dem
a
n
d
G
T)
2010,
IEE
E
"
The status of
d
g
and
Evaluati
o
mission and D
i
P, Yousefi
G.
R
g
rams,"
A
pplie
d
t
in
g Ele
c
tr
ici
t
y
n
e
er
ing (
I
JEC
E
of Demand
Si
d
i
ti
c
a
l Infr
astru
c
i
o H.
B
r
a
s
l
a
v
s
k
Evolutionary
A
R
S
a
rw
an
receive
d
e
and the Ph.D
n
d 2013 respec
t
c
hnic of Ujung
artm
ent.
uddin,
S.
T.
,
M
.
M
.Eng degree
e
r
sity
Ja
pa
n,
i
n
e
ctur
er with
th
e
l
now.
3
2
m
ma
ry
of De
m
E
cono
mic and
a
rt Grid
. V
O
L
S
ide Response
e
Management
,
0
09,"
2004
R
,
"
D
emand Re
s
r
en
c
e
and
Expo
s
sse
s
m
e
n
t of D
e
C
onsidering D
e
n
IEEE, 2006
.
h
e C
o
mpetiti
ve
&
Com
m
ercial
P
n
se
to
Mitiga
t
e
on
Smart Gri
d
Elec
trici
t
y
M
a
n
tur
y
St
yl
e,"
i
n
R
esponse for
D
0
IEE
E
PE
S, 2
0
d
Response und
E
201
0.
d
em
and respon
s
o
n of Interrup
t
i
str
i
b
u
tion, 152
R
,
"
D
em
and R
e
d
En
ergy
, 87
:
p
a Pric
e
Spike
E
)
,
V
o
l. 6
,
pp
.
1
d
e R
e
s
e
r
ve bas
e
c
ture (CRIS),
2
0
k
y,
"Reducing
E
A
lgo
r
ithms,"
in
d
the B.Eng d
e
fr
om
Queens
l
a
t
i
v
el
y, al
l
in el
Pandang Mak
.Eng
received
t
in T
h
e
Uni
v
e
r
n
1996, 2004 a
n
e
Hasanuddin
U
m
and Response
Envir
onmenta
l
L
. 3: p
p
. 12-25
.
2
Model to Avo
i
"Strategic pl
a
s
ponse Model
C
s
i
tion
IEE
E
/PE
e
man
d
Respon
s
e
mand Respon
s
M
odel Based
o
P
ower S
y
s
t
em
s
T
t
e E
l
ec
t
r
i
c
al
P
d
and
Clean
En
e
a
rkets,"
Powe
r
n
IEEE
P
o
we
r
istrib
ution Sys
t
0
10.
er the S
m
art G
r
s
e in New
Yor
k
t
ib
le-L
oad Pro
g
: pp. 5
81-588.
S
e
sponse Model
i
p
p
.
243
-250. 20
und
er P
r
e-Co
o
1
281
~ 1293, N
e
d on
Demand
0
10 5th Intern
a
t
E
n
e
r
g
y Us
e a
n
Conf
erenc
e
E
v
e
gree from Ha
s
a
nd University
o
ect
rica
l power
a
ssar Indonesi
a
t
h
e
B.Eng degr
e
r
sity
of Que
e
n
n
d
2009
respec
t
U
niversity
Mak
in E
l
ec
t
r
icit
y
M
l
Driven De
m
2
012
i
d Spike of El
e
a
n for the Inte
r
C
onsider
ing E
D
S. 200
8.
s
e and
Advanc
e
s
e Mode,"
in P
o
o
n th
e
Demand
T
echni
ca
l Con
f
P
eak D
e
mand
i
e
rg
y
Technolog
i
r
Sy
ste
m
s IE
E
of
E
n
gi
n
e
e
r
i
n
g
t
em
C
o
n
tingen
c
r
id and
Market
k
," in
Powe
r E
n
g
g
ra
mme
s i
n
E
l
S
ept
e
m
b
er 200
5
i
ng Co
nsiderin
g
0
9
o
ling Metho
d
,
"
o
. 3
,
J
une 201
6
Response Con
s
t
ion
a
l C
onfere
n
n
d Oper
ational
v
olution
a
r
y
Co
m
s
anud
din Univ
e
o
f Technolog
y
(
engineering
.
H
a
since 2001 u
n
e
e from Hasan
u
n
slan
d and the
t
ive
l
y,
a
ll in
el
e
a
ssar Indonesi
a
ISS
N
:
2
Ma
r
k
e
t
s
,
"
Ele
c
m
and Respons
e
e
ct
ri
ci
ty
P
r
i
c
e,
"
e
rn
ation
a
l
Ener
D
RP and T
OU
p
e
d Meter
i
ng,"
D
P
ower S
y
s
t
em
T
d
Respon
se in
t
h
f
er
enc
e
I
E
EE/I
A
i
n Eastern an
d
g
ies IEEE ICS
G
E
E Transactio
n
g
soci
et
y
ge
ne
r
c
ies,
"
in
Trans
m
p
a
r
a
di
gms,
"
i
n
gin
eerin
g Soci
e
l
ectri
ci
t
y
M
a
r
k
5
g Interru
ptible
/
"
International
6
.
s
idering Carb
o
n
ce on
. 20
10.
Cost of
Air C
o
m
putation
(CE
C
e
rsity
Ma
ka
ssa
r
(QUT) Brisba
n
H
e
h
a
s
been a
l
e
n
til c
u
rrentl
y
,
i
u
ddin Universi
t
doktor engin
e
e
ct
ri
cal
powe
r
e
a
in
E
l
ec
tric
al
E
2
088
-87
08
c
tric
Power
e
M
eas
ures
Journal of
g
y
Agency
p
rogra
m
s,"
D
epartm
en
t
T
echnolo
g
y
h
e Off-peak
A
S, 2007
.
d
Souther
n
G
CE. 2011
.
n
s on
. 18:
r
al me
etin
g
.
m
ission and
n
Innovative
e
ty
Gener
a
l
k
ets
,
"
IEEE
/
Curtailable
Journal of
o
n Emission
o
nditionin
g
C
), 2010.
r
Indon
esia,
n
e Austra
lia
,
e
ctur
er with
i
n El
ec
tric
a
l
t
y
Ma
ka
ssa
r
e
ering from
e
ng
ineer
i
ng.
E
ngineering
Evaluation Warning : The document was created with Spire.PDF for Python.