Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l. 6,
N
o
.
3
,
Ju
n
e
201
6,
p
p
.
9
5
5
~
962
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
3.9
201
9
55
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
An Overview on Researches on
Underwater Sensor Networks:
Applicat
ions, Current Challen
g
es
and Future T
r
ends
Pedram
Vah
d
a
ni
Amoli
Departm
e
nt o
f
C
o
m
puter Engin
e
ering,
Coll
ege
of
Engin
eering
,
Te
hran North
Bran
ch, Is
l
a
m
i
c A
zad
Univers
i
t
y
,
Tehran
, Ir
an
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Oct 14, 2015
Rev
i
sed
Jan 21, 201
6
Accepte
d
Fe
b 4, 2016
Nowaday
s
, Underwater
Sensor
Networks
(UW
S
N), in whi
c
h da
t
a
is co
lle
ct
ed
through underw
ater
sensors, hav
e
drawn
lo
ts of
concern
.
Gen
e
rally
,
wireless
sensor network (WSNs) have importa
nt app
lic
ations
s
u
ch
as
rem
o
te
environm
enta
l m
onitoring and target tr
acking
.
T
h
is possibilit
y
is enabled
b
y
the
avai
labl
e s
m
all
e
r and
ch
eap
e
r
s
e
ns
ors
.
Th
es
e
s
e
ns
ors
are
equ
i
pped wi
th
wireless
in
terf
ac
es
which the
y
f
o
rm
a
ne
twork. However, there
are
v
a
rious
problems specified
to und
erwate
r
envir
onments, including the
communication
medium. Designs of thes
e ty
p
e
s of networks significan
tly
depend on
their application,
and fact
ors such as environm
ent, d
e
sign
objec
tives of the
applic
ation
,
cost, hard
war
e
and s
y
stem constrain
t
s. The goal
of this work is
to review the li
t
e
ra
tur
e
on vario
u
s aspects of UWSNs, and
present an
overview of sever
a
l new
applications and th
eir
challenges
.
P
ublicat
ions
are
reviewed
to s
how the
stat
istics o
f
published work
s in severa
l
aspects of the to
pic based upon the
y
ear of publication
.
This survey
giv
e
s the
readers
a v
i
ew o
n
the place of un
derwater
sensor
networks on res
earch
es an
d
industries. The r
eaders
can
track
what
h
a
ve been highly
interests in recen
t
ye
ars
and
what
a
r
e
ye
t on
ch
all
e
n
g
es
.
Keyword:
Target t
r
acki
n
g
Un
de
rwat
er
se
nso
r
net
w
o
r
ks
UW
SN
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Ped
r
am
Vahda
ni
Am
ol
i
,
Depa
rt
em
ent
of C
o
m
put
er
En
gi
nee
r
i
n
g, C
o
l
l
e
ge
of
En
gi
ne
e
r
i
n
g,
T
e
h
r
an
No
r
t
h
Br
a
n
ch
,
I
s
la
mi
c
A
z
ad
U
n
iv
e
r
s
ity,
No
.7
9,
G
h
oba
d
i
an Al
y
,
Ne
xt
t
o
M
i
r
d
am
ad B
l
vd
, Te
hra
n
,
I
r
a
n
.
Em
a
il: p
e
d
r
amv
a
hd
an
i@g
m
ai
l.co
m
1.
INTRODUCTION
No
wa
day
s
,
Un
der
w
at
er Se
ns
or
Net
w
or
ks
(
U
WSN
)
i
s
o
f
hi
g
h
co
nce
r
n i
n
a va
ri
et
y
of
fi
el
ds s
u
ch a
s
in
du
str
y
, science, mili
tar
y
, an
d
so
on
. Today,
m
a
j
o
ri
t
y
o
f
u
nde
rwat
e
r
c
o
m
m
uni
cat
i
on sy
st
em
s work
s wi
t
h
aco
ustic tech
no
log
y
. Factors
th
at in
flu
e
n
ce
aco
ustic co
mmu
n
i
cation
s
are
p
a
th
lo
ss, no
ise,
m
u
lti-p
a
th
,
d
e
lay,
dr
o
ppe
r s
p
rea
d
.
Ty
pi
cal
l
y
, som
e
sens
ors i
n
U
W
S
N
s se
nd t
h
ei
r o
b
ser
v
e
d
d
a
t
a
t
o
si
nk
by
m
u
lt
i
-
ho
p com
m
uni
cat
i
on,
but
si
nce
b
u
i
l
d
i
ng t
h
i
s
t
y
pe o
f
net
w
o
r
k i
s
i
n
t
h
e wat
e
r, t
h
e
r
ef
ore a
ppl
y
i
n
g
t
h
e t
e
rre
st
ri
a
l
net
w
o
r
k
pr
ot
ocol
i
s
d
i
f
f
i
cu
lt [1
],
[2].
For
ex
am
p
l
e,
in
t
e
r
r
est
r
i
a
l
net
w
or
k,
t
h
ey
u
s
ed
ra
di
o
or
o
p
t
i
cal
wave
s f
o
r
wi
rel
e
ss
com
m
uni
cat
i
on. B
u
t
i
n
U
W
S
N
, i
t
i
s
har
d
t
o
use t
h
e
s
e m
e
di
um
, hence t
h
ey
use
d
ac
ou
st
i
c
wave
s.
It
i
s
ess
e
nt
i
a
l
fo
r aco
ust
i
c
com
m
uni
cat
i
on t
o
co
nsi
d
e
r
l
o
n
g
del
a
y
pr
obl
e
m
s t
h
at
are
m
a
i
n
l
y
caused by
t
h
e l
ong p
r
op
agat
i
o
n
del
a
y
.
B
a
nd
wi
dt
h l
i
m
i
t
a
ti
on
and
hi
g
h
bi
t
e
r
r
o
r r
a
t
e
, p
o
w
e
r l
i
m
i
t
a
t
i
on, sens
or f
a
i
l
u
res
are t
h
e chal
l
e
ngi
ng
p
r
ob
lem
s
fo
r UWSN du
e to
its ch
allen
g
i
ng
en
v
i
ron
m
en
t
.
Unde
r
W
a
t
e
r Se
nso
r
N
e
t
w
or
ks
has t
w
o-
di
m
e
nsi
onal
and
three dim
e
nsional
arc
h
ite
cture [1].
In t
h
i
s
pa
per
,
a bri
e
f re
vi
ew
has bee
n
m
a
de on
U
nde
r
w
at
er Sens
or
Net
w
or
ks, i
t
s
appl
i
c
at
i
ons an
d
th
eir streng
th an
d weakn
e
sses. Th
en
b
r
ief statistics o
f
UWSN has bee
n
re
viewed
and fina
lly
it
was
com
p
are
d
wi
t
h
t
e
r
r
est
r
i
a
l
sens
or
net
w
o
r
k
s
an
d t
h
e
di
ffe
r
e
nces a
r
e
hi
g
h
l
i
ght
ed
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
95
5 – 9
6
2
95
6
2.
LITERATU
R
E
REVIE
W
Sensi
n
g
an
d s
u
bse
que
nt
t
r
a
n
s
m
i
ssi
on o
f
radi
o
fre
que
ncy
w
a
ves i
n
s
u
b
-
sea
en
vi
r
onm
ent
and
dee
p
sea
expl
orat
i
o
n
re
qui
res a
pa
rt
i
c
ul
ar a
p
pr
oac
h
fo
r m
e
di
um
i
n
com
m
uni
cat
ing
.
Not
i
c
i
n
g t
h
e
fact
t
h
at
a
h
u
g
e
am
ount
of une
xpl
oited
resources lies in the
70% of t
h
e ear
th covered
by
oceans this tec
h
nology is m
ode m
o
re
appa
re
ntly critical to the ne
w worl
d.
Yet, the aqua
tic world
has m
a
inly been
unaffected by
the recent
adva
nces i
n
t
h
e area of
wi
rel
e
ss sens
or
net
w
o
r
k
s
an
d t
h
ei
r pe
rvasi
v
e pe
net
r
at
i
o
n i
n
m
ode
r
n
day
rese
arch a
n
d
i
n
d
u
st
ri
al
dev
e
l
opm
ent
.
H
o
weve
r,
m
a
jori
t
y
of
u
nde
r
w
at
er de
pl
oy
m
e
nt
s rel
y
o
n
a
c
ou
st
i
c
s f
o
r
e
n
abl
i
n
g
com
m
uni
cat
i
on com
b
i
n
ed
w
i
t
h
speci
al
sen
s
ors
ha
vi
n
g
t
h
e capaci
t
y
t
o
take o
n
ha
rs
h
envi
ro
nm
ent
s
of t
h
e
oceans. A
rece
ntly published survey pa
per
prese
n
ted
by
Mura
d et al. [3] particul
arly
foc
u
ses on
ga
thering
m
o
st recent de
velopm
ents and e
xpe
ri
m
e
ntation related
t
o
key
underwate
r
se
ns
or
network applications
and
acou
s
t
i
c
-t
y
p
e un
de
rwat
er se
nso
r
net
w
or
ks
depl
oy
m
e
nt
s fo
r m
oni
t
o
ri
ng a
n
d co
nt
r
o
l
l
i
ng
of
un
d
e
rwat
e
r
dom
ai
ns.
Si
nce se
nsi
n
g
and
su
bse
q
u
e
n
t
t
r
ansm
i
ssi
on and
ra
di
o
fre
que
ncy
w
a
ves
t
e
nd t
o
va
ry
fo
r di
ffe
ren
t
subsea environments, in anot
her work
of the sa
m
e
authors
,
Fele
m
b
an et
al
. [4]
has pre
s
ent
e
d a su
rvey
paper
foc
u
si
n
g
o
n
g
a
t
h
eri
n
g m
o
st
rece
nt
de
vel
o
pm
ent
s
i
n
u
n
d
er
wat
e
r
sens
or
net
w
o
r
ks
a
ppl
i
cat
i
o
ns a
n
d t
h
ei
r
depl
oy
m
e
nt
s. In t
h
at
pape
r, t
h
e aut
h
o
r
s
ha
v
e
cl
assi
fi
ed t
h
e
un
de
rwat
er
ap
pl
i
cat
i
ons i
n
t
o
fi
ve m
a
i
n
cl
asses as
m
o
n
ito
rin
g
, d
i
saster, m
i
litary
, n
a
v
i
g
a
tion
,
an
d
spo
r
ts, to
co
v
e
r th
e larg
e sp
ectru
m
o
f
th
ese sen
s
o
r
n
e
t
w
orks.
These a
p
pl
i
cat
i
ons a
r
e f
u
rt
he
r di
vi
de
d i
n
t
o
rel
e
va
nt
su
bcl
a
sses. T
h
ey
ha
ve al
so
sh
o
w
n
t
h
e chal
l
e
n
g
e
s
an
d
opport
unities faced
by rece
nt
depl
oym
e
nts of
underwater
sensor networks.
No
de
de
pl
oy
m
e
nt
i
s
t
a
sk
f
o
r
aco
ust
i
c
u
nde
rwat
er
net
w
o
r
k t
h
at
e
ffect
s
net
w
or
k t
o
p
o
l
ogy
c
o
nt
rol
,
ro
ut
i
n
g,
a
n
d b
o
u
n
d
ary
det
ect
i
on [
5
]
.
2
-
D
t
e
rrest
ri
al
wi
rel
e
ss sen
s
o
r
net
w
or
ks
ha
ve
bee
n
st
udi
e
d
m
u
ch m
o
re
th
an
3
-
D
cou
n
t
er
p
a
r
t
s
b
u
t
H
a
n
et al.
r
ecen
tly p
u
b
lish
e
d
a
w
o
r
k
on
t
h
e i
m
p
acts o
f
node d
e
p
l
o
y
m
e
n
t
str
a
teg
i
es
on l
o
cal
i
zat
i
o
n
perf
orm
a
nces i
n
a 3-D en
vi
r
onm
ent
[5]
.
Si
m
u
l
a
t
i
on expe
r
i
m
e
nt
i
n
t
h
at
wo
rk r
e
veal
s t
h
at
t
h
e
regu
lar tetrah
ed
ron
d
e
p
l
o
y
men
t
sch
e
m
e
h
a
s a b
e
tter resu
lt in
ter
m
s
o
f
redu
cing
localizatio
n
error and
i
n
creasi
n
g l
o
ca
l
i
zat
i
on rat
i
o
c
o
m
p
are t
o
t
h
e
r
a
nd
om
depl
oy
m
e
nt
schem
e
and
t
h
e c
u
be
de
pl
oy
m
e
nt
sche
m
e
.
Earthq
u
a
k
e
and
tsun
am
i fo
rewarn
ing
,
n
a
val su
rv
eillan
ce, and
m
a
rin
e
b
i
o
l
og
y are ex
am
p
l
es of
i
m
p
o
r
tan
t
app
licatio
n
s
in under
w
ater aco
u
s
ti
c sen
s
or
n
e
twor
k
s
.
A
s
t
h
e
G
P
S sign
al is
h
i
gh
ly ab
so
rb
ed
w
ith
in
t
h
e wat
e
r
,
w
h
ereas ra
di
o
f
r
e
que
ncy
si
g
n
a
l
s at
t
e
nuat
e
mo
re.
Wh
en
optical sig
n
a
ls prop
ag
ate with
i
n
th
e
unde
rwater environm
ent the
y
scatte
r. On
the contra
ry,
acoustic signal
s
are
pre
f
erre
d for comm
unication
bet
w
ee
n
t
h
e
u
n
d
er
wat
e
r sens
o
r
no
des.
The location inform
ation of
sens
or nodes is im
por
tant and they should
be
accom
p
anie
d with data
co
llected
thr
oug
h sensor
s.
Thu
s
, l
o
calizatio
n
for
und
er
wa
t
e
r aco
ust
i
c
se
nso
r
net
w
or
k
has
becom
e
s a ver
y
in
terestin
g topic o
f
research
in
th
e last d
e
cad
e
. Ho
wev
e
r, sev
e
ral limita
tio
n
s
of aco
u
s
t
i
c ch
an
n
e
l like low
ban
d
w
i
d
t
h
, hi
g
h
bi
t
err
o
r rat
e
et
c. al
ong wi
t
h
l
o
n
g
p
r
o
p
a
g
a
t
i
on del
a
y
of t
h
e so
un
d wa
ve
and l
i
m
i
t
e
d bat
t
e
ry
po
we
r o
f
t
h
e
sens
or
n
ode
s
wi
t
h
i
n
t
h
e
wat
e
r m
a
ke t
h
e l
o
cal
i
zat
i
on
of
un
de
rwat
er
n
o
d
es
very
c
h
al
l
e
ngi
ng
.
R
e
gar
d
i
n
g t
h
e
s
e chal
l
e
nge
s,
an eve
n
t
-
dri
v
e
n
t
i
m
e
-sy
n
chr
oni
zat
i
o
n f
r
ee di
st
ri
b
u
t
e
d l
o
c
a
l
i
zat
i
on sche
m
e
for
l
a
rge scal
e t
h
r
ee di
m
e
nsi
onal
und
er
wat
e
r a
c
ou
st
i
c
senso
r
net
w
or
ks i
s
p
r
esent
e
d i
n
t
h
e wo
rk
of
K
u
n
d
u
an
d
Sadhukhan [6]
.
Their schem
e
e
m
ploys a rec
u
rsi
v
e loca
lization proce
ss in whic
h su
ccess
f
ully localized
nodes
can act
as re
fer
e
nce
no
de t
o
ai
d f
o
r
l
o
cal
i
zat
i
on
o
f
t
h
e
ot
he
r
or
di
na
ry
sen
s
or
n
odes
an
d t
w
o
way
s
f
o
r di
st
ance
measu
r
em
en
t in
o
r
d
e
r to
avo
i
d
th
e requ
iremen
t of tim
e syn
c
h
r
on
izatio
n
.
Und
e
rwater aco
u
s
tic sen
s
o
r
n
o
d
e
cann
o
t
rely
o
n
th
e
GPS to
p
o
s
ition
itself, and
th
e trad
itio
n
a
l
indirect positioning
m
e
thods
use
d
in
Ad
Hoc network is
not fu
lly applicable to the l
o
calization of unde
rwater
acou
s
t
i
c
senso
r
net
w
o
r
ks. He
n
ce, an i
m
prove
d u
nde
r
w
at
er a
c
ou
st
i
c
net
w
o
r
k l
o
cal
i
zat
i
on
al
go
ri
t
h
m
i
s
needed
.
Th
is alg
o
rith
m sh
ou
ld
b
e
enab
led
to
pro
c
ess th
e raw
d
a
ta b
e
fo
re lo
cali
zatio
n
calcu
latio
n
to
enh
a
n
c
e th
e
tolerance
of ra
ndom
noise. Wu a
nd Li in thier recen
t work int
r
oduc
e
d suc
h
a
m
e
thod which reduces the
redun
d
a
n
c
y
o
f
th
e calcu
lation
resu
lts
b
y
u
s
in
g a m
o
re accu
rate
b
a
sic al
g
o
rith
m
an
d an
adj
u
sted
calcu
latio
n
str
a
teg
y
[7
].
Set
t
i
ng
param
e
t
e
rs i
n
U
W
SN
i
s
necessa
ry
f
o
r ha
vi
n
g
e
ffi
ci
ency
, t
h
e
r
ef
o
r
e
di
f
f
ere
n
t
M
A
C
pr
ot
oc
ol
s
are n
e
ed
ed
for d
i
fferen
t tasks. Fo
r acou
stic UWSN lo
calizatio
n
it is
a v
ital task
which
req
u
i
res mu
ltip
le
packet e
x
c
h
anges. Ram
ezani and Le
us c
once
r
ned
t
h
e
problem
of designi
ng a M
A
C prot
ocol
for a
n
un
de
rwat
er
ac
oust
i
c
se
ns
or
n
e
t
w
o
r
k
w
h
i
c
h
effi
ci
ent
l
y
sch
e
dul
es t
h
e l
o
c
a
l
i
zat
i
on pac
k
et
s o
f
t
h
e a
n
c
h
o
r
s [
8
]
.
Sch
e
d
u
ling
proto
c
o
l
can
m
i
n
i
mized
p
r
op
ag
atio
n
d
e
lay fo
r l
o
calizatio
n
du
ratio
n
b
y
kno
wi
n
g
an
cho
r
s po
sitio
n
an
d
t
h
eir m
a
x
i
m
u
m
tran
smissio
n
ran
g
e
s. In
th
at
wo
rk
con
cep
t
o
f
form
u
l
atin
g
co
llisio
n
-
free
p
ack
et
tran
sm
issio
n
fo
r lo
calizatio
n h
a
s b
e
en
do
ne in
o
r
d
e
r to
kn
ow how an
op
ti
m
u
m
so
lu
tio
n
can
b
e
ob
tain
ed
.
In
ad
d
ition
,
t
h
ey m
o
d
e
led
th
e prob
lem
as a
mix
e
d
i
n
teg
e
r lin
ear
p
r
og
ram
b
o
t
h
in
si
n
g
l
e-ch
ann
e
l an
d
m
u
l
ti-
chan
nel
sce
n
a
r
i
o
s.
Fu
rt
he
rm
ore, t
h
ey
pr
op
os
ed t
w
o
al
g
o
rithm
s
with
lo
w-co
m
p
lex
ity
and
they com
p
are i
t
with
t
h
e o
p
t
i
m
al
sol
u
t
i
o
n
as
wel
l
a
s
ot
her
exi
s
t
i
n
g m
e
t
hods
. B
a
sed
o
n
si
m
u
l
a
t
i
on
res
u
l
t
t
h
ei
r
pr
o
pose
d
m
e
t
hod
ha
s
shown performance
clos
e to op
ti
m
u
m
[8
].
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Overview on
Rese
arc
h
es on Underw
ater Sensor
Networ
k: A
pplicati
o
n
....
(
P
edr
a
m V
a
hdani A
m
oli)
9
57
Gene
ral
l
y
cha
l
l
e
nges i
n
u
n
d
er
wat
e
r
aco
u
s
t
i
c
sens
or
ne
t
w
o
r
ks
i
n
cl
ud
e g
r
ad
ual
pr
o
p
agat
i
o
n
o
f
acou
s
t
i
c
wave
s, b
o
u
n
d
ed
b
a
nd
wi
dt
h, i
m
m
e
nse and
i
r
reg
u
l
a
r
pr
opa
gat
i
on
del
a
y
,
am
bi
ent
noi
se an
d
t
r
ansm
i
ssi
on l
o
ss.
Kri
s
hnas
w
a
m
y
and M
a
nvi
[9]
have
anal
y
zed s
o
un
d s
p
ee
d a
n
d
t
r
a
n
sm
i
s
si
on l
o
ss
o
f
ac
oust
i
c
channels usi
n
g MATLAB sim
u
la
tion. They
analyzed para
meters o
f
ab
sorp
tion
co
effici
en
t, p
r
op
ag
ation
d
e
lay
and
s
o
u
n
d
s
p
ee
d at
vari
ous
de
pt
h a
n
d t
r
a
n
sm
i
ssi
on l
o
ss
[
9
]
.
In
ge
neral
,
bat
t
e
ry
-p
owe
r
e
d
s
e
ns
ors
i
n
a
se
n
s
or
net
w
o
r
k
o
p
erat
es
w
h
i
l
e
t
h
ey
can
.
In
t
h
i
s
co
nt
ext
,
i
t
has t
w
o com
p
et
i
ng o
b
je
ct
i
v
es
;
t
h
e fi
rst
one i
s
t
o
m
a
xim
i
zed
perf
o
r
m
a
nce based o
n
u
p
p
er
bo
u
nd
pr
o
b
abi
l
i
t
y
of
success
f
ul search for false ala
r
m
s
, and second one is
to
m
a
xim
i
zed network operational time. As bot
h sensing
and c
o
m
m
unication of data use battery
energy thus accurate am
ount of en
ergy is needed to im
prove the
ope
rat
i
o
nal
l
i
f
et
im
e of t
h
e
se
nso
r
net
w
o
r
k
.
In
a rece
nt
l
y
p
ubl
i
s
hed
pa
per
,
Jh
a et
al
.
[
1
0
]
prese
n
t
s
a
n
o
p
t
i
m
a
l
energy allocator
for
nodes
to m
a
nage energy cons
um
ption a
d
apta
bl
e accordi
n
g to that sensing
a
nd
com
m
uni
cat
i
on n
ode t
o
m
a
xi
m
i
ze t
h
e netwo
r
k
per
f
o
r
m
a
nce su
b
j
ect
t
o
speci
fi
e
d
co
nst
r
ai
nt
s
.
Fi
xe
d t
o
t
a
l
am
ount
o
f
ene
r
gy
al
l
o
cat
i
on
fo
r speci
fi
c t
i
m
e reduce t
h
e
pr
o
b
l
e
m
t
o
synt
hesi
s an
opt
i
m
al
net
w
or
k t
o
p
o
l
o
gy
that
m
a
xi
m
i
ze
s successful se
arch
prob
ability in a surveill
ance re
gion. In the work
of
Jha et al. [10] a two-
stag
e o
p
tim
iza
tio
n
was u
s
ed fo
r an
o
p
timal so
lu
tio
n
.
Ad
ap
tation
to
en
erg
y
v
a
riation
s
acro
ss th
e n
e
two
r
k
coul
d c
h
a
nge
by
u
s
i
n
g se
nsi
n
g
an
d c
o
m
m
uni
cat
i
o
n m
o
d
e
l
s
fo
r
u
nde
r
w
at
er e
n
vi
r
o
n
m
ent
.
Paret
o
opt
i
m
al
obtaine
d t
r
ade
-
off
betwee
n
ne
twork lifeti
m
e and proba
bility
of successful search over
surveillance area
[10].
Whi
l
e
m
oni
t
o
r
i
ng
U
W
SN
i
n
a gi
ve
n a
r
ea
per
f
o
r
m
s
by
num
ber
of se
nso
r
s.
Desi
gni
ng e
n
e
r
gy
-
effi
ci
ent
ro
ut
i
n
g pr
ot
oc
ol
s be
cam
e
essent
i
a
l
fo
r
se
ns
or n
o
d
e
s
t
h
at
i
n
fact
po
we
red by
ba
t
t
e
ri
es
and
o
p
e
r
at
e
i
n
an
un
der
w
at
er
envi
ro
nm
ent
w
h
i
c
h i
s
ha
rsh
a
n
d
i
t
s
p
r
o
p
ag
atio
n
d
e
lay is lon
g
. Majo
r
ity of
rou
tin
g pr
o
t
oco
l
s
uses
gree
dy
app
r
oaches t
o
d
e
l
i
v
er dat
a
.
O
n
e o
f
t
h
ese a
p
pr
oac
h
i
s
dept
h base
d r
o
ut
i
n
g, DB
R
.
Fu
rt
h
e
r, t
h
i
s
ro
ut
i
n
g p
r
ot
oc
ol
re
qui
res o
n
l
y
l
o
cal
dept
h i
n
f
o
rm
at
i
on w
h
i
c
h can easi
l
y
obt
ai
ne
d
by
a
n
i
n
e
x
p
e
nsi
v
e
dept
h
sens
or.
DB
R
uses sm
al
l
e
r dept
h as t
h
e
o
n
l
y
m
e
t
r
i
c
for c
h
o
o
si
ng a r
o
ut
e;
ho
weve
r i
t
m
i
ght
resul
t
i
n
hi
g
h
ener
gy
c
ons
u
m
pti
on a
n
d a
l
o
n
g
del
a
y
t
h
a
t
wo
ul
d
deg
r
a
d
e
net
w
or
k
pe
rf
orm
a
nce. T
o
ad
dres
s t
h
i
s
p
r
o
b
l
e
m
,
Mo
h
a
mm
ad
i et
al. [
1
1
]
pr
oposed
an
im
p
r
o
v
ed
D
BR
p
r
o
t
oco
l
b
y
u
s
ing
rou
tin
g
b
a
sed
o
n
r
e
m
a
in
in
g
en
er
g
y
of
receiver node
i
n
c
o
njunction with
the dept
h diffe
re
nce
of receiver
node
a
n
d pre
v
io
us forwa
r
de
r node
a
n
d
the
num
ber
of
h
o
p
s t
h
at
a
pac
k
et
has t
r
a
v
el
e
d
. T
h
ei
r
si
m
u
lat
i
on
was ca
rr
i
e
d o
u
t
i
n
A
q
uasi
m
an NS
2
base
d
u
n
d
e
rwater si
m
u
la
to
r.
Th
e co
m
p
ariso
n
b
e
t
w
een DBR
and
Fu
zzy m
u
lti metric DBR pro
t
o
c
o
l
h
a
s sh
own th
at
FDB
R
has
out
per
f
o
r
m
s
DB
R i
n
t
e
r
m
s of av
erage e
nd t
o
e
nd
del
a
y
,
pac
k
et
del
i
v
ery
rat
i
o
an
d ene
r
gy
s
a
vi
n
g
[1
1]
.
Lon
g
acou
s
tic
p
r
op
ag
ation
d
e
lay, li
m
i
ted
reso
urces
a
n
d
wat
e
r c
u
rrents
are
the m
a
jor cha
llenges
for
ener
gy
-e
ffi
ci
en
t
and l
o
w-l
a
t
e
ncy
ro
ut
i
n
g p
r
ot
ocol
s
of
U
W
S
N
.
As sen
s
ors al
way
s
m
ove wi
t
h
cu
rre
nt
s
con
s
eq
ue
nt
l
y
net
w
o
r
k
,
t
o
p
o
l
o
gy
of
un
de
rwa
t
er sens
or
net
w
o
r
k
s
bec
o
m
e
s dy
nam
i
c and com
p
l
e
x. Fo
r sol
v
i
n
g
t
h
i
s
pr
obl
em
ado
p
t
a
bl
e
geo
g
r
a
phi
c
pr
ot
oc
ol
s has bee
n
p
r
o
pos
ed
but
l
o
ca
l
i
zat
i
on i
n
t
h
re
e-di
m
e
nsi
onal
i
s
ha
r
d
t
o
obt
ai
n
.
As
de
pt
h
-
ba
sed
ro
ut
i
n
g pr
ot
oc
ol
(
D
B
R
)
use
s
easi
e
r
way
t
o
get
i
n
fo
rm
at
i
on by
usi
n
g de
pt
h
in
fo
rm
atio
n
wh
ich in
fact it
is m
o
re
p
r
actical fo
r und
erwater
sen
s
or
n
e
two
r
k
s
. Yet, it ju
st
n
o
t
en
oug
h
i
n
f
o
rm
at
i
on f
o
r f
o
rwa
r
di
ng
p
acket
. T
r
ut
hf
ul
l
y
, i
t
cause e
n
e
r
gy
wast
e a
n
d
i
n
crease
en
d-t
o
-en
d
del
a
y
t
r
i
g
gere
d
b
y
m
u
ltip
le f
o
rward
i
ng
p
a
t
h
s of a p
a
ck
et. To
settle th
is
p
r
ob
lem a n
e
w tech
n
i
qu
e has b
een
p
r
esented
b
y
D
i
ao
[12
]
th
at in
trodu
ce underw
ater tim
e o
f
arriv
a
l (T
oA) ran
g
i
n
g
techn
i
qu
e.
In
add
itio
n
th
ey
h
a
v
e
mad
e
fol
l
o
wi
n
g
c
h
a
nge
s:
ene
r
gy
-e
ffi
ci
ent
de
pt
h
-
base
d r
o
ut
i
n
g
pr
ot
oc
ol
t
h
at
r
e
duce
s
red
u
n
d
a
ncy
e
n
er
gy
c
o
st
i
n
som
e
bl
i
nd zo
nes;
l
o
w
-
l
a
t
e
n
c
y
dept
h
-
ba
se
d r
out
i
n
g p
r
ot
ocol
t
h
at
i
s
abl
e
t
o
del
i
v
e
r
a packet
t
h
r
o
ug
h an
o
p
tim
al p
a
th
.
In
un
d
e
rwater aco
ustic, tran
sm
it
tin
g
and co
mm
u
n
i
cation directly
effects
ene
r
gy
con
s
um
pt
i
on.
Ven
k
at
esa
n
an
d Li
[1
3]
hav
e
st
udi
ed s
qua
re gri
d
t
o
p
o
l
o
gy
fo
r t
w
o
-
di
m
e
nsi
onal
de
p
l
oym
ent
st
rat
e
gy
o
f
un
de
rwat
er
sen
s
or
net
w
o
r
ks
.
They
ha
ve i
n
t
r
od
uce
d
a m
a
t
h
em
at
i
cal
m
odel
t
o
i
nvest
i
g
at
e
t
h
e de
pl
oy
m
e
nt
err
o
r
of u
n
d
er
wat
e
r
sens
or net
w
o
r
k
s
. Acco
r
d
i
n
g t
o
t
h
ei
r ex
peri
m
e
nt
t
h
ei
r
m
odel
,
wi
t
h
a ne
w i
n
t
r
o
d
u
ce
d p
a
ram
e
t
e
r
,
h
a
s b
e
tter
r
obustn
ess
and
h
a
s b
a
lan
c
ed
en
ergy
co
nsu
m
p
tio
n
[1
3
]
.
Du
e to
vu
ln
erab
ility o
f
u
n
d
e
rwater acou
s
ti
c sen
s
o
r
n
e
t
w
o
r
k
s
t
o
m
a
lic
i
o
u
s
attack
s and
d
u
e
to
t
h
eir
com
m
uni
cat
i
on cha
n
nel
,
ur
g
e
of sec
u
re co
m
m
uni
cat
i
on h
a
s rai
s
ed
. T
h
i
s
need
ent
a
i
l
s
r
a
pi
d
dev
e
l
o
pm
ent
o
f
secure
c
o
mm
u
n
ication m
echanism
s
fo
r und
erw
a
ter sensor
n
o
d
e
s. In r
e
cen
t
w
o
r
k
of
H
a
n et al.
[1
4], th
ey
prese
n
t
e
d
a s
u
r
v
ey
o
f
sec
u
re c
o
m
m
uni
cat
i
ons i
n
u
nde
rwat
e
r
se
nso
r
net
w
o
r
ks
.
In o
r
der t
o
ha
ve effi
ci
ent
r
o
ut
i
ng
pr
ot
oc
ol
s
for dat
a
pac
k
et
del
i
v
ery
i
n
un
de
rwat
er se
nso
r
net
w
o
r
k
s
(U
WS
Ns)
a
n
d
deal
wi
t
h
ro
u
g
hne
ss
of
aco
us
t
i
c
chan
nel
net
w
o
r
k
,
c
o
di
n
g
has
bec
o
m
e
vi
t
a
l
.
Thi
s
t
ech
ni
que
i
s
prom
ising technique for
effici
ent data packet
delivery because of aco
ustic channels broa
dcast nature and their
sen
s
o
r
no
d
e
s
h
i
gh
co
m
p
u
t
atio
n
cap
a
b
ilitie
s. In
t
h
is
work
,
Hao
et al.
[15
]
in
trod
u
c
ed
GPNC wh
ich
is a
geo
g
r
ap
hi
c r
o
ut
i
ng
p
r
ot
ocol
fo
r u
n
d
er
wat
e
r
sens
or
net
w
or
ks t
h
at
w
o
rks
coo
p
e
r
at
i
v
el
y
wi
t
h
pa
rt
i
a
l
ne
t
w
o
r
k
codi
ng t
o
enc
ode
dat
a
pac
k
et
s and f
o
rwa
r
d
dat
a
t
o
si
n
k
n
o
d
e. T
h
ey
have m
e
nt
i
oned t
h
at
GP
N
C
has
effect
i
v
el
y
red
u
ced
del
a
y
s
and ret
r
a
n
sm
i
ssion
whi
c
h caus
e
d ad
di
t
i
onal
ener
gy
uses. T
h
e sim
u
l
a
t
i
on resul
t
s
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
95
5 – 9
6
2
95
8
gi
ve
n i
n
t
h
e w
o
r
k
o
f
Ha
o et
al
. [1
5]
sho
w
e
n
t
h
at
t
h
i
s
new
m
e
t
hod can i
n
cre
d
i
b
l
y
im
pr
ove
per
f
o
r
m
a
nce and
p
ack
et
d
e
liv
ery ration
wh
ile co
m
p
arin
g with
o
t
h
e
r rou
tin
g pro
t
o
c
o
l
s.
M
T
C
or
L
o
cal
i
z
i
ng m
achi
n
e-t
y
pe com
m
uni
cat
i
on
devi
ces
o
r
se
ns
ors
i
s
an
im
port
a
nt
i
s
s
u
e i
n
U
W
S
N
because of t
h
eir inc
r
easing
popula
r
ity of m
achine
-
to-m
achine (M
2M) c
o
mmunicati
on networks
for l
o
cation-
base
d ap
pl
i
cat
i
ons
. B
y
im
pl
em
ent
i
ng M
T
C
wi
t
h
ef
fi
ci
ent
l
o
cal
i
zat
i
on, e
r
r
o
r
rat
e
an
d ene
r
gy
co
ns
um
pt
ion
o
f
M
T
C
de
vi
ces
can
red
u
ce.
Si
nce se
ns
ors
ha
s bee
n
use
d
as
an i
n
t
e
g
r
al
pa
rt
o
f
M
2
M
co
m
m
uni
cat
i
on
n
e
t
w
o
r
ks
whi
c
h
ac
hi
eve
d
po
p
u
l
a
ri
t
y
i
n
un
der
w
at
er appl
i
cat
i
o
ns, f
u
rt
her resear
c
h
has been c
o
n
d
u
ct
ed o
n
sens
or
lo
calizatio
n
in bo
th
un
d
e
rwater and
terrestrial M2
M netw
or
k
s
. Th
e
main
ch
allen
g
es of
d
e
sign
in
g
an
un
de
rwat
er
l
o
cal
i
zat
i
on are
t
h
e l
a
c
k
of
go
o
d
radi
o si
gnal
p
r
o
p
a
g
at
i
o
n
i
n
u
nde
r
w
at
er, se
ns
or
m
obi
l
i
t
y
man
a
g
e
m
e
n
t
, an
d en
sur
i
ng
n
e
two
r
k
cov
e
rag
e
i
n
3
D
under
w
ater M2
M
n
e
two
r
k
s
. Moreo
v
e
r
,
pr
ed
ictin
g th
e
m
obi
l
i
t
y
pat
t
e
rn o
f
M
T
C
de
v
i
ces, t
r
adi
n
g-
o
ff e
n
er
gy
co
ns
um
pt
i
on an
d l
o
cat
i
on acc
u
r
a
c
y
are anot
her
m
a
jor
chal
l
e
ng
es of
desi
g
n
i
n
g t
e
rre
st
ri
al
localization techniques
. Karim
e
t
al.
[
16] prese
n
ts a survey on MTC for
bot
h t
e
rrest
ri
al
and
un
de
rwat
e
r
l
o
cal
i
zat
i
on a
p
p
r
oaches
ba
se
d on curre
nt re
searche
s
. Th
ey have also clas
sified
lo
calizatio
n
app
r
o
a
ch
es
b
a
sed on
sev
e
ral facto
r
s, and
id
en
ti
fied
th
ei
r limit
atio
n
s
with
p
o
t
en
tial so
lu
tion
s
, and
com
p
are with them
[16].
S.
D.
Seeley Jr
.
et al.
[1
7
]
I
n
trod
u
c
ed
sof
t
w
a
r
e
f
o
r
an
dr
o
i
d
u
s
er
s th
at i
m
p
r
o
v
ed
ex
istin
g
AUV
(A
ut
o
n
o
m
ous
Un
de
rwat
er
V
e
hi
cl
es) m
i
ssi
on
pl
an
ner
,
Vec
t
orM
a
p
,
whi
c
h
has
use
d
G
o
o
g
l
e
m
a
ps t
o
e
n
hance
m
obi
l
e
t
echnol
ogy
i
n
fi
el
d o
f
U
W
SN
. I
n
t
h
e wo
rk
o
f
H.
M
e
i
et
al
. [18]
has p
r
op
ose a
t
w
o-
st
ep a
p
p
r
oach t
o
im
pro
v
e
per
f
o
r
m
a
nce o
f
C
F
O
(car
ri
er
fre
q
u
e
ncy
o
ffset
) s
o
OF
DM
(
fre
q
u
e
ncy
-
di
vi
si
o
n
-
m
ult
i
p
l
e
xi
ng
)
wo
ul
d
be
han
d
l
e
d
bet
t
e
r. T
h
i
s
has
b
een ac
hi
eve
d
t
h
r
o
ug
h
red
u
ci
ng
B
E
R
.
T
h
ey
ha
ve m
e
nt
i
o
n
e
d C
S
-ba
s
ed
c
h
an
nel
has
better
perform
ance tha
n
t
h
at LS cha
n
nel.
2.
1.
Rese
arch
trends and
statis
tics in literatur
e
Un
de
rwat
er
se
nso
r
net
w
o
r
ks
as a t
opi
c
o
f
i
n
t
e
rest
has
been attractive
for
researche
r
s
and indust
r
ies.
Based
on
b
r
ief rev
i
ew on
th
e literatu
re wh
i
c
h
h
a
s b
e
en
mad
e
th
ro
ugh
Go
og
le Scho
lar, th
e statistics
o
n
th
ese
t
opi
cs
ha
ve
be
en s
u
m
m
ari
z
ed i
n
Ta
bl
e
1.
Tabl
e
1
l
i
s
t
s
a n
u
m
b
er
of a
t
t
r
act
i
v
e ap
pl
i
cat
i
ons
o
f
un
de
rwat
e
r
sens
or
net
w
or
ks f
o
r t
h
ei
r t
o
p
i
cs and t
h
ei
r u
s
age. R
e
sea
r
ch statistics o
f
th
is tab
l
e sh
ows
research
ers in
t
e
rests
for
a deca
de.
Tabl
e
1. R
e
sea
r
ch
t
o
pi
cs o
f
i
n
t
e
rest
i
n
t
h
e l
a
s
t
10
y
ears
(
2
0
0
5
-
2
01
5)
o
n
U
W
S
N
(
Y
:
Yes)
Topics Usage
Exa
m
ples of literat
u
res
on topic
Cu
rren
t
Use/Research
Cu
rren
t
Challenge
?
Future
T
r
ends
?
Mine counterm
e
as
ure
Military
[2, 18, 21, 22]
Y
Y
Y
Barrie
r
re
ef
Military
[3, 4, 23]
Y
Y
Y
Natur
a
l events
M
onitor
i
ng/ Disaster
[1,
2,
19,
3,
4]
Y
Y
Y
Equip
m
ent m
onitoring
Military/
Monito
ring
[1, 2, 3-4,19-20, 23]
Y
Y
Y
Autono
m
ous surveillance
Military
[2, 20, 22, 24]
Y
Y
Y
M
a
r
i
ne fish farm
s
M
onitor
i
ng
[25]
Y
Y
Y
Quality m
onitoring
Monitoring
[1, 2, 3-4,19-21, 23]
Y
Y
Y
Pollution pr
eventi
on
M
onitor
i
ng/ Disaster
[1,
2,
3-
4,
19-
21,
2
3
]
Y
Y
Y
Offsh
o
r
e
platform
pr
otection
M
onitor
i
ng/ Disaster
[2,
3,
4,
22]
Y
Y
Y
Resour
ce explor
ation
M
onitor
i
ng
[1,
2,
3-
4,
19-
21,
2
3
]
Y
Y
Y
Navigation
Military/
Navigation
[1, 2, 3-4,19-21, 23]
Y
Y
Y
Co
mm
unication
Military/
Navigatio
n
[1, 2, 3-4,19-21, 23]
Y
Y
Y
3.
RESEA
R
C
H TREN
DS A
N
D
ST
ATISTI
CS
Seve
ral
resear
ch w
o
r
k
s i
n
U
W
S
N
ha
ve be
en re
vi
ewe
d
t
h
r
o
ug
h G
o
ogl
e Schol
a
r
i
n
o
r
de
r t
o
l
i
s
t
a
categorical table for underwa
t
er sensor
net
w
o
r
k
s
. Thi
s
re
vi
ew i
s
m
a
de fro
m
the year 2
0
00 to
now. Researc
h
statistics on these aspects on
the UWSNs
ha
s shown a
n
in
c
r
ease on publis
hed
works an
d also
in
terest o
f
th
e
researc
h
ers in recent years.
It
sho
u
l
d
be not
e
d
t
h
at
t
h
e st
at
i
s
ti
cs on 20
1
4
-
2
01
5 w
o
rks ar
e not
t
h
e fi
nal
s
si
nce
t
h
e wor
k
s
publishi
ng on
the com
i
ng
fe
w m
onths a
nd also those
pa
ginated in t
h
e
early 2016 m
a
y still counte
d
as the
st
at
i
s
t
i
c
s of
20
14
-
2
0
1
5
. R
e
p
o
r
t
s
gi
ve
n i
n
Ta
bl
e
2
prese
n
t
a
n
est
i
m
at
e on t
h
e
researc
h
e
r
s’
i
n
t
e
rest
s
an
d
whi
c
h
cat
ego
r
y
has
m
o
re publ
i
s
he
d pa
pers
. Tabl
e 3 gi
ves a
n
e
s
t
i
m
a
t
e
on t
h
e
num
ber o
f
p
u
b
l
i
s
he
d w
o
r
k
s
i
n
t
h
e
journals a
n
d
proceedi
n
gs se
pa
rate
d
by years
and total c
o
unt
s
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Overview on
Rese
arc
h
es on Underw
ater Sensor
Networ
k: A
pplicati
o
n
....
(
P
edr
a
m V
a
hdani A
m
oli)
9
59
Tabl
e
2.
St
at
i
s
t
i
c
s o
n
cat
eg
ori
e
s o
f
un
de
rwat
er se
ns
or
net
w
or
ks
reseac
h
(
R
ef:
G
o
o
g
l
e
sc
hol
a
r
&
IEE
E
)
Categor
y
2000-
2
007
2008-
2
009
2010-
2
011
2012-
2
013
2014-
2
015
Acoustic under
w
ater
sensor
networ
ks
57
83
107
133
~79
W
i
r
e
less under
w
ater
sensor
networ
ks
17
46
72
83
~80
Routing
12
27
38
56
~56
E
n
er
gy
efficiency
and
consu
m
ption
6
20
30
30
~25
L
o
calization
11
25
30
40
~30
Sur
v
ey
on
UW
SN
1 6 4 9
~11
Sensor
s
co
m
m
unication
6 12
19
9
~10
Sensor
deploym
en
t
3 10
8 11
~9
Sensor
positionin
g
5 1 3 5
~3
M
obile
sensor
s
4
10
11
18
~19
Tab
l
e
3
.
Statistics on
scien
tifi
c
jo
urn
a
ls
pub
lish
i
ng
o
n
und
er
w
a
ter sen
s
or
netw
or
k
s
Journal/Proceedings Publisher
2000-2
007
2008-
2
009
2010-2
011
2012-2
013
2014-2
015
Total
I
E
EE
Suppor
ted Confer
ences
I
E
EE
xplor
e
165
93
98
99
98
553
Hindawi
Jour
nals
Hindawi
0 0
5 9
19
33
Proceedings of
Intl. Conf
erence
ACM Digital
L
i
br
ary
3
4
2 14
8
41
Co
m
puter
Co
m
m
u
n
ications
E
l
sevier
0 2
0 3 1
6
Ad
hoc
Networ
ks
E
l
sevier
2 3
4 4 6
19
I
E
EE
Jour
nals
I
E
EE
45
14
27
28
40
154
Sy
ste
m
s
John
W
iley
0 0
0 0 4
4
4.
UN
DER
W
AT
ER
SE
NSO
R
NETWO
R
KS
APPLI
CATI
O
NS
Th
e
d
e
scrib
e
d
featu
r
es in th
e literatu
re en
ab
le a
br
o
a
d
ran
g
e
o
f
app
licatio
n
s
fo
r u
n
d
e
rwater sensor
net
w
or
ks a
s
:
Environment
a
l Monitori
ng:
Env
i
ron
m
en
tal
m
o
n
ito
ring
is o
n
e
of th
e m
o
st
i
m
p
o
r
tant ap
p
licatio
n
s
of
un
de
rwat
er se
nso
r
net
w
or
ks.
Suc
h
as M
o
ni
t
o
ri
n
g
o
f
chem
i
cal
and bi
ol
o
g
i
cal
pol
l
u
t
i
o
n
s
, ocea
n cu
rre
nt
s
and
wi
nds, we
ather forecasti
ng
an
d
detecting clim
ate changes
[18].
Assisted N
a
vigation:
Ex
pl
o
r
i
n
g
a
n
d
l
o
cat
i
n
g
roc
k
s
,
s
h
o
a
l
s
, m
oori
n
g
p
o
si
t
i
ons
, s
ubm
erge
d
wrec
ks
an
d
a
n
y
o
t
h
e
r critical po
sitio
n of in
terest are an
o
t
h
e
r
i
m
p
o
r
tan
t
app
licatio
n
o
f
und
erwater sen
s
o
r
network
s
.
Di
st
ri
but
e
d
T
a
ct
i
c
al
S
u
rvei
l
l
ance
:
Usi
n
g
un
de
rwat
er
se
nso
r
net
w
or
ks
one
can m
oni
t
o
r a
n
a
r
ea
fo
r
su
rv
eillan
ce, reco
nn
aissan
ce, t
a
rg
eting
and
intru
s
ion
d
e
tectio
n system
s [1
9].
Sei
s
mi
c M
oni
t
o
ri
n
g
of
Un
der
w
at
er Fi
el
ds:
Sei
s
m
i
c
m
oni
tori
ng
of
u
nde
r
w
at
er fi
el
d
s
i
s
anot
her i
m
port
a
nt
appl
i
cat
i
o
n of un
de
rwat
er
se
n
s
or
net
w
o
r
k
s
. St
udi
es o
f
vari
at
i
on
i
n
t
h
e oi
l
reser
v
oi
r ove
r
t
i
m
e
whi
c
h
ca
n be
use
d
f
o
r asse
ss
m
e
nt
of
fi
el
d
per
f
o
r
m
a
nce and
ne
cessary
i
n
terv
en
tion
s
refer t
o
t
h
e top
i
c of “4
-D seismic
m
oni
t
o
ri
ng”
.
Disaster preve
ntion:
m
easu
r
in
g
rem
o
te lo
catio
n
seism
i
c ac
tiv
ity fro
m
re
m
o
te
lo
catio
n
s
can
h
e
l
p
to
d
e
tect
oceans
disaster suc
h
as
tsuna
m
i.
C
o
o
p
er
at
i
ve Ocea
n S
a
m
pl
i
ng N
e
t
w
orks
:
Net
w
o
r
k
s
on
un
der
w
at
er s
e
ns
ors can
be
used t
o
pe
rf
orm
synoptic, c
o
operative a
d
aptive sam
p
ling of t
h
e
3D coas
tal
ocean environment. Th
e
advantages
of
bringing
to
g
e
th
er sop
h
i
sticated
n
e
w ro
bo
tic v
e
h
i
cles and
adv
a
n
c
ed
o
c
ean
m
o
d
e
ls in
im
p
r
o
v
i
ng
th
e ab
ility to
obs
er
ve a
nd
p
r
edi
c
t
t
h
e
oce
a
ni
c en
vi
r
onm
ent
ha
ve
been
dem
onst
r
at
ed
by
M
o
nt
erey
B
a
y
Expe
ri
m
e
nt
accom
p
lished
i
n
August 2003.
Und
e
rw
a
t
er Min
e
Detection
a
n
d
Id
en
tifica
tio
n:
Th
e con
c
u
r
ren
t
op
eration
o
f
m
u
ltip
le
sen
s
o
r
n
e
t
w
orks
wi
t
h
aco
ust
i
c
and
opt
i
cal
se
nso
r
s ca
n be
u
s
ed t
o
pe
rf
o
r
m
rapi
d e
nvi
ro
n
m
ent
a
l
assessm
ent
s
of u
n
k
n
o
w
n
o
b
j
ects. Th
erefo
r
e, th
is
sch
e
m
e
can
facilitate th
e und
erwater min
e
d
e
tection
an
d id
en
tificatio
n
.
C
o
m
m
u
n
i
c
at
i
o
n bet
w
ee
n U
n
derw
at
er R
o
bo
t
s
:
U
nde
rwat
e
r
aut
o
nom
ous
r
o
b
o
t
s
can
be c
ont
rol
l
e
d t
h
r
o
u
g
h
est
a
bl
i
s
hi
n
g
c
o
m
m
uni
cat
i
on by
u
nde
rw
at
er sens
o
r
net
w
o
r
k
s
. I
n
c
o
or
di
nat
e
d wi
t
h
sen
s
o
r
n
e
t
w
o
r
k
s
appl
i
cat
i
o
ns
u
nde
r
w
at
er
ro
b
o
t
s
s
h
o
u
l
d
m
a
ke c
o
m
m
uni
catio
n
wh
ile th
ey are eith
er fully au
to
no
m
o
u
s
or
ab
le to
co
mm
u
n
i
cate, bu
t lim
i
t
ed
in
d
e
p
t
h d
e
p
l
o
y
m
e
n
t
an
d
man
e
u
v
e
rab
ilit
y.
5.
UNDE
RW
A
TER SENS
OR NE
TW
OR
KIN
G
C
H
AL
LEN
GES
UWSN
has its own cha
r
acteristic, for e
x
ample, under
water acou
s
tic ch
an
n
e
ls are un
iqu
e
.
Ov
er all,
t
e
rrest
ri
al
net
w
or
ks s
p
eci
fi
cat
i
o
n
co
ul
d
n
o
t
b
e
use
d
i
n
un
der
w
at
er ac
o
u
st
i
c
one
s.
5.
1.
Physic
al Impl
ementati
on Li
mitations
R
a
di
o
o
r
opt
i
c
al
m
e
t
hods
pr
o
v
i
d
e
l
o
ng
-di
s
t
a
nce c
o
m
m
uni
cat
i
on
wi
t
h
hi
g
h
ba
n
d
wi
dt
hs;
t
h
ere
f
o
r
e t
h
e
electrom
a
gnetic spectrum
tak
e
s over th
e commu
n
i
catio
n
ap
p
lication
s
ou
t
s
id
e water. On th
e con
t
rary,
water
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
95
5 – 9
6
2
96
0
at
t
e
nuat
e
s an
d
scat
t
e
rs alm
o
st
wave
s o
f
al
l
el
ect
ro-m
agnet
i
c fre
que
nci
e
s,
m
a
ki
ng ac
o
u
s
t
i
c
waves
pre
f
erabl
e
f
o
r
und
erw
a
ter
co
mm
u
n
i
catio
n
b
e
yond
ten
s
o
f
m
e
ter
s
. Fun
d
a
m
e
n
t
al atten
u
a
tion
of
all electr
o
-mag
n
e
tic
fre
que
ncies i
n
water de
scribes the
powe
r l
o
ss t
h
at a t
o
ne at freque
ncy experie
n
ces a
s
it travels
from
one
l
o
cat
i
on t
o
an
ot
he
r. Ac
ou
st
i
c
wave’
s
pr
o
p
a
gat
i
on
p
o
p
u
l
a
r fre
que
ncy
ra
nge c
oul
d
be
descri
bed i
n
s
e
veral
stag
es: In
th
e
first stag
e, it tak
e
s
o
v
e
r th
e fun
d
a
m
e
n
t
al lo
ss th
at o
c
cu
rs in
a tran
sm
ission with distance d.
The
second sta
g
e deals with sit
e
speci
fic loss
, d
u
e to su
rfa
ce-b
o
ttom
refl
ections and
re
fraction sound spee
d
chan
ges i
n
de
pt
h. T
h
e t
h
i
r
d
st
age i
s
abo
u
t
addre
sses t
h
at
have be
en
ran
d
o
m
l
y
change
s cause
d b
y
sl
ow
v
a
riation
s
i
n
the prop
ag
atio
n
med
i
u
m
, in
th
e larg
e-scale
receiv
ed
po
wer
[20
]
.
5.
2.
Medium
Acce
ss Con
t
rol
an
d Res
o
urc
e
Sh
aring
Sha
r
ing com
m
unication res
o
urces am
ong
node
s can be
pe
rform
e
d in
m
u
lti-user system
s
.
In wi
reless
sens
or
net
w
or
k
s
, t
h
e f
r
eq
ue
nc
y
spect
rum
i
s
inhe
re
nt
l
y
shar
ed an
d i
n
t
e
r
f
er
ence nee
d
s t
o
be p
r
o
p
e
r
l
y
m
a
nage
d
.
Effi
ci
ent
s
h
ari
ng
of
res
o
u
r
ce
s i
n
st
at
i
ons i
s
per
f
o
r
m
e
d thr
o
ug
h di
ffe
re
nt
m
e
t
hods t
o
separat
e
t
h
e
si
gnal
s
coexi
s
t
e
d i
n
a com
m
on
m
e
dium
. In desi
g
n
of re
so
urce s
h
a
r
i
n
g schem
e
s for
un
der
w
at
er
net
w
or
ks, t
h
e
pecul
i
a
r
charact
e
r
i
s
t
i
c
s of t
h
e ac
o
u
st
i
c
chan
nel
l
i
k
e t
h
e m
o
st
rel
e
vant
of
w
h
i
c
h a
r
e l
o
n
g
del
a
y
s
,
fre
que
ncy
-
de
p
e
nde
nt
at
t
e
nuat
i
o
n, a
n
d rel
a
t
i
v
el
y
l
o
n
g
ar
ri
val
of
aco
ust
i
c
si
g
n
al
s s
h
oul
d
be c
onsi
d
ered
, pl
us
ba
nd
wi
dt
h
co
nst
r
ai
nt
s o
f
aco
ustic
h
a
rdware. Sign
als
can
b
e
d
e
term
in
i
s
tica
l
l
y
separat
e
d i
n
t
i
m
e
or
fr
eque
ncy
[2
1]
.
5.
3.
Reliable Da
t
a
Transf
er
An
ot
he
r t
w
o app
r
oaches a
r
e m
e
nt
i
oned
fo
r
rel
i
a
bl
e dat
a
t
r
ansfe
r
. Fi
r
s
t
o
n
e i
s
end
-
t
o
-en
d
t
echni
q
u
e
,
t
h
e m
o
st
favo
ri
t
e
Transm
i
ssi
on C
o
nt
r
o
l
Pr
ot
oc
ol
(TC
P
).
The sec
o
n
d
t
e
chni
que i
s
ho
p-
by
-
h
o
p
.
Ge
n
e
ral
l
y
TCP’s
performance
m
a
y face problem
be
cause of high and dynam
i
c
chan
nel
errors and propa
g
ation
delay
[2
1]
.
5.
4.
Multi-hop Routing
Dat
a
f
o
r
w
ar
di
ng
ef
fi
ci
ent
l
y
fr
om
source
no
des t
o
c
o
m
m
a
nd/
cont
r
o
l
st
at
i
ons c
oul
d b
e
ve
ry
chal
l
e
ngi
n
g
, es
peci
al
l
y
i
n
l
ong-t
e
rm
m
obi
l
e
t
r
ansm
i
ssi
on t
h
at
are savi
ng e
n
er
gy
i
s
an im
po
rt
ant
i
ssue
.
At
t
h
e
sam
e
ti
me, rou
tin
g
shou
ld
be ab
le to
h
a
ndle n
o
d
e
m
o
b
ility. Th
is req
u
i
re
m
e
n
t
m
a
k
e
s m
o
st ex
istin
g
en
erg
y
effi
ci
ent
ro
ut
i
n
g pr
ot
oc
ol
s un
s
u
i
t
a
bl
e
f
o
r
U
W
SNs.
Va
ri
o
u
s r
out
i
n
g p
r
ot
ocol
s
are [
21]
,
V
ector
b
a
sed
fo
rw
ard
i
ng
(V
BF)
Foc
u
se
d beam
ro
ut
i
n
g
(
F
B
R
)
Reliab
l
e an
d En
erg
y
Balan
c
ed
R
o
u
ting
Algo
rith
m
(REBAR)
In
fo
rm
at
i
on-C
a
rry
i
n
g R
out
i
n
g P
r
ot
oc
ol
(
I
C
R
P
)
Di
rect
i
o
nal
Fl
o
odi
ng
-B
ase
d
R
out
i
n
g
(
D
FR
)
Di
st
ri
b
u
t
e
d
U
n
der
w
at
er C
l
ust
e
ri
n
g
Sc
hem
e
(DUC
S
)
Dept
h B
a
se
d R
out
i
n
g
(
D
B
R
)
Ho
p-
by
-
H
op
D
y
nam
i
c Ad
dres
si
ng
B
a
sed
R
o
ut
i
n
g
(
H
2-
DA
B
)
5.
5.
Lo
ca
liza
t
io
n
Local
i
zat
i
on o
f
m
obi
l
e
senso
r
no
des i
s
cr
uci
a
l
fo
r u
n
d
er
wat
e
r sens
or
net
w
o
r
ks
. Fo
r som
e
appl
i
cat
i
o
n
su
ch
as aqu
a
tic m
o
n
ito
ring
hig
h
precisio
n
l
o
calizatio
n
is
n
ecessary,
wh
i
l
e lo
calizatio
n
so
lu
tion
is
n
e
ed
ed b
y
so
m
e
ap
p
licatio
n
s
su
ch as
su
rv
eillan
ce.
Ho
wev
e
r, ch
aracteristics o
f
un
d
e
rwater
acou
stic pro
p
a
g
a
tio
n and
m
obi
l
i
t
y
of a s
e
ns
or ca
use
gr
eat
chal
l
e
nges
t
o
hi
g
h
preci
si
on a
n
d scal
abl
e
l
o
cal
i
zat
i
on
sol
u
t
i
o
ns, a
s
f
o
l
l
o
w
s
[2
1]
:
Und
e
rwater aco
u
s
tic ch
an
n
e
l
s
are
h
i
gh
ly
d
i
sp
ersi
v
e
and d
e
n
s
e m
u
ltip
ath
im
p
e
d
i
n
g
d
e
lay in
arri
val
esti
m
a
t
i
o
n
time.
Du
e to
effects
o
f
stratificatio
n, acou
s
tic sign
als do
n
o
t
m
o
v
e
on
a
straigh
t
path
,
Due
t
o
l
a
rge
sc
al
e depl
oy
m
e
nt o
f
se
nso
r
net
w
or
ks ce
nt
ral
i
z
e
d
s
o
l
u
t
i
o
ns i
s
p
r
eve
n
t
e
d
.
Sen
s
o
r
m
o
b
ilit
y en
tails d
y
n
a
mic n
e
twork top
o
l
o
g
y
ch
an
g
e
.
6.
DIFFE
RENCES BETWEEN TERREST
RIAL
AND
UNDE
RWATER
SE
NSOR NETWORKS
The m
a
in diffe
r
ences
bet
w
een terre
st
ri
al
a
n
d
un
de
rwat
er
se
n
s
or
net
w
o
r
ks a
r
e as
f
o
l
l
o
ws
[
2
]
:
Co
st:
Du
e to co
m
p
lex
ity an
d
h
a
rdware
pro
t
ectio
n
ch
alle
ng
es und
erw
a
ter
sen
s
o
r
s un
lik
e t
e
r
r
e
str
i
al sen
s
or
no
des
are e
x
pe
nsi
v
e
.
Depl
oyme
nt
.
Due to the c
o
st and c
h
allenges
associ
at
ed
wi
t
h
t
h
e de
pl
oy
m
e
nt
of se
ns
or
n
ode
s, com
p
are
d
t
o
t
e
rrest
ri
al
se
ns
or
n
o
d
es
whi
c
h
are c
o
m
p
act
l
y
depl
oy
ed,
u
n
d
e
r
wat
e
r
se
nso
r
n
ode
s
depl
oy
m
e
nt
i
s
s
p
arse
r.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
An Overview on
Rese
arc
h
es on Underw
ater Sensor
Networ
k: A
pplicati
o
n
....
(
P
edr
a
m V
a
hdani A
m
oli)
9
61
Power.
Du
e t
o
l
o
ng
di
st
anc
e
s an
d m
o
re com
p
l
e
xi
t
y
of
signal
processi
ng at the
rece
ivers, t
h
e power
assum
p
t
i
on
fo
r
u
nde
r
w
at
er se
nso
r
net
w
o
r
k
c
o
m
m
uni
cat
i
on
i
s
hi
g
h
er
t
h
a
n
r
a
di
o c
o
m
m
uni
cat
i
on.
Memory.
Whi
l
e un
de
rwat
er
s
e
ns
ors ca
rry
ou
t
som
e
dat
a
st
orage
o
n
t
h
e
ot
h
e
r ha
n
d
, t
e
r
r
est
r
i
a
l
sens
or
no
d
e
s
have
ve
ry
l
i
m
i
t
ed st
ora
g
e ca
p
aci
t
y
.
S
p
a
tia
l Co
rrel
a
tio
n.
Because
of fart
her
distance betwee
n
unde
rwat
er se
nsors,
readi
ngs
data is differe
nt
fro
m
read
ing
s
i
n
terrestrial sen
s
ors.
7.
CO
NCL
USI
O
N
UWSNs
have
been c
once
r
ne
d in r
ecent years for their applications
in data collecting, by scattering
sens
ors
i
n
wat
e
r.
U
nde
rwat
e
r
wi
rel
e
ss
se
nso
r
net
w
or
ks
ha
v
e
im
port
a
nt
a
p
pl
i
cat
i
ons i
n
re
m
o
t
e
m
oni
t
o
ri
ng
an
d
targ
et track
i
ng
,
du
e to
t
h
eir in
tellig
en
t
sen
s
o
r
s. E
q
u
i
p
p
i
n
g
with wireless in
terfaces with
wh
ich
th
ey
comm
unicate
raises va
rious
problem
s specified to
und
erwater m
o
n
itoring
, in
clud
ing th
e co
mm
u
n
i
catio
n
m
e
di
um
. The desi
g
n
o
f
a U
W
S
N
de
pen
d
s
on fact
ors s
u
c
h
as en
vi
r
onm
ent
,
ap
pl
i
cat
i
on’s
desi
g
n
o
b
j
ect
i
v
es,
and c
o
st
,
har
d
ware a
n
d et
c.
In t
h
i
s
pa
per
,
an
ove
rvi
e
w
of t
h
e
rece
nt
l
y
publ
i
s
hed
pape
rs
on t
h
e
new
appl
i
cat
i
o
ns o
f
un
de
rwat
er
se
nso
r
net
w
or
ks
was
prese
n
t
e
d. S
o
m
e
possi
bl
e chal
l
e
n
g
es
on
de
vel
o
pm
ent
an
d
im
pl
em
ent
a
t
i
o
n o
f
U
W
SNs
were al
s
o
re
vi
ewe
d
a
nd
di
scusse
d.
It
ha
s revi
e
w
ed
a
com
p
ari
s
on
be
t
w
ee
n
terrestrial a
n
d
UWSN. This survey
w
ill give the
reade
r
s a
view on t
h
e
place of underwater sensor
net
w
orks
o
n
research
es
an
d ind
u
stries
b
y
prov
i
d
ing
statistica
l
data. The reade
r
s
ca
n
trac
k what
have been
the highly
in
terest in
recen
t
years
and
wh
a
t
a
r
e ye
t to
co
me
.
REFERE
NC
ES
[1]
J. Heidemann,
et al.
, “Underwater sensor networks: applic
ations, adv
a
nces and challeng
es,”
Philosophical
Transactions of
the Royal Society of London A:
Mathematica
l
, Physical
and Engineering Sciences
, vol/issue
:
370(1958), pp
. 1
58-175, 2012
.
[2]
I. F. Ak
yi
ldiz
,
et al.
, “Underwater acoustic sensor
ne
tworks
: r
e
s
e
a
r
ch ch
all
e
nges
,
”
Ad hoc n
e
tworks
, vol/issue: 3(3)
,
pp. 257-279
, 20
05.
[3]
M.
Mura
d,
et al
.
,
“A Survey
on
Current Underwater Ac
oustic Sensor Netw
ork Applications,”
International Journ
a
l
of Computer Theory and Eng
i
neering
, vol/issue: 7
(
1), pp
. 51
, 2015
.
[4]
E. F
e
lem
b
an,
et al.
, “Underwater
Sensor
Network App
lications:
A Comprehensi
v
e Survey
,”
International Journa
l
of Distributed Sensor Networks
, v
o
l. 501
, pp
. 8968
32, 2015
.
[5]
G.
Han,
et al.
, “Impacts of De
plo
y
ment Strategies on Localiza
tion Performance in Underwater
Acoustic Sensor
Networks,”
Indu
strial Electroni
cs, IEEE Transactions
on, vol/issue: 62(3)
, pp
. 172
5-1733, 2015
.
[6]
S. Kundu and P. Sadhukhan, “Design a
nd imp
l
ementation of a time sy
n
c
hroni
zation-free distribut
ed localizatio
n
scheme for underwater
ac
oustic sensor
network,”
In App
lica
tion
s
and Innovatio
ns in Mobile Co
mputing (
A
IMoC)
,
2015, pp
. 74-80
.
[7]
Z. Wu
and X.
Li, “An improved underwater
acoustic network
loca
lization alg
o
rithm,”
Comm
unications
, Chin
a
,
vol/issue: 12(3), pp.
77-83
,
2015
.
[8]
H. Ram
ezan
i an
d G. Leus
, “
L
o
c
ali
zat
ion P
ack
et
S
c
he
duling for
Underwater Aco
u
s
tic S
e
ns
or net
w
orks
,”
Sel
ect
ed
Areas in Commu
nications
, IEEE
, vol/issue: 33(7)
, pp. 1345-1356,
2015.
[9]
V. Krishnaswamy
and S. S.
Manvi, “Analy
s
i
s of acoustic channel in
under
w
ater acoustic sensor network,” in
Advance Compu
ting Conference
(
I
ACC
)
, 2015 IEEE In
ternationa
l
, pp
. 233-236
.
[10]
D.
K.
Jha,
et al.
, “Topolog
y
optimization for en
erg
y
manag
e
ment in underwater
sensor network
s
,”
Internation
a
l
Journal of Contr
o
l
, vo
l/issue: 88(
9), pp
. 1775-178
8, 2015
.
[11]
R. Mohammadi,
et al.
, “Fuzzy
Depth Based Routing Pr
otocol for
Underwater Aco
u
s
tic Wireless Sensor Networks,”
Journal of Telecommunication,
Electr
onic and
Computer Engin
eering (
J
TEC)
,
v
o
l/issue: 7
(
1), pp
. 81-86
, 2015
.
[12]
B. Diao,
et al.
,
“Improving Bot
h
Energ
y
and Time Efficiency
of Depth-Based
Routing for Underwater Senso
r
Networks,”
In
ter
national
Journal of Distribu
ted
S
e
nsor Networks
,
vol. 501
, pp
. 781
932, 2015
.
[13]
R. Su,
et al.
, “B
alan
cing between robustness and
energ
y
consumption in underw
ater
acoustic sen
s
or networks,” in
Wireless Communications
and Networking Confer
ence (
W
CNC)
, 2015 IEEE
, pp. 1
048-1053.
[14]
G.
Han,
et al.
,
“
S
ecure com
m
u
nica
tion for und
erwa
ter
acoustic sensor networks,”
Communications Magazine,
IEEE
,
vo
l/issue:
53(8), pp
. 54-60
, 2015.
[15]
K.
Hao,
et a
l
.,
“An Efficien
t and Reliable Geographic Routin
g Protocol B
a
sed on Partial Network Coding fo
r
Underwater
Sen
s
or Networks,”
S
e
nsors
, vol/issue: 15(6), pp. 1272
0-12735, 2015
.
[16]
L. Kar
i
m
,
et
al
.
,
“
L
oca
liz
atio
n in t
e
rrest
r
i
al and und
erwater sensor
‐
based
m2m commun
ication n
e
twork
s
:
archi
t
ec
ture
, c
l
a
s
s
i
fication
and
cha
lleng
es
,”
I
n
ternational Jo
urnal of Com
m
unication S
y
stems
, 2015. DO
I:
10.1002/dac.299
7.
[17]
S. D. Seeley
Jr.
and R. Balasubr
am
anian, “GEMMP -
A Google
Maps Enab
led Mobile Mission
Planning Tool for
Autonomous Un
derwat
er Vehicles,”
Internation
a
l Journal of Robotics and Auto
mation (
I
JRA)
, v
o
l/issue: 1(2), p
p
.
94~106, 2012. I
SSN: 2089-4856.
[18]
H.
Mei,
et al.
,
“
J
oint Interf
er
ence
Mitig
ation
with Chann
e
l
Estim
ated
in
Underwater Ac
oustic S
y
s
t
em
,
”
TE
LKOMNIKA
,
vol/issue:
11(12)
, pp
. 7423~7430, 2013. e-ISSN: 2
087-278X.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E
V
o
l
.
6,
No
. 3,
J
u
ne 2
0
1
6
:
95
5 – 9
6
2
96
2
[19]
J. Heidemann,
et al.
, “Research challenges
an
d a
pplications for underwater
sensor networkin
g
,” in
Wire
le
ss
Communications and Networking
C
onferen
ce, 20
06. WCNC 2006
. IEEE
, vo
l. 1, p
p
. 228-235
, 200
6.
[20]
R. B. Manjula. a
nd S. M. Sunilkumar
,
“
I
s
s
u
es
in Underwater Ac
oustic Sensor Networks,”
International Journal
of
Computer and Electr
ical Engin
e
ering
, vo
l/issue:
3(1), pp
. 1793-8
163, 2011
.
[21]
I. F. Ak
yildi
z
,
et al.
,
“A survey
on wire
le
ss mu
ltimedia sensor networks,”
Computer networks
, vol/issue: 51(4), pp.
921-960, 2007
.
[22]
Manigopal A. and Panneerselvam R., “Underwa
t
er wireless sensor networks: a survey
,”
In
ternational Journal o
f
Computer Scien
ce and
Information
Technolog
y &
S
ecurity
(
I
JCSITS)
, vol/issue:
2(6), 2012
. ISSN: 2249-9555.
[23]
I. F. Ak
y
i
ldiz
,
et al.
, “State-
o
f-the-ar
t
in pr
otocol research
fo
r underwater acoustic sens
or networks,” in
Proceed
ings of
t
h
e 1st
ACM
inte
rna
tional works
hop on Underwa
t
er ne
tworks
, 20
06, September, p
p
. 7-16
.
Evaluation Warning : The document was created with Spire.PDF for Python.