I
nte
rna
t
io
na
l J
o
urna
l o
f
E
lect
rica
l a
nd
Co
m
p
ute
r
E
ng
in
ee
ring
(
I
J
E
CE
)
Vo
l.
7
,
No
.
3
,
J
u
n
e
201
7
,
p
p
.
1611
~
1
6
1
9
I
SS
N:
2
0
8
8
-
8708
,
DOI
: 1
0
.
1
1
5
9
1
/
i
j
ec
e
.
v
7
i
3
.
p
p
1
6
1
1
-
1619
1611
J
o
ur
na
l
ho
m
ep
a
g
e
:
h
ttp
:
//ia
e
s
jo
u
r
n
a
l.c
o
m/o
n
lin
e/in
d
ex
.
p
h
p
/I
JE
C
E
Tra
nsitio
na
l P
a
rt
icle Sw
a
rm
O
p
ti
m
i
z
a
tion
No
r
Azlina
Ab A
ziz
1
,
Z
uw
a
irie
I
bra
hi
m
2
,
M
a
riza
n
M
ub
in
3
,
So
ph
a
n Wa
hy
ud
i N
a
w
a
wi
4
,
No
r
H
ida
y
a
t
i A
bd
ul Az
iz
5
1,
3
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
,
Un
iv
e
rsity
o
f
M
a
la
y
a
,
M
a
la
y
sia
1,
5
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
&
T
e
c
h
n
o
l
o
g
y
,
M
u
lt
im
e
d
ia Un
iv
e
rsit
y
,
M
a
la
y
sia
2
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
&
El
e
c
tro
n
ic E
n
g
in
e
e
rin
g
,
Un
iv
e
rsiti
M
a
lay
s
ia P
a
h
a
n
g
,
M
a
lay
sia
4
F
a
c
u
lt
y
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
r
siti
T
e
k
n
o
lo
g
i
M
a
lay
sia
,
M
a
la
y
sia
Art
icle
I
nfo
AB
ST
RAC
T
A
r
ticle
his
to
r
y:
R
ec
eiv
ed
Feb
5
,
2
0
1
7
R
ev
i
s
ed
Ap
r
8
,
2
0
1
7
A
cc
ep
ted
A
p
r
24
,
2
0
1
7
A
n
e
w
v
a
riatio
n
o
f
p
a
rti
c
le
s
wa
r
m
o
p
ti
m
iza
ti
o
n
(P
S
O)
term
e
d
a
s
tran
siti
o
n
a
l
P
S
O
(T
-
P
S
O)
is
p
ro
p
o
se
d
h
e
re
.
T
-
P
S
O
a
tt
e
m
p
ts
to
im
p
ro
v
e
P
S
O
v
ia
its
it
e
ra
ti
o
n
stra
teg
y
.
T
ra
d
it
io
n
a
ll
y
,
P
S
O
a
d
o
p
ts
e
it
h
e
r
th
e
sy
n
c
h
ro
n
o
u
s
o
r
th
e
a
s
y
n
c
h
ro
n
o
u
s
it
e
ra
ti
o
n
stra
teg
y
.
Bo
t
h
o
f
th
e
se
it
e
ra
ti
o
n
stra
teg
ies
h
a
v
e
th
e
ir
o
w
n
stre
n
g
th
s
a
n
d
w
e
a
k
n
e
ss
es
.
T
h
e
s
y
n
c
h
ro
n
o
u
s
stra
teg
y
h
a
s
re
p
u
tati
o
n
o
f
b
e
tt
e
r
e
x
p
lo
it
a
ti
o
n
w
h
il
e
a
s
y
n
c
h
ro
n
o
u
s
stra
teg
y
is
stro
n
g
e
r
in
e
x
p
lo
ra
ti
o
n
.
T
h
e
p
a
rti
c
les
o
f
T
-
P
S
O
sta
rt
w
it
h
a
s
y
n
c
h
ro
n
o
u
s
u
p
d
a
te
to
e
n
c
o
u
ra
g
e
m
o
re
e
x
p
lo
ra
ti
o
n
a
t
th
e
sta
rt
o
f
th
e
s
e
a
rc
h
.
If
n
o
b
e
tt
e
r
so
lu
ti
o
n
is
fo
u
n
d
f
o
r
a
n
u
m
b
e
r
o
f
it
e
ra
ti
o
n
,
t
h
e
it
e
ra
ti
o
n
stra
teg
y
is
c
h
a
n
g
e
d
to
sy
n
c
h
ro
n
o
u
s
u
p
d
a
te
to
a
ll
o
w
f
in
e
tu
n
in
g
b
y
th
e
p
a
rti
c
les
.
T
h
e
re
su
lt
s
s
h
o
w
th
a
t
T
-
P
S
O
is
ra
n
k
e
d
b
e
tt
e
r
th
a
n
th
e
tra
d
it
i
o
n
a
l
P
S
Os
.
K
ey
w
o
r
d
:
As
y
n
c
h
r
o
n
o
u
s
u
p
d
ate
I
ter
atio
n
s
tr
ateg
y
P
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
S
y
n
ch
r
o
n
o
u
s
u
p
d
ate
Co
p
y
rig
h
t
©
2
0
1
7
In
stit
u
te o
f
A
d
v
a
n
c
e
d
E
n
g
i
n
e
e
rin
g
a
n
d
S
c
ien
c
e
.
Al
l
rig
h
ts
re
se
rv
e
d
.
C
o
r
r
e
s
p
o
nd
ing
A
uth
o
r
:
No
r
A
zli
n
a
A
b
A
ziz,
Facu
lt
y
o
f
E
n
g
i
n
ee
r
i
n
g
&
T
ec
h
n
o
lo
g
y
,
Mu
lti
m
ed
ia
U
n
iv
er
s
it
y
,
7
5
4
5
0
Me
lak
a,
Ma
la
y
s
ia
.
E
m
ail: a
zli
n
a.
az
iz
@
m
m
u
.
ed
u
.
m
y
1.
I
NT
RO
D
UCT
I
O
N
I
n
p
ar
ticle
s
w
ar
m
o
p
ti
m
izatio
n
(
P
SO)
,
o
p
tim
iza
tio
n
p
r
o
b
lem
is
s
o
lv
ed
b
y
s
w
ar
m
o
f
p
ar
ticles
t
h
at
m
o
v
e
ar
o
u
n
d
a
s
ea
r
c
h
s
p
ac
e
l
o
o
k
in
g
f
o
r
o
p
ti
m
al
s
o
l
u
tio
n
.
E
ac
h
o
f
t
h
e
p
ar
ticles
h
a
s
v
e
lo
cit
y
an
d
p
o
s
itio
n
.
T
h
e
p
ar
ticles
m
o
v
e
w
it
h
i
n
t
h
e
s
ea
r
ch
s
p
ac
e
b
y
i
ter
ativ
e
l
y
u
p
d
atin
g
th
e
s
e
t
w
o
v
al
u
es.
T
h
er
e
ar
e
t
w
o
c
h
o
ices
o
f
u
p
d
ate
m
ec
h
a
n
i
s
m
s
/
iter
atio
n
s
tr
ateg
ies
;
s
y
n
c
h
r
o
n
o
u
s
o
r
as
y
n
ch
r
o
n
o
u
s
[
1
]
.
T
h
e
s
y
n
ch
r
o
n
o
u
s
u
p
d
ate
is
t
h
e
m
o
r
e
p
o
p
u
lar
ap
p
r
o
ac
h
.
I
n
s
y
n
ch
r
o
n
o
u
s
P
SO
(
S
-
P
SO)
th
e
p
ar
ticles
ch
a
n
g
e
t
h
eir
v
elo
citie
s
an
d
p
o
s
itio
n
s
af
ter
th
e
f
it
n
es
s
o
f
t
h
e
w
h
o
le
s
w
ar
m
i
s
e
v
al
u
ated
.
On
t
h
e
o
th
er
h
an
d
,
i
n
a
s
y
n
c
h
r
o
n
o
u
s
P
SO
(
A
-
P
SO)
,
a
p
ar
ticle
i
s
ab
le
to
u
p
d
ate
its
v
elo
cit
y
a
n
d
p
o
s
itio
n
as
s
o
o
n
as
it
co
m
p
let
es
its
f
it
n
es
s
ev
al
u
atio
n
w
it
h
o
u
t
t
h
e
n
ee
d
to
w
ait
f
o
r
th
e
o
th
er
p
ar
ticles to
co
m
p
lete
th
eir
f
itn
e
s
s
e
v
al
u
atio
n
.
T
h
e
s
y
n
c
h
r
o
n
o
u
s
u
p
d
ate
is
s
tr
o
n
g
er
i
n
e
x
p
lo
itatio
n
,
wh
ile
as
y
n
ch
r
o
n
o
u
s
u
p
d
ate
is
b
etter
in
ex
p
lo
r
atio
n
[
2
]
.
E
x
p
lo
r
atio
n
an
d
ex
p
lo
it
atio
n
ar
e
i
m
p
o
r
tan
t
i
n
e
n
s
u
r
i
n
g
th
e
s
ea
r
c
h
s
p
ac
e
is
e
f
f
ec
ti
v
el
y
ex
p
lo
r
ed
an
d
in
f
o
r
m
a
tio
n
o
b
tain
ed
is
ef
f
icie
n
tl
y
ex
p
lo
i
t.
T
h
e
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
i
m
p
r
o
v
e
p
er
f
o
r
m
a
n
ce
a
n
d
ef
f
icien
c
y
o
f
an
al
g
o
r
ith
m
.
T
y
p
icall
y
,
h
i
g
h
er
e
x
p
lo
r
atio
n
is
f
a
v
o
r
ab
le
in
th
e
ea
r
l
y
s
ta
g
e
w
h
ile
s
tr
o
n
g
er
e
x
p
lo
itatio
n
is
ex
p
ec
ted
to
w
ar
d
s
th
e
e
n
d
.
Her
e,
a
n
e
w
v
ar
iatio
n
o
f
P
SO
alg
o
r
it
h
m
th
at
co
m
b
in
e
s
b
o
th
u
p
d
ate
m
et
h
o
d
s
is
p
r
o
p
o
s
ed
.
T
h
e
p
r
o
p
o
s
ed
alg
o
r
ith
m
is
k
n
o
w
n
as
tr
an
s
it
io
n
al
P
SO
(
T
-
P
SO)
.
T
h
e
p
ar
ticles
in
T
-
P
SO
s
tar
t
w
it
h
as
y
n
ch
r
o
n
o
u
s
u
p
d
ate
m
ec
h
a
n
i
s
m
a
n
d
th
e
n
tr
an
s
it
to
s
y
n
c
h
r
o
n
o
u
s
u
p
d
ate
at
a
later
s
tate.
T
h
e
as
y
n
ch
r
o
n
o
u
s
u
p
d
ate
is
ad
o
p
ted
at
th
e
s
tar
t o
f
t
h
e
s
ea
r
ch
p
r
o
ce
s
s
s
o
t
h
at
e
x
p
lo
r
atio
n
is
e
n
co
u
r
ag
ed
.
On
ce
n
o
i
m
p
r
o
v
e
m
e
n
t
is
ac
h
iev
e
d
af
ter
S
iter
atio
n
s
,
t
h
e
p
ar
ticle
s
tr
an
s
i
ted
to
s
y
n
c
h
r
o
n
o
u
s
u
p
d
ate
m
ec
h
a
n
is
m
a
n
d
f
o
cu
s
o
n
ex
p
lo
itatio
n
o
f
t
h
e
in
f
o
r
m
atio
n
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
1
1
–
1
6
1
9
1612
T
h
e
p
r
o
p
o
s
ed
T
-
P
SO
is
test
ed
u
s
i
n
g
C
E
C
2
0
1
4
’
s
b
en
c
h
m
ar
k
f
u
n
ctio
n
s
.
I
ts
p
er
f
o
r
m
a
n
ce
is
t
h
en
b
en
ch
m
ar
k
ed
w
it
h
S
-
P
SO
an
d
A
-
P
SO.
T
h
e
f
in
d
i
n
g
s
s
h
o
w
th
at
T
-
P
SO
is
ab
le
to
ac
h
ie
v
e
b
etter
r
an
k
th
an
S
-
P
SO
an
d
A
-
P
SO.
I
n
t
h
e
f
o
ll
o
w
i
n
g
s
ec
tio
n
,
b
o
th
S
-
P
SO
a
n
d
A
-
P
SO
al
g
o
r
ith
m
s
ar
e
r
ev
ie
w
ed
.
T
h
e
T
-
P
SO
alg
o
r
ith
m
i
s
d
is
cu
s
s
ed
i
n
s
ec
ti
o
n
3
.
Nex
t,
th
e
r
es
u
lt
s
o
f
t
h
e
ex
p
er
i
m
e
n
t
co
n
d
u
c
ted
ar
e
p
r
e
s
en
ted
i
n
s
ec
tio
n
4
.
L
ast
l
y
t
h
i
s
w
o
r
k
is
co
n
cl
u
d
ed
in
s
ec
tio
n
5
.
2.
P
ARTI
C
L
E
SWA
RM
O
P
T
I
M
I
Z
AT
I
O
N
AND
I
T
S
T
RA
DIT
O
NA
L
I
T
E
RAT
I
O
N
S
T
RAT
E
G
I
E
S
P
SO
is
a
n
atu
r
e
i
n
s
p
ir
ed
alg
o
r
ith
m
.
I
t
e
m
u
late
s
th
e
s
o
cial
b
eh
av
io
r
as
s
ee
n
in
n
at
u
r
e,
lik
e
b
ir
d
s
f
lo
ck
i
n
g
a
n
d
f
is
h
es
s
c
h
o
o
lin
g
.
T
h
ese
o
r
g
an
i
s
m
s
s
ea
r
ch
f
o
r
f
o
o
d
s
o
u
r
ce
b
y
m
o
v
i
n
g
i
n
g
r
o
u
p
w
it
h
o
u
t
an
y
ce
n
tr
alize
d
co
n
tr
o
l.
T
h
e
s
ea
r
ch
is
p
er
f
o
r
m
ed
t
h
r
o
u
g
h
i
n
f
o
r
m
atio
n
s
h
ar
in
g
an
d
i
n
d
iv
id
u
al
ef
f
o
r
t.
T
h
is
s
o
cial
b
eh
av
io
r
is
co
p
ied
in
P
SO,
w
h
er
e
t
h
e
s
ea
r
ch
f
o
r
th
e
s
o
lu
tio
n
o
f
an
o
p
ti
m
izatio
n
p
r
o
b
lem
is
ca
r
r
ied
b
y
s
w
ar
m
o
f
p
ar
tic
le
s
.
E
ac
h
p
ar
ticle
h
as it
s
p
o
s
itio
n
;
(
)
=
{
1
(
)
,
2
(
)
,
3
(
)
,
…
,
(
)
,
…
,
(
)
}
(
1
)
an
d
v
elo
cit
y
;
(
)
=
{
1
(
)
,
2
(
)
,
3
(
)
,
…
,
(
)
,
…
,
(
)
}
(
2
)
W
h
er
e
=
{
1
,
2
,
3
,
…
,
}
(
3
)
is
p
ar
ticle
n
u
m
b
er
a
n
d
is
t
h
e
s
ize
o
f
t
h
e
s
w
ar
m
i.e
.
n
u
m
b
er
o
f
p
ar
ticles,
is
t
h
e
iter
ati
o
n
n
u
m
b
er
,
is
d
i
m
en
s
io
n
n
u
m
b
er
an
d
is
th
e
s
ize
o
f
th
e
p
r
o
b
lem
’
s
d
i
m
e
n
s
io
n
.
T
h
e
p
a
r
ticles
lo
o
k
f
o
r
o
p
ti
m
al
s
o
l
u
tio
n
b
y
u
p
d
atin
g
th
eir
v
elo
cit
y
a
n
d
p
o
s
itio
n
.
T
h
e
v
elo
cit
y
is
i
n
f
lu
e
n
ce
d
b
y
p
ar
ticle’
s
ex
p
er
ie
n
ce
an
d
in
f
o
r
m
at
io
n
s
h
ar
ed
w
i
th
i
n
t
h
e
s
w
ar
m
an
d
u
p
d
ated
u
s
i
n
g
t
h
e
f
o
llo
w
i
n
g
e
q
u
atio
n
;
(
)
=
×
(
−
1
)
+
1
×
1
×
(
(
)
−
(
−
1
)
)
+
2
×
2
×
(
(
)
−
(
−
1
)
)
(
4
)
I
n
eq
u
atio
n
(
4
)
,
is
in
er
tia
weig
h
t
it
co
n
tr
o
ls
th
e
m
o
m
e
n
t
u
m
o
f
th
e
s
ea
r
ch
.
T
y
p
ical
l
y
,
lin
ea
r
l
y
d
ec
r
ea
s
in
g
i
n
er
tia
i
s
u
s
ed
to
e
n
co
u
r
ag
e
e
x
p
lo
r
atio
n
i
n
ea
r
lie
r
p
h
ase
o
f
th
e
s
ea
r
c
h
a
n
d
f
ac
il
itates
f
i
n
e
tu
n
i
n
g
at
th
e
later
s
ta
g
e.
T
w
o
lear
n
in
g
f
ac
to
r
s
,
1
an
d
2
a
r
e
u
s
ed
i
n
t
h
e
eq
u
atio
n
.
B
o
t
h
lear
n
in
g
f
ac
to
r
s
ar
e
u
s
u
all
y
s
e
t
to
s
a
m
e
v
al
u
e
s
o
t
h
at
t
h
e
i
m
p
o
r
tan
ce
o
f
p
ar
ticle’
s
o
w
n
ex
p
er
ien
ce
an
d
s
o
cial
in
f
l
u
e
n
ce
i
s
eq
u
all
y
w
ei
g
h
ted
.
T
h
e
p
ar
ticle’
s
o
w
n
e
x
p
er
ien
ce
is
r
ep
r
esen
ted
b
y
(
)
=
{
1
(
)
,
2
(
)
,
3
(
)
,
…
,
(
)
,
…
,
(
)
}
,
w
h
er
e
th
i
s
is
th
e
b
es
t so
lu
tio
n
t
h
at
h
as b
e
en
en
co
u
n
ter
ed
b
y
t
h
e
p
ar
ticle
s
in
ce
t
h
e
s
tar
t o
f
t
h
e
s
ea
r
ch
u
p
to
th
e
th
iter
atio
n
.
W
h
er
ea
s
,
th
e
b
es
t
s
o
lu
tio
n
f
o
u
n
d
b
y
th
e
s
w
ar
m
t
ill
th
iter
atio
n
is
;
(
)
=
{
1
(
)
,
2
(
)
,
3
(
)
,
…
,
(
)
,
…
,
(
)
}
.
P
SO
is
a
s
to
ch
as
tic
al
g
o
r
ith
m
,
w
h
er
e
1
an
d
2
ar
e
t
w
o
in
d
ep
en
d
en
t r
a
n
d
o
m
n
u
m
b
er
r
an
g
i
n
g
f
r
o
m
[
0
,
1
]
.
T
h
e
p
o
s
itio
n
is
u
p
d
ated
u
s
i
n
g
;
(
)
=
(
−
1
)
+
(
)
(
5
)
No
r
m
a
ll
y
(
)
is
b
o
u
n
d
ed
ac
co
r
d
in
g
to
t
h
e
s
ea
r
ch
s
p
ac
e.
S
-
P
SO
a
n
d
A
-
P
SO
ar
e
d
i
f
f
er
en
tiated
b
y
t
h
e
o
r
d
er
a
p
ar
ticle
u
p
d
ates
it
s
v
elo
cit
y
a
n
d
p
o
s
itio
n
w
it
h
r
esp
ec
t
to
th
e
s
w
ar
m
f
it
n
es
s
e
v
alu
a
tio
n
.
T
h
is
ca
n
b
e
s
ee
n
i
n
t
h
e
f
lo
w
c
h
ar
t
f
o
r
S
-
P
SO
an
d
A
-
P
SO,
Fi
g
u
r
e
1
an
d
Fig
u
r
e
2
r
esp
ec
tiv
el
y
.
I
n
S
-
P
SO,
th
e
w
h
o
le
p
o
p
u
lati
o
n
n
ee
d
to
b
e
ev
alu
ated
f
ir
s
t.
T
h
is
is
f
o
llo
w
ed
b
y
id
en
ti
f
icat
io
n
o
f
th
e
p
ar
ticles’
b
est,
(
)
an
d
p
o
p
u
latio
n
’
s
b
est
(
)
.
Nex
t
th
e
w
h
o
le
p
o
p
u
latio
n
’
s
n
e
w
v
elo
citie
s
a
n
d
p
o
s
itio
n
s
ar
e
ca
lcu
lated
.
On
t
h
e
o
th
er
h
an
d
,
i
n
A
-
P
SO
a
p
ar
ticle
d
o
es
n
o
t
n
ee
d
t
o
w
ait
f
o
r
th
e
w
h
o
le
p
o
p
u
la
tio
n
to
b
e
ev
alu
a
ted
f
ir
s
t
b
ef
o
r
e
its
n
e
w
v
elo
cit
y
a
n
d
p
o
s
itio
n
is
u
p
d
ated
.
A
f
ter
its
o
w
n
f
it
n
ess
i
s
ev
alu
ated
,
th
e
p
ar
ticle
ch
ec
k
s
w
h
e
th
er
t
h
e
cu
r
r
en
t
f
it
n
es
s
co
n
tr
ib
u
te
s
to
n
e
w
(
)
o
r
(
)
an
d
u
p
d
ate
th
e
b
est
v
alu
e
s
ac
c
o
r
d
in
g
l
y
.
T
h
en
th
e
p
ar
ticle’
s
n
e
w
v
elo
c
it
y
a
n
d
p
o
s
itio
n
ar
e
i
m
m
ed
iat
el
y
c
alc
u
lated
.
T
h
e
f
lo
w
ch
ar
t
in
F
ig
u
r
e
2
s
h
o
w
s
s
eq
u
en
tial i
m
p
le
m
e
n
tatio
n
o
f
A
-
P
SO.
A
-
P
SO i
s
s
u
itab
le
f
o
r
p
ar
allel
i
m
p
le
m
e
n
tatio
n
[
3
]
–
[
5
]
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Tr
a
n
s
itio
n
a
l P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
(
N
o
r
A
z
lin
a
A
b
A
z
iz
)
1613
Fig
u
r
e
1
.
S
-
P
SO
A
lg
o
r
it
h
m
Fig
u
r
e
2
.
A
-
P
SO
A
lg
o
r
it
h
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
1
1
–
1
6
1
9
1614
3.
T
RANS
I
T
I
O
NA
L
P
SO
Ma
n
y
r
esear
c
h
h
ad
b
ee
n
co
n
d
u
cted
to
w
ar
d
s
b
etter
p
er
f
o
r
m
i
n
g
P
SO.
Fo
r
ex
a
m
p
le,
th
e
i
n
e
r
tia
w
ei
g
h
t
is
i
n
tr
o
d
u
ce
d
to
th
e
v
elo
cit
y
u
p
d
ate
eq
u
atio
n
o
f
P
SO
s
o
t
h
at
e
x
p
lo
r
atio
n
an
d
e
x
p
lo
itati
o
n
is
b
ala
n
ce
d
an
d
b
etter
p
er
f
o
r
m
an
ce
is
ac
h
iev
e
d
[
6
]
.
E
v
er
s
i
n
ce
it
s
in
tr
o
d
u
cti
o
n
,
in
er
t
ia
w
ei
g
h
t
h
ad
b
ec
o
m
e
p
ar
t o
f
th
e
s
ta
n
d
ar
d
P
SO
[
7
]
.
C
o
n
s
tr
ictio
n
f
ac
to
r
h
ad
b
ee
n
in
tr
o
d
u
ce
d
as
an
ad
d
itio
n
al
p
ar
am
eter
in
P
SO’
s
v
elo
cit
y
u
p
d
ate
eq
u
atio
n
[
8
]
.
Si
m
ilar
to
in
er
tia
w
ei
g
h
t,
it is
u
s
ed
to
co
n
tr
o
l th
e
ex
p
lo
r
atio
n
an
d
ex
p
lo
itatio
n
o
f
th
e
p
ar
ticle.
I
n
o
th
er
w
o
r
k
s
,
m
et
h
o
d
s
s
u
ch
as
r
ei
n
itializa
tio
n
[
9
]
–
[
1
2
]
an
d
r
elea
r
n
in
g
[
1
3
]
ar
e
p
r
o
p
o
s
ed
to
i
m
p
r
o
v
e
P
SO.
Oth
er
p
o
p
u
lar
ap
p
r
o
ac
h
to
im
p
r
o
v
e
p
er
f
o
r
m
an
ce
o
f
P
SO
is
t
h
r
o
u
g
h
th
e
co
n
tr
o
l
o
f
i
n
f
o
r
m
atio
n
s
h
ar
i
n
g
f
lo
w
,
s
u
ch
as
i
n
[
1
4
]
.
H
y
b
r
id
izatio
n
o
f
P
SO
w
it
h
o
th
er
o
p
ti
m
izatio
n
m
et
h
o
d
h
as
also
b
ee
n
p
r
o
p
o
s
ed
an
d
r
ep
o
r
ted
t
o
b
e
a
b
le
to
g
iv
e
a
b
etter
p
er
f
o
r
m
an
ce
[
1
5
]
,
[
1
6
]
.
Ho
w
e
v
er
,
litt
le
is
k
n
o
w
n
o
n
h
o
w
t
h
e
p
ar
ticle
u
p
d
ate
s
tr
ate
g
y
ca
n
b
e
m
an
ip
u
lated
f
o
r
i
m
p
r
o
v
e
m
e
n
t o
f
P
SO.
Hen
ce
th
is
w
o
r
k
atte
m
p
t
to
im
p
r
o
v
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
P
SO
v
ia
its
iter
atio
n
s
tr
ate
g
y
.
A
P
SO
alg
o
r
ith
m
th
at
tr
a
n
s
it
f
r
o
m
a
s
y
n
c
h
r
o
n
o
u
s
s
tr
ate
g
y
to
s
y
n
c
h
r
o
n
o
u
s
s
tr
at
eg
y
,
tr
a
n
s
i
tio
n
al
P
SO
(
T
-
P
SO)
,
is
p
r
o
p
o
s
ed
h
er
e.
E
x
p
lo
r
atio
n
is
f
a
v
o
r
ed
d
u
r
in
g
t
h
e
ea
r
l
y
p
h
a
s
e
o
f
t
h
e
s
e
ar
ch
.
T
h
er
ef
o
r
e,
T
-
P
SO
alg
o
r
ith
m
s
tar
ts
w
it
h
as
y
n
ch
r
o
n
o
u
s
u
p
d
ate
to
b
en
ef
it
f
r
o
m
it
s
s
tr
e
n
g
th
i
n
ex
p
lo
r
at
io
n
.
A
co
u
n
ter
,
,
is
u
s
ed
i
n
T
-
P
SO.
T
h
e
co
u
n
ter
is
in
cr
e
m
en
ted
;
=
+
1
(
6
)
if
(
)
is
n
o
t
ch
a
n
g
ed
f
r
o
m
o
n
e
it
er
atio
n
to
th
e
n
e
x
t;
(
)
=
(
−
1
)
.
A
s
t
h
e
s
ea
r
ch
p
r
o
g
r
ess
an
d
n
o
n
e
w
i
m
p
r
o
v
ed
s
o
lu
tio
n
is
d
etec
ted
f
o
r
iter
atio
n
;
>
(
7
)
th
e
s
w
ar
m
c
h
a
n
g
e
s
its
u
p
d
ate
m
ec
h
a
n
is
m
to
s
y
n
c
h
r
o
n
o
u
s
s
tr
ateg
y
.
I
n
s
y
n
c
h
r
o
n
o
u
s
s
tr
ate
g
y
,
t
h
e
in
f
o
r
m
at
io
n
g
ath
er
ed
i
s
e
x
p
lo
ited
an
d
f
i
n
e
tu
n
ed
s
o
t
h
at
b
etter
s
o
l
u
tio
n
ca
n
b
e
ac
h
iev
ed
.
A
s
ta
n
d
ar
d
P
SO
w
ith
in
er
t
ia
w
ei
g
h
t
i
s
u
s
ed
f
o
r
T
-
P
SO.
T
h
is
m
eth
o
d
d
o
es
n
o
t
i
n
tr
o
d
u
ce
c
o
m
p
le
x
ca
lc
u
latio
n
o
r
ad
d
itio
n
s
l
lo
o
p
,
th
er
ef
o
r
e,
th
e
co
m
p
lex
it
y
o
f
T
-
P
SO
s
i
m
ilar
to
S
-
P
SO
an
d
A
-
P
SO.
T
h
e
T
-
P
SO
alg
o
r
ith
m
is
s
h
o
w
n
in
Fi
g
u
r
e
3
an
d
its
p
s
eu
d
o
co
d
e
is
in
Fi
g
u
r
e
4.
Fig
u
r
e
3
.
T
-
P
SO A
lg
o
r
ith
m
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Tr
a
n
s
itio
n
a
l P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
(
N
o
r
A
z
lin
a
A
b
A
z
iz
)
1615
In
it
ia
li
ze
th
e
p
o
p
u
l
a
ti
o
n
;
=
0
;
W
h
il
e
n
o
t
sto
p
p
i
n
g
c
o
n
d
it
i
o
n
W
h
il
e
<
Fo
r ea
c
h
p
a
rt
icle
Eva
lu
a
te f
it
n
e
ss
;
Up
d
a
te
(
)
&
(
)
;
Up
d
a
te
(
)
&
(
)
;
En
d
If
(
)
=
(
−
1
)
=
+
1
;
En
d
En
d
Fo
r ea
c
h
p
a
rt
icle
Eva
lu
a
te f
it
n
e
ss
;
Up
d
a
te
(
)
;
En
d
Up
d
a
te
(
)
;
Fo
r ea
c
h
p
a
rt
icle
Up
d
a
te
(
)
&
(
)
;
En
d
En
d
Fig
u
r
e
4
.
T
-
P
SO
P
s
eu
d
o
co
d
e
4.
E
XP
E
R
I
M
E
NT
,
RE
SUL
T
S
A
ND
D
I
S
CUSS
I
O
N
T
h
e
p
er
f
o
r
m
a
n
ce
o
f
T
-
P
SO
i
s
test
ed
u
s
i
n
g
C
E
C
2
0
1
4
’
s
b
en
ch
m
ar
k
f
u
n
ctio
n
s
f
o
r
s
in
g
le
o
b
j
ec
tiv
e
o
p
tim
izatio
n
.
T
h
e
b
en
ch
m
ar
k
f
u
n
ctio
n
s
co
n
s
is
t
o
f
3
0
f
u
n
cti
o
n
s
,
w
h
ic
h
ar
e
th
r
ee
r
o
tated
u
n
i
m
o
d
al
f
u
n
ctio
n
s
,
1
3
m
u
lti
m
o
d
al
p
r
o
b
lem
s
w
h
ic
h
ar
e
eith
er
s
h
if
ted
o
n
l
y
o
r
s
h
if
ted
an
d
r
o
tated
,
s
ix
h
y
b
r
id
f
u
n
ct
io
n
s
,
a
n
d
eig
h
t
co
m
p
o
s
i
tio
n
f
u
n
ctio
n
s
.
T
h
e
s
ea
r
ch
s
p
ac
e
o
f
t
h
e
f
u
n
ct
io
n
s
i
s
b
o
u
n
d
ed
w
it
h
i
n
[
-
1
0
0
,
1
0
0
]
alo
n
g
ev
er
y
d
i
m
en
s
io
n
.
T
h
e
f
u
n
ctio
n
s
a
r
e
lis
ted
in
T
ab
le
1
an
d
th
e
d
etails
o
f
t
h
e
f
u
n
ct
io
n
ca
n
b
e
f
o
u
n
d
a
t
h
ttp
://
www
.
n
t
u
.
ed
u
.
s
g
/
h
o
m
e
/
E
P
NSu
g
a
n
/i
n
d
ex
_
f
iles
/
C
E
C
2
0
1
4
/C
E
C
2
0
1
4
.
h
tm
.
T
-
P
SO
is
co
m
p
ar
ed
w
it
h
S
-
P
SO
a
n
d
A
-
P
SO.
T
h
e
p
o
p
u
lati
o
n
s
ize
o
f
ea
c
h
s
w
ar
m
i
s
1
0
0
an
d
li
n
ea
r
l
y
d
ec
r
ea
s
in
g
i
n
er
tia
w
ei
g
h
t
w
it
h
th
e
r
an
g
e,
[
0
.
4
,
0
.
9
]
is
u
s
ed
.
B
o
th
lear
n
i
n
g
f
ac
to
r
s
o
f
P
SO
ar
e
s
et
to
2
an
d
th
e
v
elo
cit
y
i
s
cla
m
p
ed
ac
co
r
d
in
g
to
th
e
s
ea
r
ch
s
p
ac
e,
[
-
1
0
0
,
1
0
0
]
.
T
h
ese
s
ettin
g
s
f
o
r
P
SO
ar
e
m
ad
e
ac
co
r
d
in
g
to
[
6
]
,
[
1
7
]
.
T
h
e
m
ax
i
m
u
m
iter
a
tio
n
i
s
s
et
to
2
0
0
0
.
T
h
e
p
r
o
b
le
m
s
d
i
m
e
n
s
io
n
s
ize
is
5
0
.
E
ac
h
o
f
th
e
test
is
r
ep
ea
ted
5
0
tim
e
s
.
Fo
r
T
-
P
SO,
th
e
th
r
es
h
o
ld
is
s
et
to
1
0
0
.
W
h
er
e,
if
is
f
o
u
n
d
t
o
b
e
s
tatic
f
o
r
1
0
0
iter
atio
n
s
,
th
en
t
h
e
p
o
p
u
latio
n
o
f
T
-
P
SO
ch
a
n
g
es
f
r
o
m
a
s
y
n
c
h
r
o
n
o
u
s
u
p
d
ate
to
s
y
n
c
h
r
o
n
o
u
s
u
p
d
ate.
T
h
e
av
e
r
ag
ed
p
er
f
o
r
m
an
ce
o
f
th
e
P
SO
v
ar
iatio
n
s
ar
e
lis
te
d
in
T
ab
le
2
.
T
h
e
b
o
ld
e
d
v
alu
es
ar
e
th
e
b
est
ac
h
ie
v
ed
a
m
o
n
g
th
e
t
h
r
ee
iter
atio
n
s
tr
ateg
ie
s
te
s
ted
.
I
t
ca
n
b
e
s
ee
n
t
h
at
T
-
P
SO
f
o
u
n
d
t
h
e
b
est
s
o
lu
tio
n
m
o
r
e
o
f
te
n
t
h
an
S
-
P
SO
a
n
d
A
-
P
SO.
T
-
P
SO
f
o
u
n
d
t
h
e
b
est
s
o
lu
tio
n
f
o
r
1
7
f
u
n
ctio
n
s
o
u
t
o
f
t
h
e
3
0
test
f
u
n
ct
io
n
s
,
w
h
er
ea
s
S
-
P
SO
f
o
u
n
d
th
e
b
est
f
o
r
th
e
o
th
er
1
3
f
u
n
ctio
n
s
.
A
-
P
SO
f
ailed
to
o
u
tp
er
f
o
r
m
b
o
th
T
-
P
SO a
n
d
S
-
P
SO.
B
ased
o
n
t
h
e
a
v
er
ag
e
p
er
f
o
r
m
an
ce
,
s
ta
tis
t
ical
a
n
al
y
s
i
s
i
s
p
er
f
o
m
ed
.
T
h
e
Frie
d
m
a
n
te
s
t
i
s
c
o
n
d
u
cted
an
d
th
e
t
h
r
ee
v
ar
ia
tio
n
s
o
f
P
SO
ar
e
r
an
k
ed
.
T
h
e
av
er
a
g
e
r
an
k
s
ar
e
s
h
o
w
n
i
n
T
ab
le
3
.
T
-
P
SO
is
r
a
n
k
ed
t
h
e
b
est.
T
h
is
is
clo
s
el
y
f
o
llo
w
ed
b
y
S
-
P
SO.
A
-
P
SO
i
s
r
an
k
ed
t
h
e
lo
w
est
a
m
o
n
g
t
h
e
t
h
r
ee
v
ar
iatio
n
s
.
A
cc
o
r
d
in
g
to
th
is
r
an
k
,
th
e
Frie
d
m
a
n
s
tat
is
tical
v
a
lu
e
i
s
ca
lcu
la
ted
an
d
it
s
h
o
w
s
s
i
g
n
i
f
ica
n
t
d
if
f
er
e
n
ce
ex
is
t
b
et
w
ee
n
th
e
a
lg
o
r
ith
m
s
.
T
h
e
Ho
l
m
p
o
s
t
h
o
c
p
r
o
ce
d
u
r
e
is
ch
o
s
e
n
to
id
en
t
if
y
t
h
e
s
i
g
n
i
f
ican
t
d
if
f
er
e
n
ce
.
T
h
e
s
tatis
tica
l
v
a
lu
e
o
f
Ho
l
m
p
o
s
t
h
o
c
p
r
o
ce
d
u
r
e
is
s
h
o
w
n
in
T
ab
le
4
.
T
h
e
n
u
m
b
er
s
s
h
o
w
t
h
at
T
-
P
SO
an
d
S
-
P
SO
ar
e
s
tati
s
ticall
y
o
n
p
ar
w
it
h
ea
ch
o
th
er
.
B
o
th
T
-
P
SO
an
d
S
-
PS
O
ar
e
s
ig
n
i
f
ic
an
tl
y
b
etter
th
a
n
A
-
P
SO
w
ith
s
ig
n
i
f
ica
n
ce
lev
el
o
f
=
0
.
05
.
T
h
e
b
o
x
p
lo
ts
in
Fi
g
u
r
e
5
s
h
o
w
th
e
d
is
tr
ib
u
tio
n
o
f
t
h
e
r
es
u
lt
s
o
b
tain
ed
b
y
T
-
P
SO,
S
-
P
SO a
n
d
A
-
P
SO.
I
t
ca
n
b
e
s
ee
n
t
h
at
T
-
P
SO
a
n
d
S
-
P
SO
h
av
e
lo
w
er
an
d
s
m
aller
b
o
x
p
lo
t
co
m
p
ar
ed
to
A
-
PS
O.
T
h
is
in
d
icate
b
etter
an
d
m
o
r
e
s
tab
le
p
er
f
o
r
m
an
ce
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
1
1
–
1
6
1
9
1616
T
ab
le
1
.
C
E
C
2
0
1
4
’
s
B
en
ch
m
a
r
k
Fu
n
ctio
n
s
F
u
n
c
t
i
o
n
I
D
F
u
n
c
t
i
o
n
I
d
e
a
l
F
i
t
n
e
ss
U
n
i
mo
d
a
l
F
u
n
c
t
i
o
n
f1
R
o
t
a
t
e
d
H
i
g
h
C
o
n
d
i
t
i
o
n
e
d
El
l
i
p
t
i
c
F
u
n
c
t
i
o
n
1
0
0
f2
R
o
t
a
t
e
d
B
e
n
t
C
i
g
a
r
F
u
n
c
t
i
o
n
2
0
0
f3
R
o
t
a
t
e
d
D
i
s
c
u
s
F
u
n
c
t
i
o
n
3
0
0
S
i
mp
l
e
M
u
l
t
i
mo
d
a
l
F
u
n
c
t
i
o
n
f4
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
R
o
se
n
b
r
o
c
k
’
s F
u
n
c
t
i
o
n
4
0
0
f5
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
A
c
k
l
e
y
’
s
F
u
n
c
t
i
o
n
5
0
0
f6
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
W
e
i
e
r
st
r
a
ss F
u
n
c
t
i
o
n
6
0
0
f7
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
G
r
i
e
w
a
n
k
’
s F
u
n
c
t
i
o
n
7
0
0
f8
S
h
i
f
t
e
d
R
a
st
r
i
g
i
n
’
s F
u
n
c
t
i
o
n
8
0
0
f9
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
R
a
st
r
i
g
i
n
’
s F
u
n
c
t
i
o
n
9
0
0
f
1
0
S
h
i
f
t
e
d
S
c
h
w
e
f
e
l
’
s F
u
n
c
t
i
o
n
1
0
0
0
f
1
1
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
S
c
h
w
e
f
e
l
’
s F
u
n
c
t
i
o
n
1
1
0
0
f
1
2
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
K
a
t
su
u
r
a
F
u
n
c
t
i
o
n
1
2
0
0
f
1
3
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
H
a
p
p
y
C
a
t
F
u
n
c
t
i
o
n
1
3
0
0
f
1
4
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
H
G
B
a
t
F
u
n
c
t
i
o
n
1
4
0
0
f
1
5
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
Ex
p
a
n
d
e
d
G
r
i
e
w
a
n
k
’
s
p
l
u
s
R
o
se
n
b
r
o
c
k
’
s F
u
n
c
t
i
o
n
1
5
0
0
f
1
6
S
h
i
f
t
e
d
a
n
d
R
o
t
a
t
e
d
Ex
p
a
n
d
e
d
S
c
a
f
f
e
r
’
s F
6
F
u
n
c
t
i
o
n
1
6
0
0
H
y
b
r
i
d
F
u
n
c
t
i
o
n
f
1
7
H
y
b
r
i
d
F
u
n
c
t
i
o
n
1
(
N
=
3
)
1
7
0
0
f
1
8
H
y
b
r
i
d
F
u
n
c
t
i
o
n
2
(
N
=
3
)
1
8
0
0
f
1
9
H
y
b
r
i
d
F
u
n
c
t
i
o
n
3
(
N
=
4
)
1
9
0
0
f
2
0
H
y
b
r
i
d
F
u
n
c
t
i
o
n
4
(
N
=
4
)
2
0
0
0
f
2
1
H
y
b
r
i
d
F
u
n
c
t
i
o
n
5
(
N
=
5
)
2
1
0
0
f
2
2
H
y
b
r
i
d
F
u
n
c
t
i
o
n
6
(
N
=
5
)
2
2
0
0
C
o
mp
o
si
t
e
F
u
n
c
t
i
o
n
f
2
3
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
1
(
N
=
5
)
2
3
0
0
f
2
4
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
2
(
N
=
3
)
2
4
0
0
f
2
5
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
3
(
N
=
3
)
2
5
0
0
f
2
6
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
4
(
N
=
5
)
2
6
0
0
f
2
7
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
5
(
N
=
5
)
2
7
0
0
f
2
8
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
6
(
N
=
5
)
2
8
0
0
f
2
9
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
7
(
N
=
3
)
2
9
0
0
f
3
0
C
o
mp
o
si
t
i
o
n
F
u
n
c
t
i
o
n
8
(
N
=
3
)
3
0
0
0
S
e
a
r
c
h
R
a
n
g
e
:
[
-
1
0
0
,
1
0
0
]
D
T
ab
le
2
.
A
lg
o
r
ith
m
s
’
Av
er
ag
ed
P
er
f
o
r
m
an
ce
F
u
n
c
t
i
o
n
I
D
T
-
PSO
S
-
PSO
A
-
P
S
O
f1
1
.
8
8
1
1
E+
0
7
2
.
3
3
1
7
E+
0
7
9
.
6
7
8
0
E+
1
0
f2
2
.
5
5
3
9
E+
0
4
1
.
6
1
7
1
E+
0
6
7
.
1
5
6
3
E+
1
1
f3
2
.
4
3
4
9
E+
0
4
2
.
0
2
2
8
E+
0
4
2
.
5
8
4
7
E+
1
0
f4
6
.
2
6
8
0
E+
0
2
6
.
4
0
0
6
E+
0
2
8
.
5
6
0
6
E+
0
5
f5
5
.
2
1
1
1
E+
0
2
5
.
2
1
0
9
E+
0
2
5
.
2
1
9
7
E+
0
2
f6
6
.
2
8
5
7
E+
0
2
6
.
2
9
9
4
E+
0
2
7
.
1
4
9
0
E+
0
2
f7
7
.
0
0
0
1
E+
0
2
7
.
0
0
0
1
E+
0
2
7
.
7
2
1
1
E+
0
3
f8
8
.
5
7
6
3
E+
0
2
8
.
6
1
7
6
E+
0
2
2
.
3
3
0
8
E+
0
3
f9
1
.
0
3
6
0
E+
0
3
1
.
0
5
0
6
E+
0
3
3
.
1
9
1
2
E+
0
3
f
1
0
2
.
6
2
7
6
E+
0
3
2
.
5
9
2
7
E+
0
3
2
.
5
2
7
7
E+
0
4
f
1
1
7
.
2
5
9
2
E+
0
3
8
.
0
3
6
2
E+
0
3
2
.
5
1
0
6
E+
0
4
f
1
2
1
.
2
0
2
8
E+
0
3
1
.
2
0
2
8
E+
0
3
1
.
2
2
5
5
E+
0
3
f
1
3
1
.
3
0
0
6
E+
0
3
1
.
3
0
0
6
E+
0
3
1
.
3
2
4
5
E+
0
3
f
1
4
1
.
4
0
0
6
E+
0
3
1
.
4
0
0
6
E+
0
3
3
.
2
0
7
6
E+
0
3
f
1
5
1
.
5
2
2
8
E+
0
3
1
.
5
2
0
2
E+
0
3
1
.
9
2
2
4
E+
1
0
f
1
6
1
.
6
2
1
6
E+
0
3
1
.
6
2
1
7
E+
0
3
1
.
6
2
6
0
E+
0
3
f
1
7
2
.
8
2
8
0
E+
0
6
2
.
7
3
8
9
E+
0
6
4
.
6
5
0
0
E+
1
0
f
1
8
2
.
0
5
7
3
E+
0
4
2
.
6
9
7
6
E+
0
3
1
.
4
9
6
4
E+
1
1
f
1
9
1
.
9
6
4
7
E+
0
3
1
.
9
6
8
2
E+
0
3
1
.
0
6
9
4
E+
0
5
f
2
0
1
.
1
5
0
7
E+
0
4
1
.
2
2
4
6
E+
0
4
5
.
6
0
3
9
E+
1
0
f
2
1
1
.
4
9
8
1
E+
0
6
1
.
8
5
0
8
E+
0
6
3
.
0
6
6
2
E+
1
0
f
2
2
3
.
0
3
7
3
E+
0
3
3
.
1
2
1
5
E+
0
3
2
.
1
1
2
1
E+
0
9
f
2
3
2
.
6
4
8
2
E+
0
3
2
.
6
4
8
1
E+
0
3
2
.
4
2
7
7
E+
0
4
f
2
4
2
.
6
7
5
9
E+
0
3
2
.
6
7
6
3
E+
0
3
1
.
7
3
3
9
E+
0
4
f
2
5
2
.
7
2
1
3
E+
0
3
2
.
7
2
1
8
E+
0
3
1
.
0
1
3
8
E+
0
4
f
2
6
2
.
7
7
3
4
E+
0
3
2
.
7
7
1
4
E+
0
3
1
.
2
5
7
7
E+
0
4
f
2
7
3
.
7
4
2
1
E+
0
3
3
.
7
3
1
2
E+
0
3
9
.
8
3
8
5
E+
0
4
f
2
8
5
.
0
0
4
4
E+
0
3
5
.
3
7
4
7
E+
0
3
8
.
7
6
2
6
E+
0
4
f
2
9
7
.
3
0
8
3
E+
0
6
1
.
1
6
6
5
E+
0
7
6
.
1
1
6
2
E+
1
0
f
3
0
3
.
9
6
2
7
E+
0
4
3
.
9
5
3
9
E+
0
4
1
.
4
7
5
8
E+
0
9
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Tr
a
n
s
itio
n
a
l P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
(
N
o
r
A
z
lin
a
A
b
A
z
iz
)
1617
T
ab
le
3
.
Frie
d
m
an
’
Av
er
ag
e
R
an
k
A
l
g
o
r
i
t
h
m
A
v
e
r
a
g
e
R
a
n
k
T
-
PSO
1.
4
S
-
PSO
1
.
6
A
-
P
S
O
3
T
ab
le
4
.
Ho
lm
P
o
s
th
o
c
P
r
o
ce
d
u
r
e
A
l
g
o
r
i
t
h
m
P
H
o
l
m
T
-
PSO
v
s
A
-
P
S
O
0
0
.
0
1
6
6
6
7
S
-
PSO
v
s
A
-
PSO
0
0
.
0
2
5
T
-
P
S
O
v
s S
-
PSO
0
.
4
3
8
5
7
8
0
.
0
5
Fig
u
r
e
5
.
Qu
alit
y
o
f
R
e
s
u
lts
5.
CO
NCLU
SI
O
N
T
-
P
SO
is
p
r
o
p
o
s
ed
in
t
h
is
wo
r
k
.
T
-
P
SO
atte
m
p
ts
to
i
m
p
r
o
v
e
P
SO
v
ia
it
s
iter
atio
n
s
tr
ateg
y
.
T
h
e
C
E
C
2
0
1
4
s
in
g
le
o
b
j
ec
tiv
e
tes
t
s
u
ite
is
u
s
ed
h
er
e.
Fro
m
th
e
ex
p
er
i
m
e
n
t
co
n
d
u
cted
,
T
-
P
SO’
s
p
er
f
o
r
m
a
n
ce
i
s
r
an
k
ed
t
h
e
b
est.
T
h
i
s
p
r
o
v
es
t
h
at
iter
atio
n
s
tr
ateg
y
d
o
es
i
n
f
l
u
en
ce
th
e
p
er
f
o
r
m
a
n
ce
o
f
P
SO.
Ma
n
ip
u
latio
n
o
f
th
e
iter
atio
n
s
tr
ateg
y
is
ab
le
to
i
m
p
r
o
v
e
th
e
p
er
f
o
r
m
a
n
ce
o
f
P
SO.
Ho
w
ev
er
,
m
o
r
e
w
o
r
k
s
n
ee
d
to
b
e
c
o
n
d
u
cted
to
f
u
ll
y
u
n
d
er
s
ta
n
d
th
e
p
o
te
n
tial
o
f
iter
atio
n
s
tr
ateg
y
in
i
m
p
r
o
v
i
n
g
P
SO.
I
s
s
u
es
s
u
c
h
as,
w
h
ic
h
s
ta
r
ti
n
g
s
tr
ateg
y
is
t
h
e
b
est an
d
h
o
w
to
s
elec
t th
e
o
p
ti
m
a
l v
al
u
e
o
f
S
n
ee
d
to
b
e
f
u
r
th
er
e
x
p
lo
r
ed
.
ACK
NO
WL
E
D
G
E
M
E
NT
S
T
h
is
r
esear
ch
is
f
u
n
d
ed
b
y
t
h
e
M
u
lti
m
ed
ia
Un
i
v
er
s
i
t
y
’
s
Min
i
F
u
n
d
(
MM
UI
/1
5
0
0
7
6
)
,
an
d
U
M
-
P
o
s
tg
r
ad
u
ate
R
esear
c
h
Gr
an
t (
P
G0
9
7
-
2
0
1
3
A
)
.
RE
F
E
R
E
NC
E
S
[1
]
A
.
P
.
E
n
g
e
lb
re
c
h
t,
“
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
:
Itera
ti
o
n
S
trate
g
ies
Re
v
isit
e
d
,
”
in
BR
IC
S
Co
n
g
re
ss
o
n
Co
mp
u
t
a
ti
o
n
a
l
I
n
telli
g
e
n
c
e
a
n
d
1
1
th
Bra
zili
a
n
C
o
n
g
re
ss
o
n
Co
mp
u
ta
ti
o
n
a
l
I
n
telli
g
e
n
c
e
,
p
p
.
1
1
9
–
1
2
3
,
2
0
1
3
.
[2
]
J.
R
.
V
i
lela
,
e
t
a
l
.
,
“
A
P
e
rf
o
rm
a
n
c
e
S
tu
d
y
o
n
S
y
n
c
h
ro
n
icit
y
a
n
d
Ne
ig
h
b
o
r
h
o
o
d
S
ize
in
P
a
rti
c
le
S
w
a
rm
Op
ti
m
iza
ti
o
n
,
”
S
o
ft
Co
m
p
u
t
.
,
v
o
l
.
1
7
,
p
p
.
1
0
1
9
–
1
0
3
0
,
2
0
1
3
.
[3
]
B.
I.
Ko
h
,
e
t
a
l
.
,
“
P
a
ra
ll
e
l
A
s
y
n
c
h
ro
n
o
u
s
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
.
,
”
In
t.
J
.
N
u
me
r.
M
e
th
o
d
s
En
g
.
,
v
o
l
/i
ss
u
e
:
67
(
4
)
,
p
p
.
5
7
8
–
5
9
5
,
2
0
0
6
.
[4
]
G
.
V
e
n
ter
a
n
d
J.
S
.
S
o
b
ies
k
i,
“
A
P
a
ra
ll
e
l
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
i
z
a
ti
o
n
A
lg
o
rit
h
m
Ac
c
e
ler
a
ted
b
y
As
y
n
c
h
ro
n
o
u
s
Ev
a
lu
a
ti
o
n
s,” i
n
W
o
rld
Co
n
g
re
ss
e
s o
f
S
tr
u
c
tu
ra
l
a
n
d
M
u
lt
id
isc
ip
li
n
a
ry
Op
ti
miz
a
ti
o
n
,
p
p
.
1
–
10
,
2
0
0
5
.
[5
]
S
.
B.
Ak
a
t
a
n
d
V
.
G
a
z
i,
“
D
e
c
e
n
tralize
d
A
s
y
n
c
h
ro
n
o
u
s
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iza
ti
o
n
,
”
in
IEE
E
S
w
a
rm
In
telli
g
e
n
c
e
0
1
2
x
1
0
11
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f1
0
5
10
x
1
0
11
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f2
0
2
4
x
1
0
10
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f3
0
1
2
x
1
0
6
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f4
520
521
522
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f5
600
700
800
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f6
0
5000
10000
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f7
0
2000
4000
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f8
0
2000
4000
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f9
0
2
4
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
0
0
2
4
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
1
1200
1220
1240
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
2
1300
1320
1340
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
3
0
2000
4000
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
4
0
2
4
x
1
0
10
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
5
1610
1620
1630
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
6
0
5
10
x
1
0
10
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
7
0
1
2
x
1
0
11
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
8
0
2
4
x
1
0
5
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
1
9
0
5
10
x
1
0
10
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
0
0
5
x
1
0
10
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
1
0
5
10
x
1
0
9
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
2
0
5
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
3
0
2
4
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
4
0
1
2
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
5
0
1
2
x
1
0
4
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
6
0
1
2
x
1
0
5
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
7
0
1
2
x
1
0
5
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
8
0
1
2
x
1
0
11
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
2
9
0
2
4
x
1
0
9
T
-
P
S
O
S
-
P
S
O
A
-
P
S
O
f
3
0
Evaluation Warning : The document was created with Spire.PDF for Python.
I
SS
N
:
2
0
8
8
-
8708
I
J
E
C
E
Vo
l.
7
,
No
.
3
,
J
u
n
e
2
0
1
7
:
1
6
1
1
–
1
6
1
9
1618
S
y
mp
o
si
u
m
,
p
p
.
1
–
8
,
2
0
0
8
.
[6
]
Y.
S
h
i
a
n
d
R.
Eb
e
rh
a
rt
,
“
A
M
o
d
if
ied
P
a
rti
c
le
S
w
a
rm
Op
ti
m
iz
e
r,
”
in
IEE
E
In
ter
n
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
o
n
Evo
lu
ti
o
n
a
ry
Co
mp
u
t
a
ti
o
n
,
p
p
.
6
9
–
73
,
1
9
9
8
.
[7
]
M
.
Cl
e
rc
,
“
S
tan
d
a
rd
P
a
rt
icle
S
w
a
rm
Op
ti
m
isa
ti
o
n
,
”
2
0
1
2
.
[8
]
M
.
Clerc
a
n
d
J.
Ke
n
n
e
d
y
,
“
T
h
e
P
a
rti
c
le
S
w
a
r
m
-
Ex
p
lo
sio
n
,
S
ta
b
il
it
y
,
a
n
d
Co
n
v
e
rg
e
n
c
e
in
a
M
u
lt
id
im
e
n
sio
n
a
l
Co
m
p
lex
S
p
a
c
e
,
”
IEE
E
T
ra
n
s.
Evo
l.
C
o
mp
u
t.
,
v
o
l
/i
ss
u
e
:
6
(
1
)
,
p
p
.
5
8
–
7
3
,
2
0
0
2
.
[9
]
K.
J.
Bin
k
le
y
a
n
d
M
.
Ha
g
i
w
a
r
a
,
“
Ba
lan
c
in
g
Ex
p
lo
it
a
ti
o
n
a
n
d
Ex
p
lo
ra
ti
o
n
in
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iza
ti
o
n
:
V
e
lo
c
it
y
-
b
a
se
d
Re
in
it
ializa
ti
o
n
,
”
T
ra
n
s.
J
a
p
a
n
e
se
S
o
c
.
Arti
f.
In
tell
.
,
v
o
l
/i
ss
u
e
:
23
(
1
)
,
p
p
.
2
7
–
3
5
,
2
0
0
8
.
[1
0
]
J
.
G
u
o
a
n
d
S
.
T
a
n
g
,
“
A
n
Im
p
ro
v
e
d
P
a
rt
icle
S
w
a
r
m
Op
ti
m
i
z
a
ti
o
n
w
it
h
Re
-
i
n
it
ializa
ti
o
n
M
e
c
h
a
n
ism
,
”
in
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
I
n
tel
li
g
e
n
t
H
u
ma
n
-
M
a
c
h
in
e
S
y
ste
ms
a
n
d
Cy
b
e
rn
e
ti
c
s
,
p
p
.
4
3
7
–
4
4
1
,
2
0
0
9
.
[1
1
]
S
.
Ch
e
n
g
,
e
t
a
l.
,
“
P
ro
m
o
ti
n
g
Div
e
rsit
y
in
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
to
S
o
lv
e
M
u
lt
im
o
d
a
l
P
ro
b
le
m
s,”
in
Ne
u
ra
l
In
fo
rm
a
t
io
n
Pro
c
e
ss
in
g
:
1
8
th
In
t
e
rn
a
ti
o
n
a
l
Co
n
fer
e
n
c
e
,
ICONIP
2
0
1
1
,
S
h
a
n
g
h
a
i
,
Ch
in
a
,
No
v
e
mb
e
r
1
3
-
1
7
,
2
0
1
1
,
Pro
c
e
e
d
in
g
s,
P
a
rt
II
,
v
o
l.
7
0
6
3
L
NCS,
n
o
.
6
0
9
7
5
0
8
0
,
B.
-
L
.
L
u
,
L
.
Zh
a
n
g
,
a
n
d
J.
K
w
o
k
,
Ed
s.
Be
r
li
n
,
He
id
e
lb
e
rg
:
S
p
rin
g
e
r
Be
rli
n
He
id
e
lb
e
rg
,
p
p
.
2
2
8
–
2
3
7
,
2
0
1
1
.
[1
2
]
K.
K.
Bu
d
h
ra
ja,
e
t
a
l.
,
“
Ex
p
l
o
ra
ti
o
n
E
n
h
a
n
c
e
d
P
a
rt
icle
S
w
a
r
m
Op
ti
m
iz
a
ti
o
n
u
si
n
g
G
u
id
e
d
Re
-
In
it
ia
li
z
a
ti
o
n
,
”
A
d
v
.
In
tell.
S
y
st.
Co
m
p
u
t
.
,
v
o
l
/
issu
e
:
2
(
02
)
,
p
p
.
2
7
7
–
2
8
8
,
2
0
1
3
.
[1
3
]
L
.
Ha
n
a
n
d
X
.
He
,
“
A
No
v
e
l
Op
p
o
sit
io
n
-
Ba
se
d
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
i
z
a
ti
o
n
f
o
r
No
is
y
P
ro
b
lem
s,”
in
T
h
ird
In
ter
n
a
t
io
n
a
l
C
o
n
fer
e
n
c
e
o
n
N
a
tu
ra
l
Co
m
p
u
t
a
ti
o
n
,
p
p
.
6
2
4
–
6
2
9
,
2
0
0
7
.
[1
4
]
J.
Ke
n
n
e
d
y
,
“
S
tere
o
t
y
p
in
g
:
I
m
p
ro
v
in
g
p
a
rti
c
le
sw
a
r
m
p
e
rf
o
r
m
a
n
c
e
w
it
h
c
lu
ste
r
a
n
a
l
y
sis,”
in
Co
n
g
re
ss
o
n
Evo
lu
ti
o
n
a
ry
Co
mp
u
t
a
ti
o
n
,
p
p
.
1
5
0
7
–
1
5
1
2
,
2
0
0
0
.
[1
5
]
K.
P
re
m
a
lath
a
a
n
d
A
.
M
.
Na
tara
j
a
n
,
“
Hy
b
rid
P
S
O
a
n
d
GA
f
o
r
G
l
o
b
a
l
M
a
x
im
iza
ti
o
n
,
”
In
t.
J
.
Op
e
n
Pro
b
l.
C
o
mp
t
.
M
a
th
,
v
o
l
/
issu
e
:
2
(
4
)
,
p
p
.
5
9
7
–
6
0
8
,
2
0
0
9
.
[1
6
]
S
.
Yu
,
e
t
a
l.
,
“
A
H
y
b
rid
P
a
rti
c
le
S
wa
r
m
Op
ti
m
iz
a
ti
o
n
A
lg
o
rit
h
m
b
a
se
d
o
n
S
p
a
c
e
T
ra
n
s
f
o
rm
a
ti
o
n
S
e
a
rc
h
a
n
d
A
M
o
d
if
ied
V
e
lo
c
it
y
M
o
d
e
l,
”
I
n
t.
J
.
Nu
me
r.
An
a
l.
M
o
d
e
l.
,
v
o
l
/i
ss
u
e
:
9
(
2
)
,
p
p
.
3
7
1
–
3
7
7
,
2
0
1
2
.
[1
7
]
R.
Eb
e
rh
a
rt
a
n
d
Y.
S
h
i
,
“
Co
m
p
a
r
in
g
In
e
rti
a
W
e
i
g
h
ts
a
n
d
Co
n
strict
io
n
F
a
c
to
rs
in
P
a
rti
c
le
S
w
a
r
m
Op
ti
m
iza
ti
o
n
,
”
in
Co
n
g
re
ss
o
n
Evo
lu
ti
o
n
a
ry
Co
m
p
u
ta
ti
o
n
,
p
p
.
8
4
–
88
,
2
0
0
0
.
B
I
O
G
RAP
H
I
E
S
O
F
AUTH
O
RS
M
s
No
r
A
z
li
n
a
A
b
A
z
iz
is
a
lec
tu
re
r
i
n
t
h
e
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
lo
g
y
a
t
M
u
lt
im
e
d
ia
Un
iv
e
rsit
y
,
M
e
la
k
a
.
S
h
e
is
in
tere
ste
d
in
th
e
f
ield
o
f
so
f
t
c
o
m
p
u
ti
n
g
a
n
d
it
s
a
p
p
li
c
a
ti
o
n
i
n
e
n
g
in
e
e
rin
g
p
r
o
b
l
e
m
s.
M
o
re
sp
e
c
if
ica
ll
y
,
h
e
r
f
o
c
u
s
is
in
th
e
a
re
a
o
f
sw
a
r
m
in
telli
g
e
n
c
e
a
n
d
n
a
tu
re
i
n
sp
ire
d
o
p
ti
m
iza
ti
o
n
a
lg
o
rit
h
m
.
A
s
so
c
iate
P
r
o
f
e
ss
o
r
Dr.
Zu
w
a
iri
e
Ib
ra
h
im
o
b
tai
n
e
d
a
B
.
En
g
(M
e
c
h
a
tro
n
ics
)
a
n
d
M
.
E
n
g
(El
e
c
tri
c
a
l)
f
ro
m
Un
iv
e
rsiti
Tek
n
o
lo
g
i
M
a
lay
sia
,
a
n
d
P
h
.
D
i
n
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
f
ro
m
M
e
ij
i
Un
iv
e
rsit
y
,
Ja
p
a
n
.
He
is
c
u
rre
n
tl
y
A
s
so
c
iate
P
r
o
f
e
ss
o
r
o
f
F
a
c
u
lt
y
o
f
El
e
c
tri
c
a
l
a
n
d
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
,
Un
iv
e
rsiti
M
a
lay
s
ia
P
a
h
a
n
g
.
His
re
se
a
rc
h
in
tere
sts
a
re
o
n
Co
m
p
u
tatio
n
a
l
In
telli
g
e
n
c
e
,
A
rti
f
i
c
ial
In
telli
g
e
n
c
e
,
M
o
lec
u
lar
a
n
d
DN
A
Co
m
p
u
ti
n
g
,
M
a
c
h
in
e
V
isio
n
a
n
d
A
u
to
m
a
ted
V
isu
a
l
In
sp
e
c
ti
o
n
.
He
h
a
s
su
p
e
rv
ise
d
7
p
o
stg
ra
d
u
a
te
stu
d
e
n
ts
a
n
d
c
u
rre
n
t
ly
su
p
e
rv
isin
g
6
P
h
D
a
n
d
2
M
a
ste
r
stu
d
e
n
ts.
He
h
a
s
re
c
e
iv
e
d
v
a
rio
u
s
f
u
n
d
in
g
f
ro
m
b
o
th
lo
c
a
l
a
n
d
in
tern
a
ti
o
n
a
l
b
o
d
ies
,
a
s
we
ll
a
s
h
o
l
d
in
g
3
p
a
ten
ts.
He
h
a
s
p
u
b
li
sh
e
d
a
rti
c
les
in
2
b
o
o
k
s,
7
6
jo
u
r
n
a
l
a
rti
c
les
a
n
d
m
a
n
y
c
o
n
f
e
re
n
c
e
p
ro
c
e
e
d
in
g
s.
He
is
a
lso
in
v
o
lv
e
d
in
c
o
n
s
u
lt
a
ti
o
n
s,
t
h
e
e
d
it
o
rial
b
o
a
rd
o
f
lo
c
a
l
a
n
d
in
tern
a
ti
o
n
a
l
jo
u
r
n
a
ls
a
n
d
h
a
s
re
v
iew
e
d
m
a
n
y
tec
h
n
ica
l
p
a
p
e
rs.
He
re
c
e
iv
e
d
a
w
a
rd
s
o
f
th
e
Be
st
In
stru
m
e
n
tatio
n
P
a
p
e
r
Aw
a
rd
in
In
tern
a
ti
o
n
a
l
Co
n
f
e
re
n
c
e
o
n
Co
n
tr
o
l,
In
str
u
m
e
n
tatio
n
,
a
n
d
M
e
c
h
a
tro
n
ics
En
g
in
e
e
ri
n
g
2
0
0
7
,
S
e
s
sio
n
Be
st
P
re
se
n
tatio
n
Aw
a
rd
in
Jo
i
n
t
2
n
d
In
tern
a
ti
o
n
a
l
C
o
n
f
e
re
n
c
e
o
n
S
o
f
t
Co
m
p
u
ti
n
g
a
n
d
In
telli
g
e
n
t
S
y
ste
m
s
a
n
d
5
th
In
tern
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
A
d
v
a
n
c
e
d
In
telli
g
e
n
t
S
y
ste
m
s
2
0
0
4
a
n
d
S
t
u
d
e
n
t
p
a
p
e
r
a
w
a
rd
in
th
e
IEE
E
In
ter
n
a
ti
o
n
a
l
S
y
m
p
o
siu
m
o
n
In
d
u
strial
El
e
c
tro
n
ics
2
0
0
4
.
He
h
a
s
a
lso
w
o
n
se
v
e
ra
l
m
e
d
a
ls
in
v
a
rio
u
s
re
se
a
rc
h
e
x
h
ib
it
io
n
s
a
n
d
h
a
s
b
e
e
n
i
n
v
it
e
d
to
g
iv
e
lec
tu
re
s
a
n
d
tu
t
o
r
ials
in
h
is
re
se
a
rc
h
f
ield
s.
He
is
a
m
e
m
b
e
r
o
f
IEE
E,
BEM
a
n
d
m
S
ET
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
E
C
E
I
SS
N:
2
0
8
8
-
8708
Tr
a
n
s
itio
n
a
l P
a
r
ticle
S
w
a
r
m
Op
timiz
a
tio
n
(
N
o
r
A
z
lin
a
A
b
A
z
iz
)
1619
Dr
M
a
riza
n
M
u
b
i
n
g
ra
d
u
a
te
d
w
it
h
a
n
h
o
n
o
rs
d
e
g
re
e
in
tele
c
o
m
m
u
n
ica
ti
o
n
e
n
g
in
e
e
rin
g
,
f
ro
m
Un
iv
e
rsit
y
o
f
M
a
la
y
a
in
2
0
0
0
a
n
d
sh
e
h
a
d
c
o
n
ti
n
u
e
d
h
e
r
p
o
st
-
g
ra
d
u
a
te
stu
d
ies
in
Un
iv
e
rsity
o
f
Ne
w
c
a
stle
Up
o
n
Ty
n
e
,
UK
(th
e
M
S
c
in
c
o
m
m
u
n
ica
ti
o
n
a
n
d
sig
n
a
l
p
ro
c
e
ss
in
g
).
In
2
0
0
3
,
sh
e
w
a
s
a
wa
rd
e
d
a
sc
h
o
lars
h
ip
b
y
Ja
p
a
n
In
tern
a
ti
o
n
a
l
Co
o
p
e
ra
ti
o
n
A
g
e
n
c
y
(JIC
A
)
to
p
u
rsu
e
a
d
o
c
to
ra
l
d
e
g
re
e
in
T
o
k
a
i
Un
iv
e
rsit
y
,
Ja
p
a
n
.
S
h
e
is
c
u
rre
n
tl
y
a
tt
a
c
h
e
d
to
th
e
De
p
a
rtm
e
n
t
o
f
El
e
c
tri
c
a
l
En
g
in
e
e
rin
g
,
Un
iv
e
rsity
o
f
M
a
la
y
a
a
s
a
se
n
io
r
lec
tu
re
r.
He
r
m
a
i
n
re
se
a
rc
h
in
tere
st
is
in
n
o
n
-
li
n
e
a
r
c
o
n
tr
o
l
sy
ste
m
s.
Dr
S
o
p
h
a
n
W
a
h
y
u
d
i
Na
w
a
w
i
jo
in
e
d
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
la
y
s
ia
sin
c
e
1
9
9
9
.
He
re
c
e
iv
e
d
h
is
P
h
D
d
e
g
re
e
f
ro
m
th
e
Un
iv
e
rsi
ti
T
e
k
n
o
lo
g
i
M
a
lay
sia
in
2
0
1
0
.
I
n
2
0
0
6
,
h
e
c
o
ll
a
b
o
ra
tes
w
it
h
c
o
n
tro
l
re
se
a
rc
h
g
ro
u
p
a
t
Ho
n
g
Ko
n
g
Un
iv
e
rsit
y
o
f
S
c
ien
c
e
a
n
d
T
e
c
h
n
o
lo
g
y
a
s
a
re
se
a
r
c
h
sc
h
o
lar
a
n
d
a
tt
a
c
h
e
d
t
o
HK
US
T
sp
in
o
f
f
c
o
m
p
a
n
y
G
o
o
g
o
l
Tec
h
n
o
l
o
g
y
(
HK
)
lt
d
.
He
wa
s
p
ro
m
o
ted
to
a
se
n
io
r
lec
tu
re
r
in
2
0
1
0
.
M
s
No
r
Hid
a
y
a
ti
A
b
d
u
l
A
z
iz
g
ra
d
u
a
ted
f
ro
m
M
u
lt
ime
d
ia
Un
iv
e
rsit
y
in
2
0
0
2
in
El
e
c
tro
n
ics
En
g
in
e
e
rin
g
m
a
jo
rin
g
in
Co
m
p
u
ter,
a
n
d
c
o
m
p
lete
d
h
e
r
M
a
ste
r’s
De
g
re
e
o
f
En
g
in
e
e
rin
g
a
t
Un
iv
e
rsiti
T
e
k
n
o
lo
g
i
M
a
lay
sia
i
n
2
0
0
5
.
S
h
e
w
o
rk
e
d
i
n
T
e
lek
o
m
M
a
la
y
s
ia
Be
rh
a
d
a
s
a
f
ield
e
n
g
in
e
e
r
f
o
r
4
y
e
a
rs
i
m
m
e
d
iate
l
y
a
f
t
e
r
g
r
a
d
u
a
ti
o
n
,
a
n
d
t
h
e
n
jo
in
e
d
M
u
lt
im
e
d
ia
Un
iv
e
rsit
y
a
s
a
lec
tu
re
r
a
f
t
e
r
f
in
ish
in
g
h
e
r
M
a
st
e
r'
s
D
e
g
re
e
.
S
h
e
is
c
u
rre
n
tl
y
p
u
rsu
in
g
h
e
r
P
h
D
p
a
rt
-
t
im
e
a
t
Un
iv
e
rsiti
M
a
lay
si
a
P
a
h
a
n
g
in
Co
m
p
u
tatio
n
a
l
In
te
ll
ig
e
n
c
e
.
A
t
th
e
m
o
m
e
n
t,
sh
e
is
se
rv
in
g
M
u
lt
im
e
d
ia Un
iv
e
rsity
a
t
th
e
F
a
c
u
lt
y
o
f
En
g
in
e
e
rin
g
a
n
d
T
e
c
h
n
o
l
o
g
y
,
M
e
lak
a
c
a
m
p
u
s.
Evaluation Warning : The document was created with Spire.PDF for Python.