Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
V
o
l.
6, N
o
. 5
,
O
c
tob
e
r
201
6, p
p
. 2
064
~207
2
I
S
SN
: 208
8-8
7
0
8
,
D
O
I
:
10.115
91
/ij
ece.v6
i
5.1
142
1
2
064
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Experimental and Simulation St
udies of T
h
erm
al Distribu
tion
on M
o
dified Con
n
ect
or of
Li
-Ion Battery for Electric
Vehicles Application
Ag
us Risdiy
a
n
to
1
, Umar
K
h
ayam
2
, No
vi
adi
A. R
a
chm
a
n
1
, M
a
ul
an
a Ari
f
i
n
1
1
Research
Cen
t
r
e
for
Electr
i
cal P
o
wer and
Mech
atroni
cs, Indonesian Institute of
Sciences, B
a
ndung
, Indonesia
2
Departm
e
nt of Electri
cal
Power
Engin
eering
,
B
a
ndung Institu
te o
f
Technolog
y
,
B
a
ndung, Ind
ones
i
a
Article Info
A
B
STRAC
T
Article histo
r
y:
Received
May 9, 2016
Rev
i
sed
Ju
l 15
,
20
16
Accepte
d
J
u
l 30, 2016
One of the s
e
v
e
ral fa
ilure
cas
es
in el
ectr
i
c v
e
hi
cle
could be o
c
cured a
t
the
Lithium
-
ion
(Li-
ion) ba
tter
y
con
n
ectors when
lo
aded b
y
high
cu
rrent.
Th
is
failur
e
caused b
y
b
a
d con
t
act o
f
conne
ctors so that the contact resistan
ce
increase and lead to high power losses,
overheating, and it can even cause a
fire hazard. Th
is paper presents a
thermal distribution of Li-
i
on batter
y
connectors on d
i
fferen
t
co
ating
material
in
relation to
the v
a
lue of contact
resistance.
Ther
e were
two tes
t
samp
les of modeled
:
copp
er
connection
without coating and copper conn
ection with
silver coating
.
Each sample was
loaded b
y
th
e DC current of 35
0A, and tem
p
er
ature
at the
con
n
ect
ion was
m
eas
ured until
s
t
ead
y s
t
a
t
e
con
d
ition r
each
ed a
nd s
i
m
u
lated b
y
S
o
lidwork
s
o
ftware.
The r
e
s
u
lts
s
how that t
h
e tem
p
er
ature
a
t
the
ins
i
de
cont
act
are
a
was
higher than the
outside contact
area of
connection that appears
caused b
y
higher of the
contact resistan
ce. Both
measurement and simulation results
have same tendency
that
copp
er
connection with
silver co
ating
having lower
contact resistan
ce, lower
maximum temperature, and
lower losses about 32
% than copper connection without coatin
g
.
Silver coating can b
e
considered
as
other
a
ltern
ati
v
e to
prev
ent ov
erhea
ting, high
losses, and f
a
ilur
e
in
Li-
i
o
n
batter
y
conn
ecto
r.
Keyword:
Contact re
sistance
Li-ion
battery connectors
M
a
x
i
mu
m t
e
m
p
e
r
a
t
u
r
e
Silv
er co
ating
So
lidwork
Copyright ©
201
6 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Agu
s
Risd
iyanto
,
Depa
rtem
ent of Powe
r
Electroni
c a
n
d Electric Machinaries
,
Research Cen
t
re fo
r
Electrical Power an
d Mech
atro
n
i
cs, Indo
n
e
sian
Institu
te of Scien
ces,
Kom
p
l
e
k L
I
P
I
,
Jl
. Sa
n
g
k
u
ri
a
n
g,
N
o
.
2
1
/
1
54
D, B
a
n
d
u
n
g
40
13
5,
I
n
do
nesi
a.
Em
a
il: riesd
i
an
@g
m
a
il.co
m
,
ag
u
s
03
2@lip
i.go
.id
1.
INTRODUCTION
Heat
ge
nerat
i
o
n ha
s bec
o
m
e
a
m
a
jor i
s
s
u
e i
n
t
h
e a
p
plication
of Li-ion
battery as a power s
o
urce
t
o
dri
v
e
electric vehicle (EV). Som
e
researc
h
ers have
be
e
n
analyzed
a
n
d provide
d
to red
u
c
e th
e tem
p
eratu
r
e
bat
e
ry
usi
n
g
va
ri
o
u
s t
ech
ni
q
u
e
suc
h
as
i
m
provi
sat
i
o
n
o
f
c
o
o
l
i
ng sy
st
em
s usi
ng
p
h
ase c
h
a
n
ge m
a
t
e
ri
al
s (PC
M
)
[1]
,
G
r
ee
n'
s Funct
i
on t
e
c
hni
q
u
e an
d nat
u
ral
con
v
ect
i
on st
r
a
t
e
gy
[2]
,
a ne
w ki
n
d
o
f
co
ol
ant
and l
i
q
ui
d
m
e
t
a
l
[3]
,
an
d
pi
n-
fi
n heat
si
n
k
s [
4
]
.
Ot
he
r st
u
d
i
es al
so have
anal
y
zed t
h
e t
e
m
p
erat
ur
e of
Li
-i
on
bat
t
e
ry
usi
n
g
el
ect
ro-t
herm
al m
odel
i
ng
wi
t
h
t
h
e
s
p
at
i
a
l
v
a
ri
at
i
ons
o
f
el
ect
ro
de
param
e
t
e
r an
d t
h
e
re
act
i
on
heat
ge
nerat
e
d
in
sid
e
b
a
ttery u
n
d
e
r d
i
fferent o
p
e
rating
con
d
ition
s
[5
], an
d
im
p
r
o
v
e
m
e
n
t
o
f
th
erm
a
l
man
a
g
e
m
e
n
t
s
y
ste
m
base
d o
n
di
ffe
r
e
nces i
n
cel
l
si
ze and cel
l
pac
k
agi
ng
sy
st
em
[6]
.
Ho
we
ver,
onl
y
fe
w pa
pe
r
have
di
sc
usse
d t
h
e
h
eatin
g b
a
ttery
du
e to
p
r
ob
lem
in
co
nn
ection
system
. A
m
o
n
g
of th
em
were th
e ob
serv
i
n
g
co
nn
ector
warm
in
g
un
de
r
vi
brat
i
o
n e
nvi
ro
nm
ent
[7]
a
n
d i
m
provem
e
nt
o
f
c
o
n
n
ect
o
r
m
a
t
e
ri
al
usi
n
g
b
r
a
ss-co
p
p
er
co
n
n
ect
o
r
co
nfigu
r
ation
with
co
n
t
act
p
r
essu
re settin
g [8
].
Of t
h
e m
a
ny
ty
pes of c
o
n
n
e
c
t
i
ons use
d
i
n
Li
-i
on bat
t
e
ry
, ove
rl
ap
pi
n
g
bol
t
e
d c
o
n
n
ect
i
ons are t
h
e
m
o
st co
mm
o
n
l
y u
s
ed
. Th
ey are v
e
rsatile, d
e
p
e
nd
ab
le, simp
le d
e
sign
and fab
r
ication
,
easy in
stallatio
n
,
and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Exp
e
rimen
t
a
l
an
d S
i
mu
l
a
tio
n
S
t
ud
ies
o
f
Th
erma
l
Distri
bu
tion
o
n
Mo
d
ified
Co
nn
ecto
r
....
(Ag
u
s
Risd
iya
n
to
)
2
065
easy m
a
in
ten
a
n
ce.
Gen
e
rally, th
e con
f
i
gur
atio
n of
ov
er
lap
p
i
n
g
bo
lted connectio
n
i
n
Li-
i
on
b
a
tter
y
fo
r el
ectr
i
c
vehi
cl
e a
p
pl
i
cat
i
on i
s
as
s
h
o
w
n as
Fi
g
u
re
1
.
Fi
gu
re
1.
Exi
s
t
i
ng c
o
nnect
i
o
n
s
wi
t
h
b
o
l
t
e
d c
o
n
f
i
g
urat
i
o
n
f
o
r Li
-i
on
bat
t
e
ry
Ty
pi
cal
l
y
t
h
e
m
a
t
e
ri
al
exi
s
ting t
h
at
use f
o
r
Li
-i
on
bat
t
e
ry
con
n
ect
i
o
n i
s
cop
p
e
r
. Thi
s
c
o
m
pone
nt
t
h
at
h
a
s an
im
p
o
r
tan
t
ro
le in
t
h
e tran
sferi
n
g
o
f
electricity
d
i
stri
b
u
tion
wh
ile op
eratin
g the el
ectric vehicle.
The
p
a
ram
e
ters to
th
e reliab
ility o
f
th
e co
nnectio
n
system is a
m
u
st h
a
v
e
in
tegrity, b
o
t
h
electrically an
d
mechanically [9].
A
good
c
o
nnection
syste
m
m
u
st
be m
echanica
l
l
y
st
ron
g
a
nd
h
a
ve a sm
all
cont
ac
t
resistan
ce. Th
e greater con
t
act resistan
ce on
th
e co
nn
ectio
n will lead t
o
the
g
r
eater
p
o
wer lo
sses.
Co
pp
er
con
n
ect
i
o
n wi
t
h
hi
g
h
c
u
rre
nt
l
o
a
d
ca
n
ca
u
s
e
t
h
e
p
o
w
er
di
ssi
pat
i
o
n.
It
depe
n
d
s o
n
t
h
e val
u
e of c
o
nt
act
resi
st
ance. M
a
xi
m
u
m
t
e
m
p
erat
ure pe
rm
i
t
t
e
d fo
r co
ppe
r c
o
nnect
or i
s
n
o
t
hi
g
h
er t
h
a
n
65
C [10]. Tem
p
erature
ri
se o
n
t
h
e c
o
nnect
or
m
u
st
be a
v
oi
de
d
be
cause i
t
ca
n
f
l
ow i
n
t
o
t
h
e
bat
t
e
ry
.
One
of
m
a
ny
fact
o
r
s t
h
at
in
flu
e
n
c
ed
th
e residu
al cap
acity o
f
th
e Li-io
n
b
a
ttery is te
m
p
eratu
r
e
o
f
th
e b
a
ttery [11
]
, wh
ile th
e Li-io
n
bat
t
e
ry
o
p
e
r
at
i
n
g
t
e
m
p
erat
ure
f
o
r m
a
xi
m
u
m
pe
rf
orm
a
nce,
life cycle, and the ca
pacity is bet
w
een 25-40 ºC
[3]
.
T
h
e ge
ne
r
a
t
i
on o
f
sm
al
l
vol
t
a
ge
d
r
o
p
p
r
o
d
u
ces co
nt
ac
t te
m
p
erature that can eas
ily lead
to
soften
i
n
g
o
r
m
e
l
t
i
ng
of
t
h
e
co
nt
act
m
a
t
e
r
i
al
[1
2]
. T
h
e c
ont
act
s
p
ot
t
e
m
p
erat
ure i
s
r
e
l
a
t
e
d t
o
t
h
e
v
o
l
t
a
ge
dr
o
p
ac
ross
t
h
e
contact i
n
terfa
ce [13].
In a line
with
DC electric curre
nt
lo
ad, th
e p
o
wer lo
ss is
n
o
t
o
n
l
y d
e
termin
ed
b
y
resistan
ce of th
e
line conductor,
but also
dete
rm
ined by val
u
e of the c
o
ntact resist
ance at each connection and the am
ount
of
cu
rren
t fl
o
w
i
n
g
in
th
e lin
e [14
]
. Con
t
act resistan
ce is th
e main
criterio
n
th
at d
e
term
in
es th
e reliab
ility
o
f
th
e
electrical conta
c
ts of a
connec
tion [15]
. Bad
electrical conta
c
t occurs
whe
n
only sm
a
ll part of t
h
e total s
u
rface
t
h
at
havi
ng c
o
nd
uct
i
o
n.
Area
of t
h
e act
ual
cont
act
i
s
l
e
ss t
h
an area
o
f
expect
e
d
co
nt
ac
t
due t
o
c
o
nst
r
i
c
t
i
o
n
.
Because the c
o
nstriction of c
o
ntact su
rface, the c
u
rrent
dens
ity distributi
on bec
o
m
e
s greater and it'
s become a
heating s
o
urce
of a c
o
nnection
(contact spot
). T
h
e c
o
ns
t
r
i
c
t
i
on
o
f
t
h
e
co
nt
act
area ca
n
be
sh
ow
n i
n
Fi
g
u
r
e
2.
(a)
(b
)
Figure
2. Curre
nt di
stri
buti
o
n and
constriction of
contact
surface (s
pot
), (a
)
si
de
vie
w
, a
n
d
(b) top
view
In a
practical electrical connection, t
h
e tot
a
l area of
elec
trical contact
m
u
st be
m
a
de as large
as
practicable t
o
minimize cont
act resistan
ce.
In c
o
nt
rast
, l
o
s
s
of
t
r
ue co
nt
a
c
t area leads t
o
contact de
gra
d
ation.
Resistan
ce arisin
g
in
th
e co
n
s
trictio
n
area called
co
n
s
tric
tion resistance a
n
d the value
de
pends on the m
a
terial
characte
r
istics suc
h
as surfac
e
roughn
ess,
hardness a
nd
re
sistivity [16].
The opt
i
m
i
z
at
ion of
t
h
e
co
n
n
ect
i
ons
desi
g
n
s
u
pp
os
ed t
o
det
e
rm
i
n
e t
h
e
val
u
e
o
f
co
nt
act
di
m
e
nsi
o
n s
u
c
h
t
h
a
t
t
h
e m
a
xim
u
m
t
e
m
p
erat
ure
i
n
t
h
e
contact re
gio
n
rem
a
ins lowe
r than
t
h
e acc
ept
a
bl
e l
i
m
i
ti
ng val
u
e al
l
o
w
e
d by
st
anda
r
d
s [
17]
. St
abl
e
and
min
i
m
u
m
co
n
t
act resistan
ce
o
f
co
nn
ection
s
will red
u
ce t
h
e n
eed
for m
a
i
n
ten
a
n
ce,
d
ecrease o
v
e
rall down
time
of
eq
ui
pm
ent
,
l
o
w
m
a
i
n
t
e
nanc
e cost
s a
n
d
gre
a
t
l
y
reduce
t
h
e
ri
sk
o
f
cat
ast
r
o
phi
c
fai
l
u
r
e
s [
1
8]
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
206
4
–
20
72
2
066
Th
is p
a
p
e
r aims to
ob
serv
e the th
erm
a
l d
i
strib
u
tion
and efficiency due to
lo
sses in
th
e co
nn
ector
of
Li
-i
on
bat
t
e
ri
e
s
fo
r el
ect
ri
c v
e
hi
cl
e appl
i
cat
i
ons
usi
n
g t
w
o
di
ffe
re
nt
sam
p
l
e
t
r
eat
m
e
nt
s. There
we
re t
w
o t
e
st
sam
p
les o
f
m
o
d
e
led
:
cop
p
e
r
co
nn
ection
with
ou
t co
a
ting
an
d
co
pp
er co
nn
ectio
n
with
silv
er co
ating
.
Th
ose
sam
p
l
e
s were sim
i
l
a
r t
o
t
h
e
sam
p
l
e
i
n
pre
v
i
ous
pape
r b
u
t
i
t
s
di
ffere
nt
i
n
cu
rre
nt
t
y
pe [1
9]
due t
o
di
f
f
ere
n
t
appl
i
cat
i
o
n.
Th
e ex
peri
m
e
nt
was c
o
nd
uct
e
d
by
c
o
nve
n
tional m
easu
r
e
m
en
t to
co
m
p
ar
e a
n
d a
n
alize the
result
s
o
f
t
w
o sam
p
les. Th
en
t
h
e simu
latio
n
was also
co
ndu
cted
u
s
in
g
So
lidwo
rk
so
ft
ware t
o
p
r
ed
ict th
e tem
p
eratu
r
e
o
f
b
a
ttery
wh
en
th
e testin
g facilit
y is n
o
t
av
ailab
l
e.
2.
EX
PER
I
M
E
NTA
L
AND
SIM
U
LA
TION
SETU
P
2.
1.
Experimental Setup
In m
a
ny expe
ri
ments, low
resi
stance m
easurements ar
e su
b
j
ect
t
o
m
a
ny
of t
h
e sam
e
sourc
e
s of e
r
r
o
r
as low
voltage
m
easurem
ents includi
ng
offset voltage
s
due t
o
therm
o
electric EMFs. For elim
inating t
h
e
term
oelectric E
M
Fs, m
easure
m
ent
m
u
st include
di
ffe
re
n
t
cu
rren
t
po
larity (rev
e
r
s
e-
cu
rr
e
n
t me
th
o
d
)
.
The m
odel
s
us
i
ng t
w
o sam
p
l
e
s of
b
o
l
t
e
d c
o
ppe
r c
o
n
n
ect
i
o
n:
co
pp
er c
o
n
n
ect
i
on
wi
t
h
o
u
t
coat
i
n
g
an
d
coppe
r
connec
tion wit
h
silve
r
coatin
g.
Silver can
be c
o
ns
idere
d
for
use
as a coating
material. It has high
conductivity, corrosi
o
n resist
ance, a
nd is more ec
onom
i
c
al
. C
o
at
i
ng t
h
i
c
kne
ss us
ual
l
y
v
a
ri
es bet
w
ee
n
0.
1 -
3
0
µ
m
and
occasi
onally up t
o
100 µm
depending
on th
e c
h
aracteristics of the m
e
tal
material, the
operating
co
nd
itio
ns, as
well as o
t
h
e
r fu
n
c
tion
s
t
h
at are m
o
re sp
ecifi
c [16
]
. In
m
e
a
s
u
r
em
en
t o
f
con
n
ect
o
r
tem
p
eratu
r
e,
th
e sam
p
le d
i
men
s
io
n refers to
th
e
I
n
do
nes
i
an N
a
t
i
o
nal
S
t
an
da
rds
(
S
NI
PU
IL 2
000
)
with
a current ca
pacity
of
3
5
0
A
. C
u
r
r
e
nt
l
o
a
d
t
e
st
i
n
g wa
s det
e
rm
ined
base
d
on
t
h
e s
p
eci
fi
cat
i
o
ns
of B
L
DC
m
o
t
o
rs wi
t
h
a
nom
i
n
al
current
of 350 A whic
h was
use
d
as
a m
a
in drive
r
of electric ve
hicle
[
20]. Contact pres
sure
on each s
a
m
p
le
per
f
o
r
m
e
d at
12 M
P
a [1
9]
.
Whi
l
e
i
n
m
easurem
ent
of co
nt
act
resi
st
ance of
con
n
ect
i
o
n
s
p
e
rf
orm
e
d by
4-wi
re
s
m
e
t
hod,
a
n
d
t
h
e am
ount
o
f
cur
r
ent
su
p
p
l
i
e
d
(
I
dc
) is
2
A.
The
sam
p
les and t
h
e m
e
thods a
r
e as
s
h
ow a
s
Fi
gu
re 3.
(a)
(b
)
(c)
Fi
gu
re
3.
C
o
nt
act
resi
st
an
ce
measurem
ent of c
o
nnection,
(a) Modifie
d
s
a
mp
l
e
s
,
(
b
)
S
c
h
e
ma
t
i
c
d
i
a
g
r
a
m,
a
n
d
(c) Im
age
setup of
m
easurement
Furt
herm
ore, t
o
determ
ine the contact resistance (
R
c
)
,
i
t
was do
ne b
y
cal
cul
a
t
i
on, usi
ng t
h
e
fol
l
o
wi
n
g
e
q
ua
t
i
on
[2
1]
:
f
r
c
f
r
VV
R
I
I
(1
)
whe
r
e,
V
f
i
s
f
o
rwa
r
d v
o
l
t
a
ge dr
o
p
(
vol
t
)
,
V
r
i
s
reve
rse vol
t
a
ge
d
r
op (
vol
t
)
,
I
f
is forward c
u
rre
nt (am
p
ere), and
I
r
is re
ve
rse c
u
rre
nt (am
p
ere)
.
2.
2.
Simulati
on Se
tup
Th
erm
a
l flo
w
si
m
u
latio
n
s
en
ab
le to
pred
i
c
t h
eat
tran
sfer sim
u
ltan
e
o
u
s
ly o
n
so
li
d
material. Th
e
phe
n
o
m
e
non
o
f
a
n
i
s
ot
r
o
pi
c h
eat
con
d
u
ct
i
v
i
t
y
i
n
s
o
l
i
d
m
a
t
e
ri
al
i
s
desc
ri
be
d
by
t
h
e
f
o
l
l
o
w
i
ng e
q
uat
i
o
n :
iH
ii
eT
Q
tx
x
(2
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Exp
e
rimen
t
a
l
an
d S
i
mu
l
a
tio
n
S
t
ud
ies
o
f
Th
erma
l
Distri
bu
tion
o
n
Mo
d
ified
Co
nn
ecto
r
....
(Ag
u
s
Risd
iya
n
to
)
2
067
whe
r
e
e
is the
specific internal energy,
e =
c·T
,
c
is s
p
ecific heat,
Q
H
is s
p
ecific heat
release (or a
b
s
o
rption)
per
uni
t
v
o
l
u
m
e
, and
i
are the eigen val
u
es
of the therm
a
l conductiv
ity ten
s
o
r
.
It is su
pp
o
s
ed
th
at th
e
h
eat
co
ndu
ctiv
ity ten
s
or is
d
i
ag
on
al in
th
e con
s
id
ered coo
r
d
i
n
a
te
syste
m
, th
en
for iso
t
rop
i
c m
e
d
i
u
m
1
=
2
=
3
=
.
If a so
lid
co
nsists o
f
sev
e
ral so
lid
s attached
to
eac
h
other, the
n
the t
h
erm
a
l contact resistance
s
betwee
n them
(on t
h
eir c
o
ntact surfac
e
s), specifie
d
in
t
h
e E
ngi
neeri
n
g
dat
a
base i
n
t
h
e f
o
rm
of c
ont
act
resistance (
r
c
)
can
b
e
tak
e
n
in
to
acco
u
n
t
wh
en
calcu
lating
th
e
h
eat cond
u
c
tion
in
so
li
d
s
.
As a resu
lt, a so
lid
te
m
p
erature
step a
p
pears
on the c
o
nt
act s
u
rfaces. In
presence
of the
el
ectric curre
n
t, the c
o
rres
pondi
ng
specific J
oule
heat
Q
J
(W
/m
3
)
is released
a
nd i
n
cluded i
n
Q
H
of
heat
t
r
ansfe
r
e
quat
i
o
n (
2
)
.
I
n
t
h
e c
a
se of
i
s
ot
ro
pi
c m
a
t
e
ri
al
Q
J
is:
2
j
Qi
r
(3
)
whe
r
e
r
is th
e
so
lid
s electrical resistiv
ity (
·m
), it can be te
m
p
erature-de
pende
n
t and
i
is the electric current
d
e
nsity (A/m
2
)
.
T
h
e electric c
u
rrent
de
nsity vector is :
11
1
2
2
2
33
3
11
1
,,
i
rx
r
x
r
x
(4
)
whe
r
e
i
is determ
ined via the electric potential
[V]. To
ob
tain
th
e el
ectric p
o
t
en
tial
, f
l
ow
sim
u
l
a
tion
utilizes the ste
a
dy-state La
place equation :
1
0
ii
i
i
xr
x
(5
)
whe
r
e
r
ii
is th
e te
m
p
eratu
r
e-dep
e
nd
en
t electrical resistiv
ity
in
th
e
i
-t
h co
or
di
nat
e
di
rect
i
on.
In t
h
i
s
case, t
h
e
sim
u
l
a
t
i
on of t
h
erm
a
l
di
st
ri
bu
t
i
on o
n
c
o
p
p
er
con
n
ect
i
o
n w
a
s
m
a
de usi
n
g
Sol
i
d
wo
r
k
1
2
f
o
r eac
h sam
p
l
e
. The
cross
-
sectional
of
copper c
onnection
that se
lected is 3
x
30 mm
= 90 mm
2
, and t
h
e contact area is
30
x 30
m
m
.
The C
o
nfi
g
u
r
at
i
o
n
of c
o
n
n
ect
i
o
n
s
are
s
h
ow
n i
n
Fi
gu
re
4.
(a)
(b
)
Fig
u
r
e
4
.
Con
f
i
g
ur
ation
o
f
conn
ectio
ns,
(
a
) Co
pp
er
co
nn
ector
, and
(b)
Copper
co
nn
ector
with
silv
er
co
ati
n
g
Param
e
ters u
s
ed
in on
t
h
e sam
p
les are as shown in
t
h
e Tab
l
e 1
as fo
llow:
Tab
l
e
1
.
Th
e In
pu
t Param
e
ters Used
In Th
e
Si
m
u
latio
n
Of
Th
erm
a
l Flo
w
On Con
n
ectio
n Part
No
Sam
p
el of connection
R
c
P
h
T
A
(µ
)
(W
)
(W/
m
2
K)
(
0
C)
1.
Connector
(
c
opper
)
15,
3
1,
87
15
0,
7
27
2.
Silver
-
c
oated
connector
6,
6
0,
81
15
0,
02
27
The
c
ontact resistance (
R
c
), los
s
es (
P
), and am
bient te
m
p
erature
(
T
A
) a
r
e
obtained from
measu
r
em
en
t resu
lt. Fo
r
n
a
tural co
nv
ection
(
h
)
is varies between 2-25W
/
m
2
K [22
]
,[2
3
]
, in
th
is case
h
val
u
es
of al
l
sam
p
l
e
s were as
sum
e
d at
15
W
/
m
2
K), an
d
em
issiv
ity o
f
selected
materials : Cu
(b
lack
ox
id
ized
) and
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
206
4
–
20
72
2
068
Ag
res
p
ectivel
y are 0.7 a
n
d
0.02 [
24].
The
m
odel and m
a
terial prope
rtie
s of each sa
m
p
le presente
d in t
h
e
Tabl
e 2
as f
o
l
l
o
w:
Tabl
e
2. T
h
e
T
h
e M
odel
a
n
d
M
a
t
e
ri
al
Pro
p
e
r
t
i
e
s o
f
c
o
n
n
ec
t
i
on a
n
d
pa
rt
of
C
o
nt
act
M
odel
Pr
oper
ties
Nam
e
: Copper
M
odel
ty
pe:
L
i
near
E
l
astic I
s
otropic
T
h
erm
a
l conductivity
:
390 W
/
(m
.K)
Specific heat:
390 J/(
kg.
K)
M
a
ss density
:
8900 k
g
/m
3
Na
m
e
:
Silver
M
odel
ty
pe:
L
i
near
E
l
astic I
s
otropic
T
h
erm
a
l conductivity
:
420 W
/
(m
.K)
Specific heat:
230 J/(
kg.
K)
M
a
ss density
:
8500
m
3
Th
e
p
r
o
c
ed
ur
es in
t
h
e sim
u
lat
i
o
n
of
th
er
m
a
l
f
l
ow
is as show
n in
Figu
r
e
5
b
e
low
:
Fig
u
re 5
.
Flowch
art o
f
sim
u
la
tio
n
Ho
we
ver
,
t
h
er
m
a
l
fl
ow si
m
u
lat
i
on s
h
o
w
s
on
l
y
t
h
e
m
a
xim
u
m
t
e
m
p
erat
ure
of t
h
e co
n
n
ect
i
ons
an
d
not
affected by t
h
e
tim
e
of loa
d
ing, t
h
us
the
transient state can
not
be
dis
p
layed.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Exp
e
rimen
t
a
l
an
d S
i
mu
l
a
tio
n
S
t
ud
ies
o
f
Th
erma
l
Distri
bu
tion
o
n
Mo
d
ified
Co
nn
ecto
r
....
(Ag
u
s
Risd
iya
n
to
)
2
069
3.
RESULTS
A
N
D
DI
SC
US
S
I
ON
Tem
p
eratu
r
e
measu
r
em
en
ts was
d
o
n
e
b
y
lo
ad
i
n
g
d
c
con
s
tan
t
cu
rren
t o
f
3
5
0
A un
til the stead
y state
te
m
p
erature re
ached. The c
h
a
nge
s in
tem
p
erature of each
co
nnection from
m
easure
m
ent results is as shown
in
Figur
e
6
.
Figure
6. Temperat
ure c
h
a
r
ac
teristics of t
h
e
sam
p
les
with
th
e co
n
t
act
p
r
essu
re 12
MPa an
d 350
A lo
ad
in
g fo
r
60
m
i
nut
es
C
o
p
p
er
co
n
n
e
c
t
i
on
wi
t
h
si
l
v
er coat
i
n
g
ha
v
i
ng l
o
we
r m
a
xi
m
u
m
t
e
m
p
er
at
ure
41
.6
C, an
d
copp
er
co
nn
ection
wit
h
ou
t co
ating
is 4
7
.1
C. For
bot
h sam
p
les, te
m
p
erature stead
y state is reached a
f
ter 50
minutes
of loadi
n
g. Di
ffe
rent m
a
ximum
te
m
p
erature of each sa
mple occure
d ba
sed on diff
ere
n
t therm
a
l coefficient,
extensi
v
e
re
al contact
a
r
ea (s
pot
), othe
rs
m
a
t
e
ri
al
pr
op
ert
i
e
s l
i
k
e r
o
ug
h
n
es
s an
d
har
d
ness.
B
y
kn
o
w
i
n
g t
h
e v
o
l
t
a
ge
d
r
o
p
at
3
5
0
A
dc
c
u
rre
nt
l
o
a
d
,
l
o
ss
es o
n
c
o
nne
ct
i
ons
ca
n
be
det
e
rm
i
n
ed as
well. Th
e m
easu
r
em
en
t resu
lts is shown in
Fig
u
re
7
as fo
llows:
Fig
u
re
7
.
Po
wer lo
sses ch
aract
eristics o
f
th
e co
nn
ection
sam
p
les
Resistance val
u
e is infl
uenc
e
d
by tem
p
erature, a
nd tem
p
erature c
h
anges
cause c
h
anges
in resistance
of a m
a
terial.
Thus, duri
ng t
h
e rise in te
mperat
ure at
a relativ
ely co
n
s
tan
t
lo
ad
curren
t
, th
e vo
ltag
e
d
r
op
read
i
n
g
at th
e co
nn
ection
s
wi
ll b
e
flu
c
tu
ated
un
til stab
le t
e
m
p
eratu
r
e reach
e
d. Th
e ch
aracteristics o
f
po
wer
lo
sses in
all sam
p
les are si
m
i
lar to
th
e ch
aracteristics
of v
o
l
t
a
ge dr
op
.
T
h
i
s
i
s
beca
use t
h
e
v
o
l
t
a
ge dr
op an
d
th
e p
o
wer lo
ss h
a
v
e
a lin
ear
relatio
n
s
h
i
p. Th
e flu
c
t
u
atio
n
s
o
f
lo
sses in
al
l sa
m
p
les ab
o
v
e o
ccur at th
e same
ti
m
e
d
u
r
atio
n
,
i.e. for 50
m
i
n
u
tes fro
m
th
e s
t
art o
f
lo
ad
ing
.
Th
is is d
u
e
to
th
e in
crease
of te
m
p
erature has not
reache
d
in a constant val
u
e. For loa
d
ing by DC current, measurem
ent results
tend to be
the sam
e
as the
result
of l
o
adi
n
g by
AC
cu
rre
nt
wh
i
c
h has
bee
n
p
ubl
i
s
hed i
n
pre
v
i
o
us
pape
rs
[
19]
e
v
en
f
o
r
d
i
ffere
nt
a
ppl
i
c
at
i
ons
.
Refers t
o
calculation of
powe
r loss
in stea
dy
state te
m
p
erature
,
it could
be explained that coppe
r
c
o
nnection
with
silv
er coatin
g
h
a
v
i
n
g
lo
wer losses abo
u
t
32
% th
an
co
pp
er conn
ectio
n
with
ou
t co
atin
g. It is
sup
e
ri
o
r
com
p
ared t
o
us
i
ng c
o
nfi
g
u
r
at
i
o
n
o
f
br
uss
-
c
o
ppe
r c
o
nt
act
t
h
at
onl
y
6%
[8]
.
0
10
20
30
40
50
0
5
10
15
20
25
30
35
40
45
50
55
60
Te
mp
.
of
C
o
nnection
(
C)
Time
(minute)
Uncoated
Connector
Silve
r
‐
coate
d
Connector
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
206
4
–
20
72
2
070
In
sim
u
latio
n
,
th
e resu
lts are
sh
own
as in
Fig
u
re
8. Base
d
on t
h
e power l
o
ss, t
h
e copper connection
i
s
di
vi
ded
i
n
t
o
3
part
s
,
nam
e
ly
cop
p
e
r
p
a
rt
1, c
o
nt
act
pa
rt
,
an
d c
o
p
p
e
r
p
a
rt
2.
F
o
r
co
p
p
e
r
pa
rt
1 a
n
d
co
ppe
r
part
2 ha
ve t
h
e sam
e
dim
e
nsi
ons
wi
t
h
re
si
st
ance al
o
ng t
h
e 27
0 m
m
and a l
o
ad c
u
r
r
ent
of
3
50
A p
r
o
duce
s
po
we
r l
o
s
s
of
6.
6
W
.
Whi
l
e
t
h
e
po
we
r l
o
s
s
due
t
o
c
o
nt
act
resi
st
ance at
ea
ch c
o
n
n
ect
i
o
n
sam
p
l
e
usi
ng e
quat
i
o
n
(3) c
o
rresponding s
p
ecific J
o
ule heat
Q
J
f
o
r
co
ppe
r c
o
n
n
e
c
t
i
ons
1.
87
W,
and
co
n
n
ect
i
o
n wi
t
h
si
l
v
er
c
o
at
i
n
g
0.
81
W.
(a)
(b
)
Fi
gu
re
8.
(a
) T
h
erm
a
l
di
st
ri
bu
t
i
on
of
co
p
p
er
con
n
ect
i
o
n,
(
b
)
The
r
m
a
l
di
st
ri
but
i
o
n
o
f
c
o
p
p
e
r c
o
n
n
ect
i
o
n
wi
t
h
silv
er co
ating
Th
e h
i
gh
est te
m
p
eratu
r
e d
i
strib
u
tion
lies in
th
e
conne
c
tion area
, it arises beca
use
the contact
resistan
ce at t
h
e con
n
ecti
o
n are a larg
er th
an ou
tsid
e con
n
e
ctio
n
,
so power lo
ss to h
eat
gen
e
rated
will also
b
e
greater. Coppe
r connections
has
a
m
a
xim
u
m te
m
p
erature of 46.5
C at the contact area as shown in
Figure
8(a
)
, a
nd c
o
pp
er co
n
n
ect
i
on
wi
t
h
si
l
v
er c
o
a
t
i
ng ha
s a m
a
xim
u
m
t
e
m
p
erature
of
3
9
.
8
C
at the contact
area as
sh
own
in
Figur
e 8(
b)
. Co
m
p
ar
ison
of
tem
p
er
atu
r
e m
easu
r
e
m
en
ts an
d
si
m
u
la
tio
n
resu
lts in
th
e
m
a
x
i
m
u
m
te
m
p
erature
of
each sam
p
le can
be see
n
i
n
the Table
3 as
follow:
Table 3.
C
o
m
p
arison
Res
u
lts of
Maxim
u
m
Te
m
p
erature on Each Sam
p
le
No
Sam
p
le of Connection
M
a
x.
Tem
p
er
atur
e of Connectio
n Par
t
(
C)
(Measure
m
ent)
(
S
im
ulation)
1 Cu
47.
1
46.
5
2
Cu with Ag-
c
oating
41.
6
39.
8
Th
e sim
u
latio
n
resu
lts
for th
e
m
a
x
i
m
u
m
/
ste
a
d
y
state te
m
p
eratu
r
e illu
strated
in
Fi
g
u
re
8
co
m
p
ared
with the m
eas
urem
ent result
s (see Figur
e 6)
show
a go
od
ag
r
eem
en
t (slig
h
tly d
i
fferen
t). Bu
t in
th
is case, th
e
si
m
u
latio
n
resu
lts can
no
t sho
w
a tem
p
eratu
r
e rise
b
a
sed
o
n
cu
rren
t lo
adin
g
tim
e
(tran
s
ien
t
co
nd
itio
n) as well
as in t
h
e m
easurem
ent res
u
lts.
Howe
ver, si
m
u
la
tion re
su
lt
s can sh
ow t
h
e tem
p
eratu
r
e
distrib
u
tion
i
n
all p
a
rt
o
f
th
e cop
p
e
r,
wh
ile th
e m
eas
u
r
em
en
t resu
lt sh
ow t
h
e tem
p
eratu
r
e on
ly on th
e co
nn
ection p
a
rt.
There
f
ore,
by
set
t
i
ng t
h
e
pr
ope
r
param
e
t
e
rs, t
h
e
ap
pl
i
cat
i
on
of s
o
l
i
d
w
o
r
k
ca
n be
co
nsi
d
e
r
ed
i
n
desi
g
n
i
n
g,
vi
s
u
al
i
z
i
ng,
pre
d
i
c
t
i
ng a
n
d m
easur
i
ng t
h
e t
h
e
r
m
a
l di
st
ri
b
u
t
i
o
n
of
Li
-i
o
n
bat
t
e
ry
co
nnect
or
.
4.
CO
NCL
USI
O
N
In t
h
e Li
-i
on
bat
t
e
ry
con
n
ec
t
o
r, t
h
e c
ont
ac
t
area has hi
g
h
er t
h
e
r
m
a
l di
st
ri
but
i
o
n t
h
a
n
ot
her area
s
cause
d by the
contact resista
n
ce
.
B
o
th
m
e
a
s
u
r
em
en
t an
d
si
m
u
latio
n
resu
l
t
s sh
ow th
at cop
p
e
r co
nn
ection
with
si
l
v
er c
o
at
i
n
g
havi
ng
l
o
wer
m
a
xim
u
m
t
e
m
p
erat
ure a
n
d l
o
wer l
o
sses th
an
co
pp
er connectio
n
with
ou
t
co
ating
.
Silver c
o
ating
on the electric
a
l contacts s
u
c
h
as c
o
ppe
r c
o
n
d
u
c
tors with
d
i
fferen
t
m
e
ta
l
s
can
b
e
co
nsid
ered
to
reduce the m
a
xim
u
m
te
m
p
er
ature
of t
h
e Li
-ion battery c
o
nnect
or
for ele
c
trical vehi
cle, losses als
o
ca
n
be
red
u
ce
d
up
t
o
3
2
%.
Sol
i
dw
or
k
has e
x
cel
l
e
nt
pe
rf
o
r
m
a
nces f
o
r
desi
gn
i
ng,
vi
s
u
al
i
z
i
n
g, a
n
d m
easur
i
ng t
h
e
th
erm
a
l d
i
strib
u
tio
n of Li
-ion
b
a
ttery conn
ecto
r
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Exp
e
rimen
t
a
l
an
d S
i
mu
l
a
tio
n
S
t
ud
ies
o
f
Th
erma
l
Distri
bu
tion
o
n
Mo
d
ified
Co
nn
ecto
r
....
(Ag
u
s
Risd
iya
n
to
)
2
071
ACKNOWLE
DGE
M
ENTS
The aut
h
ors
would like to thank t
o
the
Chairm
an
of t
h
e M
a
st
er and
Doct
or
of
Engi
neeri
n
g
Man
a
g
e
m
e
n
t
In
du
stry
-Band
u
n
g
In
stitu
te o
f
Techn
o
l
o
g
y
for allo
wi
n
g
numerical si
m
u
la
tio
n
using
So
lid
wo
rk
s.
M
o
re
ove
r t
h
a
nks
t
o
al
l
t
h
e
t
eam
i
n
Dep
a
rt
m
e
nt
of El
ect
ri
cal
Po
wer
En
gi
nee
r
i
n
g-
Sch
ool
o
f
El
e
c
t
r
i
cal
En
gi
neeri
ng
a
nd
In
f
o
rm
at
i
c
s, B
a
n
d
u
n
g
I
n
st
i
t
u
t
e
of Te
c
hnology and T
h
e
Research Ce
ntre Electrical Power
an
d Mech
atronics, In
don
esian In
stitu
te of Sci
e
n
ces
for an
y assistan
ce th
at
has b
e
en
g
i
v
e
n
.
REFERE
NC
ES
[1]
N. Javani,
et
al
.
,
“
H
eat trans
f
er
a
nd therm
a
l m
a
na
gem
e
nt with P
C
M
s
in a Li-ion b
a
tt
er
y c
e
ll for
el
ectr
i
c v
e
hic
l
es
,
”
International
Jo
urnal of
Heat a
nd Mass Transfer,
vol. 72, pp. 69
0-703, 2014
.
[2]
G.
H.
Fofana
and Y.
Zhang,
“
E
lct
r
ic V
e
hic
l
e
Lithium
Ion Ba
tteri
es The
r
m
a
l
Managem
e
nt
,”
TE
LKOMNIKA
Indonesian Jour
nal of El
ectrical Engineering
, vol/issue: 12(3)
, pp
. 2414 -
2421, 20
14.
[3]
L. H.
S
a
w
, e
t
a
l
.
,
“
E
le
ctro-th
e
r
m
al ana
l
y
s
is
an
d integr
ation
issues
of li
thium
i
on batt
er
y for
e
l
ec
tric
vehi
cl
es,
”
Applied
En
ergy,
vol. 131
, pp
. 97-
107, 2014
.
[4]
S. K. Mohammadian
and Y.
Zhang, “Thermal
mana
gement optimization
of an
ai
r-coo
led
Li-io
n
batter
y
module
using pin-fin
heat sinks for
h
y
bri
d
el
ectr
i
c
vehi
cl
es
,”
Journal o
f
Power Sources,
v
o
l. 273
, pp
. 431-
439, 2015
.
[5]
G. H. Fofana and Y. Zhang
,
“
E
lctro-th
ermal Modeling
of Lith
ium
Ion Batt
er
ies,”
TELKOMNIKA Indonesia
n
Journal of Electr
ical Engineerin
g
, vol/issue: 12(
5), pp
. 3671-367
7, 2014
.
[6]
L. H. S
a
w
, et al.
, “
I
ntegraton iss
u
es of lithium
-
io
n batter
y
in
to el
ectr
i
c vehi
cl
es batt
er
y
p
ack
,”
Jo
urnal of Cleaner
Production
,
vol. 113
,
pp
. 1032-1
045, 2016
.
[7]
L. Yao
, et al.
,
“
F
ault detec
tion
of the connect
i
on of lithium
-
ion power batteri
es based on entrop
y
for el
ectr
i
c
vehicles,”
Journ
a
l of Power
Sources,
vo
l. 293, pp. 548-561, 2015.
[8]
P.
T
a
he
ri
, et al.
,
“
I
nvestigating e
l
ec
tric
al cont
ac
t resistanc
e
losse
s in lithium
-
ion batt
er
y
assem
b
lie
s for hy
brid an
d
e
l
ec
t
r
ic
ve
hi
cl
e
s
,”
Journal of Po
wer Sources,
vol. 196
, pp
. 6525-
6533, 2011
.
[9]
M. Braunovic, “Effect of Con
n
ection Design on The C
ontact Resistance of
High Power Ov
erlapp
ing Bolted
Connections
,”
I
EEE Transactio
ns CPT,
vol. 8
,
p
p
. 220-229
, 200
1.
[10]
Indonesian National Standards, “Persy
ar
atan U
m
um Instalasi Listrik
,
”
SNI 04-0225-2000, Badan Standarisasi
Nasional (
B
SN)
, Jakarta, pp
. 235
, 2002.
[11]
L. Lin
, et al.
, “
T
he Elc
t
ri
c Vehicl
e Lithium
Bat
t
er
y
M
oni
toring
S
y
s
t
em
,”
TELKOMNIKA Indonesian Journal of
Ele
c
trica
l
Eng
i
n
eering
, vol/issue: 11(4), pp. 2247
-2252, 2013
.
[12]
M. Braunovic, “Reliab
ility
of Power Connections
,”
Journal of ZhejiangUniversity SCIENCE A
, ISSN 1009-3095,
pp. 343-356
, 20
07.
[13]
E. J. Grah
am, “Optimizing Cop
p
er
To Copper
Contact Perfor
m
ance In Mari
n
e
Batter
y
Disco
nnect Switches,”
Master of M
ech
anical Engin
eering,
Rensselaer Polytechnic
Institute
, Tro
y
, New
York, pp. 16, 20
05.
[14]
S
u
warno, “
M
aterial E
l
ek
trotekn
i
k,”
Bandung Ins
titut
e
of Techno
l
ogy, Mega
tama
,
ISBN: 979-99701-1-3, pp. 80-93
,
2006.
[15]
M
.
A. F
a
rahat,
“
F
actors
Affecti
ng The Life T
i
m
e
of The Elec
tric J
o
ints
,
”
Pr
oceed
ings
of the 14
th
Internation
a
l
Middle East
Po
wer Systems Co
nference (
M
EPC
ON’10)
,
Cairo U
n
iversity
, Eg
y
p
t, pp. 163-168, 20
10.
[16]
M. Braunovic,
at al
., “
E
l
ectr
i
c
a
l
Contacts
F
unca
m
entals
, Applications And Techolog
y
,
”
CRC Press, Taylor and
Francis Group
, I
S
BN: 1-57444-727-0, pp
. 73
, 20
06.
[17]
I. Popa,
at al
., “Modelling and
Optimizatio
n of Hi
gh Currents Dismountable Co
ntacts,”
International Conferen
ce
on Electromecha
n
ical and Pow
e
r Systems
, Chisin
au, R
e
p. Moldov
a, pp
. 76
– 81
, 2
007.
[18]
S
.
Bhatt
ach
ar
yya,
at
a
l
., “Electrical Performan
ce of
Condu
ctiv
e Bolted Connections
of Copp
er and Aluminum
Busba
r
s,
”
In
t J
Engg Techsci, v
ol/issue: 2
(
4), pp
. 275-280
, 2011
.
[19]
Suwarno,
at al
.,
“
E
ffect of
Cont
act P
r
es
s
u
re
and
P
l
ating M
a
te
rial
s on Ma
xi
mum
T
e
mpe
r
a
t
ur
e, Voltag
e
Drop, an
d
Losses of Copper Busbar Joints,”
Join
t Intern
ational Conference on rural Information and Communicatio
n
Technology and
Electric
Vehicle
Technology
, pp
.
319-324, 2013
.
[20]
W
.
P
a
rbowo a
nd A. P
u
rwadi, “
R
egenerativ
e
Braking P
e
rform
ance Anal
y
s
i
s
on Gang Car Elec
tric
,”
201
3
International Co
nference on
Info
rmation
Technology and
Electrical
Eng
i
neering
(
I
CITEE)
, pp. 39
7-402, 2013
.
[21]
ASTM B539-02
, “Standard Test Methods
for Measuring Resistance of Electric
al Connections (S
tatic Contacts),”
West Conshohocken, PA
, 19428-
2959 USA, 2008.
[22]
P. M. Kurowski, “Thermal
Analy
s
is with
Solidworks Su
mulation 2012,”
T
extboo
ks
, S
c
hr
off Dev
e
lop
m
ent
Corporation, Mission KS 66222
,
pp. 10
, 2012
.
[23]
E. R
a
thakr
i
shnan, “Fundamentalso
f Engineering
Thermod
y
namics,”
2nd
Edition
,
ISBN
81-203-2
790-X,
Prentice-
Hall of India
, pp
. 529
, 2005
.
[24]
M
.
D. Griff
i
n a
nd J
.
R.
F
r
ench
,
“
S
pace Veh
i
cl
e
Des
i
gn,”
Secon
d
Edition, Amer
ican In
stitute of Aeronautics an
d
Astronautics
, ISBN 1-56374-539-1, pp
. 635
, 200
5.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
I
J
ECE
Vo
l. 6
,
N
o
. 5
,
O
c
tob
e
r
20
16
:
206
4
–
20
72
2
072
BIOGRAP
HI
ES OF
AUTH
ORS
Agus
Risdiy
anto
receiv
e
d Master Degrees in Elec
tric
al Engin
e
r
i
ng from
School of Electri
ca
l
Engineering and
Inform
atics, Bandung Institute
of Techno
log
y
(
I
TB), Bandung
, Indonesia in
2013. He has
been working
as a researcher
in
Resear
ch
Center for
Electric Power and
Mechatron
i
cs, I
ndonesian Institute of
Sciences
(LIPI) since 200
8 until now. His resear
ch
areas
are en
erg
y
conv
ersion, high voltage material an
d
technolog
y
,
an
d maintenance o
f
high voltage
apparatus.
Umar Khay
am
received Ph.D
from
Ky
ushu In
stitute o
f
Techn
o
log
y
, Japan
in
2008. He is a
teacher
and a r
e
searcher
in Ban
dung Institut
e
o
f
Techno
log
y
(I
TB), Bandung
,
Indonesia. His
field of exp
e
rtises are Diagno
sis of High
Vo
ltag
e
Equipmen
t Based on Par
tial Disch
a
rge
Measurement;
High Voltage Engineer
ing; Transf
orm
e
r, Gas Insulated Switch
g
ear and Power
Cable.
Noviadi A. Ra
chman
receive
d Master Degrees in Ele
c
tri
c
a
l
Enginering fr
om
School of
Electri
cal Engin
eering and
Info
rm
atics,
Ba
ndu
ng Institute o
f
Techno
log
y
(IT
B), Bandung,
Indonesia in 20
12. He has been
working as a r
e
s
earcher
in Research Cen
t
er for
Electric Power
and Mechatroni
cs, Indonesian I
n
stitute of Sc
i
e
n
ces (LIPI) since 2008 until now. His research
areas
are
e
l
ec
tri
c
power dis
t
r
i
but
ion s
y
stem, power gener
a
tion s
y
s
t
em, high
voltage engin
eering
.
Maulana Arifin
receiv
e
d M
a
s
t
er Degre
e
s
in
M
echani
cal
Eng
i
nering
and Aer
o
s
p
ace F
acu
lt
y,
Bandung Institut
e
of Technolog
y (ITB), Bandung
, I
ndonesia in 2014. He has been working as a
research
er in
R
e
search
Center
for Electr
ic
Po
wer and Mech
atronics,
Indones
i
an Institute of
Sciences (LIPI)
since 2011
un
til now
. His
re
search
ar
eas
are
Therm
o
flui
d, RG En
erg
y
Conversion and
Conservation
.
Evaluation Warning : The document was created with Spire.PDF for Python.