Internati
o
nal
Journal of Ele
c
trical
and Computer
Engineering
(IJE
CE)
Vol
.
5
,
No
. 3,
J
une
2
0
1
5
,
pp
. 52
5~
53
0
I
S
SN
: 208
8-8
7
0
8
5
25
Jo
urn
a
l
h
o
me
pa
ge
: h
ttp
://iaesjo
u
r
na
l.com/
o
n
lin
e/ind
e
x.ph
p
/
IJECE
Modelling Electr
onic Characteri
stic of InP/InGaAs Double
Het
e
r
o
ju
nction B
i
polar
T
r
ansist
or
Berrichi Yami
na
1
, Ghaffour Kherreddine
2
1
F
acult
y of
S
c
i
e
nce,
Univers
i
t
y
of
Tlem
c
e
n
Alg
e
ria
2
Facu
lty
of
T
echnolog
y
,
Univ
er
sity
of
Tlemcen
,
Algeria
Article Info
A
B
STRAC
T
Article histo
r
y:
Received Feb 24, 2015
Rev
i
sed
Ap
r
10
, 20
15
Accepted Apr 27, 2015
In this paper,
we are int
e
rest
ed in
stud
y
i
ng
InP/InGaAs h
e
tero
junction
bipolar
transisto
r
NPN ty
p
e
. First a
nd for most we should describe
th
e
structure of our
simulation, th
en, we
ploted
at
room
tem
p
erature: Ene
r
g
y
band diagram,
Gummel plot, I
C-
V
C
character
i
stic and condu
ction bands for
differen
t
valu
es of V
BE
. The simulation of
this structure h
a
s dem
onstrated t
h
e
validity
of
our m
odel
and
the method of th
e simulation
.
Keyword:
Hetero
jun
c
tio
n
InP/
In
Ga
As
NP
N
Transistor
Copyright ©
201
5 Institut
e
o
f
Ad
vanced
Engin
eer
ing and S
c
i
e
nce.
All rights re
se
rve
d
.
Co
rresp
ond
i
ng
Autho
r
:
Berrichi Yam
i
na
Facu
lty of Scien
ce,
Un
iv
er
sity of
Tlem
cen
Al
geria
Em
a
il: a
m
in
a2
0
102
71@yahoo
.fr
1.
INTRODUCTION
The
use
o
f
he
t
e
ro
ju
nct
i
o
n t
o
im
pro
v
e t
h
e
per
f
o
r
m
a
nce o
f
sem
i
cond
uct
o
r
de
vi
ces i
s
not
a
new
co
n
c
ep
t; it was first sug
g
e
sted
b
y
W
illia
m
Sh
o
c
k
l
ey
in
1
951
. At th
at ti
m
e
, h
o
w
ev
er, semico
nd
u
c
t
o
r
t
echn
o
l
o
gy
wa
s n
o
t
devel
ope
d t
o
t
h
e
p
o
i
n
t
whe
r
e s
u
c
h
no
vel
co
nce
p
t
s
c
oul
d
be ac
hi
ev
ed i
n
t
h
e l
a
b
o
r
a
t
o
ry
[
1
]
.
At th
e
n
a
m
e
su
gg
ests, th
e
semico
n
d
u
c
tor h
e
tero
j
u
n
c
tion
is an
i
d
ealized
in
terface
b
e
tween
two
sem
i
cond
uct
o
r
s
. Fo
r de
vi
ce
appl
i
cat
i
on s
u
ch a
n
i
n
t
e
r
f
a
ce has t
o
be
free
of c
ont
a
m
i
n
ant
s
and t
h
e t
w
o
semico
n
d
u
c
tors
m
u
st g
e
n
e
rally b
e
lattice
match
e
d
so
th
at
n
o
d
i
stortio
n
of th
e ep
itax
i
al
layers o
ccurs to
g
i
v
e
rise un
wan
t
ed
d
e
fects
with
in
th
e layer. In
these v
e
ry sp
ecial circum
stance
s, the ba
nd dia
g
ram
s
of the se
parat
e
m
a
t
e
ri
al
s can be j
o
i
n
e
d
c
ont
i
n
u
o
u
s
l
y
an en
gi
nee
r
ed t
o
p
r
od
uce s
o
m
e
desi
red
het
e
r
o
j
u
nct
i
on
be
havi
o
u
rT
hi
s
new
de
vel
o
pm
ent
has
bee
n
ca
l
l
e
d ‘ba
n
d ga
p
engi
neeri
n
g
’
a
nd
has
pr
o
v
i
d
e
d
a v
e
hi
cl
e f
o
r
a new
u
n
d
e
rst
a
ndi
n
g
of sem
i
conduct
o
r interface
physics [1].
The pe
rf
orm
a
nce adva
nt
age o
f
HB
Ts i
s
pri
m
ari
l
y
deri
ved f
r
o
m
t
h
e use of
wi
de ba
n
dga
p
em
i
t
t
e
rs. If
th
e em
it
ter b
a
n
d
g
a
p
is larg
er th
an
'th
a
t in
th
e base
for an
n
-
p
-
n HBT,
th
e bandg
ap d
i
scon
tin
u
ity set
s
up
a
b
a
rrier t
o
th
e fo
rward
i
n
j
e
ction
o
f
electron
s
,
resu
lting
i
n
a
h
i
gh
er tu
rn-on
v
o
ltag
e
for th
e emitter-b
ase
dio
d
e
.
M
o
re i
m
port
a
n
t
l
y
, ho
we
ver,
t
h
i
s
di
sco
n
t
i
n
ui
t
y
pr
ovi
des
a
b
a
rrier t
o
t
h
e rev
e
rse inj
ection
o
f
ho
les
from
th
e
b
a
se i
n
to
t
h
e emit
ter, in
creasin
g inj
ection
efficien
cy
γ
, si
gni
fi
cant
l
y
, as m
odel
e
d
by
E
q
uat
i
on
(
1
)
[
2
]
:
γ
N
N
ex
p
∆E
kT
(1
)
Th
e i
n
tro
d
u
c
tio
n of an
wid
e
-g
ap
em
itter an
d co
llector t
o
form
a d
oub
le heteroju
n
c
tio
n
b
i
po
lar
t
r
ansi
st
o
r
(D
H
B
T)
of
fers
sev
e
ral
a
dva
nt
age
s
o
v
er
H
o
m
o
ju
nct
i
o
n
B
i
p
o
l
a
r
Tran
si
st
ors
[
3
]
:
-
Hig
h
er
f
T
and
f
ma
x
characterist
i
c
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
52
5 – 5
3
0
52
6
-
increase
d
brea
kdown
voltage
-
bet
t
e
r per
f
o
r
m
a
nce un
de
r
sat
u
rat
i
o
n o
p
erat
i
o
n
M
a
ny
para
m
e
t
e
rs
.
Th
e obj
ectiv
e o
f
th
is
p
a
p
e
r is to
estab
lish
th
e m
o
d
e
l an
d
p
r
actical ap
p
lication
of th
e
m
e
th
o
d
devel
ope
d
f
o
r
descri
bi
n
g
el
e
c
t
r
o
n
i
c
cha
r
act
eri
s
t
i
c
s o
f
I
n
P
/
In
GaAs
d
o
ubl
e het
e
r
o
ju
nct
i
o
n
bi
p
o
l
a
r t
r
ans
i
st
or
an
d Fu
ture
d
e
velo
p
m
en
t o
f
th
i
s
wo
rk
will ex
t
r
act th
e m
a
x
i
mu
m
an
d
tran
sitio
n frequ
e
n
c
ies.
2.
CIR
C
I
U
T DI
AG
RA
M OF HBT
MO
DEL
Fi
gu
re
1 s
h
ows
t
h
e sc
hem
a
t
i
c
fo
r t
h
e
ci
rc
ui
t
di
ag
ram
of HB
T m
odel
.
Figu
re
1.
Circu
it diagram
fo
r
HBT
[3]
The electron c
u
rrent
injected from
the em
itter I
nE
t
o
t
h
e
base and the
hole curre
n
t I
pE
i
n
jecte
d
from
th
e b
a
se to
t
h
e emitter. Fo
r an
HBT,
on
ly I
nE
con
t
ributes to
th
e co
llecto
r
cu
rren
t (ou
t
pu
t cu
rrent).
A
si
gni
fi
ca
nt
a
d
v
a
nt
age
o
f
t
h
e
HB
T
ove
r t
h
e
h
o
m
o
ju
nct
i
o
n
BJT is t
h
at the
pote
n
tial barrier for electrons is
sm
a
ller th
an
t
h
e po
ten
tial b
a
rrier fo
r ho
les, lead
ing
to an
HB
T injection efficiency th
at is clo
s
e to un
ity [4].
Id
eally, on
ly th
e electron
s
i
n
j
ected
in
t
o
the b
a
se con
s
titu
te th
e em
i
tter cu
rren
t an
d
t
h
at all th
ese
electrons a
r
e
collected at the coll
ector.
We recover the
classical rela
t
i
ons
hi
p bet
w
ee
n t
h
e t
h
ree c
u
rre
nt
s
transistor [5]:
I
I
I
2
3.
R
E
SEARC
H M
ETHOD
Years
of r
e
sea
r
ch i
n
t
o
de
vi
ce
phy
si
cs ha
ve
resul
t
e
d i
n
a m
a
t
h
em
at
i
c
al
m
odel
t
h
at
operat
e
s o
n
any
sem
i
cond
uct
o
r
de
vi
ce
[6]
.
T
h
e m
odel
c
o
n
s
i
s
t
s
of
a set
o
f
f
u
nd
am
ent
a
l eq
uat
i
o
ns
w
h
i
c
h l
i
n
k t
o
get
h
er t
h
e
electro
static p
o
t
en
tial an
d
the carrier d
e
n
s
it
ies, with
in
some si
m
u
la
tio
n
d
o
m
ain
.
Th
ese eq
u
a
tion
s
,
which
are
sol
v
e
d
i
n
si
de a
n
y
ge
neral
p
u
r
pos
e de
vi
ce si
m
u
l
a
t
o
r,
have
been
deri
ve
d f
r
om
M
a
xwel
l
’
s l
a
ws an
d co
n
s
i
s
t
of
Po
isso
n’s Equatio
n
th
e con
tin
u
ity eq
u
a
ti
o
n
s an
d
th
e tran
sp
ort equ
a
tio
n
s
Po
isso
n’s Equatio
n
relates v
a
riatio
ns
in
electro
static p
o
t
en
tial to
lo
cal ch
arg
e
d
e
n
s
i
ties. Th
e co
n
t
i
n
u
ity an
d
th
e tran
sp
ort eq
u
a
ti
o
n
s
d
e
scri
b
e
the way
th
at th
e electro
n
an
d
ho
le den
s
ities ev
o
l
v
e
as a resu
lt of tran
spo
r
t pro
cesses,
g
e
n
e
ratio
n
pro
c
esses, and
recom
b
ination processes
.
Differen
t
co
m
b
in
ation
s
o
f
m
o
d
e
ls
will req
u
ire so
l
v
in
g
up
t
h
e eq
u
a
tion
s
of th
e tran
spo
r
t, th
e sim
p
lest
m
o
d
e
l is
«
t
h
e
dri
f
t
di
f
f
u
s
i
o
n t
r
ans
p
ort
m
odel
»
[
7
]
.
Drift
-
d
i
ffu
sion th
eo
ry to
calcu
late
carrier trans
p
ort over
a hetero
ju
n
c
tion
,
in
th
ese m
o
d
e
l cu
rrent
exp
r
essi
ons
f
o
r
el
ect
ro
ns a
n
d
hol
es
de
nset
i
e
s
i
s
gi
ven
by
:
J
q
n
μ
E
q
D
dn
d
(3
)
J
q
p
μ
E
q
D
dp
d
(4
)
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Mo
del
l
i
ng el
ec
t
r
oni
c c
h
aract
e
ri
st
i
c
of
I
n
P/
I
n
Ga
As
do
u
b
l
e
h
e
t
e
roj
u
nct
i
o
n
b
i
pol
a
r
t
r
a
n
si
st
or
(B.
Yam
i
na
)
52
7
Whe
r
e
q is us
ed to i
ndicate
the abs
o
lu
te
valu
e of th
e electron
ic ch
arg
e
,
(E) is m
o
b
i
l
ity an
d
D is
diffusi
o
n coe
f
ficient.
Th
e (3
), (4
) equ
a
tio
ns to
b
e
so
lv
ed
are Po
isso
n
'
s equ
a
tion
an
d
t
h
e current co
n
tinu
ity eq
u
a
tio
ns for
electrons
and
holes.
Co
n
tinu
ity equatio
n
s
are:
∂n
∂
1
q
∙
J
U
(5
)
∂p
∂
1
q
∙J
U
(6
)
Poi
s
s
on'
s eq
uat
i
on i
s
:
∙
(7
)
Equ
a
tio
n
(3
) t
h
rou
g
h
(7) constitu
te a syste
m
o
f
fi
v
e
equ
a
tio
n
s
in
fiv
e
un
kno
wn
s
(n, p, J
n
, J
p
and
V)
an
d
g
i
v
e
n
ap
prop
riate bou
ndary con
d
ition
s
, can
b
e
u
s
ed
t
o
an
alyze th
e
carrier con
cen
t
r
atio
n
s
, currents and
fields in a
n
a
r
bitrary
de
vice
structure.Howe
ver,
we al
so
need
to sp
ecify
th
e o
t
h
e
r p
a
rameters (m
o
b
ili
ty, n
e
t
reco
m
b
in
atio
n
rate, ect) an
d ho
w t
h
ey d
e
p
e
nd
on
t
h
e m
a
ter
i
al p
r
op
erties,
carrier
d
e
n
s
ities and
lo
cal
p
o
t
en
tial
and field.
The
res
o
l
u
t
i
o
n
of
t
h
e a
b
ov
e
equat
i
o
ns
ha
ve
base
d
on
t
h
e
m
e
sh, t
r
eat
m
e
nt
o
f
m
e
sh p
o
i
nt
s f
o
r t
h
e
cont
i
n
ui
t
y
eq
u
a
t
i
ons at
a
het
e
ro
j
unct
i
o
ns i
s
s
o
l
v
e
d
by
t
h
e
N
e
wt
o
n
m
e
t
hod.
4.
R
E
SU
LTS AN
D ANA
LY
SIS
4.
1. Stru
cture
of
Si
mul
a
ti
o
n
The
layer struc
t
ure of
the InP
̸
In
GaA
s
DHBT
is sh
o
w
n
in
Figu
re
2.
Fi
gu
re 2.
St
r
u
c
t
ure
of
I
n
P
/
I
n
GaAs
d
o
ubl
e
h
e
t
e
ro
ju
nct
i
o
n
b
i
pol
ar
t
r
an
si
st
o
r
As s
h
ow
n
o
n
t
a
bl
e I
,
t
h
e
t
r
a
n
si
st
or c
o
nsi
s
t
s
of
0,
12
5µm
thi
c
k
6×
10
19
cm
-3
n-
In
P
em
i
t
t
er
,
0,
09µm
th
ick 3
×
10
18
cm
-3
p
-
I
n
Ga
As
base,
0,
1µm
t
h
i
c
k 4×1
0
17
cm
-3
n-
In
P
su
b
-
c
o
l
l
ect
or
a
n
d
0,
49
4
4
µm
t
h
i
c
k
8×1
0
18
cm
-3
n- InP
col
l
ector
.
Tabl
e
1. T
h
e
p
a
ram
e
t
r
e deffi
n
i
t
i
on
of
m
e
sh and
d
o
p
i
n
g
E
l
ectr
odes
Dopage (
c
m
-3
)
T
h
ickness (
µ
m
)
E
m
itte
r
(InP)
6×10
19
0.
125
Base
(InGaAs)
3×10
18
0.
090
Sub-
Collector
(In
P)
Cllector
(I
nP)
4×10
17
8×10
18
0.
100
0.
4944
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
52
5 – 5
3
0
52
8
4.
2.
Heter
o
ju
nct
i
on
Fi
gu
re
3 s
h
ows
t
h
e e
vol
ut
i
o
n
of
ene
r
gy
val
e
nce a
n
d
co
n
d
u
c
t
i
on
ban
d
s
.
0,
08
0,
1
6
0
,
2
4
0
,
3
2
0
,
4
0
0,
48
0,
56
0,
64
0,
72
0,
8
0
-2,
0
-1,
5
-1,
0
-0,
5
0,
0
0,
5
1,
0
Ener
g
i
e (
V
)
Mic
r
o
n
s
B
a
n
d
e de
v
a
l
e
nc
e (
V
)
B
a
nd
e de c
o
nduc
to
n
(
V
)
In
Ga
As
In
P
In
P
Eme
t
t
e
u
r
Co
lle
ct
eu
r
Bas
e
Fi
gu
re 3.
Ene
r
gy
ba
n
d
di
ag
ra
m
of
In
P
/
In
G
a
As do
u
b
l
e
het
e
ro
j
unct
i
o
n bi
p
o
l
a
r
t
r
a
n
si
st
o
r
On
ce th
e t
w
o
materials are jo
in
ted to
fro
m
h
e
teroj
u
n
tion
,
th
e en
erg
y
b
a
n
d
d
i
ag
ram
chan
g
e
s. Th
e
In
GaA
s
has a ban
d
g
ap
of
on
l
y
(0,7
5e
V [8]
)
, i
s
use
d
fo
r t
h
e base a
n
d
the wid
e
r
b
a
ndgap
m
a
ter
ial o
f
InP
(1,35
e
V [8
]) is u
s
ed
fo
r th
e emit
ter an
d
co
ll
ecto
r
m
a
terial.
Th
e th
erm
a
l eq
u
ilib
riu
m
b
a
n
d
d
i
ag
ram
o
f
th
e In
P-
In
GaA
s
–I
nP i
s
sh
o
w
s i
n
t
h
e
Fi
gu
re
3.
Obv
i
ou
sly, t
h
e po
ten
tial sp
ik
e at E-B
jun
c
tion
can
b
e
co
m
p
letely eli
m
in
ated
du
e to th
e em
p
l
o
y
m
en
ts
of a
hea
v
y doped as
well as thin
n-InP em
itter layer, even
at V
EB
≠
0V. Th
e th
in
n-In
P emit
ter layer
may h
e
l
p
to
pro
m
o
t
e th
e en
erg
y
b
a
n
d
at emitter sid
e
and
i
n
creas
e th
e effectiv
e po
ten
tial b
a
rrier fo
r ho
les.
Thu
s
, the
tran
sistor action
s
with
h
i
gh
emit
ter in
j
ecti
o
n efficiency and curre
nt gai
n
a
r
e expectable.
4.3. Conducti
on
B
a
nds Diag
ram
for Different Value of
V
BE
.
Fi
gu
re 4
s
h
ows
co
nd
uct
i
o
n ba
nds
di
a
g
ram
fo
r di
ffe
rent
val
u
e
o
f
V
BE
.
0,1
0
,2
0
,
3
0
,
4
0,5
0
,6
0,7
-0
,
8
-0
,
6
-0
,
4
-0
,
2
0,0
0,2
0,4
0,6
0,8
1,0
E
n
er
gie(
eV
)
M
i
c
r
ons
V
=
0,
0V
V
=
0,
5V
V=1
V
Fi
gu
re 4.
C
o
nd
uct
i
o
n
ba
n
d
s di
agram
of I
n
P/
I
n
Ga
As d
o
u
b
l
e
h
e
tero
jun
c
tio
n b
i
po
lar
tran
sist
o
r
fo
r
diffe
re
nt va
lue o
f
V
BE
Sim
u
l
a
t
i
on o
f
con
d
u
ct
i
o
n
ba
nd
di
ag
ram
for
a In
P/
I
n
Ga
As
do
u
b
l
e
s
h
e
tero
jun
c
tio
n b
i
p
o
lar tran
sist
o
r
with
di
f
f
ere
n
t
val
u
es of V
BE.
The fi
g
u
re
4
sho
w
s t
h
e
dec
r
ease co
nd
uct
i
on
ban
d
bar
r
i
e
r at
t
h
e em
i
t
t
e
r-
base
junction,
when we i
n
crease
the value
of t
h
e
voltage
V
EB
.
4.
4.
Gummel Pl
ot
The
Figure 5
sho
w
s
t
h
e c
o
l
l
ect
or a
n
d
base
cu
rre
nt
o
f
In
P /
I
n
Ga
As
d
o
ubl
e
het
e
r
o
ju
n
c
t
i
on
bi
p
o
l
a
r
transistor,
bias
ed in the
forwar
d activ
e m
o
de of
o
p
e
ration
with
V
C
=
1
V
,
as a
f
u
nct
i
o
n
o
f
t
h
e
ba
se-e
m
i
tt
er
vol
t
a
ge
. T
h
i
s
t
y
pe o
f
pl
ot
i
s
a
l
so cal
l
e
d a
G
u
m
m
e
l
pl
ot
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
J
ECE
I
S
SN
:
208
8-8
7
0
8
Mo
del
l
i
ng el
ec
t
r
oni
c c
h
aract
e
ri
st
i
c
of
I
n
P/
I
n
Ga
As
do
u
b
l
e
h
e
t
e
roj
u
nct
i
o
n
b
i
pol
a
r
t
r
a
n
si
st
or
(B.
Yam
i
na
)
52
9
1,
0
1
,5
2
,
0
2
,
5
-0
,2
0,
0
0,
2
0,
4
0,
6
0,
8
1,
0
1,
2
1,
4
I
c
, I
b
V(
ba
se
)
Ib
Ic
Fi
gu
re 5.
G
u
m
m
e
l
pl
ot
o
f
InP
/
I
n
Ga
As
d
o
u
b
l
e het
e
r
o
j
u
nct
i
o
n
bi
pol
a
r
t
r
a
n
si
st
or
This pl
ot is ve
ry use
f
ul in
de
vice cha
r
acteri
zati
on
because
it reflects on
the quality of t
h
e em
it
ter-
base j
unct
i
o
n whi
l
e
t
h
e
ba
se-
c
ol
l
ect
or bi
as,
V
BC
, i
s
kept
at
a co
nst
a
nt
.
A
n
u
m
b
e
r
o
f
o
t
h
e
r d
e
v
i
ce
p
a
rameters can
b
e
g
a
rn
ered
eit
h
er qu
an
titativ
ely o
r
qu
alitativ
ely
d
i
rectly fro
m
th
e
Gum
m
el
pl
ot
[
9
]
:
-
The c
o
m
m
on-e
m
i
t
t
e
r cu
rre
nt
gai
n
β
a
n
d
the comm
on-base current gain
α
.
-
Base and
co
llecto
r
i
d
eality facto
r
s
ƞ
.
-
Series resistances
an
d lea
k
age curre
nts.
Gum
m
el
pl
ot
can
be
di
vi
de
d
i
n
t
o
t
h
ree
di
st
i
n
ct
regi
ons:
0V<
V
BE
<3
V
:
Th
is
reg
i
on
correspo
n
d
s
t
o
the no
rm
al b
i
as co
nd
itio
ns an
d id
eal, th
e b
a
se an
d co
llector curren
t
is do
m
i
n
a
ted
by th
e d
i
ffu
s
ion
cu
rren
t
(cu
r
rent o
f
el
ectron
s
i
n
j
ected
fro
m
th
e emitter in
to
th
e
b
a
se).
V
BE
<1,2 V:
R
ecom
b
ination c
u
rrents
are a
dded to the
diffus
i
on c
u
rre
nt.
V
BE
>3:
The b
a
se and col
l
ect
or cu
rre
nt
s are
sl
i
ght
l
y
reduc
ed beca
use o
f
t
h
e phe
n
o
m
e
na at
hi
gh d
o
ses
(Ki
r
k
effect).
4.
5.
Ic-Vce
Char
acteristics
Fi
gu
re 6 sh
o
w
s
a t
y
pi
cal out
p
u
t
of I
n
P/
I
n
G
a
As
d
o
u
b
l
e
het
e
r
o
j
unct
i
o
n bi
pol
ar t
r
ansi
st
o
r
characte
r
istic, whic
h is t
h
e c
o
llector curre
nt
Ic vers
us
t
h
e
c
o
l
l
ect
or-
e
m
i
t
t
e
r vol
t
a
ge
at
co
nst
a
nt
base c
u
r
r
ent
.
03
6
0,0
000
0
0,0
000
1
0,0
000
2
0,0
000
3
Ic
(A
/µm
)
Vc
(
V
)
Ic
1
Ic
2
Ic
3
Ic
4
Ic
5
Figu
re
6.
Ic
-Vc
e
cha
r
acteristics o
f
I
n
P/
In
Ga
A
s
d
o
u
b
le
h
e
teroj
u
n
c
tion
b
i
po
lar
tran
sistor
I-
V
pl
ot
ca
n
be
di
vi
ded
i
n
t
o
t
h
ree
di
st
i
n
ct
re
g
i
ons:
-
R
e
gi
o
n
1(
0V<
V
BE
<
0,
2V
):
i
s
t
h
e
n
o
n
-
l
i
n
ea
r re
gi
o
n
d
u
e t
o
no
n
-
ex
p
one
nt
i
a
l
beha
vi
o
u
r
of
di
o
d
es
at
l
o
w
vol
t
a
ge
s (l
ea
ka
ge c
u
r
r
ent
s
am
on
gst
ot
he
r
fac
t
ors
)
.
-
R
e
gi
o
n
2
(
0
,
2
V<
V
BE
<
0,9V): is th
e linear
reg
i
on
-
R
e
gi
o
n
3 (
0
,
9
V<
V
BE
<
10V): th
e curren
t
is
li
mite
d by the
series re
sistanc
e
.
Evaluation Warning : The document was created with Spire.PDF for Python.
I
S
SN
:
2
088
-87
08
IJEC
E V
o
l
.
5, No
. 3,
J
u
ne 2
0
1
5
:
52
5 – 5
3
0
53
0
5.
CO
NCL
USI
O
N
In t
h
i
s
pa
per
,
we st
udi
e
d
I
n
P
/
In
GaAs
do
u
b
l
e
s
het
e
ro
j
unct
i
on bi
p
o
l
a
r
t
r
an
si
st
or
de
vi
ce. M
odel
i
n
g a
n
d
sim
u
l
a
t
i
on we
re pe
rf
o
r
m
e
d by
usi
n
g
AT
LAS
-
TC
A
D
si
m
u
l
a
t
o
r.
Ou
r
sim
u
l
a
t
i
ons p
r
ove
t
h
e
qual
i
t
y
and
val
i
d
i
t
y
of ou
r
m
odel
fo
r m
odel
l
i
ng el
ect
r
o
n
i
c
charac
teristic o
f
th
e In
P/
InGaAs heteroj
u
n
c
tion
b
i
po
l
a
r
transistor.
ACKNOWLE
DGE
M
ENTS
We tha
nk the
m
e
m
b
ers the Unity of Res
earch “M
ateri
a
ls and Rene
wable E
n
ergie
s
”, Faculty of
Scien
ce,
Un
iv
ersity o
f
Abo
u
-b
ekr Belkai
d,
Tle
m
cen, Al
ge
ria.
REFERE
NC
ES
[1]
D.V. Morgan,
Robin H.
Villiams, Ph
y
s
ics and Technolog
y of
Heterojunction Devi
ces pu
blished b
y
:
Pe
t
e
r
peregrines Ltd,
London, United
Kingdom
, 1991.
[2]
S.M. Sze, Ph
y
s
ics of
Semiconductor Devices
(Second Edition), Wiley
-Interscience
, 1981, pp. 142.
[3]
Tom K. Johansen, Virgin
ie No
djiadj
im, Jean-
Y
ves Dupu
y
,
A
gnieszka kon
cz
ykowska, Small-
and Larg
e- Sign
al
Modeling for Submicron InP/InGaAs DHBT’s,
DTU Electrical Engineering,
Electromagnetic Systems Group,
T
echnica
l Univ
e
r
s
ity of Denmark
, 2012
.
[4]
Kwok-Leung Chan, High resolution thermal imaging for electri
cal and op
tical char
acteri
zatio
n of electronic
and
photonic devices
,
Univ
ersity
of
M
i
chigan
, 2007
.
[5]
Florence Brossard, Epitaxies Si/SiGe(C)
pour transistors bipolair
e
s avancés,
Université Joseph-Fourier-
Grenoble.
Fr
ench
, 2007.
[6]
M.R. Pinto, Con
o
r S. Raffe
rty
,
and Robert W. Dutton, PISCES2 -
Poisson and Continuity
Equation Solver,
Stan
ford
Electronics Lab
o
ratory Techni
cal Report, Stanfo
r
d University
, September 1984
.
[7]
S. Selberh
e
rr, A
n
aly
s
is and
Simulation
of Semiconductor Dev
i
ces,
Springer-Verlag, Wien-New
York
, 1984
.
[8]
Subhra Chowdhur
y
,
Sukla Basu
, Effect of
dev
i
ce parameters on
current vo
ltag
e
characteristics and current g
a
in
of
InP/InGaAs HB
Ts,
Electronics
and Communication Eng
i
neerin
g Depar
tment,
Kalyani Govern
ment Engin
eering
College Kalyani
, India
j
ournal o
f
Electron Devices,
Vol. 9
,
2011
, pp. 362-366.
[9]
A.
S.
Zoolfakar,
N.
A.
Shahrol,
Mode
lling of NPN Bipolar Junction Transistor
C
h
arac
terist
ics Using Gum
m
e
l Pl
ot
Techn
i
que
, International Con
f
erence on
Intelligen
t
Systems, Modelling and
Simulation (
I
SMS)
, 2010, p
.
396-400
.
Evaluation Warning : The document was created with Spire.PDF for Python.